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1.1 Schematic illustration of the conventional and proposed methods for analyzing complex

fluid flows, such as polymer melts. (A) An example of macroscopic polymer flow with

the molecular states. The polymer chains in fluid elements are orientated by the flow

deformations and the orientations can relax under a freed environment. (B) A microscopic

polymer system under a deformation (e.g., simple shears). (C) A data-driven model of

constitutive relations is built to minimize the error in the predictions of the rheological

data taken from the microscopic simulations under a deformation. In previous, the

(direct) MSS means the handling (A) and (B). In this thesis, we investigate the protocol

of (A) and (C) (from the data given by (B)). . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Representative models of polymer chains in melts. (left) A snapshot of beads-spring

chains with Kremer-Grest model [13] considering the inter-chain interaction. (center) A

bead-spring chain of Rouse model [14]. (right) A tube model[6]. . . . . . . . . . . . . . 4

1.3 Schematic illustration of the macroscopic fluid solver based on Lagrangian specification. 6

1.4 The classification upon the spatial and temporal scales for the rheological applications

of data-driven methodologies about fluid flow predictions. The icons in the first and

second boxes mean the atomistic/CG descriptions at the micro and mesoscopic scales.

Those in the third and fourth boxes are the constitutive relation and the fluid flows as

the macroscopic local and global descriptions, respectively. (A) coarse-graining atomistic

description, (B) identifying the CG systems, and (C) predicting the macroscopic flows

are the typical three types of ML applications. . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Schematic illustration of the rheological identification problem. (A) Input-output system.

The input u changes the state x of the system, and the output y is evaluated from the

state x and the input u. (B) The rheological systems used in the rheological or fluid

simulations where the velocity gradient κ from the macroscopic velocity field is the

input and the stress evaluated by the system state (e.g., the molecular conformation

{R} for the system with microscopic configurations, or the stress itself σ). The stress

field updates the velocity field at the macroscopic scale. Except for the multi-scale

approaches, the utilized rheological system with numerous degrees of freedom is reduced

by phenomenological insights or data-driven techniques. . . . . . . . . . . . . . . . . . . 9
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2.1 Schematic illustration of the proposed simulation framework for a polymeric fluid with

a machine-learned constitutive relation. The application of deformations, here startup

steady/oscillatory shears specified by the velocity gradient κxy, to the targeted micro-

scopic polymer system provides the training data, in the form of the time varying stress

σ and its time derivative σ̇, for learning the constitutive relation. The illustration in

the bottom left (Step 2), represents the learned relation between σ̇ and (σ, κxy), i.e.,

the constitutive relation. This learned constitutive relation can then be used within a

macroscopic flow simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 The predictions for the stress responses, (a) σxx(t), (b) σxy(t), and (c) σyy(t), under (I)

the startup shear flows and (II) the oscillatory flows for ten different shear rates, evenly

spaced on a logarithmic axis, such that γ̇0, γmaxω ∈ [10−1/τd,1 · 101/τd]. The solid blue

lines are the time series of the stress with the microscopic polymer system thermally

equilibrated at t = 0 (104 polymer chains) and the dashed red lines are those obtained

from the machine-learned constitutive relations for σ̇xx, σ̇xy, and σ̇yy. Lighter (darker)

colors are used to represent lower (higher) values of the applied shear-rates, γ̇0, γmaxω.

Note that the higher absolute magnitudes of the stresses (σxx,σxy,σyy) correspond to the

higher shear rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Predictions for the pressure gap driven flow were obtained using (a) the machine-learned

constitutive relation, trained on microscopic systems under steady/oscillatory shear flows,

and (b) the full MSS, using embedded microscopic simulators (104 polymer chains per

Lagrangian particle), together with (c) The absolute error between the two simulation

results. In the bottom panels (c), the dotted red lines show the maximum absolute error,

the solid blue lines the average error values. From left to right, the columns correspond

to (I) the velocity along the flow direction vx, and (II) the σxy, (III) σxx, and (IV) σyy

components of the stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 (a) The time series of the velocity vx along the center line y = 0. (b) The steady state

velocity vx as a function of height. (I) The graphs on the left show the elastic case

with El = 1.0,Wi(a) = 0.13 using the parameters shown in Table 2.1, whereas those

on (II) the right show a weakly elastic case, with El = 0.1 and Wi(a) = 0.13. The

parameters for case (II) are the same as those of (I), expect for a change in the total

viscosity ηt = 4.0 and the external force F̂x = 0.002. Solid black lines and dashed red

lines are the simulation results using the microscopic simulators of the sliplink model and

the machine-learned constitutive relation, respectively. Blue dotted lines are the results

of the upper convected Maxwell model having the same value of the zero shear viscosity

and the longest relaxation time of the sliplink system. . . . . . . . . . . . . . . . . . . . 24

2.5 Rheological properties for a mono-disperse system with Zeq = 10. (left) Linear viscoelas-

ticity, where the solid line is the storage modulus G′(ω) and the dashed line is the loss

modulus G′′(ω). (center) Steady viscosities under shears and planar elongations. Squares

and circles show the mean values of the steady shear viscosity ηs(γ̇) and the planar elon-

gational viscosity ηE(ε̇), respectively. The dashed line indicates the linear viscoelasticity

(LVE) results, corresponding to the absolute value of the linear complex viscosity |η∗(ω)|.
(right) Transient viscosities under steady shear, with γ̇ = 1/τR (solid line), and planar

elongation, with ε̇ = 1/τR (dotted dashed line) where τR is the Rouse relaxation time.

The dashed lines are the LVE results (|η∗(ω)| and 4|η∗(ω)|) using the Trouton rule. . . . 28
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2.6 (top) Velocity vx at the center line (y = 0) for the Oldroyd-B fluid flow between two

parallel plates. the black line is the results of SPH simulation and the red line shows the

analytical solution. (bottom) The red symbols are the absolute relative errors of vx at

y = 0 with time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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(b) under oscillatory shear flow (κxy = γ0ω cos(ωt)). The number of total terms obtained

by (c) the training data (a) (i.e., simple shear flow) and (d) the training data (b) (i.e.,

oscillatory shear flow). (e) The constitutive equations obtained by Rheo-SINDy. The
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1 General Introduction

Chapter 1

General Introduction

1.1 Introductory Remarks

1.1.1 Overview of Data-Driven Rheology on Multi-Scale Simulations

Soft Matter and Complex Fluid in Chemical Engineering

Soft matter refers to a category of substances that possess structures capable of deformations near room

temperature [1, 2]. Their ease of shaping and cost-effectiveness help industrial products. These out-

standing features originated from their dynamic structures in response to external stimuli. In particular,

when characteristic temporal and spatial scales of their dynamics are close to those of deformations

externally applied, their appearances at a macroscopic scale show complexity, so-called complex fluid

[3]. In the field of chemical engineering, an exploration of soft matter and complex fluids is significant

for obtaining desirable materials with designated properties and for understanding the relations between

their properties and structures. The National Academy of Engineering’s report “New Directions for

Chemical Engineering” lists these “complex fluids and soft matter” alongside polymer, biological, and

electronic materials.

Complex fluids present challenges in flow prediction methods, and rheology and transport phenomena

help us address these challenges. Their constitutive relations (stress-strain relation) are non-linear,

namely non-Newtonian fluids. The flows of Newtonian fluids with trivial (linear) constitutive relations

are investigated in transport phenomena (fluid mechanics also). On the other hand, a general form of

constitutive relations has not been fully established, their classification and description remain one of

the main interests in rheology.

Rheology provides knowledge for mechanical responses of a deforming material, studying constitu-

tive relations that usually depend on a substance structure. An exposure of non-Newtonian fluids with

nontrivial constitutive relations to various strain fields causes industrial problems in the transport phe-

nomenon. Therefore, as described in Bird’s “Transport Phenomena” picking polymer fluids as a typical

example of complex fluids [4], understanding these phenomena requires the rheological fundamentals of

non-Newtonian fluids.

Polymer Fluids and Rheology

Polymer fluids represent complex fluids because of their hierarchical internal degrees of freedom. Ac-

cording to Rubinstein and Colby, the 20th century can be considered as the Polymer Age [5], and the

chemical engineering field has contributed to the progress of their industry. In polymer processing, the

polymer fluids exhibit complex flow behaviors, especially higher molecular weight polymers exceeding
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5000Da [4]. Even relatively slower flow deformations can elicit a nonlinear response of the fluids, espe-

cially in the systems composed of longer polymer chains with more than an order of 105 Da because of

the topological interactions, i.e., entanglements [6].

Classical constitutive models of polymer fluids are not derived from the physical insights of the mi-

croscopic structure (e.g., Boltzmann’s superposition principle), regardless of the correlations between

structures and properties. Beyond the phenomenological modeling, for equilibrium systems, the uni-

versal relations between characteristic structures and material constants have been discussed through

scaling theories [7]. Furthermore, responses to weak external fields that do not significantly alter the

internal structure can be described by transport coefficients derived from the linear response theory of

statistical mechanics. Recent progress in rheology relies upon molecular viewpoints with a methodology

directly addressing the nonlinear responses for arbitrary external fields.

Data-Driven Methods for Multi-Scale Simulations

Capturing the complexity of microscopic structures depends on molecular dynamics simulations, facil-

itated by the advancements in computational environments. The simulations with the supercomputer

systems can handle numbers of elements even more than a billion. However, remembering the Avogadro

constant, we consider it significantly impractical to simulate fluid behaviors at a molecular resolution to

predict complex responses under deformations. Thus, there is interest in multi-scale simulation (MSS)

methods that effectively combine descriptions at different scales, such as coarse-grained (CG) molecular

dynamics simulations and fluid solvers [8].

In the typical MSS approaches, the fluid system is represented by numerous molecular simulators

embedded into each fluid element. Essentially, each allocated simulator receives strain rates determined

by the velocity field at the macroscopic scale, and the stress is evaluated from the microscopic state

of internal molecules. Microscopic simulators work as state machines with inputs and outputs (i.e.,

strain rate and stress). Such rheology systems can be identified by solving the inverse problem from

the input-output data with experiments and/or simulations. This idea of surrogate modeling is one of

the data-driven methods that have been permeating multiple fields in recent years, also in the field of

rheology [9–11].

1.1.2 Purpose of Thesis

Figure 1.1 illustrates the previous and proposed approach to analyze the complex fluid flows of polymers.

Predicting the complex fluid flows with numerous internal degrees of freedom of microscopic systems can

be enhanced by data-driven approaches, which paves the way for new avenues toward general solutions

[12]. This perspective initializes this doctoral thesis on the discussion of technological developments.

In the following sections of this chapter, Sections 1.2 and 1.3 review the technical elements of MSS

and the recent progress relying on the data-driven approaches, respectively. Building upon the overview

provided in the previous section, research considering molecular rheology for polymer fluids is discussed.

The evolution of prediction methods for polymer fluid flow, centered on the molecular rheology-based

fluid prediction, namely the multiscale simulation approach, is described. Subsequently, recent examples

of data-driven methods analysis for rheology and transport phenomena are introduced. Then, Section

1.4 guides the practice in this thesis and the roles of the main chapters.
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Fig. 1.1 Schematic illustration of the conventional and proposed methods for analyzing complex

fluid flows, such as polymer melts. (A) An example of macroscopic polymer flow with the molecular

states. The polymer chains in fluid elements are orientated by the flow deformations and the

orientations can relax under a freed environment. (B) A microscopic polymer system under a

deformation (e.g., simple shears). (C) A data-driven model of constitutive relations is built to

minimize the error in the predictions of the rheological data taken from the microscopic simulations

under a deformation. In previous, the (direct) MSS means the handling (A) and (B). In this thesis,

we investigate the protocol of (A) and (C) (from the data given by (B)).

Exclusions

For simplicity, we focus on isothermal systems without energy transports and heterogeneities, such as

concentrations. Instead, the thesis focuses on the analytical techniques for polymer fluid bulks.

1.2 Basics of Multi-Scale Simulations for Polymer Fluid Flows

1.2.1 Microscopic Polymer Systems

This subsection reviews molecular modelings of polymer melt systems describing rheological properties

as one of the technical elements of conventional MSS approaches. Polymer melts are handled in polymer

processing when forming a shape of products. The rheology of polymer melts is critical not only for

industrial demands but also for academic interests. They are typical examples of complex fluids with

internal degrees of freedom, potentially insightful to the universalities of such fluid dynamics.

Microscopic descriptions have significantly contributed to sciences as computational methods in ad-

dition to experiments and theory. Computational systems can represent the molecules and reproduce

the macroscopic properties on the statistical mechanics, including the rheological properties. Full atom-

istic simulations often face difficulties in computational resources, particularly for soft matters involving

mesoscopic structures and their interactions. Thus, CG descriptions (e.g., replacing CH2 with one bead)
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Fig. 1.2 Representative models of polymer chains in melts. (left) A snapshot of beads-spring chains

with Kremer-Grest model [13] considering the inter-chain interaction. (center) A bead-spring chain

of Rouse model [14]. (right) A tube model[6].

are essential to explain the statistical behavior of the microscopic systems. While these simplifications

overlook the detailed information in each CG component, the dynamics of the most significant struc-

ture are related to the macroscopic scale, not the minimum components like hydrogens in hydrocarbon

frameworks.

Figure 1.2 shows the three types of the CG models of polymer chains. The illustration of aggregated

chains is a snapshot of the Kremer-Grest chains [13], which are composed of beads (following Langevin

dynamics equations) and springs with inter-chain interactions. The spatial correlations on the inter-chain

interactions enable us to describe the dynamics of the polymer chains in detail. We note that the micro-

scopic simulations with the interactions should avoid the deformation collapse of the cell with periodic

boundary conditions in the technical commissions developed for specific types of deformations [15–18].

The fundamental rheological properties of polymer melts can be discussed with the simplified model, the

Rouse model [14] composed of (Brownian) beads without inter-chain interactions. The Kremer-Grest and

the Rouse models are utilized for shorter chain systems since we have limited computational resources.

For longer chains in an entangled region with high molecular weights, the tube model [6] represents the

topological confinements of chains illustrated on the right-hand side of Fig. 1.2. In a system composed

of longer polymer chains, stress shows slow relaxations because of the larger spatial and temporal scales,

and rheological dynamics often appear in macroscopic fluid flows, which do not belong to the dynamics

of a Newtonian fluid.

Essentially, in the CG systems, the stresses are evaluated by the potential forces dominated by those

from the bonds. The momenta are usually damped at their CG time scales, and they act as almost

constants in the stresses. Thus, the statistically evaluated stress represents the averaged orientation of

the bonding structure of a polymer system.

The characteristic relaxation time of the stress of an entangled polymer system is around that of

macroscopic flows. The deformations, with the magnitude of the inverse of the relaxation time, change

the structure from that in equilibrium, whose examples are the orientation and stretches of the poly-

mer chains. When the structures are significantly deformed, the nonlinear stress responses depending

on the characteristic structures are observed in the flows, e.g., the Weissenberg effect, shear-thinning,

shear-thickening, strain-softening, strain-hardening, and so on, appearing in polymer processing. To com-

prehensively predict and control these phenomena, we should use a well-established dynamical equation
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of stress based on the microscopic descriptions.

The dynamical equations of statistical stress can be derived in some simple cases; for example, when

the Brownian beads are linearly bonded (no brunches) by harmonic springs, we can obtain the closed

formula of the dynamics, i.e., Maxwell model. However, in most practical applications, one cannot derive

the constitutive equation without the nontrivial approximation (e.g., FENE-P model). Nevertheless, the

simplicity and transparency of the analytical solutions are essential to our understanding.

For adopting the complexity of the applications, the numerical simulations of the CG models play

significant roles in evaluating the stress dynamics while considering the history of deformation gradients

in the complex flows. The primal research of MSS [19] employs the simplest polymer model, the dumbbell

model with two beads connected by a linear or nonlinear spring. With the computational advancements,

recent MSS studies rely on the sliplink models [20–26], which, extended from the tube model, can precisely

describe the rheological behavior on the parameters bridged to molecular weights and chemical species.

1.2.2 Macroscopic Fluid Solver

This section shows the governing equations of complex fluid flows at a macroscopic scale independent

of the constitutive relations. In contrast to the purely viscous fluids governed by the Navie-Stokes

equation, the viscoelastic fluids follow the following mass and momentum conservation equations within

an isothermal domain:

∂ρ

∂t
+∇ · (ρv) = 0, (1.1)

Dv

Dt
=

1

ρ
∇ · (σ − PI) + Fex, (1.2)

where ρ the mass density, v the fluid velocity, D/Dt the advective derivative, σ the stress, P the pressure,

I the unit tensor, Fex the external force. Additionally, the constitutive equations, the closed form of the

equation between the strain rate D and the stress σ, are used to predict complex fluid flows [3]. Typical

equations are of Newtonian fluids and Maxwellian fluids, which have the linear constitutive relations of

Newton and Maxwell as

σ = ηD, (1.3)(
1 + τ

δ

δt

)
σ = ηD, (1.4)

where η the viscosity, D the strain rate, τ the relaxation time, δ/δt the material derivative satisfying the

objectivity principle. When the constitutive relation follows the Newton’s Eq. (1.3), the Cauthy’s Eq.

(1.2) becomes the Navie-Stokes equation. Examples of the empirical viscoelastic constitutive relations

with an extended form on Eq. (1.4) are the Oldroyd models[27], the White-Metzner model[28], the

Giesekus model [29], the Phan-Thien-Tanner model[30], etc. For general complex fluids, the appropriate

nonlinear terms in the equations are not known and are dependent on the types of fluids.

Lagrangian Fluid Solvers

The simulations often employ particle-based solvers, while the standard choice with these empirical

constitutive equations relies on the mesh-based ones, e.g., the finite element method. The Lagrangian

solvers can simplify the advection of the microscopic simulators with the numerous state variables. One of

the methods is the smoothed particle hydrodynamics (SPH) [31], which discretizes the fluid domain into
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Fig. 1.3 Schematic illustration of the macroscopic fluid solver based on Lagrangian specification.

the smoothed particles. Figure 1.3 demonstrates discretizing the fluid domain into the particle elements.

The physical quantities at a point are defined as the summations over the surrounding smoothed particles

convoluted with the distances.

1.2.3 Applications of Multi-Scale Simulations

Constitutive equations can reasonably address the linear relation described in Eqs.(1.4), but the nonlinear

properties substantially dependent on the microscopic structures are not unified in the existing equation-

based models. To overcome this problem, the MSS method has been proposed to analyze the complex

fluid flows while considering their microscopic and time-dependent structures. The MSS methods employ

two models at different scales which are the macroscopic governing equations and the microscopic (CG)

molecular-based model. The two models are connected by velocity gradient and stress, where the velocity

gradients at points of a macroscopic domain work as the (affine) deformation rates, which are sent to the

corresponding microscopic simulators. A microscopic simulator holds a state under their deformation

histories along the streamlines of the fluid flows, which provides the stress dynamics instead of constitutive

equations.

This MSS framework has evolved over the past 30 years, starting with the work of Laso and Öttinger

[19]. In their original method, the microscopic system comprises the non-interactive chain models, and

the macroscopic fluid domain is finitely discretized to be assumed as laminar flows between parallel plates

with only a single deformation mode (shears).

MSS applications are classified into two types based on whether they use non- or interactive polymer

chains in the employed microscopic systems. The differences between these MSS types are not only the

physical viewpoints at the microscopic scale but also the ease of technical handling of the deforming

simulation cell boxes; the latter limits the MSS to the (quasi) one-dimensional flows with a deformation

type. When we employ the microscopic polymer model with a non- or pseudo-interactive polymer

chain model, arbitrary deformations can be applied to the microscopic systems. With this simplified

microscopic model, MSS can analyze any fluid flows where their fluid elements experience time-dependent

deformation modes. Ideally, simulating the macroscopic flows based on any microscopic model is a goal

of MSS technique.

Some of the previous MSS studies [32–38] rely on the non- or pseudo-interactive chains model (e.g.,

the dumbbell models or the sliplink models) to accurately describe the entangled polymer melt rheology.

A SPH [32] or smoothed dissipative particle dynamics (SDPD) [39] method can handle the general fluid

flows because of the simplicity of advection of the microscopic simulators. This type of MSS approach

enables us to analyze arbitrary flows based on a type of microscopic descriptions and has been applied
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Fig. 1.4 The classification upon the spatial and temporal scales for the rheological applications

of data-driven methodologies about fluid flow predictions. The icons in the first and second boxes

mean the atomistic/CG descriptions at the micro and mesoscopic scales. Those in the third and

fourth boxes are the constitutive relation and the fluid flows as the macroscopic local and global

descriptions, respectively. (A) coarse-graining atomistic description, (B) identifying the CG sys-

tems, and (C) predicting the macroscopic flows are the typical three types of ML applications.

to some analysis of the polymer processing flows.

We can apply the MSS approach to more detailed microscopic models with interchain interactions when

idealizing the macroscopic flows to ones with single-mode deformation mode, shears [19, 40] and uniaxial

elongations [35, 41, 42]. To avoid the collapse of simulation cells under deformation, the techniques of

recoverable cells for specific types and single mode of deformations [15–18].

1.3 Review on Data-Driven Rheology

In recent years, successful cases of MSS for shear [40] and elongation [42] have been demonstrated with

recoverable periodic boundary conditions. However, we currently cannot handle general time-dependent

deformations. The use of machine learning constitutive relationships can avoid technical issues regarding

periodic boundary conditions and significantly reduce computation time. Data-driven approaches are

increasingly being integrated into computational methods in material science, playing a role in predicting

as well as discovering experimental results based on physical insights [43]. Machine learning models (e.g.,

neural networks; NNs) can be tailored to the specific properties of each material. In the field of rheology,

complex fluids such as polymer fluids, which exhibit complex behaviors dependent on internal degrees

of freedom, are of interest. To advance the practical application of complex fluids and to deepen our

understanding of their rheological properties, the use of machine-learned models that combine physical

and data-driven approaches is required [10, 11].

Figure 1.4 illustrates the three types of data-driven methods for rheology where the classification

is based on the bridges of the four systems: full-atomistic, microscopic, macroscopic but local, and

macroscopic ones. First, from full-atomistic to microscopic scales, coarse-graining is a significant example

of dimensionality reduction that preserves the macroscopic properties and the structure of its rheology.

Coarse-graining enables us to investigate the rheological properties for the (longest) relaxation time of the

system for the sake of ignoring the bottleneck of the atomistic system. Second, taking the rheological data

from the CG systems, we can identify the dynamics of stress with the minimum number of dimensions

based on regression models. The rheology data of the complex and viscoelastic system should cover the

time-dependent results under deformations. Finally, the identified constitutive relations can be utilized
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for the macroscopic flows where the fluid dynamics solvers are enhanced by data-driven approaches, such

as physics-informed neural networks (PINNs) [44]. The three applications of data-driven methods for

rheology are described in the following subsections.

1.3.1 Coarse-Graining a Microscopic Description

For machine learning-based MSS, there are two important aspects to consider in determining the con-

stitutive relation: the reliability of the data source (descriptors of micro models) and the validity of the

assumed machine learning model itself. As discussed in the previous section, using machine learning

methods to learn from the responses of microsystems exposed to steady-state or time-dependent exter-

nal fields dramatically improves the computational efficiency of MSS. However, the reliability of flow

predictions derived using these applications is always constrained by the quality of microscale systems.

Deriving polymer dynamics using a full atomic model is prohibitively expensive. Therefore, CG descrip-

tions, commonly adopted (i.e., bead-spring model, sliplink model), are actively researched and enable

efficient prediction of dynamics. Special treatment is required for dimension reduction in constructing

CG elements and their motion to maintain rheological reliability [45].

Several technical reviews have been published explaining how to derive CG interaction potentials ap-

propriately [46, 47]. Ravikumar et al. [48] proposed conducting many-body dissipative particle dynamics

(mDPD) simulations of polymer solutions and suggested using CG potentials that preserve Schmidt num-

bers of full atomic descriptions, i.e., the ratio of dynamic viscosity to diffusion coefficient. Mukkamala

et al. [49] reduce the bottlebrushes using a proper orthogonal decomposition for their DPD simulation.

Normal CG potentials are state-dependent, making it difficult to create independent CG potentials for

each state across a wide parameter range. To overcome this, Shireen et al. [50] constructed temperature-

transferable CG models by obtaining temperature-dependent parameters with DeepNN and successfully

predicted their mechanical and thermal properties. During their training process, both binding and non-

binding potentials were adjusted to match molecular structure and density. Additionally, we note the

use of MD-based generative adversarial networks (MDGAN) [51, 52] to provide a set of latent variables

encoding molecular configurations and dynamics. These efforts are crucial for identifying features and

parameterizing appropriate models, aiding in accurately describing macroscopic flow of complex fluids.

When deriving constitutive relationships from a CG model, adopting the structure of machine learn-

ing is effective in capturing stress behavior. Machine learning models are trained against CG models,

and their stress represents atomic and meso structures. However, stress alone is insufficient to describe

rheological properties for any microsystem, especially when higher-order relaxation modes occur. There-

fore, identifying additional descriptors is necessary to accurately describe stress behavior. For example,

methods like singular value decomposition or autoencoders reduce system states, and dynamic mode

decomposition (DMD) [53] can track their time evolution.

When representing the dynamics of descriptors using machine learning models, we face two main

difficulties. Firstly, the accuracy and stability of model predictions heavily depend on the quantity

and quality of training data. Secondly, it becomes challenging to interpret the model, especially when

using black-box structures of fundamental neural networks or Gaussian Process Regression (GPR), where

Gaussian Process (GP) is the stochastic process, such as following a multivariate normal distribution.

If interpretability is the primary objective, alternative methods like symbolic regression are considered.

One example is the sparse identification of nonlinear dynamics (SINDy) [43], which uses sparse regression

to identify the most plausible terms from a dictionary of possible candidates for the right-hand side of a
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Fig. 1.5 Schematic illustration of the rheological identification problem. (A) Input-output system.

The input u changes the state x of the system, and the output y is evaluated from the state x and

the input u. (B) The rheological systems used in the rheological or fluid simulations where the

velocity gradient κ from the macroscopic velocity field is the input and the stress evaluated by the

system state (e.g., the molecular conformation {R} for the system with microscopic configurations,

or the stress itself σ). The stress field updates the velocity field at the macroscopic scale. Except

for the multi-scale approaches, the utilized rheological system with numerous degrees of freedom

is reduced by phenomenological insights or data-driven techniques.

dynamical system.

In conclusion, viscoelastic stress responses can be approximated using dimension reduction models

(e.g., DMD or SINDy), and attempts to learn a complete description using machine learning models can

be made at the cost of interpretability. While these methods have shown success for simple systems,

considering physical constraints (e.g., rotational symmetry of objective stress rates) becomes crucial

for efficiently predicting rheological properties of complex fluids. Developing better data generation

protocols (e.g., active learning) to improve robustness and reduce training time is necessary. Resolving

these issues will dramatically enhance the ability to predict fluid flow in complex systems based on

material properties.

1.3.2 Data-Driven Constitutive Relation and its Application

Figure 1.5 shows the rheological identification problem. The input-output system as Fig. 1.5(A) is the

general system targeted in the system engineering field, the input u change the state x and the output y

depends on the input and state. In Fig. 1.5(B), the rheological instance of the system is described where

the input is the velocity gradient κ and the output is the stress σ, and the state is the degrees of freedom

as the molecular conformation {R}. Data-driven techniques schematically reduce the dimension of a

state. In the simplest case, the state is just a (total) stress σ, the output itself as the phenomenological
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constitutive equations.

For complex fluids, machine learning surrogate models of constitutive relationships have been developed

[54–59]. Using trained machine learning models, micro-model simulators and surrogate constitutive

relationships are replaced to reduce computational costs and statistical errors [54–56, 60–63]. Such

machine learning constitutive relationships can reasonably address both linear and nonlinear rheological

properties. In the pioneering work by Zhao et al. [54, 56], they inferred the constitutive relationships

of generalized Newtonian fluids based on steady shear viscosity using Bayesian methods, precisely GPR

[54]. Additionally, they utilized the FENE-P model with relaxation time dependent on shear strain

rate [56]. Assuming the form of constitutive relationships, i.e., generalized Newtonian fluids and the

FENE-P model, they accurately predicted rheological properties based on microstructures from simple

shear simulations. Notably, their active-learning framework automatically generates new training data

points and updates the machine learning model, thereby avoiding inference in regions with significant

uncertainties if needed during prediction.

Chang et al. [62] expanded this framework to colloidal dispersion systems. Here, in simple continuum

flow simulations, contributions to particle viscosity and normal stress were active-learned as functions of

volume fraction and shear strain rate from corresponding bulk system shear simulations.

For time-dependent viscoelastic materials such as polymer melts, Seryo et al. [55] proposed an ex-

tension of GPR-based learning methods. In this approach, the training data includes time-series data

of stress under time-dependent shear flow. This data learns the time derivative of stress as a function

of stress and shear strain rate. During the learning process, the dynamics of the microscale system are

represented by the stress tensor σ, controlled by the external strain rate tensor γ̇. The time evolution

of σ is generally described by the following equation:

dσ

dt
= f(σ, γ̇), (1.5)

Here, f is an arbitrary function learned from the data. Therefore, GPR [55, 61, 63] and recurrent neural

networks (RNNs) [59] have been employed. The former method has been validated for both linear [55]

and nonlinear [61, 63] stress responses under shear or elongational flows. The latter RNNs have been

used to mimic nonlinear constitutive equations under shear flow [59].

This approach cannot be simply applied to active learning methods because controlling the target input

states (i.e., generating polymer configurations in response to stress) is difficult, as used for predicting

steady-state conditions [54, 56, 62]. The current simulation predictions are limited to regions where the

stress response is weaker than unity in terms of Weissenberg number and elasticity number. Here, the

Weissenberg number is the product of the shear rate and relaxation time, while the elasticity number

is the ratio of the Weissenberg number to the Reynolds number. Nevertheless, these methods efficiently

emulate microsystems with material functions, accurately describe rheological properties, and reduce

computational costs and statistical errors.

When utilizing standard machine learning architectures to monitor the dynamics of a system, as

indicated by the stress tensor, it cannot be assumed that the physical constraints will inherently be

met. Specifically, constitutive equations must exhibit rotational symmetry of the objective stress rate,

as mandated by the principle of material objectivity.

One approach to achieve this requirement involves employing specially designed neural networks (NN),

such as the rheological universal differential equation (RUDE) model proposed by Lennon et al. [58].

RUDE incorporates additional nonlinear terms in the Maxwell constitutive equation. Furthermore,

ensuring thermodynamic consistency within a multiscale framework necessitates adopting the general
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equation for non-equilibrium reversible-irreversible coupling (GENERIC) formalism.

Examples of such machine learning models include GENERIC formalism informed NNs (GFINNs)

introduced by Zhang et al. [64], as well as Hamiltonian and Lagrangian NNs for classical mechanics

presented by Greydanus et al. [65] and Cranmer et al. [66], respectively. These physics-informed NNs

are capable of inferring and predicting the deterministic and stochastic irreversible dynamics of complex

systems.

Another notable example of an ML model constructed to adhere to the principle of objectivity (rota-

tional symmetry of constitutive relation) is the DeepN2 framework proposed by Fang et al. [60]. This

framework describes the dynamics of Brownian beads connected by nonlinear bonds. It employs an

encoder network to map the high-dimensional microscopic structure into a low-dimensional macroscopic

feature space. Additional networks are then utilized to learn the mapping between the feature space and

stress, as well as the time evolution within the feature space.

1.3.3 Forward and Inverse Problems at a Macroscopic Scale

In this section, we introduce machine learning applications for solving forward and inverse problems in

rheology research, where the forward problems are to predict the flows based on a constitutive relation,

and the inverse problems are to infer the constitutive relation from the flows.

When the form of constitutive equations is known, predicting fluid flow involves solving forward prob-

lems using machine learning-based methods. PINNs give mesh-independent solvers on a fluid domain [44].

For non-Newtonian fluids, an example of this is non-Newtonian PINNs (nn-PINNs) [67], which solve the

conservation equations for mass and momentum and the specific type of constitutive equations (e.g., [67]

employed thixotropic-elasto-viscoplastic model; TEVP model). However, PINNs solutions only minimize

the physical loss terms in the loss function and do not strictly satisfy the governing equations. Ideally,

solvers that precisely satisfy the physical properties of non-Newtonian fluids are sought. For instance,

for Newtonian fluids, the physical properties of Stokesian fluids embedded in GP could potentially be

achieved [68, 69].

When constitutive equations or the values of their parameters are not directly known, one faces the

inverse problem of estimating material functions. With minimal rheological insights, machine learning

methods can estimate transplantable and interpretable material functions. For example, Jamali et al.

predicted material functions using Rheology-informed NNs (RhINNs), a type of PINNs combined with

neural networks and known constitutive equations [57, 70]. Farrington et al. reported important addi-

tional descriptors for predicting blood flow using machine learning models [71]. Models like RUDE [58]

and GPR [55] can be used without prior knowledge, but these models do not directly extract physically

meaningful parameters. To provide physically meaningful interpretations from large-scale machine learn-

ing models, additional reductionist procedures are necessary, such as model selection for existing models

or symbolic regression methods for discovering function forms.

Machine learning methods can enhance computational rheology and its data generation. Efforts con-

tinue to create extended datasets linking macroscopic properties with molecular structures for polymers

[72]. While simulations for long polymers incur significant computational costs, these may be addressed

using CG potentials extracted by machine learning models [46, 47]. Similar applications for colloidal

dispersions include corrections for short-range fluid interactions based on GPR force fields [73].

Machine learning methods are innovatively advancing the resolution of forward and inverse rheology

problems, which is expected to become widespread in the future. While large-scale machine learning
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models are currently being attempted to directly link flow predictions to industrial issues, lightweight

models are needed for physical understanding and model development.

1.4 Structure of the Thesis

In the previous sections, we reviewed and summarized the related studies on the basics of MSS and

the data-driven approaches for rheology. Technological development of MSS has been progressing in

order to consistently handle flow prediction of complex fluids based on microscopic viewpoints, but the

industrial flow analysis is significantly impossible due to the considerable computational costs. In this

thesis, we investigate the possibility of a more efficient approach to employing the machine learning

regression model to surrogate the microscopic simulators as the bottleneck part of MSS, named MLMSS.

To develop the MLMSS method, this thesis is structured as follows.

In Chapter 2, we first give a simple example of the MLMSS. The MLMSS protocol is developed based

on the analysis of a quasi-one-dimensional laminar flow (composed of simple shear deformations only)

driven by a pressure gap between parallel plates. Assuming a polystyrene melt system in an entangled

state, we organize the technical elements of a microscopic polymer model, a regression model, and a

macroscopic fluid solver.One scheme comprises the procedures for generating the training dataset from

the microscopic polymer system, learning the constitutive relation from the data, and applying the

learned relation to the macroscopic flow analysis.

In Chapter 3, we extend the MLMSS method developed in Chapter 2 for the general two-dimensional

flows composed of time-dependent deformation modes. For the efficient use of a regression model, we

consider the rotational symmetry of the stress rate required by the objectivity principle. We assess

the extended regression model by using pressure-gap driven flows in a contraction expansion channel

employed in the typical benchmark problem of viscoelastic fluid flows

In Chapter 4, the regression models with numerous parameters sometimes demand significant com-

putational resources. Symbolic regression methods help us to use a transparent model and additionally

provide an economical model with sparsity-promoted techniques. We confirm the ability to (re-)identify

the constitutive relations of the phenomenological and microscopic models whose constitutive equations

are known or unknown.

In Chapter 5, we extend a correction model based on mono-dispersed molecular weight systems for

bi-dispersed and improve rheological predictions of microscopic models used in a future MLMSS. It has

already been investigated that the sliplink model, also used in Chapters 2 and 3, provides excellent

predictions of rheological properties for entangled polymer melts under shear deformation and uniaxial

extensional deformation. On the other hand, recent experimental studies have revealed that under ex-

tremely high strain rate flow, strain softening occurs contrary to model predictions, and this is considered

because of friction reduction by significant stretches and orientation of the polymer chains.

Finally, in Chapter 6, we summarize the results of Chapters 2–5 and discuss the remaining issues and

the future direction of developing the MLMSS method.
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Chapter 2

Protocol of Machine-Learning-Based

Multi-Scale Simulations (MLMSS)

2.1 Introduction

In this chapter, the author gives a simple example of the MLMSS. The MLMSS protocol is developed

based on the analysis of a quasi-one-dimensional laminar flow (composed of simple shear deformations

only) driven by a pressure gap between parallel plates. Assuming a polystyrene melt system in an

entangled state, we organize the technical elements of a microscopic polymer model, a regression model,

and a macroscopic fluid solver.One scheme comprises the procedures for generating the training dataset

from the microscopic polymer system, learning the constitutive relation from the data, and applying the

learned relation to the macroscopic flow analysis.

When numerically predicting the flow of a polymeric system, knowledge of the stress response, as a

function of the experienced strain history, is required. However, the accurate prediction of the stress of

a polymeric system is highly non-trivial, because it is a reflection of the state of the constituent polymer

chains in the system [3]. Currently, there are three typical approaches for obtaining this stress response

to an applied strain rate history:

(i) Constitutive equations

(ii) (Coarse-grained) molecular-based models

(iii) Machine-Learned(ML) constitutive relations.

The first approach relies on the use of (i) a constitutive equation, which specifies the time-dependent

response of a polymeric system to an arbitrary strain rate[74]. This is the conventional and practical

approach, widely used to model the complex flows encountered in industry thanks to its relative simplicity

and low computational cost. However, one is always faced with the problem of choosing the appropriate

empirical equation to describe the rheology of the target fluid. There are dozens of candidate models,

each with its own set of coefficients, which must be specified as material functions, usually by fitting

against available experimental data[75]. In addition, because such equations cannot always be derived

from molecular-based polymer models, the physical interpretation of their parameters is not always clear.

To resolve the issues of adopting an otherwise ad-hoc constitutive equation, (ii) a (coarse-grained)

molecular-based simulation method to directly evaluate the stress response was developed[19]. This

approach has the merit of providing an explicit link between the microscopic and macroscopic degrees of

freedom. This type of Multi-Scale Simulation (MSS) was pioneered by Laso and Öttinger, who were the
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first to combine continuum and molecular-based models for simulating polymer flows[19]. Recent work

has shown how to develop such multi-scale descriptions in a thermodynamically consistent manner, within

the GENERIC formalism [76]. Several research groups have used this MSS framework to investigate the

coupled hierarchical dynamics of polymer fluids[32, 34, 38, 77, 78]. Ellero and coworkers employed a

particle-based solver within a Lagrangian description, in order to account for the advection of microscopic

systems[32]. Murashima and Taniguchi have analyzed the history-dependent flow of entangled polymer

melts[33, 79–81]. Sato and coworkers have reported applications of entangled polymer melts for polymer

processing[35, 36, 41, 82], a review of which is given in Ref.[8]. However, even for MSS using a mean-field

and/or coarse-grained treatment of the polymer chains, such an approach requires an almost prohibitive

computational cost. Thus, the price that is paid for maintaining molecular-based information means that

MSS have been restricted to relatively simple and small-scale flows, far removed from industrially relevant

polymer processing flows. At present, even with access to the most advanced parallel computation

resources and techniques, it is only possible to simulate systems with O(108) total polymer chains, for

simple 2D flow geometries[38].

In addition to these two established approaches, (iii) Machine Learning (ML) methods have recently

been investigated. Zhao and coworkers have simulated polymer melt flows with a machine-learned

constitutive relation[54], under the assumption that the target fluid is a generalized Newtonian fluid,

described only by a strain rate-dependent viscosity. Following this work by Zhao et al., Seryo and

coworkers [55] proposed a more general method, also based on a Gaussian Process (GP) regression

scheme, to handle viscoelasticity, under the assumption that the constitutive equation could be written

in differential form, as

σ̇ = σ̇(σ,κ) (2.1)

where σ is the stress tensor, σ̇ its time derivative, and κ the velocity gradient. Within this approach, the

constitutive equation for σ̇ is defined in terms of a GP prior, which is then conditioned on the available

training data (obtained by measuring the stress response of the target system under fundamental defor-

mations), in order to predict the test response under arbitrary deformations. With this GP regression,

they succeeded in extracting the constitutive relation for a system of non-interacting Hookean dumbbells,

using O(103) training points. This learned constitutive equation was then used to perform simple flow

simulations at a significantly reduced computational cost, with no appreciable loss of accuracy. Thus,

we consider that this type of ML approach provides an attractive alternative for MSS of polymer melts,

in particular, and complex fluids in general.

We note that Zhao and coworkers have also considered elastic effects in a subsequent paper, by adopting

a specific constitutive equation[56]. Fang et al. have shown how to learn the constitutive relation

for unentangled polymer melts within the bead-spring model, using a neural-network scheme called

DeepN2, and applied it to a system of linear- and star-shape chains[60]. S. Jamali et al. have used

physics-informed neural networks (PINNs) for rheological research on an empirical constitutive equation,

the Thixotropic Elasto-Visco-Plastic (TEVP) fluid model, by directly solving the equation and then

inversely determining/recovering the model parameters[67, 83, 84]. These approaches have succeeded to

produce sophisticated models for polymer melts, based on prior knowledge of the bead-spring models or

phenomenological equations. Furthermore, from a theoretical point of view, Generic Formalism Informed

Neural Networks (GFINNs) have been proposed in order to incorporate the Generic formalism within

the PINN framework[64]. We propose an alternative, model-free approach, based on Eq. (2.1).

Until now, the verification of the general ML approach using Eq. (2.1) has only been performed for
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a linear constitutive relation, for one-dimensional uni-deformation mode shear flows[55]. In particular,

the simulation scheme was applied to a mono-disperse system of non-interacting Hookean dumbbells,

which possess a linear constitutive relation, i.e., the system exhibits a linear response regardless of the

magnitude of the deformation.

This previous assessment has not established whether or not such an ML-based framework can be

applied to a fluid exhibiting non-linear stress responses. This is crucial, as general complex fluids possess a

hierarchical structure, with a corresponding non-linear constitutive relation. This non-linear constitutive

relation is fundamental to explain the variety of flow phenomena characteristic of such fluids, e.g., shear-

thinning, shear thickening, strain softening, and strain hardening, among others. Despite its simplicity,

we expect that Eq. (2.1) can be applied to such complex fluids, including polymeric liquids, micellar

solutions, and colloidal dispersion, at least in the macroscopic flow regime, provided that the stress can

be well represented by the internal structure of the fluid, with a velocity gradient history dependence.

However, the non-linearity could affect the accuracy of the simulations and/or increase the computational

cost, thus reducing the effectiveness of this ML approach.

To answer such questions, this chapter reports on extensions of the ML framework based on Eq. (2.1),

and evaluates its accuracy and efficiency when simulating entangled polymer flows. For this, we perform

polymer flow predictions using both MSS and ML constitutive relations, for a coarse-grained molecular-

based model with a non-linear constitutive relation. For simplicity, we will only consider pressure-driven

flow between two flat parallel plates in 2D.

This chapter is structured as follows. In Section 2.2 we explain the MSS framework using the ML

constitutive relation. In Section 2.3 we present the simulation results obtained using this learned relation,

and its applications. Finally, Section 2.4 discusses and summarizes our work.

2.2 Method

At the macroscopic scale, the flow of a complex fluid is governed by the Cauchy equation

Dp

Dt
= ∇ · σ −∇P (2.2)

where p is the fluid momentum density, σ the fluid stress, P the pressure. The stress tensor, appearing

in the first term on the right-hand side of Eq. (2.2), is determined by the internal degrees of freedom in

the constituent fluid. As we will consider incompressible fluids, the second term on the right hand side

∇P is determined so as to satisfy this incompressibility. In the conventional MSS approach, the stress

σ is obtained from a statistical average of the microscopic polymer systems embedded in the fluid. As

the confirmation of the polymer chains is updated according to the applied velocity gradient, the derived

stress will necessarily reflect the history of these velocity gradients.

Within our ML approach, the stress σ is evaluated under the assumption that Eq. (2.1) is valid. Thus,

in principle, the constitutive relation can be learned in advance from a suitable set of training data

generated from the microscopic model under consideration. In particular, the relation between σ̇ and σ

is learned from the response of the microscopic polymer system to fundamental deformations, specified

by a velocity gradient history κ(t). In this study, we consider the special case where κ is limited to

laminar shear-flows, i.e., only the xy-component (κxy) is used. This results in a constitutive relation of

the form of Eq. (2.1), which can be used within macroscopic flow simulations to infer/predict the stress

at the next simulation time step, given the current stress and velocity gradient. A schematic overview of

this simulation framework is presented in Fig. 2.1, and can be summarized in the following three steps:
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σ, κxy

·σ = dσ
dt

κxy

·σ, σ, κxy

σ, κxy

·σ

Step1: Generate the training data

Simulate polymeric flows

Step2: Learn the constitutive relation

Step3: 

steady

σ

x

y

oscillation

Fig. 2.1 Schematic illustration of the proposed simulation framework for a polymeric fluid

with a machine-learned constitutive relation. The application of deformations, here startup

steady/oscillatory shears specified by the velocity gradient κxy, to the targeted microscopic polymer

system provides the training data, in the form of the time varying stress σ and its time derivative

σ̇, for learning the constitutive relation. The illustration in the bottom left (Step 2), represents the

learned relation between σ̇ and (σ, κxy), i.e., the constitutive relation. This learned constitutive

relation can then be used within a macroscopic flow simulation.

Step 1: Generate the training data

Step 2: Learn the constitutive relation

Step 3: Simulate the macroscopic polymeric flow

The first step, that of generating the training data from the deformations of the polymer system, is

described in Section 2.2.1. The second step, for learning of the constitutive relation from the training

data, is detailed in Section 2.2.2. Finally, Section 2.2.3 explains how to use the learned constitutive

relation to simulate the macroscopic polymeric flows. The flow conditions, geometry, and simulation

parameters are detailed in Section 2.2.4. In addition, the implementation details for the microscopic

polymer model and the macroscopic fluid solver are given in Appendices 2.B and 2.C, respectively.

2.2.1 Generating the Training Data

The training data is generated from a coarse-grained polymer model (see Appendix 2.B). In particular,

we use the sliplink model as a test system to describe microscopic polymer chain dynamics, as it has

been extensively studied and confirmed to reproduce the non-linear rheological response of entangled

linear polymers[23, 85, 86]. Within this sliplink model, polymer melt systems are characterised by two

parameters, the number of entanglements at equilibrium Zeq and the maximum stretch ratio λmax of

a chain. The former (Zeq) is proportional to the molecular weight of a constituent polymer chain, the

latter (λmax) depends on the rigidity and flexibility of the chain. For simplicity, the molecular weight
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distribution of the system is considered to be monodisperse, and we assume the typical values of Zeq = 10

and λmax = 4.4, which correspond to a linear polymer (e.g., polystyrene) of about 100kDa. These values

have been taken from one of our previous studies[87].

To prepare the initial state of the polymer chains, we equilibrate the system over several times the

longest relaxation time, as evaluated by the linear viscoelastic data, i.e., the storage G′ and loss G′′

moduli. Then, we subject the system to a deformation with a given velocity gradient. The training data

set is generated by considering the response of the system to fundamental shear deformations. The shear

deformations (in the x − y plane), with shear rate γ̇(t), are expressed as καβ(t) = γ̇(t)δαxδβy. When

applying these deformations, it is important to choose “appropriate” strain rates. For determining the

magnitudes, we use as reference the longest relaxation time τd of the coarse-grained model, as strain

rates with this (inverse) magnitude (∼ 1/τd) will probe the elastic response of viscoelastic fluids.

During training simulations (under the fundamental deformations), we evaluate the stress σ as an

ensemble average over the conformation of the polymer chains. LetRk(k = 1, . . . , Z) denote the positions

of the sliplinks on the primitive path of the (linear) polymer chain, with Z the number of entanglement

points. The displacement vectors between two adjacent sliplinks along the chain are given by rk =

Rk+1 −Rk (k = 1, . . . , Z − 1). The stress for an ensemble of such polymer chains can be evaluated in

terms of the {r} vectors as

σ = σe

〈
f
rr

a|r|

〉
, (2.3)

where σe is the unit of stress and f is the FENE parameter. Given that this stress σ is defined in terms

of the (coarse-grained) molecular conformations, it will naturally express the history dependence on the

velocity gradient tensor κ(t). The rheological properties of this target system are described in Appendix

2.B (see Figure 2.5).

The training data is generated by consideringNgen distinct velocity gradient histories {κ1(t), . . . ,κNgen(t)},
which are applied to the polymer system, in turn resulting in an equal number of stress trajectories

{σ1(t), . . . ,σNgen(t)}. The time derivative of the stress is then computed by a simple forward difference

scheme, such that σ̇(t) ≃ (σ(t + ht) − σ(t))/ht, where ht is a suitably small time interval. Finally, the

training dataset used to learn the constitutive relations is constructed from the Ngen trajectories for

the time-derivatives of the stress (training output), together with the corresponding velocity gradient

and stress data (training input), i.e., {κ(t),σ(t), σ̇(t)}. We note that the Ngen trajectories, each

corresponding to a different velocity gradient history κ(t), were initialized with different random initial

states, and equilibrated over times t longer than the longest relaxation time τd (t > 10 τd).

2.2.2 Learning the Constitutive Relation

To learn the constitutive relation, we rely on Gaussian Processes, which provide a probability distribution

over functions, and can be used as universal function approximators[88]. For the current case, the time

derivative of stress is assumed to be a function of the stress and velocity-gradient, as given by the

following GP prior:

σ̇ = σ̇(σ,κ) ∼ N (µ,K), (2.4)

where N (·, ·) denotes a multi-variate normal distribution, with mean µ and covariance K. Under the

assumption of Eq. (2.4), a GP regression provides a Bayesian framework capable of inferring the time

derivative of the stress when the stress and velocity gradient are given. For the GP regression, we

randomly select Ntrain input points from the Ngen molecular-based trajectories, where each point consists
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of a set of values (κ,σ, σ̇). The Ntrain training input points x ≡ [σ,κ] are collected into a so-called

design matrix X(= [x1, . . . ,xNtrain
]). Then, let X∗ be the test input points, for which we want to predict

the constitutive relation, i.e., the corresponding σ̇∗, the joint GP for (σ̇, σ̇∗) is given as[
σ̇

σ̇∗

]
∼ N

([
µ(X)

µ(X∗)

]
,

[
K(X,X), K(X,X∗)

K(X∗,X), K(X∗,X∗)

])
, (2.5)

where the p-th component of the mean is (µ(X))p = µ(xp) and the (p, q)-th component of the covariance

matrix is (K(X,X))pq = k(xp,xq;Θ) (Θ the kernel hyper-parameters), for mean function µ(·) and

kernel function k(·, ·). The (output) prediction for these test points X∗, conditioned on the known

training data (X, σ̇), is given by the posterior probability distribution for σ̇∗ , which is yet another

GP[88]

σ̇∗|σ̇ ∼N (ν,Σ), (2.6)

ν = µ∗ +K∗ ·K−1 · (σ̇ − µ), (2.7)

Σ = K∗∗ −K∗ ·K−1 · tK∗, (2.8)

where we use the shorthand notation µ = µ(X), µ∗ = µ(X∗), K = K(X,X), K∗ = K(X∗,X), and

K∗∗ = K(X∗,X∗). Without loss of generality µ(·) can be set to zero, and the kernel function k(·, ·; ·)
can be constructed from a list of known candidate functions.

Eqs.(2.6-2.8) provide the “best” estimate for the test prediction σ̇∗ (given by ν), conditioned on the

training data set, as well as an estimate for its uncertainty (given by Σ). These predictions depend on

the full set of training data, as well as on the unspecified kernel hyper-parameters Θ. Thus, the first

step in the GP regression consists of learning the “optimal” hyper-parameters Θopt from the training

data (X, σ̇) (this is akin to optimizing for the weights and biases of a neural-network). Specifically,

we seek to maximize the (log) posterior probability for the hyper-parameters, given the training data,

i.e., Prob(Θ|X, σ̇). From Bayes’ theorem we have Prob(Θ|X, σ̇) ∝ Prob(σ̇|X,Θ)Prob(Θ), where the

likelihood Prob(σ̇|X,Θ) is given by the GP of Eq. (2.6), and the prior is assumed constant, Prob(Θ) =

const, such that

Θopt = argmaxθ [log Prob(σ̇|X,Θ)] . (2.9)

2.2.3 Predicting the Polymeric Flow

We now describe the MSS framework we have utilized to predict the macroscopic flow of an incompressible

polymeric fluid. The momentum transport, Eq. (2.2), can be rewritten as

Dv

Dt
=

1

ρ
∇ · (σt − PI) +

F

ρ
, (2.10)

σt = σ + σd, (2.11)

σd = ηd(κ+ tκ), (2.12)

where v is the fluid velocity, ρ the constant fluid density, σt the total stress, including the polymer σ and

the additional dissipative σd contributions, ηd is the viscosity due to thermal dissipation at scales below

that of the sliplink dynamics, i.e., occurring at spatial scales smaller than the entanglement distance,

κ = t(∇v) is the velocity gradient tensor, i.e., καβ = ∇βvα(α, β ∈ {x, y}), P is the pressure, and F the
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external force driving the flow. These equations are solved within a Lagrangian framework, using the

smoothed particle hydrodynamics method (see Appendix 2.C).

Traditionally, when simulating the momentum transport of such complex fluids, the stress tensor

would be evaluated either by (i) a constitutive equation or (ii) a molecular-based model. The standard

MSS approach is to directly embed a (ii) molecular-based simulator inside each of the Lagrangian fluid

particles, and evaluate the stress as an ensemble average over the conformation of the polymer chains in

each simulator (i.e., fluid particle). Instead, our proposed ML scheme removes the microscopic simulators,

and instead directly introduces the stress field σ(t), together with (iii) a machine-learned constitutive

relation for σ̇(σ,κ) (which provides the necessary information to update the stress field). The stress

σ(t) at time t, for each Lagrangian particle, is simply integrated in time following

σ(t+∆t) = σ(t) + σ̇(σ(t),κ(t))∆t, (2.13)

where ∆t is the macroscopic time-step. The local velocity gradient at the particle position, evaluated by

solving for the macroscopic flow, will deform the embedded microscopic polymer system, in such a way

that the polymer confirmation will depend on the history of the flow. Concurrently, the momentum field

at the macroscopic scale is updated by taking into account the polymer contributions to the stresses over

the entire system. To summarize, the velocity gradient and stress couple the dynamics of the system at

two scales, corresponding to the (macroscopic) fluid flow and the (microscopic) polymer chain dynamics.

The Macroscopic and the microscopic time, stress, and length scales have characteristic units of

t(M), σ(M), ℓ(M), and t(m), σ(m), and ℓ(m), respectively. The superscripts “M” and “m” refer to the macro-

scopic and the microscopic scale, respectively. The microscopic units are defined by the relaxation time

τe of a strand (the segment between two connected entanglement points), the stress associated to the

plateau modulus σe, and the thermal equilibrium length a of a strand. The macroscopic units of length

ℓ(M) are the diameter of the Lagrangian particle b, while the time t(M) and stress σ(M) units will be

determined from the fluid parameters and the corresponding microscopic units, τe and σe.

2.2.4 ML-Based MSS Parameters for Well-Entangled Polymer Melt Flows

In a previous study [55], our proposed method has been verified for the case of a linear constitutive

relation applied to a uni-deformation mode flow, i.e., a shear flow. Here, we extend the method to

consider a microscopic model with a realistic non-linear constitutive relation, and use this Machine-

Learned (non-linear) constitutive relation to simulate flows with a single (shear) deformation mode. As

utilized in the previous work, we will consider as test flow that of a pressure driven flow between two

parallel plates. In the laminar (low Reynolds number) regime, pressure gap driven flows in 2D (xy-

plane) only show shear deformations, with καβ(t) = γ̇(t)δαxδβy. Thus, it is enough to only consider such

shear deformations in the xy-plane when generating the training data. The learned relations are the

time derivatives σ̇xx(t), σ̇xy(t), and σ̇yy(t) for the stress, as a function of the stress and the shear strain

{σxx, σxy, σyy, γ̇}, i.e., the three GPs to be learned are σ̇xx(σ, γ̇), σ̇xy(σ, γ̇), and σ̇yy(σ, γ̇). In this case,

Eq. (2.13) can be simplified as follows,

σ(t+∆t) = σ(t) + σ̇(σ(t), γ̇(t))∆t. (2.14)

Table 2.1 shows the simulation parameters for the pressure gap driven flow between two parallel plates.

The macroscopic geometry is expressed by the periodic length Lx and the distance between the two plates
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Table 2.1 Simulation parameters for planar Poiseuille flow.

Parameter Description Value

∆t time-step 0.001t(M)

(Lx, Ly) system size (20ℓ(M),40ℓ(M))

F̂x external force 0.02

τd relaxation time 40 t(M)

ηt total viscosity 40 σ(M)t(M)

β viscosity ratio 0.1

Ly. The system is initially at rest at time t = 0, with the microscopic systems thermally equilibrated.

Then, for t > 0, the non-dimensionalized external force F̂x, mimicking the pressure gradient, drives

the fluid between the plates. The equations of motion are integrated forward in time, with a time-step

∆t. At the macroscopic scale, the viscoelasticity of the fluid is characterized by the longest relaxation

time τd, the total viscosity ηt(= ηp + ηd), and the viscosity ratio β(= ηd/ηt), where ηp and ηd are the

polymer and dissipative viscosity, respectively. Here, τd/t
(m) and ηp/(σ

(m)t(m)) are determined by the

linear rheology of the microscopic system (see Appendix 2.B), with the corresponding parameters at the

macroscopic scale given as τd/t
(M) and ηp/(σ

(M)t(M)).

We have chosen parameter values for a typically viscoelastic condition. The relevant non-dimensional

numbers are the apparent Reynolds number Re(a) and the Weissenberg number Wi(a), defined as

Re(a) =
ρ0LyUmax

ηt
, (2.15)

Wi(a) =
Umaxτd
Ly

. (2.16)

Using Re(a) and Wi(a), we define the elasticity number as

El =
Wi(a)

Re(a)
=

τdηt
ρ0L2

y

, (2.17)

where Umax(= max(vx)) is the maximum velocity in the flow direction at steady state, as evaluated from

the simulations. As an example, consider a Hookean dumbbell model in the infinite dumbbell limit, with

a single relaxation mode (τd, ηp), such that the constitutive relation follows the upper convected Maxwell

model (
1 + τd

δ

δt

)
σ = ηp(κ+ tκ), (2.18)

with δ/δt is the upper convected derivative. In this case, the parameters of Table 2.1 would be given as

Umax = 0.1, Re(a) = 0.1 and Wi(a) = 0.1 (El = 1). We have used this typical viscoelastic problem to

validate the macroscopic fluid solver (see Fig. 2.6 of Appendix 2.C for the results).

The Lagrangian particles are initially arranged on a regular grid, with a spacing equal to the particle

diameter b. Thus, the total number of fluid particles is 800(= LxLy/b
2), using the values described

in Table 2.1. The simulations are performed using a parallelized solver, allowing us to perform the

calculations for both macroscopic and microscopic scales simultaneously. For the current flow problem,

a single 40-core CPU is assigned to handle both macroscopic and microscopic parts simultaneously. We

note that the computational load of the macroscopic SPH fluid solver is significantly less than that of the

(ML) constitutive relation predictions, which are themselves overshadowed by the cost of including the
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explicit microscopic degrees of freedom within the conventional MSS. In other words, the computational

bottleneck for the ML and MSS calculations is the same, i.e., the stress calculation.

2.3 Results and Discussion

This section describes the simulation results for the pressure gap driven flows between two parallel plates.

We test the applicability of our proposed ML approach to simulate a realistic polymer model, one with a

non-linear constitutive relation, under uni-deformation shear mode flows. The performance, as measured

by the accuracy and computational cost compared to the conventional MSS method, is analyzed for the

typical viscoelastic flow problem characterized by the parameters shown in Table 2.1.

2.3.1 Learning the Constitutive Relation under Shear Flow

For generating the training data, we applied a time-dependent (shear) velocity gradient to a microscopic

polymer system, composed of Np = 104 polymer chains. We consider two types of flow profiles, (1)

constant start-up and (2) oscillatory shear flows, with shear rates γ̇(t) =γ̇0H(t) and γ̇(t) =γmaxωcos(ωt),

respectively, where H(t) is the Heaviside step function, γ̇0 the constant shear rate, γmax the maximum

strain, and ω the angular frequency. We consider Nγ̇ = 12 different shear strain (rate) magnitudes

γ̇1
0 , . . . , γ̇

Nγ̇

0 and γ1
max, . . . , γ

Nγ̇
max, evenly spaced on a logarithmic scale within the range γ̇0, γmaxω ∈

[10−1/τd,10
1/τd]. For the oscillatory flow, we used a fixed angular frequency ω = 1/τd for all shear

strains. In total, we used Ngen = 4Nγ̇ time series, for the positive/negative Nγ̇ shear rates, for both the

startup and oscillatory flows, each generated by a different velocity gradient history. The simulations

were performed up to t = 10τd, starting from an equilibrated state at t = 0, with a time-step ht = t(m).

The resulting trajectory data {σ̇xx(t), σ̇xy(t), σ̇yy(t), σxx(t), σxy(t), σyy, γ̇(t)} are smoothed by a simple

moving average

t̃ =
1

Nsm

Nsm∑
j=1

(t+ (j − 1)ht), (2.19)

X̃ =
1

Nsm

Nsm∑
j=1

X(t+ (j − 1)ht), (2.20)

where X(t) is the time series data, X̃ (t̃) the smoothed dynamical variable (time), and Nsm the averaging

window size. From this smoothed X̃(t̃), with Nsm = 5, we randomly choose Ntrain ∼ 3× 103 data points

to serve as the training data. For the current flow problem, this number is large enough to generate an

adequate sampling of the constitutive equation space, in order to learn the functions, while limiting the

calculation time of the GP prediction. While simply increasing Ntrain can improve the accuracy, it is

also important to consider the training protocol used to generate the training data.

For learning the constitutive relation, we use a GP regression to “learn” the functions σ̇xx, σ̇xy, and

σ̇yy, from the input x = [κxy, σxx, σxy, σyy]. Each σ̇αβ is specified as a separate GP, with covariance

matrix Kαβ(X,X), whose entries are given by Kαβ(X,X)ij = k(Xi,Xj) + ϵ2δij , assuming a constant

(but unknown) measurement error ϵ. For the kernel function k(x,x′) we adopt the following ansatz

k(x,x′) =ΘηkM(κxy, κ
′
xy; Θκxy

)×
kM([σxx, σyy, σxy], [σ

′
xx, σ

′
yy, σ

′
xy];Θσ), (2.21)
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(a)

(b)

(c)

(I) startup shear (II) oscillatory shear

Fig. 2.2 The predictions for the stress responses, (a) σxx(t), (b) σxy(t), and (c) σyy(t), under (I)

the startup shear flows and (II) the oscillatory flows for ten different shear rates, evenly spaced

on a logarithmic axis, such that γ̇0, γmaxω ∈ [10−1/τd,1 · 101/τd]. The solid blue lines are the

time series of the stress with the microscopic polymer system thermally equilibrated at t = 0 (104

polymer chains) and the dashed red lines are those obtained from the machine-learned constitutive

relations for σ̇xx, σ̇xy, and σ̇yy. Lighter (darker) colors are used to represent lower (higher) values

of the applied shear-rates, γ̇0, γmaxω. Note that the higher absolute magnitudes of the stresses

(σxx,σxy,σyy) correspond to the higher shear rates.

where Θη is the amplitude hyper-parameter, and Θκxy
and Θσ = (Θσxx

,Θσyy
,Θσxy

) are the length-scale

hyper-parameters. Since our training data contains the sharp stress response of the startup shear, we

use the (twice-differentiable) Matern5/2 kernel,

kM(x,x′;Θℓ) =

(
1 +

√
5d+

5

3
d2
)
exp
(
−
√
5d
)
, (2.22)

where d = t(x− x′)diag(Θℓ)
−2

(x− x′), (2.23)

with diag(Θℓ) the diagonal matrix constructed from the vector of hyper-parameters Θℓ. The three GPs

for σ̇xx, σ̇xy, and σ̇yy are independently trained, each with a different set of hyper-parameters. For this,

we use the standard ADAM optimizer to tune the hyper-parameters Θ= (ϵ,Θη,Θκxy
,Θσ), based on Eq.

(2.9), as implemented within the GPyTorch package[89] (itself based on the PyTorch framework [90]).

To verify the applicability of the learned constitutive relations, we confirm that they are able to

accurately describe the flow under (I) start-up shear flows (γ̇(t) = γ̇0H(t)) and (II) oscillatory shear

flows (γ̇(t) = γmaxω cos(ωt)) for γ̇ values not included in the training data. As shown in Fig. 2.2, we

successfully reproduced the stress responses (a) σxx(t), (b) σxy(t), and (c) σyy(t), for ten different shear

rates, evenly spaced on a logarithmic axis, such that γ̇0, γmaxω ∈ [10−1/τd,10
1/τd]. The solid blue lines

show the time series for the stress obtained from the microscopic simulations of the sliplink systems

with 104 polymer chains, while the dashed red lines show the results obtained using the machine-learned

constitutive relations for σ̇xx, σ̇xy, and σ̇yy. The higher absolute magnitudes of (σxx,σxy,σyy) are from

the higher shear rates with γ̇0, γmaxω.
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(I) (II) (III)

(a) 
ML

(b) 
MSS

(IV)

(c) 

Fig. 2.3 Predictions for the pressure gap driven flow were obtained using (a) the machine-learned

constitutive relation, trained on microscopic systems under steady/oscillatory shear flows, and (b)

the full MSS, using embedded microscopic simulators (104 polymer chains per Lagrangian particle),

together with (c) The absolute error between the two simulation results. In the bottom panels (c),

the dotted red lines show the maximum absolute error, the solid blue lines the average error values.

From left to right, the columns correspond to (I) the velocity along the flow direction vx, and (II)

the σxy, (III) σxx, and (IV) σyy components of the stress.

The learned constitutive relation, given by the three GPs, accurately reproduces the non-linear behav-

iors of the shear stress, i.e., the overshoots at the early time and the shear thinning at the steady state

(see Fig. 2.2). Thus, it is expected to reproduce the flow response for typical shear flows over a wide

range of deformation rates, around the inverse of the characteristic relaxation time [10−1/τd, 10
1/τd].

Note that when considering the dumbbell model[55], which has a linear constitutive relation, the stress

responses all exhibit the same shape, regardless of the magnitude of the shear rate γ̇(t), in contrast to

the results obtained here. This makes it more challenging to learn the constitutive relations. While we

obtain very good overall agreement, some of the stress responses show small deviations from the reference

(MSS) trajectories. This is due to the random/sparse sampling of the training data, which makes sam-

pling around the first overshoot/undershoot, where these deviations are most noticeable, more difficult

(compared to sampling of the steady-state response). If required, one could protect against this type of

error by employing a more robust active-learning / data-driven approach, in which training points are

selectively added in order to reduce the prediction uncertainty of the GP[54].

2.3.2 Application to Pressure Gap Driven Flows

The pressure gap driven flow has been simulated using the ML constitutive relation with the parameters

given in Table 2.1. As a reference, we also conducted full MSS simulations, with Np = 104 polymer chains

per Lagrangian particle, in order to ensure high numerical accuracy. Our results are summarized in Fig.
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(a)

(I) Elastic case 
          El = 1.0, Wi(a) = 0.13

(II) Weakly Elastic case 
          El = 0.1, Wi(a) = 0.13

(b)

Fig. 2.4 (a) The time series of the velocity vx along the center line y = 0. (b) The steady

state velocity vx as a function of height. (I) The graphs on the left show the elastic case with

El = 1.0,Wi(a) = 0.13 using the parameters shown in Table 2.1, whereas those on (II) the right

show a weakly elastic case, with El = 0.1 and Wi(a) = 0.13. The parameters for case (II) are the

same as those of (I), expect for a change in the total viscosity ηt = 4.0 and the external force

F̂x = 0.002. Solid black lines and dashed red lines are the simulation results using the microscopic

simulators of the sliplink model and the machine-learned constitutive relation, respectively. Blue

dotted lines are the results of the upper convected Maxwell model having the same value of the

zero shear viscosity and the longest relaxation time of the sliplink system.

2.3, which shows the flow and stress predictions obtained using (a) the learned constitutive relation and

(b) the full MSS, as well as (c) the absolute error between the two. In particular, we show (I) the velocity

along the channel direction vx and (II) the σxy, (III) σxx, and (IV) σyy components of the stress. In

the bottom panels (c), the dotted red lines give the time series for the maximum absolute error, as a

function of the height y, the solid blue lines give the corresponding averaged absolute errors.

Our predictions using the learned constitutive relation are in very good agreement with the reference

MSS values, i.e., we can reproduce the early-time t/τd < 6 oscillations in the velocity vx, and the σxy

and σxx components of the stress, as well as their steady state values (see Fig. 2.3). The maximum

(instantaneous) relative errors for σxy, and σxx are at most ∼ 10%, with the absolute error an order of

magnitude smaller than the average value of the quantity under consideration. While the absolute error

for the σyy predictions is of the same order as those of σxy and σxx, the relative error is considerably

higher. However, this is not an issue, as the σyy component plays no role in the shear flows used for the

training or test cases. Thus, we conclude that the learned constitutive relation properly tracks the rele-

vant variables for the typical viscoelastic flow problem we have studied. Furthermore, this indicates that

the proposed ML scheme is accurate enough to provide quantitative predictions for entangled polymer

melt flows.

For a more detailed comparison, Fig. 2.4 shows (a) the time evolution of the velocity vx along the
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center line y = 0, and (b) the steady-state velocity profile vx as a function of height along the channel.

We show results for (I) the moderately elastic case, with El = 1.0 and Wi(a) = 0.13, and (II) the weakly

elastic case, with El = 0.1 and Wi(a) = 0.13. The former corresponds to the default parameters shown

in Table 2.1, while the latter updates the values of the total viscosity ηt = 4.0 and the external force

F̂x = 0.002 (all other parameters being equal). The solid black lines and dashed red lines show the

simulation results using the full MSS (microscopic sliplink model) and the machine-learned constitutive

relation, respectively. In addition, we have also plotted the results for the upper convected Maxwell

model having the same values for the zero-shear viscosity and the relaxation time scale (equal to that

longest relaxation time of the sliplink model).

In the transient regime, as shown in Fig. 2.4 (a-I), the time evolution of the velocity vx exhibits

clear oscillations. The first undershoot is predicted to occur at the same time t/τd ≃ 1.8 by both the

ML and MSS approaches, however, the amplitude of this undershoot is larger in the ML results, and

approaches that of the Maxwell model. This is due to the presence of higher order modes of relaxation

in the microscopic sliplink model, compared to the longest relaxation mode of the upper convected

Maxwell model, originating in the constraint release mechanism. The learning of σ̇(σ,κ) can safely

overlook responses with high relaxation modes, since these are only observed under large deformation

rate startup shears, and would be more expensive to properly sample. For weakly elastic conditions, the

stress responses (a-II) have a reduced oscillation amplitude, compared to that of the elastic case, and

the ML predictions show a higher degree of accuracy.

In the steady state, as shown in Figs. 2.4 (b-I) and (b-II), the maximum velocity max(vx) is Umax =

0.13, at y = 0. This value is considerably larger than that of the linear viscoelastic fluid (Umax = 0.1),

as given by the Maxwell constitutive relation (Eq. (2.18)). This enhanced velocity is due to the non-

linear phenomenon of shear thinning. Using the value of Umax, the non-dimensional parameters are

Re(a) = Wi(a) = 0.13. Here, we have investigated a typical viscoelastic case with El = 1, for more

viscous systems, with smaller elastic numbers El < 1, we expected the learned constitutive relations to

provide accurate descriptions, as they cover the linear regime by construction.

We now discuss the computational efficiency of the ML approach. With regards to the flow simulations,

the full MSS, using the embedded microscopic simulators, requires a considerably large computation cost.

For the results presented here, this amounted to ≃ 21 hours, using a single 40-core CPU and 12 GB

size of memory, with the microscopic simulators accounting for ∼ 99% of all the computation time. In

contrast, the ML-based simulation can run on the same CPU with 2 GB memory size, and takes only ≃ 2

hours, i.e., it is roughly an order of magnitude faster with 1/6 times memory consumption. In fact, we

can also ignore the (one-time) cost of training/learning the constitutive relation, as it requires negligible

resources (for Ntrain ∼ 103). Furthermore, if/when larger datasets are required (e.g., 3D systems and/or

complex flows), the learning can be significantly accelerated by using GPUs.

2.3.3 Limitation

While our results clearly show the promise of accelerating the state-of-the-art MSS for complex flows

using ML, the proposed method has some potential limitations that should be addressed in future

work. First, we need to design custom time-dependent velocity gradient profiles in order to generate

a curated training dataset that adequately explores the constitutive relation space (for the target flow

problem). Second, we have neglected higher-order time derivatives of the stress in the assumed form of

the constitutive equation. Additionally, it is not clear whether or not the stress is enough to completely

25



2.4 Conclusion

track the conformation of the coarse-grained molecules (i.e., additional descriptors might be required).

Furthermore, when learning the multi-mode relaxation for higher Rouse modes or polydisperse polymer

systems, when the system has well-separated relaxation times, the values of the strain rates should be

carefully chosen, so as to grasp both the slow and fast relaxation modes. Finally, for more complex

2D/3D flows, the frame invariance of the stress should be incorporated into the GP regression model.

These issues will be addressed in future work.

2.4 Conclusion

In the present study, we have successfully applied a simulation scheme [55] using a machine learned

constitutive relation to well-entangled polymer systems. As a typical example of a complex fluid with a

non-linear constitutive relation, we have used the dual sliplink model [23] to account for the linear and

non-linear rheological behavior of a well-entangled polymer system. The proposed ML method has been

tested on a pressure gap driven flow, for a typical viscoelastic condition, and is shown to reproduce the

flow properties with reasonable accuracy (i.e., ≲ 10% relative error for the shear stress). This accuracy

can be improved upon by using a more robust/sophisticated training protocol, e.g., by increasing the

number of polymer chains in the microscopic simulator (decreasing the noise due to thermal fluctuations,

increasing the training points, and/or actively sampling the constitutive equation space.

In particular, we developed a ML method to learn the non-linear rheological response of the sliplink

model under startup and oscillatory shear flows. The learned constitutive relation has well reproduced

the rheological responses for deformation rates over two orders of magnitude around the inverse of the

longest relaxation time. The learned relation can accurately reproduce the responses for the weakly

elastic flows, with Wi < 1 and El < 1, i.e., the linear rheological responses. The simulation results also

provide accurate predictions for the rheological response corresponding to the longest relaxation mode,

under the transient state, as well as the non-linear behaviour at steady state. The computational cost

is significantly reduced, compared to directly using the microscopic simulators, and the ML model also

has the benefit of being easy to parallelize, allowing us to leverage the power of modern GPUs.

This study also provides us with a road map for the future development of the proposed simulation

scheme. To increase the accuracy of the flow predictions, in particular for the transient regime, the

rheological responses of the higher-order modes of relaxation should be reflected in the training data.

Furthermore, to protect against inaccurate predictions, we can employ a data-driven approach to generate

a suitable trajectory in constitutive equation space (i.e., using a velocity gradient profile customized to

the specific flow problem we wish to study). In particular, we could use some known constitutive relation

to help identify difficult to learn rheological responses. In any case, the equation-free learning proposed

here is enough for predicting the fundamental responses for deformation rates around the inverse of the

longest relaxation time.

The use of ML constitutive relations will help us to predict the rheological behavior of any complex

fluid, given only knowledge of the molecular-based model. The method allows us to maintain the con-

nection between the microscopic molecular structure and the macroscopic flow properties, at little to no

computational costs compared to the conventional MSS approach. The acceleration provided by learning

the relation between these two scales will not only help us to refine manufacturing processes, but it will

also promote the understanding of the rheological properties of complex fluids.
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2.A Implimentation of Simulation

The smoothed particle hydrodynamics simulations for the macroscopic flows are parallelized using

the “Framework for Developing Particle Simulators” (FDPS)[91], as used in previous MSS studies by

Murashima [92]. The GP regression is performed using the GPyTorch library[89], based on the PyTorch

framework[90]. The trained ML model is called within the MSS code by interfacing the C++ code with

the PyTorch library (using TorchScript).

2.B Microscopic Polymer System: Dual Sliplink Model

The sliplink model proposed by Doi and Takimoto[23] expresses the relaxation mechanisms of entangled

polymer chains. A polymer chain in this model is represented as a set of primitive paths, sliplinks, and

two tail segments. The sliplinks, occurring in pairs on different chains, are continuously being created and

released. This model has been shown to quantitatively reproduce the rheological properties of entangled

polymers[23, 85, 86].

A model chain has two parameters, the number of entanglements at equilibrium Zeq and the maximum

stretch ratio λmax. The units of time τe and length a are the Rouse relaxation time and the equilibrium

length of a strand, i.e., the bond between two paired/connected sliplinks. This model has three relaxation

mechanisms:

• Reptation

• Contour Length Fluctuations (CLF)

• Constraint Release (CR)

The stress σ is evaluated as an ensemble average over the bond vectors r, with unit stress σe, and FENE

parameter f , as given in Eq. (2.3).

Next, we consider the linear rheology for a monodisperse system under this model. The linear complex

moduliiG′(ω) ∝ ω2 andG′′(ω) ∝ ω, obtained from the linear relaxation modulusG(t), give the relaxation

time τd. This is evaluated by fitting the small ω behaviour of G′(ω) and G′′(ω) to be proportional to ω2

and ω, respectively, and determining the point of intersection, which is defined to be ω∗τe = τe/τd. The

linear viscoelasticity G(t) is computed using the Green-Kubo formula, from the auto-correlations of the

stress σαβ

G(t) =
V

5kBT
(⟨σxy(0)σxy(t)⟩+ ⟨σyz(0)σyz(t)⟩+

⟨σzx(0)σzx(t)⟩) +
V

30kBT

(
⟨Nxy(0)Nxy(t)⟩+

⟨Nyz(0)Nyz(t)⟩+ ⟨Nzx(0)Nzx(t)⟩
)
, (2.24)

where V is the volume, kB the Boltzmann constant, T the temperature, and Nαβ = σαα−σββ the normal

stress difference. Finally, the relation between the longest relaxation time τd and Zeq is obtained from a

fit to the linear viscoelasticity as

τd/τe = CτdZ
3.45
eq . (2.25)

We obtain Cτd = exp(−2.01± 0.01) using a least-squares method.
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Table 2.2 Cross model fitting parameters for the number of entanglements Zeq.

Zeq η
(C)
0 /σeτe η

(C)
∞ /σeτe τ (C)/τe n

5 6.98× 100 2.78× 100 3.61× 101 1.85

10 7.28× 101 8.25× 100 3.99× 102 1.37

20 8.74× 102 2.20× 101 5.11× 103 1.20

40 9.28× 103 5.46× 101 5.48× 104 1.17

80 9.85× 104 1.36× 102 6.10× 105 1.15

Fig. 2.5 Rheological properties for a mono-disperse system with Zeq = 10. (left) Linear viscoelas-

ticity, where the solid line is the storage modulus G′(ω) and the dashed line is the loss modulus

G′′(ω). (center) Steady viscosities under shears and planar elongations. Squares and circles show

the mean values of the steady shear viscosity ηs(γ̇) and the planar elongational viscosity ηE(ε̇),

respectively. The dashed line indicates the linear viscoelasticity (LVE) results, corresponding to

the absolute value of the linear complex viscosity |η∗(ω)|. (right) Transient viscosities under steady
shear, with γ̇ = 1/τR (solid line), and planar elongation, with ε̇ = 1/τR (dotted dashed line) where

τR is the Rouse relaxation time. The dashed lines are the LVE results (|η∗(ω)| and 4|η∗(ω)|) using
the Trouton rule.

The shear viscosities ηp(γ̇) for the steady shear flows, with shear rates γ̇, are fitted to the Cross model

as

ηp(γ̇) = η(C)
∞ +

η
(C)
0 − η

(C)
∞

1 + (τ (C)γ̇)n
. (2.26)

The model parameters (η
(C)
0 , η

(C)
∞ , τ (C), n) are shown in Table 2.2, and were obtained from simulations

under steady shear for each Zeq. Using the zero shear viscosity ηp given by the Cross model η
(C)
0 , the

exponential relation of the entanglements is written as

ηp/(σeτe) = Cηp
Z3.45
eq , (2.27)

where Cηp
= exp(−3.61± 0.02).

We now discuss the rheology of the mono-disperse system with Zeq = 10 employed in this study.

The longest relaxation time τd and the zero shear viscosity ηp are obtained as τd = 3.8× 102τe and

ηp = 7.6× 101σeτe, respectively. Figure 2.5 contains the key rheological properties. We show the linear

storage and loss moduli, G′(ω) and G′′(ω) (left panel), as evaluated by Eq. (2.24). As seen from the
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Fig. 2.6 (top) Velocity vx at the center line (y = 0) for the Oldroyd-B fluid flow between two

parallel plates. the black line is the results of SPH simulation and the red line shows the analytical

solution. (bottom) The red symbols are the absolute relative errors of vx at y = 0 with time.

data, the model contains the slow modes of the entangled polymer chain, from the terminal regime to the

plateau regime. The system’s non-linear behavior at higher strain rates is evidenced by the shear thinning

and the thickening under planar elongations (center panel). Finally, transient viscosities show the strain

softening under steady shear, and the strain hardening under steady planar elongation. Thus, the model

is clearly capable of replicating the non-linear rheological behavior observed in experimentals, which

distinguishes it from the simple dumbbell model used previously to test the ML simulation framework.

At the same time, however, these complex non-linear properties pose a challenge when attempting to

learn its constitutive relation.

2.C Macroscopic Fluid Solver: WCSPH

We employ a fluid solver within the Lagrangian picture, in order to easily handle the advection of the

polymeric systems. For this, we use the smoothed particle hydrodynamics (SPH) method, which discre-

tises the fluid into smoothed particles [31], and in particular, its weakly compressible SPH (WCSPH)

variant[93]. The governing equations of i-th particle are written as

dx(i)

dt
= v(i), (2.28)

dv(i)

dt
=

1

ρ(i)
∇ · (σ(i)

t − P (i)I) +
F

ρ(i)
, (2.29)

P (i) =
C2

s ρ0
γ

[(
ρ(i)

ρ0

)γ

− 1

]
, (2.30)

where x(i) is the position of the particle, v(i) the velocity, ρ(i) the density, σt the total stress (polymer

and additional thermal dissipation contributions), P (i) the pressure, and F the external force. In Eq.

(2.30), Cs is the sound speed, γ a constant that is set to 1, as is appropriate for viscoelastic flows[94],

and ρ0 the reference density.
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The macroscopic units of this WCSPH simulation are the particle radius b(= ℓ(M)), the time t(M),

and the stress σ(M). We solve these equations in non-dimensionalised form, having as main parameters

to characterize the momentum transport the external force F̂ , and the momentum diffusion constant D̂

(fixed to 1), defined as

F̂ =
F (t(M))2

ρ0b
, (2.31)

D̂ =
σ(M)b2

ρ0(t(M))2
. (2.32)

as well as the artificial sound speed Ĉs(= Cs(t
(M))2/b2). We use Ĉs = 20 to ensure the density fluctuations

are under 1%, and the incompressibility condition is approximately satisfied. The fluid has a constitutive

relation determined by the microscopic polymer system, with longest relaxation time τd/t
(M), and zero

shear viscosity ηp/(σ
(M)t(M)). The ratio of the viscosity ηd to the total viscosity β is defined as

β =
ηd

ηp + ηd
. (2.33)

The thickness of the wall is Lw = 4b. A no-slip boundary condition is set between the fluid and walls,

such that the velocity of the fluid at the surface satisfies the Dirichlet boundary condition, v = 0, and

the stress tensor follows the Neumann boundary condition, i.e., the gradient normal to the surface is

zero.

The density ρ at position x is computed as a weighted average, over the neighboring particles located

at x′, as

ρ(x) =

∫
dx′mW (|x′ − x|, h), (2.34)

where m(= ρ0/b
3) is the mass of a particle and h is the smoothing length. The value of this smoothing

length is fixed to twice the diameter of the SPH particle (h = 2b). The revised Gaussian kernel [95] is

utilized as the SPH kernel W , with cutoff radius 2h.

W (r, h) =
A2

(h
√
π)2

[
e−r2/h2 − e−4

]
, (0 ≤ r ≤ 2h). (2.35)

The pre-factor A2 = 1.10081 is the normalizing constant for a 2d system. When smoothing a field

variable, we adopt the Kernel Gradient Free (KGF) method [96], which satisfies the second-order com-

patibility of the Taylor series expansion. For the time-integration of the SPH particles, the velocity-Verlet

scheme is used. To improve the numerical stability, a particle rearrangement scheme is implemented to

shift the particle positions, as detailed in a report by Murashima [94]. The shift vector ∆x(i) for the i-th

particle is defined as

∆x(i) = ϵδ0

∫
dx′ x

′ − x(i)

|x′ − x(i)|W (|x′ − x(i)|, h), (2.36)

where ϵ is a constant and δ0(= b) is the initial distance between particles at the start of the simulation.

To avoid the tensile instability, Ref.[94] recommends a value of ϵ between 0.001 and 0.1, we set ϵ = 0.005.

Thus, the (shifted) positions x(i) and velocities v(i) are defined as

x(i) = x
(i)
old +∆x(i), (2.37)

v(i) = v
(i)
old +∆x(i) · ∇v

(i)
old, (2.38)
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where x
(i)
old and v

(i)
old are the corresponding variables before shifting.

To test our numerical scheme we consider a pressure gap driven flow between parallel plates for an

Oldroyd-B model fluid. Figure 2.6 shows the velocity along the center line, using the same parameters

as in Table 2.1. The predicted SPH velocity is in excellent agreement with the analytical solution. For

this typical viscoelastic problem, the relative errors are under 3%. For the types of flows, and analysis,

considered in this work, this error is small enough that it can be ignored.

2.D Analytical Solution of the Case of an Oldtoyd-B Fluid

In the x− y plane, two parallel plates face the y direction at x = 0 and x = L, where L is the distance

of the plates. Between the plates, an Oldroyd-B fluid flows in the x direction. We assume the laminar

flows, the fluid velocity v is a function of time t and position y. An Oldroyd-B fluid has the parameters:

the kinetic viscosity ν, the relaxation time of stress λ1, and the retardation time of solute λ2. The

momentum equation is simplified as(
1 + λ1

∂

∂t

)
∂v

∂t
= ν

(
1 + λ2

∂

∂t

)
∂2v

∂y2
+ F. (2.39)

This equation follows the boundary and initial conditions:

v(0, y) = 0,
∂v(t, y)

∂t

∣∣∣∣∣
t=0

= F, v(t, 0) = 0, v(t, L) = 0. (2.40)

Let us solve the equation as follows. First, the solution of steady state v(s) is to be obtained as

v(s) =
FL2

2ν

{
−
( y
L

)2
+

y

L

}
, (2.41)

The variable V = v − v(s) follows the equation and the conditions(
1 + λ1

∂

∂t

)
∂V

∂t
=

(
1 + λ2

∂

∂t

)
ν
∂2V

∂y2
(2.42)

V (0, y) = −v(s),
∂V (t, y)

∂t

∣∣∣∣∣
t=0

= F, V (t, 0) = 0, V (t, L) = 0. (2.43)

We expand V on the sine basis as

V (t, y) =

∞∑
n=1

An(t) sin
(
nπ

y

L

)
, (2.44)

where An(t) is the Fourier coefficient. From Eqs. (2.42) and (2.44), we obtained the ordinal differential

equation of An(t): (
1 + λ1

d

dt

)
dAn

dt
= −ν

(nπ
L

)2(
1 + λ2

d

dt

)
An (2.45)

We substitute An(t) = eαt,

λ1α
2 +

{
1 + λ2ν

(nπ
L

)2}
α+ ν

(nπ
L

)2
= 0, (2.46)

α =
−(1 + λ2νk

2
n)

2λ1
± 1

2λ1

√
(1 + λ2νk2n)

2 − 4λ1νk2n (2.47)
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where kn = nπ/L.

For the case of (1 + λ2νk
2
n)

2 < 4λ1νk
2
n, the solution is written as

V (t, y) =

∞∑
n=1

exp

(
−1 + λ2νk

2
n

2λ1
t

)
[Cn cos(ωnt) + Sn sin(ωnt)] sin

(
nπ

y

L

)
, (2.48)

where Cn and Sn are the constants, and ωn = 1/(2λ1)
√

4λ1νk2n − (1 + λ2νk2n)
2. We evaluate Cn and

Sn with the initial conditions of Eq. (2.43), the results are obtained as

Cn = −FL2

ν

2(1− (−1)n)

(nπ)3
(2.49)

Sn =
1

ωn

(
2F

1− (−1)n

nπ
+

1 + λ2νk
2
n

2λ1
Cn

)
(2.50)

For (1 + λ2νk
2
n)

2 > 4λ1νk
2
n, we can derive the same formula of coefficients Cn and Sn corresponding

cos → cosh and sin → sinh, respectively. Also for (1 + λ2νk
2
n)

2 = 4λ1νk
2
n, Cn is the same to cos → 1,

but Sn for sin → t get the multiplied form of Eq. (2.50) and ωn.

Summarizing the results, using the re-defined ωn as

ωn =
1 + λ2νk

2
n

2λ1

√∣∣∣(1 + λ2νk2n)
2 − 4νλ1k2n

∣∣∣; kn = (nπ/L)
2
, (2.51)

the solution is written as

v(t, y) =
FL2

2ν

{
−
( y
L

)2
+
( y
L

)}
+

∞∑
n=1

sin
(
nπ

y

L

)
exp

(
−1 + λ2νk

2
n

2λ1
t

)

×


Cn cosh(ωnt) + Sn sinh(ωnt) for (1 + λ2νk

2
n)

2 > 4λ1νk
2
n

Cn + Snωnt for (1 + λ2νk
2
n)

2 = 4λ1νk
2
n

Cn cos(ωnt) + Sn sin(ωnt) for (1 + λ2νk
2
n)

2 < 4λ1νk
2
n

, (2.52)

where Cn and Sn are defined as Eqs. (2.49) and (2.50), respectively.
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Chapter 3

MLMSS for Multi-Mode-Deformation Flows in

2D Geometry

3.1 Introduction

Following the previous Chapter, in this Chapter 3, we extend the MLMSS method developed for the

general two-dimensional flows composed of time-dependent deformation modes. For the efficient use of

a regression model, we consider the rotational symmetry of the stress rate required by the objectivity

principle. We assess the extended regression model by using pressure-gap driven flows in a contraction

expansion channel employed in the typical benchmark problem of viscoelastic fluid flows

We take the considerable computational cost for MSS, even using the corpse-grained, in return for

understanding of the flow based on the molecular rheology. The recent development of computational

environment and technics, particularly the machine-learning (ML) based method, have played on the

acceleration of MSS. We proposed the one for the general viscoelastic fluids, the use of the function form

of the constitutive relation: σ̇ = σ̇(σ,κ) where σ̇ the time derivative of the stress, σ the stress, κ the

velocity gradient.

The previous studies on the ML-based MSS method have reported the efficiency of the computation

maintaining the accuracy for the linear[55] and nonlinear[61] for the specific cases, single mode of defor-

mation exists in the flows, as shears or elongations. The flows in industrial processing have each mode

and the multi modes of deformation, and the fundamental research has challenged the history-dependent

flows. The complex fluid experience shear and elongation deformations in these geometries even at a

steady state. Our proposed ML scheme has not illustrated the assessments for the multi-deformation

mode flows.

The contraction and/or expansion channel is the benchmarking problem for the mix of shear and

elongation deformation modes. For predicting the general two-dimensional flows, we should provide the

training data from the deformation histories with the multi-deformation modes; shear, elongation, and

combinations of the two modes. The amount of training data used in learning the constitutive relations

is expected to be larger than the order of O(103) when predicting the one deformation mode flows, e.g.,

pressure-gap driven flow between two parallel plates. The increased data and the high dimensionality in

the learning can prevent the efficiency of the computational costs.

To answer the efficiency concern for the ML-based simulation scheme, we assess the application to the

contraction-expansion channel with the well-entangled polymer model. Apparent deformation histories

in a fluid element passing the contract slit strictly test the predictions of the ML constitutive relations
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under shear and planar elongations. This chapter is organized as follows. In Section 3.2, we present

the MSS framework using the machine-learned constitutive relation. In Section 3.3, we describe the ML

simulation results compared to the full MSS. Finally, Section 3.4 summarizes this chapter.

3.2 Method

We extend the proposed ML-based simulation approach to handle the 2D flow simulation. The 2D flow

simulations are implemented by the Lagrangian fluid solver, which handles the mass and momentum

transports on the incompressible fluid. For solving the momentum transports, the stress field σ con-

tributed by the constituent polymers is needed and is determined or time-developed by the strain field.

The relation between stress and strain cannot be explicitly given for complex fluids, but it can be learned

by the machine-learning technique.

The constitutive relations to be learned should follow the physical principle of material objectivity.

The principle imposes the convection and the rotational invariants to the constitutive relations, which

are satisfied in the conventional equations by the material derivatives of stress. We give the way that

the ML constitutive relations do not break the symmetry for the rotation of stress rate.

Within the fluid solver on the Lagrangian specification, the migrations of fluid elements handle con-

vection, and the angle changes of the material frames for each element consider rotation, independent of

the constitutive relation. On a material frame, the formula of constitutive relation by using the (total)

polymer stress σ is assumed to be

σ̇ = σ̇(σ,D), (3.1)

where D(≡ (κ + tκ)/2) is the strain rate tensor. In contrast to Eq.(2.1) used in the previous chapter,

the external field is D, not κ. The spin tensor W (≡ (κ− tκ)/2) does not contribute to the stress, and is

used for the rotation of the angle of the fluid element. In the fluid flow simulations, the ML constitutive

relation of Eq. (3.1) on the material frame ensures the invariances of the material objectivity.

As summary, the governing equations in xy plane are Eq. (3.1) and the following Eqs. (3.2)–(3.6) as

dr

dt
= v, (3.2)

dv

dt
=

1

ρ
∇ · (σt − PI) +

F

ρ
, (3.3)

dθ

dt
= ω, (3.4)

σt = σ + σd, (3.5)

σd = ηd(κ+ tκ), (3.6)

where r, v, and θ are the position, the velocity, and the rotation angle (about z-axis) of a fluid element.

ρ is the constant density, σt the total stress, P the pressure, I the unit tensor, F is the external force,

ω(≡ −Wxy = Wyx) the rotational rate. σ is the polymer stress, and σd is the additional dissipative

contributions; ηd is the viscosity due to the thermal fluctuation at the coarse-grained scale from the

polymer model. κ(≡ καβ ≡ ∇βvα where α, β ∈ [x, y]) is the velocity gradient.

Figure 3.1 summarizes the scheme proposed for the two-dimensional flow simulations. We give detailed

implementations of the learning and flow simulation parts in the following sections. Section 3.2.1 shows

how to learn the constitutive relation of Eq. (3.1) using the multi-deformation mode flows. Section 3.2.2

presents the flow solver and the configuration for assessing this method.
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σ, D

·σ = dσ
dt

·σ, σ, D

σ′ , D′ 

·σ′ 

Step1: Generate the training data
Simulate polymeric flows

Step2: Learn the constitutive relation

Step3: 

shear elongation

x′ y′ 

x

y

D′ 

σ′ = RσRT

Fig. 3.1 Schematic illustration of the proposed protocol. It summarizes the procedure for simulat-

ing a MLMSS of entangled polymer systems in the following three steps: (i) generate the training

data from (pure) shears and elongations, (ii) learn the constitutive relation based on the data with

the trajectories of the stress σ and the strain rate D, (iii) simulate the polymeric flows discretized

by the Lagrangian elements capable to be rotated, and the rotation matrix R transforms σ and D

on the x− y coordinate of the system to that of the fluid element (σ′ and D′ on x′ − y′ plane).

3.2.1 Learning the Cosntitutive Relation

We employ a well-entangled polymer model extended from tube theory, the dual sliplink model[23] by

Doi and Takimoto because this model reproduces the experimental results of rheological properties in an

entangled state for the linear and nonlinear regions[23, 85, 86]. The target polymer system represents the

monodispersed polystyrene of about 100 kDa, where the rheological predictions are reported previously

(e.g., Ref. [61]). The polymer configuration parameters, the number of entanglements at equilibrium

Zeq = 10 and the maximum stretch ratio λmax = 4.4, are dependent on the molecular weight and

the polymer rigidity by the chemical species, respectively. τe and a are the units of time and length

characterized by a strand (the segments between connected two sliplinks); the Rouse relaxation time and

the equilibrium length. σe is the unit value of stress connected to the plateau modulus. We redefine the

microscopic scale units with the superscript of (m) as t(m) = τe, ℓ
(m) = a, and σ(m) = σe.

The conformation of sliplinks in the polymer system provides the statistically evaluated stress as

follows:

σ = σe

〈QQ

a|Q|
〉
, (3.7)

whereQ is the displacement vector of the adjacent sliplinks; Qi ≡ qi+1−qi (i = 1, 2, . . . , Z−1) for a linear

chain with Z sliplinks at the positions qi (i = 1, 2, . . . , Z). We evaluate the linear relaxation modulus

G(t) by the auto-correlations of the stress components, the terminal mode of G(t) is characterized by the

longest relaxation time and the zero shear viscosity: (τd, ηp) = (3.8 × 102τe, 7.6 × 101σeτe)[61]. Under

a deformation, the polymer conformation is sequentially contributed by the (local) strain rate D with
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time, and the stress with Eq. (3.7) reflects the history D(t). We note that the assumed constitutive

relation picks the first-order derivative of total stress σ̇ as the time-dependent states reduced from the

conformation.

For generating the training data, we apply the Ng velocity gradient histories, κ1(t),κ2(t), . . . ,κNg(t),

to the equilibrated systems, independently prepared for each history with simulating for about twenty

times the longest relaxation time 20τd. The velocity gradient is decomposed to the symmetric and anti-

symmetric components as κ ≡ D +W . For learning the constitutive relation of Eq. (3.1) on a material

frame, the system tracks the system angle θ by the rotational rate ω as in Eq. (3.4). The record obtained

from the simulations is the set of (σ′ andD′), and the primed variables are on the material frame (x′−y′);

where the coordinate transformation by using the rotation tensor R(θ) stand, e.g., σ′ ≡ R(θ)σtR(θ).

This study constrains the strain rate as TrD = TrD′ = 0 so as to be incompressible, thus the two

components, γ̇(≡ Dxy = Dyx) and ε̇(≡ Dxx = −Dyy) (averaged with the two components of D due to

weakly incompressible in this simulation), are collected for the training inputs (σ′
xx, σ

′
xy, σ

′
yy, γ̇

′, ε̇′).

The learning of Eq. (3.1) is implemented by the GP regression scheme [88]. The time derivative of

stress, assumed to be a function of the stress and strain rate, is given by the following GP prior

σ̇ = σ̇(σ,D) ∼ N(µ,K), (3.8)

where µ and K are the mean and covariance. The input data are correlated within the covariance kernel

function k(xa,xb).

k(xa,xb) =ΘηkM(γ̇a, γ̇b; Θγ̇)× kM(ε̇a, ε̇b; Θε̇) (3.9)

× kM([σa
xx, σ

a
xy, σ

a
yy], [σ

b
xx, σ

b
xy, σ

b
yy]; Θσ),

where Θη is the covariance scale parameter, Θγ̇ . kM is the Matern kernel defined as

kM(xa,xb;Θℓ) =
(
1 +

√
5d+

5

3
d2
)
exp
(
−
√
5d
)
, (3.10)

where d = t(xa − xb)diag(Θℓ)
−2(xa − xb)

3.2.2 Predicting the Polymeric Flow

As in the previous MSS studies [33, 61, 79, 85, 87], we employ the Smoothed Particle Hydrodynamics

(SPH) for the Lagrangian fluid solver [31, 93]. At t = 0, the aligned smoothed particles in a grid with a

space equal to the particle diameter b are put on the macroscopic system. The smoothing kernel function

W (r, h), where r is the distance and h is the smoothing length, here is the revised Gaussian kernel with

h = 2b, and the radius for convolution reaches 2h. The density ρ at the position r is convoluted over the

neighbor particles at rn with the kernel function as

ρ(r) =

∫
drnmW (|rn − r|, h), (3.11)

where m is the particle mass. For incompressibility, we give the state equation to weakly constrain ρ(r)

as

P =
C2

s ρ0
Cγ

[(
ρ

ρ0

)Cγ

− 1

]
, (3.12)

where Cs is the sound speed parameter, ρ0(= m/b3) the reference density, Cγ the constant set to 1. For

the Taylor series compatibility of time and space, the SPH implementation adopts the velocity Verlet
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Parameter Definition Value

Zeq # of entanglements at equi. 10

λmax Maximum stretch ratio 4.4

(Lx, Ly) System size (80b, 56b)

(wx, wy) Size of contraction part (28b, 14b)

Fx External force 0.025σ(M)/ℓ(M)

τd Relaxation time 14t(M)

ηt Total viscosity 14t(M)σ(M)

β Viscosity ratio 0.1

∆t Time step 0.001t(M)

Cs Sound speed 20ℓ(M)/t(M)

Table 3.1 Simulation parameters for the microscopic polymer system and the macroscopic fluid flow.

Fig. 3.2 Geometry of the contraction expansion channel.

scheme the kernel gradient free method, and for the numerical stability, the particle shifting method is

employed, utilized as in our previous study [61].

Given the velocity gradient κ on laboratory frame, the stress tensor σ is updated by the learned

constitutive relation and the rotation as follows:

σ′(t+∆t) = σ′(t) + σ̇′(t)(σ′(t),D′(t))∆t, (3.13)

θ(t+∆t) = θ(t) + ω∆t, (3.14)

where ∆t is the time-step.

The macroscopic units are the variables denoted with (M) as the time t(M), the length ℓ(M)(= b), and

the stress σ(M)(= ρ0b
2/(t(M))2). For bridging the macro- and micro-scales, the velocity gradient κ and

the stress σ are exchanged between the scales, where the time- and stress- ratios of the units, t(M)/t(m)

and σ(M)/σ(m), are used for the conversions. The ratios are determined by the macroscopic parameters

of the polymer viscosity and the relaxation time, ηp/t
(M)σ(M) and τd/t

(M), and by the microscopic

characters, ηp/t
(m)σ(m) and τd/t

(m).

Figure 3.2 shows the macroscopic system for assessing the proposed method as the 4:1:4 contraction-

expansion channel, where the shears and planar elongations occur. The periodic cell size of x-direction

is Lx, the channel height of the expansion part is Ly, and the rectangle size of the contraction part is
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(wx, wy). At t = 0, the initial system is in a quiescent state. The microscopic polymer systems are

thermally equilibrated, and then t > 0, the fluid in the system is driven by the external body force

F = (Fx, 0) mimicking the (static) pressure gap. The viscoelasticity of the fluid is characterized by the

total viscosity ηt(≡ ηp + ηd) and the viscosity ratio β ≡ ηd/ηt. To summarize, Table. 3.1 comprises the

list of the parameters for the microscopic- and macroscopic- systems.

3.3 Results and Discussion

We give the result of the learning of the constitutive relation and the validation of the flows driven by

pressure gap in two geometries: between parallel plates and in a contraction expansion channel.

3.3.1 Learning the Constitutive Relation under Shears and Elongations

We generated the training data by applying the shears and elongations to the microscopic polymer

system. We considered the two deformation types of pure shears and elongations with the strain rates

γ̇(t) and ε̇(t), here set the two degrees of freedom independently (γ̇(t) or ε̇(t) is zero). The simple

and oscillate deformation histories given as γ̇(t) = γ̇0H(t), ε̇(t) = ε̇0H(t), γ̇(t) = γmaxω cos(ωt), and

ε̇(t) = εmaxω cos(ωt), respectively. H(t) is the Heaviside step function, γ̇0 and ε̇0 are the constant

strain rate, γmax and ε̇0 are the maximum strains, ω is the angular frequency. The value of ω was

fixed at the inverse of the longest relaxation time: 1/τd. We consider Nγ̇ = 12 different shear strain

(rate) magnitudes γ̇1
0 , . . . , γ̇

Nγ̇

0 and γ1
max, . . . , γ

Nγ̇
max, evenly spaced on a logarithmic scale within the range

γ̇0, γmaxω ∈ [10−1/τd,10
1/τd]. These numbers for elongation as for Nε̇ = 12 is the same in elongational

strain (rate) magnitudes ε̇0 and ε̇0. For positive/negative strain rates, for both startup and oscillate flows,

each were generated by a different velocity gradient history. The microscopic systems in an equilibrated

state at t = 0 have been simulated up to t = 10τd. The smoothed procedure was processed as proposed

in the previous chapter for each trajectory generated by the shears and elongations. We have randomly

chosen Ntrain ∼ 3× 103 data points to serve as the training data. The learning cost was almost the same

but slightly more than the shear case because of the one additional variable upon the two strain rates

for the regression model.

3.3.2 Validation with Laminar Flows between Parallel Plates

We validated the learned regression model with the analysis of the pressure-gap driven flows described

in the previous chapter, and the flow condition is in a typical elastic (El = 1) to use the geometric

parameters as in Table 2.1.

The reference results are obtained by full MSS simulations whose microscopic simulator is composed

of Np = 104 polymer chains in a fluid element. Our validation results are summarized in Fig. 3.3, which

shows the flow and stress predictions obtained using (a) the learned constitutive relation and (b) the full

MSS, as well as (c) the absolute error between the two. In particular, we show (I) the velocity along the

channel direction vx and (II) the σxy, (III) σxx, and (IV) σyy components of the stress. In the bottom

panels (c), the dotted red lines give the time series for the maximum absolute error, as a function of

the height y, the solid blue lines give the corresponding averaged absolute errors. For a more detailed

comparison, Fig. 3.4 shows (left) the time evolution of the velocity vx along the center line y = 0, and

(right) the steady-state velocity profile vx as a function of height along the channel.

The results show the agreement of the predictions with the learned constitutive relation to the full MSS
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(I) (II) (III)

(a) 
ML

(b) 
MSS

(IV)

(c) 

Fig. 3.3 Predictions for the pressure gap driven flow were obtained using (a) the machine-learned

constitutive relation, trained on microscopic systems under steady/oscillatory shear flows, and (b)

the full MSS, using embedded microscopic simulators (104 polymer chains per Lagrangian particle),

together with (c) The absolute error between the two simulation results. In the bottom panels (c),

the dotted red lines show the maximum absolute error, the solid blue lines the average error values.

From left to right, the columns correspond to (I) the velocity along the flow direction vx, and (II)

the σxy, (III) σxx, and (IV) σyy components of the stress.

Fig. 3.4 (left) The time series of the velocity vx along the center line y = 0. (right) The steady

state velocity vx as a function of height. The graphs on the left show the elastic case with El =

1.0,Wi(a) = 0.13 using the parameters shown in Table 2.1. Solid black lines and dashed red lines

are the simulation results using the microscopic simulators of the sliplink model and the machine-

learned constitutive relation, respectively. Blue dotted lines are the results of the upper convected

Maxwell model having the same value of the zero shear viscosity and the longest relaxation time

of the sliplink system.
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results. Overall, the MLMSS results explain the velocity profiles of the transient and steady states. In

particular, the accurate predictions for σyy should be focused against to the results of the previous chapter

shown in Fig. 2.3. However, contrary to the reasonable matches in the steady state, the transient velocity

shows an accuracy decrease, particularly at the over- and under-shoot behaviors. In this simulation, a

fluid element rotates by the rotational rate of deformation, and the mixed modes of shear and elongation,

being absent in the training data, can be applied to the microscopic system. One possible reason for

decreased accuracy is the inexperienced external fields in training, or simply the increased dimension

number of the regression model.

3.3.3 Application to a Contraction Expansion Channel Flow

We applied the learned constitutive relation to the contraction expansion channel where fluid elements

experience the time-dependent deformation modes, not as the validation in the previous section.

The reference results of a full MSS calculation were obtained by using the microscopic systems with

104 polymer chains. By the full MSS simulation, we calculate the apparent values of the Weissenberg

and Reynolds numbers for the flows in the contraction expansion channel defined as

Wi(a) =
⟨vx⟩cτd
wy

, (3.15)

Re(a) =
ρ⟨vx⟩cwy

ηt
, (3.16)

where ⟨vx⟩c is the average velocity vx over the narrow slit region, wy the slit width, ρ the density. The

elastic number is defined as

El =
Wi(a)

Re(a)
. (3.17)

The values for the parameters given in the simulation results and Table 3.1 are Wi(a) ∼ 0.1 and Re(a) ∼
0.1, and El = 1.

Figures 3.5 and 3.6 compare the ML predictions against the full-MSS result using 104 chains per

fluid particle. In Fig. 3.5, the upper and lower panels show the velocity streamlines and the profiles of

principal stress difference (PSD) as PSD ≡ [4σ2
xy + (σxx − σyy)

2]1/2. The ML- and full-MSS results show

qualitative agreement with each other. For further detail, Fig. 3.6 shows the stress profiles along the

horizontal center line.

In Fig. 3.6, the profiles of a steady flow are successfully tracked through the startup from the quiescent

state using the ML constitutive relation even in the typical elastic conditions. In Fig. 3.6(aII), the

streamlines at the corners are fluctuated; this is due to the statistical noise due to the finite size of the

system even using 104 chains per fluid element. Vortexes should be observed in an accurate simulation

with enlarged as an increase of elasticity. We expect that the ML predictions increase in accuracy for

smaller Wi(a) and El than those of the present work, as the non-linear response becomes less important.

While the full-MSS results exhibit strong fluctuations due to thermal noise, the ML predictions are

considerably smoother. Regarding the speedup, the CPU time of the ML prediction is about 6 times

smaller than that of full-MSS, with both solvers parallelized on CPUs using MPI.
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Fig. 3.5 Simulation snapshots of the contraction expansion flow at steady state, for the (left) ML-

MSS and (right) full-MSS result. The upper and lower panels show the streamlines and principal

stress differences (PSD), color-coded by their respective magnitudes.

0 20 40 60 80
x

0.2

0.1

0.0

0.1

0.2

σ
x
x
,σ

x
y
,σ

yy

σxx
σxy

σyy

Fig. 3.6 Steady-state stress profiles along horizontal center line. The thick (thin) lines are the

ML-MSS (full-MSS) results, where the solid, dotted, and dashed lines correspond to σxx, σxy, σyy,

respectively. The gray background indicates the narrow slit region.

3.4 Conclusions

In this chapter, we presented the improved approach for ML-based MSS method for the general two-

dimensional flows. The proposed approach is assessed by analyzing the two startup flows between the

parallel plates and in the construction expansion channel. In typical elastic conditions, the predictions

successfully reproduce the direct MSS results for the profiles contributed by the history-dependent fluid

elements even under a steady state. The error retains the same order of magnitude before extension,

slightly reduced from the previous case in Chapter 2 due to the dimensional increase in the regression
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model. Although the present ML-based simulation performed on CPUs is not fully accelerated, the

calculation time is accelerated six times. This reasonable and successful example has clearly provided

the direction of development of the proposed method. The accuracy is reliably high within a given typical

or weaker elastic regime, but we have also observed decreased accuracy at higher strain rates, i.e., for

a more significant pressure gap. Thus, a more effective learning protocol should be developed. We can

discuss such prospects from the viewpoint of a data-driven approach.
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Chapter 4

Symbolic Regression Technique for

Discovering Constitutive Relations

4.1 Introduction

In the previous Chapters 2 and 3, we use Gaussian process regressions for identify the constitutive

relation of the microscopic model. However, such a ML model needs computational resources to learn

and infer the predictions based on the training dataset. In this Chapter 4, we employ a symbolic

regression method to help us to use a transparent model and additionally provide an economical model

with sparsity-promoted techniques. We confirm the ability to (re-)identify the constitutive relations of

the phenomenological and microscopic models whose constitutive equations are known or unknown.

Mathematical models grounded in physical laws are indispensable across science and engineering, offer-

ing profound insights into complex system behaviors. These models elucidate the underlying mechanisms

governing system dynamics and empower predictions and innovations in technology and natural science.

Traditionally, model derivation has leaned heavily on theoretical and empirical knowledge, often requir-

ing expert knowledge and intuition. On the other hand, data-driven methods have become capable of

assisting in developing mathematical models and constructing models that provide advanced predictions

[9]. These data-driven methods involve the sparse identification methods [43, 97–99], symbolic regression

methods [100–103], and physics-informed machine learning methods [44, 104–106]. These methods have

emerged as powerful tools for deriving governing equations directly from data, overcoming the limitations

of conventional expert-dependent approaches.

Rheology is one of the scientific fields that address flows of any materials, which plays a crucial role

in many industries, such as designs of chemical processes, by providing insights into flow behaviors of

complex fluids. One of the roles of rheology is to discover or derive governing equations that relate

deformation and stress, referred to as constitutive equations. From an engineering perspective, accu-

rate constitutive equations are necessary to predict the flow of complex fluids under complex boundary

conditions. Nevertheless, it is generally difficult to theoretically obtain constitutive equations for com-

plex fluids. Instead, mesoscopic coarse-grained models, which are based on molecular theories, have

been explored in the field of rheology. For example, for polymeric liquids, standard molecular theories

have been proposed [6, 14], on which refined mesoscopic models have been constructed [22, 23, 107].

In these models, the motion of individual (coarse-grained) molecules is numerically tracked. Although

these models require significantly more computational time compared to constitutive equations, they

can reproduce (nearly) accurate rheological data. Despite these advancements, a clear methodology for
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Fig. 4.1 Schematic illustration of Rheo-SINDy.

obtaining constitutive equations from available data remains elusive.

Data-driven methods are powerful approaches for addressing the aforementioned challenges in rheology.

Indeed, such methods have enhanced rheological studies such as constitutive modeling, flow predictions

of complex fluid flows, and model selections [10, 12]. Some applications have successfully identified

constitutive relations of complex fluids or governing equations to predict the dynamics of fluids with

knowledge of rheology. These studies have employed neural networks (NN), including deep NN [60],

graph NN [108], recurrent NN [59], physics-informed NN [67, 83, 84], multi-fidelity NN [109], and tensor

basis NN [58]. Gaussian processes (GP) have also been employed, for example, for strain-rate dependent

viscosity [54] or for viscoelastic properties [55, 56, 61, 68].

Despite the success of NNs and GPs, their black-box nature often obscures the underlying physics,

making symbolic regression techniques more appealing for transparency and interoperability. These

methods, such as the sparse identification of nonlinear dynamics (SINDy) [43], have been frequently

utilized to track (reduced order) dynamics in the field of fluid dynamics [110]. Inspired by these suc-

cesses, symbolic regression methods have recently started to be used in the field of rheology as well. For

example, Mohammadamin and coworkers [111] relied on the SINDy for flexibly identifying the consti-

tutive equations of an elasto-visco-plastic fluid. Although there are several attempts along this line, a

comprehensive study to test the SINDy for rheological data has not yet been conducted.

In this study, we employ the SINDy to find constitutive models from rheological data, which we call

as Rheo-SINDy. After verifying the performance of Rheo-SINDy when the constitutive equations are

known, we apply Rheo-SINDy to problems where the constitutive equations are unknown. The details

are shown below.

4.2 Methods

4.2.1 Rheo-SINDy

We use a data-driven method known as a sparse identification of nonlinear dynamics (SINDy), which

was originally developed by Brunton and coworkers [43]. In this study, we attempt to obtain constitutive

equations of complex fluids using the SINDy. Here, we briefly explain the basic concepts of the SINDy.

We consider dynamical systems generally expressed by the following differential equation:

dx(t)

dt
= f [x(t)], (4.1)
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where the vector x(t) represents the state of a system at time t and the function f [x(t)] determines

the dynamics of the state x(t). In general, while there are many possible candidate terms for f [x(t)],

the right-hand side of Eq. (4.1) is assumed to include only a few terms on its appropriate coordinate.

The basic idea of the SINDy is to find dominant terms for describing the dynamics out of the numerous

options using a sparse identification method. One can determine the (sparse) representation of f by a

dataset including a collection of x(t) and ẋ(t) (the time derivative of x(t)). The regression to points of

x(t) and ẋ(t) is computed with sparsity-promoting techniques, such as ℓ1-regularization.

In the rheological community, it is of great importance to determine a relationship between stress and

strain rate. This relationship is a so-called constitutive model or constitutive equation. Most constitutive

equations are differential equations that depend on the (extra) stress tensor τ and velocity gradient tensor

κ. In this study, we prefer to use the so-called extra stress tensor τ as the stress tensor because this

stress tensor is τ = 0 at equilibrium, which is convenient for the SINDy regression. The total stress

tensor σ can be obtained by the relation τ = σ −GI, where G is the modulus and I is the unit tensor.

A general form for constitutive equations can be written as

dτ (t)

dt
= τ̇ (t) = f [τ (t),κ(t)]. (4.2)

Here, κ(t) is a control variable during rheological measurements. We use the SINDy algorithm to find

constitutive equations for complex fluids, which we call this technique Rheo-SINDy.

The training data needed to Rheo-SINDy are transient stress data T and those time derivatives Ṫ ,

which can be summarized as the following two matrices:

T =
[
txx tyy · · · tzx

]
=


τxx(t1) τyy(t1) · · · τzx(t1)

τxx(t2) τyy(t2) · · · τzx(t2)
...

...
. . .

...

τxx(tn) τyy(tn) · · · τzx(tn)

 (4.3)

and

Ṫ =
[
ṫxx ṫyy · · · ṫzx

]
=


τ̇xx(t1) τ̇yy(t1) · · · τ̇zx(t1)

τ̇xx(t2) τ̇yy(t2) · · · τ̇zx(t2)
...

...
. . .

...

τ̇xx(tn) τ̇yy(tn) · · · τ̇zx(tn)

 , (4.4)

where tµν (µ, ν ∈ {x, y, z}) is the column of T , and we take the stress data for n sequential times. The

time derivatives of the stress data Ṫ are computed by a numerical differentiation method. To take the

stress data, we apply the velocity gradient κ to the system. The data of the velocity gradient tensor K

are summarized as

K =
[
kxx kyy · · · kzx

]
=


κxx(t1) κyy(t1) · · · κzx(t1)

κxx(t2) κyy(t2) · · · κzx(t2)
...

...
. . .

...

κxx(tn) κyy(tn) · · · κzx(tn)

 , (4.5)

where kµν (µ, ν ∈ {x, y, z}) is the the column of K.

In Rheo-SINDy, we construct a library matrix of functions, denoted as Θ, which can include various

nonlinear functions. Θ is expressed as

Θ =
[
1 T K (T ⊗ T ) (T ⊗K) (K ⊗K) · · ·

]
, (4.6)
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where T ⊗K, for example, denotes all possible combinations of the products of the row components in

T and K for each time ti (1 ≤ i ≤ n). We note that Θ can incorporate not only polynomials but also

other functions, such as sinusoidal functions. Using these expressions, we can substitute Eq. (4.2) as

Ṫ = ΘΞ, (4.7)

where Ξ is the coefficient matrix. The coefficient matrix can be written as

Ξ =
[
ξxx ξyy · · · ξzx

]
=


ξxx,1 ξyy,1 · · · ξzx,1

ξxx,2 ξyy,2 · · · ξzx,2
...

...
. . .

...

ξxx,NΘ
ξyy,NΘ

· · · ξzx,NΘ

 . (4.8)

where NΘ is the total number of library functions.

To determine the coefficient matrix Ξ, we solve the following optimization problem:

ξ̂µν = argmin
ξµν

∥ṫµν −Θξµν∥22 +R(ξµν), (4.9)

where || · · · ||2 is the ℓ2 norm defined as

||x||2 =

(∑
i

x2
i

)1/2

, (4.10)

and R(ξµν) is the regularization term. To obtain a sparse solution of Ξ, we apply the following five

methods: (i) the sequentially thresholded least square algorithm (STLSQ), (ii) sequentially thresholded

Ridge regression (STRidge), (iii) least absolute shrinkage and selection operator (Lasso), (iv) Elastic-Net

(E-Net), and (v) adaptive-Lasso (a-Lasso) (see 4.A for detail). Each method has a hyperparameter α

to penalize the solution complexity, which is to be tuned for obtaining well-predictive yet parsimonious

representations. For this purpose, we attempt to re-identify known constitutive equations by (i)–(v) with

various α values and pick an appropriate value of α that gives a small loss value and the (nearly) correct

number of terms.

In this study, we limit ourselves to shear rheological measurements that give fundamental rheological

properties. Under shear flow, among the components κ, only κxy has non-zero values. Here, x is the

velocity direction, and y is the velocity gradient direction. Since the major stress components are τxx,

τyy, τzz, and τxy under shear flow, we only use these components to conduct Rheo-SINDy.

4.3 Case Studies

For case studies of Rheo-SINDy, we first test whether Rheo-SINDy can find the appropriate constitutive

equation from the training data obtained by several phenomenological and molecular-based constitutive

equations. Subsequently, we consider approximate constitutive models of a mesoscopic model, whose

constitutive equation is unknown. This section provides a brief overview of the models considered in this

study and the conditions for creating the datasets.
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4.3.1 Constitutive Equation Models

Upper Convected Maxwell (UCM) Model

The simplest constitutive equation is the upper convected Maxwell (UCM) model [112] shown as

dτ

dt
− τ · tκ− κ · τ = − 1

λ
τ + 2GD. (4.11)

Here, the left-hand side of Eq. (4.11) is the upper-convected time derivative of τ , λ is the relaxation

time, G is the modulus, and D is the deformation rate tensor defined as D = (κ + tκ)/2. Using λ as

the unit time and G as the unit stress (i.e., λ = G = 1), we can obtain dimensionless expressions for

time t̃ = t/λ, velocity gradient tensor κ̃ = λκ, and stress τ̃ = τ/G. In what follows, we omit the tilde

in dimensionless variables for simplicity. The dimensionless form of the UCM model under shear flow is

thus written as

τ̇xx = −τxx + 2τxyκxy, (4.12)

τ̇yy/zz = τyy/zz = 0, (4.13)

τ̇xy = −τxy + κxy + τyyκxy = −τxy + κxy. (4.14)

Here, since the initial conditions for τ are set to the values of τ at equilibrium, namely τ = 0, τyy/zz of

the UCM model is zero under shear flow.

For the UCM model, we generate training data by numerically solving Eqs. (4.12)–(4.14) under two

shear flow scenarios: simple shear and oscillatory shear tests. For the simple shear test, the shear

rate is kept constant (κxy = γ̇) across various values (γ̇ ∈ {1, 1.7, 2.8, 4.6, 7.7, 13, 22, 36, 60, 100}) with

simulations running from t = 0 to t = 10 using a time step of ∆t = 1.0×10−4. The oscillatory shear test

introduces a time-dependent oscillatory shear strain, γ(t) = γ0 sin(ωt), with γ0 = 2 and ω = 1, over a

period from t = 0 to t = 100, employing the same time step. In both tests, data are collected at intervals

of ∆ttrain = 1× 10−2, resulting in a total of 104 data points for the training data.

Giesekus Model

The Giesekus model, which is one of the phenomenological constitutive equations [29], shows typical

shear rheological properties and is used to fit various complex fluids, including polymer solutions and

wormlike micellar solutions. The tensorial form of the Giesekus constitutive equation can be written as

dτ

dt
− τ · tκ− κ · τ = − 1

λ
τ − αG

Gλ
τ · τ + 2GD, (4.15)

where αG is the parameter governing the nonlinear response of the Giesekus model. The Giesekus

equation under shear flow is thus given by

τ̇xx = −τxx − αG(τ
2
xx + τ2xy) + 2τxyκxy, (4.16)

τ̇yy = −τyy − αG(τ
2
yy + τ2xy), (4.17)

τ̇zz = 0, (4.18)

τ̇xy = −τxy − αG(τxx + τyy)τxy + τyyκxy + κxy. (4.19)

Here, all quantities are non-dimensionalized by using λ as the unit time and G as the unit stress. From

Eqs. (4.16)–(4.19), the total number of collect terms in the Giesekus model is 12.
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Fig. 4.2 Schematic illustration of the dumbbell model.

We generate the training data by solving Eqs. (4.16)–(4.19) numerically with αG = 0.5 and ∆t =

1× 10−4. We note that the Giesekus model with αG = 0.5 gives sufficient nonlinear features under shear

flow. We applied the oscillatory shear flow with γ0 = 2 and various ω values (ω ∈ {0.1, 0.2, . . . , 1}) for

0 ≤ t ≤ 100. From the computed stress data, we collected data at the interval of ∆ttrain = 1× 10−2.

4.3.2 Dumbbell Models

The dumbbell-based models have been widely utilized in numerous previous studies for the computation

of viscoelastic fluids and are considered a standard mesoscopic model for viscoelastic fluids [74]. As

illustrated in Fig. 4.2, a dumbbell consists of two beads (indexed as 1 or 2) and a spring that connects

them. The Langevin equations for the positions of the two beads r1/2(t) can be written as

ζ

[
dri(t)

dt
− κ · ri(t)

]
= −h(t) {ri(t)− rj(t)}+ FBi(t), (4.20)

with (i, j) = (1, 2) or (2, 1). Here, ζ is the friction coefficient, h(t) is the spring strength, and FBi(t)

is the Brownian force acting on the bead i. The time evolution equation for the end-to-end vector R

(r2(t)− r1(t)) of the beads is thus obtained as

ζ

[
dR(t)

dt
− κ ·R(t)

]
= −2h(t)R(t) + {FB2(t)− FB1(t)} . (4.21)

The Brownian force is characterized by the first and second-moment averages as

⟨FBi(t)⟩ = 0, (4.22)

and

⟨FBi(t)FBj(t
′)⟩ = 2ζkBTδijδ(t− t′)I, (4.23)

where kB is the Boltzmann constant and T is the temperature. The stress tensor is obtained as

τ (t) = ν⟨h(t)R(t)R(t)⟩ − ρkBTI, (4.24)

where ρ is the density of dumbbells.

There are several expressions for the spring strength h(t). The most basic one is the Hookean spring,

defined as

h(t) = heq =
3kBT

nKb2K
, (4.25)
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where nK is the number of Kuhn segments per spring and bK is the Kuhn length. To reproduce the

properties of polymers, dumbbell models with finite extensible nonlinear elastic (FENE) springs are

widely used. The empirical expression of the FENE spring is

h(t) = heq

1− ⟨R2
eq⟩/R2

max

1−R2(t)/R2
max

, (4.26)

where ⟨R2
eq⟩1/2 = (nK)

1/2bK is the equilibrium length of the springs, and Rmax = nKbK is the maximum

length of the springs. As shown later in Sec. 4.3.2, a constitutive equation cannot be analytically obtained

for the FENE dumbbell model. To address the FENE spring more analytically, the following approximate

expression of the FENE spring has been proposed:

h(t) = heqfFENE(t), where fFENE(t) =
1− ⟨R2

eq⟩/R2
max

1− ⟨R2(t)⟩/R2
max

. (4.27)

This spring is referred to as the FENE-P spring. Here, “P” means Peterlin, who proposed the approxi-

mate form of the FENE spring law.

We use λ = ζ/4heq as the unit time and G = ρkBT as the unit stress for the dumbbell models. To

simplify the expressions, we omit the tilde representing dimensionless quantities.

Hookean Dumbbell Model

The most basic dumbbell model is the Hookean dumbbell model, where Hookean springs are employed

(cf. Eq. (4.25)). Using Eqs. (4.21), (4.24), and (4.25), the Hookean dumbbell model reduces to the

constitutive equation of the UCM model (cf. Eq. (4.11)) in the limit of Np → ∞ with Np being the

number of dumbbells.

For the Hookean dumbbell model, we generate training data by Brownian dynamics (BD) simulations

with the finite numbers of dumbbells (Np ∈ {103, 104, 105}) under the oscillatory shear flows same as

those in the Giesekus model. The simulations are run with ∆t = 1× 10−3 for 0 ≤ t ≤ 100 and data are

collected at the interval of ∆ttrain = 1× 10−2. Each simulation is conducted with five different random

seeds, and their average data is used for training. Due to the characteristics of the BD simulation,

the training data inherently include noise originating from the finite Np. We here test whether Eqs.

(4.12)–(4.14) can be discovered from the noisy data.

FENE-P Dumbbell Model

We next address the so-called FENE-P dumbbell model, where Eq. (4.27) is utilized as the spring strength.

As shown below, the FENE-P dumbbell model has an analytical solution and is utilized for various flow

problems, such as turbulent flows [113].

Due to the assumption shown in Eq. (4.27), a simple representation of the time evolution for the

conformation tensor C = ⟨R(t)R(t)⟩ can be obtained as

dC

dt
−C · tκ− κ ·C = −fFENE(t)C +

nK

3
I. (4.28)

The stress tensor is thus obtained by

τ (t) = ρk(t)C(t)− ρkBTI. (4.29)

Under shear flow, Eq. (4.28) reduces to the following expressions:

Ċxx = −fFENECxx + 2Cxyκxy +
nK

3
, (4.30)
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Ċyy/zz = −fFENECyy/zz +
nK

3
, (4.31)

Ċxy = −fFENECxy + Cyyκxy. (4.32)

Using Rheo-SINDy, we test whether or not Eqs. (4.30)–(4.32) can be found from the data.

While it has not been as widely recognized due to its complexity, the FENE-P dumbbell model can

also be expressed in the form of the constitutive equation (i.e., the stress expression) [114]. From the

textbook of Bird and coworkers [74], the constitutive equation for the FENE-P model is

dτ

dt
− τ · tκ− κ · τ = −fFENE(t)τ + 2D +

D lnZ

Dt
(τ + I), (4.33)

where D(· · · )/Dt is the substantial derivative and Z is the function expressed as

Z =
1

1− ⟨R2(t)/R2
max⟩

= 1 +
1

3nKZ
−1
eq

(trτ + 3). (4.34)

Here, Zeq indicates Z at equilibrium. From Eq. (4.34), we can see that trτ is tightly related to the

(squared) length of dumbbells. Since we do not address the spatial gradient in rheological calculations,

D(· · · )/Dt simply reduces to d(· · · )/dt. Using Eqs. (4.28), (4.33), and (4.34), the constitutive equations

for the FENE-P dumbbell model under shear flow can be expressed as

τ̇xx = −
{
1 +

1

3(nK − 1)

}
τxx − 1

3(nK − 1)
(τyy + τzz)

− 1

9(nK − 1)
(tr τ )2 − 1

3nK

(
2 +

1

nK − 1

)
tr τ τxx

+ 2

{
1 +

1

3(nK − 1)

}
τxyκxy −

1

9(nK − 1)
(tr τ )2τxx

+
2

3(nK − 1)
τxxτxyκxy, (4.35)

τ̇yy/zz = −
{
1 +

1

3(nK − 1)

}
τyy/zz −

1

3(nK − 1)
(τxx + τzz/yy)

− 1

9(nK − 1)
(tr τ )2 − 1

3nK

(
2 +

1

nK − 1

)
tr τ τyy/zz

+
2

3(nK − 1)
τxyκxy −

1

9(nK − 1)
(tr τ )2τyy/zz

+
2

3(nK − 1)
τyy/zzτxyκxy, (4.36)

τ̇xy = −τxy + κxy + τyyκxy −
1

3nK

(
2 +

1

nK − 1

)
tr τ τxy

− 1

9(nK − 1)
(tr τ )2τxy +

2

3(nK − 1)
τ2xyκxy. (4.37)

For the derivation, please refer to 4.C. From Eqs. (4.35)–(4.37), we can see that the constitutive equation

for the FENE-P model can be expressed by a polynomial of up to third degree in τ and κ. Here, we

note that Eqs. (4.35)–(4.37) become equivalent to the UCM model shown in Eqs. (4.12)–(4.14) in the

limit of nK → ∞.

To generate noise-free training data, we use Eqs. (4.29)–(4.32) with nK = 10 and ∆t = 1 × 10−4 for

0 ≤ t ≤ 100. We apply the oscillatory shear flows the same as those in the Giesekus model. From the

computed stress data, we collect data at the interval of ∆ttrain = 1× 10−2.
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(c)

(d)

from training data (a)

from training data (b)

data method equations

(a)

(a) a-Lasso

(b) STRidge

(b) a-Lasso

(e) SINDy results

STRidge

Fig. 4.3 Training data obtained by the UCM model (a) under simple shear flow (κxy = γ̇) and (b)

under oscillatory shear flow (κxy = γ0ω cos(ωt)). The number of total terms obtained by (c) the

training data (a) (i.e., simple shear flow) and (d) the training data (b) (i.e., oscillatory shear flow).

(e) The constitutive equations obtained by Rheo-SINDy. The parameters for the applied shear flows

to obtain the training data are summarized in Sec. 4.3.1. In (b), xx-, yy-, and xy-components of the

stress tensor are plotted with the black solid, red dotted, and blue dash-dotted lines, respectively.

In (c) and (d), the number of total terms for five different optimization methods is plotted against

the hyperparameter α. The black horizontal lines in (c) and (d) indicate the correct number of the

terms in the UCM model.

FENE Dumbbell Model

We finally address the FENE dumbbell model, where the spring strength is represented by Eq. (4.26).

Since the FENE dumbbell model does not use any simplification for the spring strength (e.g., Peterlin

approximation shown in Eq. (4.27)), its analytical constitutive equation has not been obtained. We

apply Rheo-SINDy to this case to see if an “approximate” constitutive equation can be obtained. The

obtained equations are validated by comparing the data obtained by numerically solving them with the

data obtained by BD simulations.

The training data are generated by the BD simulations using Eqs. (4.21)–(4.24) and (4.26) with

nK = 10, Np = 104, and ∆t = 1 × 10−2 for 0 ≤ t ≤ 100. We apply the oscillatory shear flows

with the same parameters as those in the Giesekus model. Since we do not use any approximation for

the spring strength, the values of h(t) differ for each individual dumbbell. The BD simulation results

with five different random seeds are averaged for each condition. From the computed stress data, we

collected data at the interval of ∆ttrain = 1× 10−2.
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4.4 Results and Discussions

4.4.1 Re-Identifying Upper Convected Maxwell Model

Through this case study, we first check the appropriate methods to take the shear rheological data for

Rheo-SINDy. Figure 4.3 shows the training data and results for the UCM model. Figure 4.3(a) and (b)

are the stress data under simple shear flows with various shear rates and those under oscillatory shear

flows.

We conducted the Rheo-SINDy regressions by using the polynomial library that includes up to third

order terms of τxx, τyy, τxy, and κxy. Thus, there were 35 candidate terms for each component of the

constitutive equation. The terms related to τzz were excluded because they do not contribute to the

UCM dynamics. The correct number of terms is four, as shown in Eqs. (4.12)–(4.14). Figures 4.3(c)

and (d) present the number of total terms varying with the hyperparameter α obtained by Rheo-SINDy

using the training data (a) and (b), respectively (for the detail of the hyperparameter α, see 4.A). 4.3(c)

indicates that the sparse solutions can be obtained by the STLSQ, STRidge, and a-Lasso, but not by

the Lasso and E-Net. Moreover, from the perspective of the number of terms, the STLSQ and STRdge

exhibit similar behavior. Specifically, we confirm that the correct number of terms (cf. Eqs. (4.12)–(4.14))

are obtained by the STLSQ and STRidge with 3× 10−3 ≤ α ≤ 3× 10−1. On the other hand, Fig. 4.3(d)

indicates that the STLSQ, STRidge, and a-Lasso yielded the correct number of terms, though all four

methods gave sparse solutions. In most of the cases where the number of terms obtained was correct,

the obtained coefficients were also correct. These results suggest that the oscillatory shear test is more

appropriate than the simple shear test to obtain the correct constitutive equations for the UCM model.

Figure 4.3(e) lists the constitutive equations obtained by the STRidge and a-Lasso. We can see that the

STRidge and a-Lasso can give the collect constitutive equations, except for the a-Lasso in the simple

shear test. Furthermore, we confirmed that the correct equations were obtained even for α values not

shown in Fig. 4.3(e) in the case of the UCM model. These findings show the basic validity of finding

the constitutive equations from the rheological data by Rheo-SINDy. Figure 4.3 indicates that the Lasso

and E-Net could not identify the correct solution within the considered scope; thus, we exclude these

two methods from consideration in the following discussion.

4.4.2 Re-Identifying Giesekus Model

We here explain the results of Rheo-SINDy for the Giesekus model. This case used the polynomial library

consisting of up to 2nd order terms of τxx, τyy, τxy, and κxy. Figure 4.4 shows (a) the total number of

terms and (b) the error rate obtained by Rheo-SINDy for the training data of the Giesekus model. The

error rate is defined as the sum of the mean squared errors (MSEs) of ṫµν−Θξ̂µν . The MSEs were scaled

so that the maximum value of each method was 1. We here show results using a single data trajectory

with ω = 0.1 and multiple data trajectories with ω ∈ {0.1, 0.2, . . . , 1.0} as training data. Figure 4.4(a)

indicates that the a-Lasso evidently provides a sparser solution compared to the other two methods.

Furthermore, Fig. 4.4(b) demonstrates that the methods using multiple data trajectories derive solutions

with smaller errors than those using a single data trajectory. We note that, similar to the number of

terms obtained by Rheo-SINDy, coefficient values generally depend on α.

Figures 4.5(a) and (b) show the constitutive equations found by Rheo-SINDy and the test simulation
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Fig. 4.4 (a) The number of total terms and (b) the error rate obtained for the Giesekus model.

The optimization methods include the STLSQ (green squares), STRidge (red reverse triangles),

and a-Lasso (blue triangles). The filled and open symbols indicate the results with a single data

trajectory of κxy = γ0ω cos(ωt) with γ0 = 2 and ω = 0.1 for 0 ≤ t ≤ 100 and those with multiple

(10) data trajectories of κxy = γ0ω cos(ωt) with γ0 = 2 and ω ∈ {0.1, 0.2, . . . , 1} for 0 ≤ t ≤ 100,

respectively.

results, respectively. Here, we used the training data of the multiple data trajectories. The α value for

each method was chosen considering the sparsity indicated in Fig. 4.4(a) and the small loss indicated

in Fig. 4.4(b). For test simulations shown in Fig. 4.5(b), we employed the oscillatory shear flow with

γ0 = 4 and ω = 0.5, which is the outside of the parameters in the training data described in Sec. 4.3.1.

Figure 4.5(a) reveals that the STRidge with α = 3× 10−1 can give almost exact constitutive equations,

including the value of αG (cf. Eqs. (4.16)–(4.19)). As inferred from this, the predictions based on the

constitutive equations obtained by the STRidge demonstrate a good agreement with the test data as

shown in Fig. 4.5(b-ii). While the success of the STRidge, the STLSQ and a-Lasso failed to identify

the correct solution, as indicated in Fig. 4.5(a). The constitutive equation obtained by the STLSQ with

α = 3 × 10−1 has a low error rate as shown in Fig. 4.4(b), but its predicted τxx significantly deviates

from the test data as seen in Fig. 4.5(b-i). On the other hand, although the a-Lasso did not provide

the correct solution for τxx, the test simulations with the obtained constitutive equations exhibit a good

agreement with the test data. These test simulations demonstrate that the STRidge and a-Lasso are

promising approaches for Rheo-SINDy.

4.4.3 Re-Identifying the Solution of Hookean Dumbbell Model

We next explain the results for the Hookean dumbbell model. We here used the polynomial library that

includes up to 2nd order terms of τxx, τyy, τxy, and κxy. In what follows, based on the findings in Secs.

4.4.1 and 4.4.2, we consider only the STRidge and a-Lasso as optimization methods.

Figure 4.6 shows the Rheo-SINDy results for the Hookean dumbbell model with the different numbers
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(b) test simulations(a) SINDy results

Fig. 4.5 (a) The obtained constitutive equations for three optimization methods and (b) test

simulation results under the oscillatory shear flow with γ0 = 4 and ω = 0.5 for (i) the STLSQ,

(ii) STRidge, (iii) and a-Lasso. The training data are the same as those in Fig. 4.4. In (a), the

constitutive equations obtained by the multiple data trajectories are shown. In (b), the xx-, yy-,

and xy-components of the stress tensor are shown with black, blue, and red lines, respectively. The

dotted and solid lines in (b) denote the predictions by the equations shown in (a) and the test

simulation data, respectively.

of dumbbells. We note that the standard deviation of τ decreases proportionally with N
−1/2
p . From

Fig. 4.6(a), as the value of Np increases, sparser solutions are obtained. Unlike the case of the UCM

model (cf. Fig. 4.3), which can be considered as the “noise-free” case of the Hookean dumbbell model,

the STRidge provides the correct number of terms only within a narrow range of α values. Nevertheless,

if we choose the appropriate α value, the (nearly) correct constitutive equations can be found by the

STRidge, as shown in the upper part of Fig. 4.6(b). We note that the terms containing τyy appear in

the time evolution equation for τxy obtained by the STRidge. Although these terms do not affect the

predictions because τ̇yy = 0, these terms do not appear in the correct equation. We speculate that the

appearance of these terms is due to the correlation effects of the noise in x and y on the stress (cf. Eq.

(4.24)). When comparing the STRidge and a-Lasso, it is evident that the a-Lasso provides stable and

sparse solutions across a broader range of α values, regardless of the Np value. Furthermore, we confirm

that the correct equations can be obtained using the a-Lasso from the lower part of Fig. 4.6(b). This

partially suggests the effectiveness of the a-Lasso in discovering essential terms from noisy data.

4.4.4 Re-Identifying the Solution of FENE-P Dumbbell Model

We examine whether Rheo-SINDy can find more complex differential equations (i.e., the FENE-P dumb-

bell model) than the UCM model and the Giesekus model. For the Rheo-SINDy regressions of the

differential equation for the conformation tensor of the FENE-P dumbbell model explained in Sec. 4.3.2,
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Fig. 4.6 (a) The number of total terms obtained by the STRidge (black) and a-Lasso (red) for

the training data generated by the Hookean dumbbell model, and (b) the obtained constitutive

equations. Here, the Rheo-SINDy regressions were conducted for the multiple data trajectories. In

(a), circle, triangle, and square symbols indicate the total numbers of terms obtained by the data

for Np = 103, 104, and 105, respectively.
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Fig. 4.7 (a) The total number of terms and (b) the error rate for the conformation tensor C of the

FENE-P dumbbell model obtained by Rheo-SINDy with the STRidge (black squares) and a-Lasso

(red reverse triangles). The horizontal line in (a) indicates the correct number of terms. The

training data were generated by Eqs. (4.30)–(4.32) with nK = 10.

we prepare the following library:

Θ =


1 Cs(t1) κxy(t1) fFENE(t1)Cs(t1) fFENE(t1)κxy(t1)

1 Cs(t2) κxy(t2) fFENE(t2)Cs(t2) fFENE(t2)κxy(t2)
...

...
...

...
...

1 Cs(tn) κxy(tn) fFENE(tn)Cs(tn) fFENE(tn)κxy(tn)

 , (4.38)
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Fig. 4.8 The differential equations for the conformation tensor C of the FENE-P dumbbell model

found by Rheo-SINDy.

where Cs includes non-zero components of the conformation tensor under shear flow, namely, Cxx, Cyy,

Czz, and Cxy. The total number of library functions is thus NΘ = 26.

Figure 4.7 indicates (a) the total number of predicted terms and (b) the error rate as a function of

the hyperparameter α for the STRidge and the a-Lasso. Similar to the results in Figs. 4.3 and 4.4,

the a-Lasso provides sparser solutions than the STRidge, and the STRidge gives lower error rates than

the a-Lasso. Figure 4.8 presents the differential equations obtained by the STRidge and a-Lasso for

particular α values that yield a small error and/or a small number of terms. From the lower part of

Fig. 4.8, while the a-Lasso can provide sparser solutions, it does not guarantee that these are correct

(cf. Eqs. (4.30)–(4.32)). Specifically, in all cases for τxx, τyy, and τzz, the a-Lasso has failed to identify

the constant term in Eqs. (4.30) and (4.31), which is a possible source of larger errors compared to the

STRidge. On the other hand, in the case of the STRidge, we confirmed that by choosing the appropriate

α (α = 1 × 10−1), nearly correct differential equations can be obtained, as shown in the upper part of

Fig. 4.8. Since the yy-component and zz-component of the stress are equivalent, the exact equations

can be recovered by setting Cyy = Czz. Thus, we found that the correct differential equations for the

FENE-P dumbbell model can be obtained if we can prepare the proper library functions and choose the

appropriate value of the hyperparameter. Figure 4.9 shows the test simulation results using the identified

differential equations for C in Fig. 4.8 and the dimensionless form of Eq. (4.29). Here, the oscillatory

shear flow with γ0 = 4 and ω = 1 was considered. From Fig. 4.9, the equations obtained by the STRidge

can reproduce the exact solutions even when the equations are not exactly correct (α = 1 × 10−3).

On the other hand, the test simulations with the differential equations obtained by the a-Lasso show

the deviations from the test data, especially for τxx. These results emphasize the need to choose an

appropriate optimization method to obtain reasonable solutions.
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Fig. 4.9 The test simulation results using the equations obtained by (a) the STRidge and (b)

a-Lasso. Here, the test simulations were conducted with γ0 = 4 and ω = 1. The black, blue, and

red lines show τxx, τyy, and τxy. The bold, thin dotted, and thin solid lines indicate the exact

solutions, predictions with smaller α values (α = 1 × 10−3 for the STRidge and α = 1 × 10−7 for

the a-Lasso), and predictions with larger α values (α = 1×10−1 for the STRidge and α = 1×10−4

for the a-Lasso).

We then examine whether the stress expression of the constitutive equation for the FENE-P dumbbell

model (cf. Eqs. (4.35)–(4.37)) can be found by Rheo-SINDy. For such a purpose, we prepared the

following custom library:

Θ =


1 {tr{τ}(t1)}pTs(t1) {tr{τ}(t1)}2 {Ts(t1)}pκxy(t1)

1 {tr{τ}(t2)}pTs(t2) {tr{τ}(t2)}2 {Ts(t2)}pκxy(t2)
...

...
...

...

1 {tr{τ}(tn)}pTs(tn) {tr{τ}(tn)}2 {Ts(tn)}pκxy(tn)

 , (4.39)

where Ts includes {τxx, τyy, τzz, τxy} and p (= 0, 1, 2) is the polynomial order. Thus, the total number of

library functions is NΘ = 29. We prepared the library that includes at least the terms present in Eqs.

(4.35)–(4.37). Furthermore, we excluded terms that could potentially become large, such as higher-order

terms involving κxy. When such terms are included in the solutions, the differential equations may be

unstable, and in worse cases, they may also diverge.

Figure 4.10 shows (a) the total number of terms and (b) the error rate obtained by Rheo-SINDy with

the STRidge and a-Lasso. Similar to what we noted previously, the a-Lasso can yield sparser solutions

than the STRidge. Based on the number of terms shown in Fig. 4.10(a) and the error rates shown in Fig.

4.10(b), we chose several α values with a small number of terms and a low error rate. Figure 4.11 presents

the equations obtained using the selected α. From Fig. 4.11, the equations predicted by the STRidge

with α = 1 and the a-Lasso with α = 1× 10−4 are almost the same; conversely, the solutions for small α

values significantly differ between the two methods. For the STRidge with α = 1× 10−2, the identified

equations are close to the correct equations (cf. Eqs. (4.35)–(4.37)). Furthermore, the coefficient values
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Fig. 4.10 (a) The total number of terms and (b) the error rate for the FENE-P dumbbell model

obtained by the STRidge (black squares) and the a-Lasso (red reverse triangles). The horizontal

short-dashed line in (a) indicates that the number of terms is zero.

Table 4.1 The mean squared error (MSE) between predicted and exact solutions for the FENE-P

dumbbell model.

method α MSE(τxx) MSE(τyy) MSE(τxy)

STRidge 1× 10−2 1.1× 10−1 5.0× 10−5 5.1× 10−3

STRidge 1 2.3 8.2× 10−3 8.9× 10−2

a-Lasso 3× 10−8 3.4× 10−1 3.0× 10−3 3.8× 10−2

a-Lasso 1× 10−4 2.3 8.2× 10−3 9.0× 10−2

for the correctly obtained terms are close to the correct values. For the a-Lasso with α = 3 × 10−8,

several coefficients for the correctly obtained terms, such as τxx, τxy, and τxxτxyκxy in the equation for

τ̇xx, are close to the exact values, but for other several terms, such as tr τ τxx in the equation for τ̇xx, the

correct coefficient values are not obtained. Nevertheless, from Fig. 4.12, which shows the test simulation

results, the equations obtained by the STRidge with α = 1 × 10−2 and the a-Lasso with α = 3 × 10−8

can well reproduce the exact solutions including the small oscillation of τyy. Although the results for the

STRidge and a-Lasso appear to be little difference, the difference in predictions is quantified by their

MSEs shown in Table 4.1. When α is small, the error in τxx is of the same order for both methods, but

for predictions of τyy and τxy, the STRidge outperforms the a-Lasso. The STRidge, however, provides a

sparse solution within a narrow range of α values, requiring careful selection of α.

4.4.5 Finding an Approximate Equation of FENE Dumbbell Model

Finally, we address the FENE dumbbell model. As explained in Sec. 4.3.2, the FENE dumbbell model

does not have an analytical expression of the constitutive equation. Thus, we here develop an “approxi-

mate” constitutive equation using Rheo-SINDy.
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Fig. 4.11 The constitutive equations for the FENE-P dumbbell model obtained by the STRidge and a-Lasso.

To obtain dynamical equations by Rheo-SINDy, one first needs to design an appropriate library Θ. To

prepare Θ for the FENE dumbbell model, we utilize the physical insights obtained from the analytical

expression of the FENE-P dumbbell model. We here assume the constitutive equation of the FENE-P

dumbbell model is similar to that of the FENE dumbbell model. Since the FENE-P dumbbell model is a

simplified version of the FENE dumbbell model, we believe that this is a reasonable assumption. Here, we

note that the stress expression shown in Eq. (4.29) is no longer applicable to the FENE dumbbell model.

Thus, it is invalid to obtain stress through the conformation tensor C, as in the FENE-P dumbbell

model. Based on the above considerations, we decided to use the custom library presented in Eq. (4.39),

which was also used in the FENE-P dumbbell model.

Figure 4.13(a) compares the total number of terms predicted by the STRidge and a-Lasso. Similar

to the previous discussions, we can obtain sparse solutions over a wide range of α values with the a-

Lasso, whereas the STRidge gives sparse solutions only within a limited range of α. The left table in

Fig. 4.14 shows the equations obtained by the a-Lasso with two α chosen from the viewpoints of the

sparsity and error rate. We note that the predictions obtained by the STRidge are inferior to those

obtained by the a-Lasso shown in Fig. 4.14, which is discussed in 4.D. From the left table in Fig. 4.14,

if α is appropriately chosen, the a-Lasso can give sparse equations with coefficients of reasonable (not

excessively large) magnitudes. Comparing the equations for the FENE-P model obtained by the a-Lasso

with α = 3× 10−8 (Fig. 4.11) and those for the FENE model obtained by the a-Lasso with α = 1× 10−6

(Fig. 4.14), the appearing terms are almost identical, which demonstrates the similarity between these

models. The difference in the coefficients thus represents the difference between these models. The right

panels in Fig. 4.14 show the test simulation results obtained by the equations shown in the left table. We

found that the equations obtained with α = 1 × 10−6 can reproduce the BD simulation results outside

the range of the training data well within the investigated parameters, including the oscillatory behavior
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Fig. 4.12 Test simulation results for the constitutive equations of the FENE-P dumbbell model

obtained by (a) the STRidge and (b) a-Lasso. The black, blue, and red lines represent the xx-,

yy-, and xy-components of the stress tensor, respectively. The bold lines show the exact solutions.

The thin solid and short-dashed lines indicate the results with smaller α values (α = 1× 10−2 for

the STRidge and α = 3 × 10−8 for the a-Lasso) and with larger α values (α = 1 for the STRidge

and α = 1× 10−4 for the a-Lasso).

of τyy. (With the large α (α = 3 × 10−4), the identified equation for τyy becomes τ̇yy = 0, which fails

to reproduce the oscillatory behavior of τyy.) This success suggests that Rheo-SINDy with the a-Lasso

is effective for discovering unknown constitutive equations. Nevertheless, we note that the equations

presented in Fig. 4.14 may fail to predict test data significantly outside the range of the training data.

Reproducing such highly nonlinear data would require the nonlinear terms dropped in Fig. 4.14. In this

sense, the constitutive equations for the FENE dumbbell model obtained here are appropriately referred

to as the “approximate” constitutive equations.

Thanks to the equations obtained using Rheo-SINDy, it is possible to provide a physical interpretation

with the assistance of rheological knowledge. For example, from the comparison of the equations obtained

for the FENE-P dumbbell model (cf. Fig. 4.11) and those for the FENE dumbbell model (cf. Fig. 4.14),

the equations for larger α value (α = 1 × 10−4 for the FENE-P dumbbell model and α = 3 × 10−4

for the FENE dumbbell model) are similar except for the coefficient values. Furthermore, the terms in

these equations are the same as those for the UCM model (and thus the Hookean dumbbell model).

This indicates that all of these models share the same origin based on the dumbbell model. The linear

term of stress in the constitutive equation represents the relaxation of stress (see Eq. (4.11)). Since the

relaxation time at equilibrium (λ = ζ/4keq) is taken as the unit time in this study, the coefficient of this

term should be −1 at equilibrium (and thus for the UCM model, see Eqs. (4.12)–(4.14)). From Figs. 4.11

and 4.14, the coefficient of the linear term of stress is smaller than −1, which indicates λsf < λeq with the

subscript “sf” and “eq” standing for “shear flow” and “equiliblium”, respectively. This indicates that

under shear flow, the values of spring strength for the FENE-P and FENE dumbbell models become

larger than heq, which implies the appearance of the FENE effects under flow. From this discussion, it
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Fig. 4.13 (a) The total number of terms and (b) the error rate for the FENE dumbbell model

predicted by the STRidge (black squares) and the a-Lasso (red reverse triangles). The horizontal

short-dashed line in (a) indicates that the number of terms is zero.

equations

Fig. 4.14 The predicted constitutive equations for the FENE dumbbell model (left) and the test

simulation results (right). Here, the a-Lasso was utilized to obtain the approximate constitutive

equations. For test simulations, we solved the constitutive equations under the oscillatory shear

flows with γ0 = 3 and ω = 1 (right upper panel) and γ0 = 4 and ω = 1 (right lower panel). The

bold lines show the exact solutions, and the thin solid and short-dashed lines show the results with

the smaller α value (α = 1× 10−6) and the larger α value (α = 3× 10−4).

is evident that Rheo-SINDy can provide physically interpretable constitutive equations.

4.5 Concluding Remarks

We tested that the sparse identification for nonlinear dynamics (SINDy) modified for nonlinear rheological

data, which we call Rheo-SINDy, is effective in finding constitutive equations of complex fluids. We found
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that Rheo-SINDy can successfully identify correct equations from training data generated from known

constitutive equations, as well as provide approximate constitutive equations (or reduced order models)

from training data generated by mesoscopic models when constitutive equations are analytically unknown.

Rheo-SINDy for two phenomenological constitutive equations (i.e., the upper convected Maxwell model

and Giesekus model) revealed the following two things. First, compared to constant shear tests, oscilla-

tory shear tests are appropriate for generating training data. Second, the sequentially thresholded Ridge

regression (STRidge) and adaptive Lasso (a-Lasso) are effective in finding appropriate constitutive equa-

tions. We then examined the commonly used mesoscopic model, namely the dumbbell model with three

different representations of spring strength: the Hookean, FENE-P, and FENE dumbbell models. Al-

though the Hookean and FENE-P dumbbell models have analytical constitutive equations, for the FENE

dumbbell model, there is no analytical expression of the constitutive equation. We confirmed through

the Hookean dumbbell model that even in the presence of noise, the a-Lasso provides the correct solution

over a wide range of the hyperparameter α. Rheo-SINDy was also effective in discovering the complex

constitutive equations of the FENE-P dumbbell model. This case study revealed that the identification

of complex equations requires the preparation of an appropriate custom library based on prior physical

knowledge. Utilizing physical insights obtained from the Hookean and FENE-P dumbbell models, we

attempted to find approximate constitutive equations for the FENE dumbbell model. We found that the

a-Lasso can successfully give the approximate constitutive equations, which can be used in predictions

beyond the range of the training data.

From our investigation, Rheo-SINDy with the STRidge or a-Lasso is effective for discovering con-

stitutive equations from nonlinear rheological data. We found that the STRidge is generally superior

in terms of retaining correct terms, while the a-Lasso is more robust to the selection of α than the

STRidge. To obtain correct constitutive equations, in addition to selecting the appropriate optimization

method, we are required to design an appropriate library by using physical insights, namely “domain

knowledge.” Designing such a proper library necessitates not only including necessary terms but also

excluding unnecessary terms.

This research is expected to have an impact on fields such as rheology and fluid dynamics. From a

rheological perspective, for several systems such as entangled polymers [85, 86] and wormlike micellar

solutions [115, 116], sophisticated mesoscopic models suitable for numerical simulations under flow have

been proposed. These mesoscopic models can generate reasonable training data not only under shear

flow but also under extensional flow. Finding new approximate models from the data obtained by these

mesoscopic simulations would be an interesting research subject. Furthermore, it would be desirable

to conduct Rheo-SINDy for experimental data obtained by Large Amplitude Oscillatory Shear (LAOS)

experiments [117]. Since the LAOS measurements do not provide all the major stress components under

shear flow, exploring methods for discovering the constitutive equations from experimental data would be

a future challenge. When approximate constitutive models are identified, those models can be employed

for predictions of complex flows, which would deepen our understanding of complex fluids. We will

continue our research in these directions.

4.A Sparse Regression Methods

To solve the optimization problem in Eq. (4.9), we used five sparse regression methods: (i) the sequentially

thresholded least squares (STLSQ), (ii) sequentially thresholded Ridge regression (STRidge), (iii) least

absolute shrinkage and selection operator (Lasso), (iv) Elastic-Net (E-Net), and (v) adaptive Lasso (a-
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Table 4.2 The regularization term R(ξµν) for the sparse regression methods.

Method Regularization term R(ξµν)

STLSQ λ0||ξµν ||0
STRidge λ0||ξµν ||0 + λ2||ξµν ||22
Lasso λ1||ξµν ||1
E-Net λ1||ξµν ||1 + λ2||ξµν ||22
a-Lasso λ1||ξ′µν ||1

Lasso).

The differences among these methods lie in the regularization term R(ξµν) as shown in Table 4.2. The

hyperparameters of ℓi norm (i = 0, 1, 2) are denoted as λi (> 0). The ℓ0 and ℓ1 norms are defined as

||ξµν ||0 =
∑
j

δ(ξµν,j) (4.40)

and

||ξµν ||1 =
∑
j

|ξµν,j |, (4.41)

where δ(ξµν,j) is the Kronecker delta function, which is equal to 1 if ξµν,j ̸= 0 and 0 otherwise. The

vector ξ′µν in the a-Lasso is defined as ξ′µν = ξµν ⊗wµν , where ⊗ is the element-wise product and wµν is

the adaptive weight vector and its j-th element is defined as wµν,j = |ξµν,j |−δ with δ being the positive

constant.

The STLSQ and STRidge were implemented by iteratively conducting the least square regression and

the Ridge regression, respectively, while setting the coefficients with smaller absolute values than a certain

threshold α (> 0) to zero based on the original papers [43, 118]. In the STRidge, the hyperparameter λ2

was set to 0.05. The Lasso, E-Net, and a-Lasso were implemented using the scikit-learn library [119]. In

this library, the loss functions for the Lasso and E-Net are respectively defined as

ξ̂µν = argmin
ξµν

1

2n
||ṫµν −Θξµν ||22 + α||ξµν ||1, (4.42)

and

ξ̂µν = argmin
ξµν

1

2n
||ṫµν −Θξµν ||22 + αβ||ξµν ||1 +

α(1− β)

2
||ξµν ||22, (4.43)

where n is the number of data points, β is the ℓ1 ratio, and α and β are the hyperparameters. The loss

function for the Lasso is obtained by setting β = 1 in Eq. (4.43). In this study, β was set to 0.5 for the

E-Net. According to the original paper of a-Lasso [120], the a-Lasso can be implemented as the Lasso

problem as the following steps:

1. Define ξ′µν,j = ξµν,j/wµν,j , j = 1, . . . , J .

2. Solve the Lasso problem for ξ′µν using Eq. (4.42).

3. Output ξ̂µν,j = ξ̂′µν,j/wµν,j , j = 1, . . . , J .

The adaptive weight wµν,j depends on the coefficients, and thereby, the output coefficients can be varied

in each iteration. To obtain the converged solution, we initialized the weights as unit vectors w = 1 and

repeated the above steps until the coefficients ξ̂µν,j no longer change [110]. The hyperparameter δ was

set to 3 (see 4.B for the effect of δ).
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Fig. 4.15 The total number of terms obtained by the STLSQ (black symbols) and a-Lasso (red

symbols) for the Giesekus model. Here, the circles, diamonds, and squares in the red series indicate

the results with δ = 1, 3, and 5 for the adaptive weight wi, respectively.

4.B Hyperparameter of the Adaptive Lasso

Here, we shortly note the effect of changing the hyperparameter δ of the a-Lasso, which determines the

adaptive weight. Figure 4.15 compares the total number of terms for the Giesekus model obtained by the

a-Lasso with three different δ values. The training data include multiple trajectories, which are the same

as those in Fig. 4.5. Here, the results for the STLSQ are also shown for comparison. As shown in Fig.

4.15, the solutions obtained by the a-Lasso with δ = 1, 3, and 5 are sparser than those obtained by the

STRidge. Nevertheless, due to the increased effects of weights, the solutions for δ = 3 and 5 are sparser

compared to the solutions for δ = 1. Moreover, the results with δ = 3 are almost the same as in the case

of δ = 5, although the a-Lasso with δ = 5 provides slightly sparser solutions. Thus, the hyperparameter

δ = 3 can be considered sufficiently large to obtain sparse solutions. We note, in general, that a sparser

solution is superior from the perspective of overfitting and helps prevent unexpected divergence during

test simulations. From these discussions, in this study, we used δ = 3 as the adaptive weight in the

a-Lasso.

4.C Stress Expressions for the FENE-P Dumbbell Model

As noted in Sec. 4.3.2, the constitutive equation for the FENE-P dumbbell model can be expressed in

terms of the stress (cf. Eqs. (4.35)–(4.37)). We here show the derivation of the constitutive equation for

the FENE-P model [114].

To improve clarity, let us rewrite the stress τ in Eq. (4.24) as follows:

τ (t) = ρkeqZ
−1
eq Z⟨R(t)R(t)⟩ −GI, (4.44)

where Z has already been defined in Eq. (4.34) and Zeq indicates Z at equilibrium. In what follows,

we express all variables in dimensionless forms by using the unit time λ and the unit stress ρkBT .

Additionally, for simplicity, we omit the tilde representing dimensionless quantities. Taking the trace of

both sides of Eq. (4.44) and using the relation ⟨R2(t)⟩ = R2
max(1−Z−1), we can rewrite Z as a function
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of τ :

Z = 1 +
1

3nKZ
−1
eq

(trτ + 3). (4.45)

Taking the convected derivative of τ/Z, the time evolution of stress can be expressed as

dτ

dt
− τ · tκ− κ · τ = −Z−1

eq Zτ + 2D +
D lnZ

Dt
(τ + I), (4.46)

which is the same as in Eq. (4.33). Since we do not address the spatial gradient in rheological calculations,

D(· · · )/Dt simply reduces d(· · · )/dt. To obtain Eq. (4.46), we used the following relation that can be

obtained by Eq. (4.28):
dC

dt
−C · tκ− κ ·C = −nK

3
τ . (4.47)

From Eq. (4.45), the time evolution of lnZ can be expressed in terms of tr τ as

d

dt
trτ =

{
3nKZ

−1
eq + (trτ + 3)

} d lnZ

dt
. (4.48)

Furthermore, taking trace of Eq. (4.46) and using Eq. (4.48), we can have

d lnZ

dt
=

1

3nKZ
−1
eq

{
−Z−1

eq Ztrτ + 2trD + tr
(
τ · tκ+ κ · τ

)}
. (4.49)

Combining Eqs. (4.46) and (4.49), we can express the time evolution of τ (i.e., τ̇ ) as a function of τ and

κ. Specifically, Eqs. (4.46) and (4.49) reduce to Eqs. (4.35)–(4.37) under shear flow.

4.D STRidge Regressions for the FENE Dumbbell Model

Figures 4.16 and 4.17 show the test simulation results for the FENE dumbbell model using the approxi-

mate constitutive equations obtained by Rheo-SINDy with the STRidge. Here, in Fig. 4.16, we employed

the custom library shown in Eq. (4.39) (NΘ = 29), while in Fig. 4.17, we utilized a polynomial library

including polynomial terms up to the third order of {τxx, τyy, τzz, τxy, κxy} (NΘ = 56). From the thin

solid lines in Fig. 4.16, which show the results with the smaller α = 1 × 10−1, while the magnitudes of

the predicted stress components almost match the results of the BD simulation, spike-like predictions

are occasionally observed. When using the third order polynomial library, the solutions for the small α,

indicated by thin solid lines in Fig. 4.17, closely resemble the results of the BD simulations. This is likely

attributed to the fact that the larger number of terms included in the library improves the predictive abil-

ity of the model. Nevertheless, we note that increasing the number of terms in the library without careful

consideration does not necessarily lead to an improvement in the model performance. By increasing the

number of terms in the library, overfitting issues may arise. For example, when Rheo-SINDy chooses

terms that are likely to be significantly large under shear flow, such as τxxκ
2
xy, there is an increased

possibility that the differential equations may fail to be solved when conducting test simulations.
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Fig. 4.16 Test simulation results obtained by Rheo-SINDy with the STRidge for the library shown

in Eq. (4.39). The test simulations are conducted under the oscillatory shear flows with (a) γ0 = 3

and ω = 1 and (b) γ0 = 4 and ω = 1. The bold lines show the exact solutions, and the thin solid

and short-dashed lines show the results with the smaller α value (α = 1× 10−1) and the larger α

value (α = 1).
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Fig. 4.17 Test simulation results obtained by the STRidge for the library including polynomial

terms up to the third order of {τxx, τyy, τzz, τxy, κxy}. The flow parameters for the test simulations

are the same as those in Fig. 4.16. The bold lines show the exact solutions, and the thin solid and

short-dashed lines show the results with the smaller α value (α = 3× 10−2) and the larger α value

(α = 1).
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Chapter 5

Nonlinear Rheology of Bidispersed Polymer

Systems in Entangled States

5.1 Introduction

In this chapter, we extend a correction model based on mono-dispersed molecular weight systems for

bi-dispersed and improve rheological predictions of microscopic models used in a future MLMSS. It

has already been investigated that the sliplink model also used in Chapters 2 and 3 provide excellent

predictions of rheological properties for entangled polymer melts under shear deformation and uniaxial

extensional deformation On the other hand, recent experimental studies have revealed that under ex-

tremely high strain rate flow, strain softening occurs contrary to model predictions, and this is considered

because of friction reduction by significant stretches and orientation of the polymer chains.

The rheological properties of a polymer melt in an entangled state attract much attention due to their

importance in polymer processing. In typical industrial conditions, a polymer melt with molecular weight

distribution is used to tune rheological properties [121]. Thus, it is essential to investigate the relation

between the rheology and the compositions of the well-entangled polymeric system. For this purpose,

bidisperse polymer blends have been extensively studied as a first step in understanding the rheology of

polymer melts with arbitrary molecular weight distributions, as explained in detail below.

Experimental studies on the rheology of bidisperse polymer melts have been made for several decades

[122–126]. Linear rheology involves not only the superposition of the rheology of monodispersed systems

but also contributions from coupled dynamics [127]. The elongational viscosity has been measured by

the Meissner-type rheometer by [123] and by the filament stretching rheometer by several groups [124,

126]. Among these studies, one of the interesting findings is that polymer blends containing a small

amount of ultrahigh-molecular-weight polymers show significant strain hardenings under elongational

flows [123]. [124] examined polystyrene blends and found that the maximum steady-state elongational

viscosity became indistinguishable from three times the zero-shear viscosity calculated from linear vis-

coelasticity as the concentration of higher-molecular-weight chains increased in their examined samples.

[126] classified the time regimes for the relaxations after cessation of elongational flow for the bidisperse

system. The relaxations after cessation of the steady elongations exhibit the three regimes originating

from the dynamics of short, long, or both short and long polymer chains. To predict the mechanical

properties based on the coupled dynamics over the components, it is desirable to develop a coarse-grained

model.

The theoretical and numerical models of polymers have rationalized the molecular-based mechanism
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and reproduced the rheological properties by considering the coupled dynamics among the polymer

chains. The models for entangled polymer melts are based on the bead-spring model and the tube

model [6]. For entangled polymers, the pioneering model is the famous tube model. The important

dynamics of the tube are reptation, the change in the tube length, and the release of entanglements.

Based on the original tube model, sliplink models [20, 22, 23] and slip-spring model [107] were developed

to numerically predict the rheological properties [128]. These models can quantitatively reproduce the

rheological properties in the linear and near-linear response regimes. However, it is difficult to predict

some phenomena under high deformation rate flows because of the lack of the mechanisms required to

predict nonlinear rheology. For example, typical sliplink models cannot predict the decrease in the steady

viscosities of entangled polymer melts with strain rates under uniaxial elongational flows [23].

For the unexplained rheological behavior under high deformation rate flows, friction reduction between

a segment and the surrounding polymers induced by the stretched and oriented polymers (SORF mech-

anism) has been proposed [129]. For the rheology of entangled and unentangled polymer melts, some

studies support that the SORF is important for accurate predictions of nonlinear rheology [130, 131].

For entangled systems, Masubuchi and coworkers extenisvely examined nonlinear rheological properties

by the primitive chain network (PCN) model. After developing the PCN model with SORF for linear

polystyrene [132], they examined the universality of SORF [133], and the associated predictions under

biaxial elongational flows [134] and planar elongational flows [135]. Moreover, they investigated the ap-

plicability for pom-pom polymers [136] and for star polymers [137]. Subsequently, [85] studied the SORF

by extending the sliplink model developed by [23]. Tests for unentangled polymer melts have also been

reported with the dumbbell model [138] and the Rouse model [139]. While the SORF mechanism has

been tested for monodispersed polymers, few studies have examined the effect of such a mechanism in

bidisperse melts.

With the PCN model, the SORF expression has been tested for three bidisperse samples containing

small amounts of the high-molecular-weight polymers [140]. [140] examined the SORF expression pro-

posed by [132] with the PCN model. They found that the PCN model reproduces the rheology of the

bidisperse well-entangled polystyrene melts reported by [124] and that the SORF mechanism explains

the data under high-strain-rate elongational flows. In their results, at elongational strain rates below

the inverse of the Rouse relaxation time of the long-chain component, suppressing the stretches of the

long chains improves the rheological predictions. On the other hand, at elongational strain rates above

that, the relaxations of the short chains suppress the SORF effects. Note that two models, namely,

the slip-spring model [141] and the Rolie-double-Poly (RDP) model [142], can predict the linear and

nonlinear rheological properties well, but these works still do not adopt the SORF mechanism. This

RDP model can predict the transient viscosities within the regime of a short time; on the other hand,

the steady elongational viscosities have difficulty in predictions under high-deformation-rate flows. We

have to clarify whether the SORF mechanism is generally effective by making assessments based on more

evidence, e.g., systems consisting of a larger amount of high-molecular-weight polymers.

From the viewpoint that the friction of a chain with others is a many-body problem, the coupling of the

state of the entangled chain itself with the environment has not been investigated in depth. Specifically,

unlike a monodispersed system where the state of a chain is statistically the same as the states of the

surrounding chains, in a bidisperse system, the state of a longer or shorter entangled chain itself and

the state of environments that can be evaluated by averaging the surrounding polymer chains might be

different. Thus, the following question arises regarding how the friction coefficient (tensor) is determined

by the state of a considering chain and/or the state of the environment around it, which factor is more
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dominant, the state of the considering chain or the state of the environment. Judging from the fact that

the nonlinear rheology of bidisperse polymer melts has not been well tested, we should also consider the

comparison of the two contributions from the considered chain and the environment in the extension to

the bidisperse systems.

In this study, we assess the SORF mechanism for the bidisperse entangled polymer melts because

the empirical relation used in the previous study [140] has arbitrariness in using bidispersed polystyrene

melts. In more detail, the SORF expressions thus far proposed are obtained from the monodisperse

system; thus, the contribution originating from the difference in the states of the components has been

ignored. This study takes into account the contribution to the friction reduction from the states of the

long- and short-chain components. For such a purpose, we employ the pseudo-single-chain sliplink model,

for which the effect of the SORF mechanism on the rheological properties has been tested in the case of

monodisperse entangled polymer melts [85].

The contents of the present chapter are as follows. In Section 5.2, we explain the sliplink model and

the SORF extension, and in Section 5.3, we show the simulation results for six experimental samples. In

Section 5.4, we summarize and discuss the results.

5.2 Model

5.2.1 Doi Takimoto Original Sliplink Model

We employ a dual sliplink model developed by [23], namely, DT model. Here, “dual” refers to the

assumption that an entanglement is made of two points on different chains. An entangled polymer chain

is modeled by a primitive path, the two tails, and the sliplinks on the path. The sliplinks are pinned in

space. A polymer molecule has two tails, and one-end of a tail is fixed by a sliplink and the other end

is free. Each tail is considered to be an ideal chain. From the viewpoint of rheological properties, the

entangled polymer chain is characterized by the number of entanglements at equilibrium Zeq and the

maximum stretch ratio λmax. The units for the model are the length of a strand between two adjacent

sliplinks at equilibrium a, the Rouse relaxation time of a strand τe, and a stress value σe connected to

the plateau modulus.

The state of the i-th polymer chain can be described by the positions of the sliplinks {R}, the length

of the two tails {shead, stail}, the numbers of entanglements of a chain Z, and the pair list of the sliplinks.

The primitive path length of the i-th polymer chain Li is calculated as

Li = sihead + sitail +

Zi−1∑
k=1

|rik|, (5.1)

where rik(= Ri
k+1 −Ri

k) is the bond vector of the adjacent two (k, k + 1) sliplinks. The stretch ratio λi

is defined as Li/Li
eq , where Li

eq(= aZi
eq) is the equilibrium length of Li.

This model contains the three relaxation mechanisms considered in the recent tube model [3]: reptation,

contour length fluctuation (CLF), and constraint release (CR). It is assumed that the tension on a chain

is always balanced within time τe. Note that the major difference between the DT model and the PCN

model is the nonexistence of the dynamics originating from the tensile balance. Therefore, the momentum

equation of the sliplink contains only affine deformation as

dRi
k

dt
= κ ·Ri

k, (5.2)
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where κ = (∇v)T, i.e., καβ = ∇βvα is the velocity gradient. The primitive path length Li(t) follows the

overdamped Langevin equation with the Rouse relaxation time of a chain τ iR = τe(Z
i
eq)

2,

dLi

dt
= − f i

τ iR
(Li − Li

eq) +

(
dLi

dt

)
affine

+

√
2a2

3τeZi
eq

wclf(t), (5.3)

where f i(≡ {1 − (1/λi
max)

2}/{1 − (λi/λi
max)

2}) is the FENE parameter of the i-th chain, λi
max is the

maximum stretch ratio of the i-th chain. wclf(t) is a Gaussian white noise satisfying these relations:

⟨wclf(t)⟩ = 0, ⟨wclf(t)wclf(t
′)⟩ = δ(t− t′). (5.4)

The three terms of the RHS in Eq. (5.3) refer to the contributions of the chain length restoration, the

affine deformation, and the contour length fluctuation by thermal noise. By assuming a tension balance

along strands, the two tails take over the change of L half by half on behalf of the pinned sliplinks. Thus,

the lengths of the two ends sihead and sitail change according to the following equations:

dsihead
dt

=
1

2

(
dLi

dt
−
(
dLi

dt

)
affine

)
+
√
2Di

cwrep(t),

dsitail
dt

=
1

2

(
dLi

dt
−
(
dLi

dt

)
affine

)
−
√
2Di

cwrep(t), (5.5)

where Di
c(= (Li

eq)
2/π2τ irep) is the diffusion constant of pure reptation motion and τ irep = 3(Zi

eq)
3τe is

the reptation time calculated from the Doi-Edwards model [6]. The first term in the RHS in Eq. (5.5) is

related to the contributions in Eq. (5.3) except for the affine deformation, and the second term is related

to the thermal fluctuations. Here, wrep(t) is a Gaussian white noise that satisfies the same equation as

Eq. (5.4) of wclf . The lengths of the two ends are checked every τe. If the length of an end is more

than a or less than zero, the creation or annihilation of entanglement occurs, respectively, which mimics

constraint renewal.

The stress σ of the system consisting of Nchain-chains in the volume V is calculated with the Kramers

formula:

σ = σe

〈
f
rr

a|r|

〉
. (5.6)

The unit stress σe is related to the plateau modulus GN as

σe =
3kBT

V

Nchain∑
i=1

Zi
eq =

3ρRT

Me
=

15

4
GN, (5.7)

where ρ is the mass density, R is the gas constant, kB is the Boltzmann constant, T is the temperature,

and Me is the entanglement molecular weight. The plateau modulus GN is generally expressed as

GN = A
ρRT

Me
, (5.8)

where the constant A equals 4/5 when considering the thermal fluctuations of the length along the

primitive path [6]. Note that [143] reported a more detailed analysis of this factor A.
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Table 5.1 Conditions with experiments and simulations

No. sample code ZS ZL λmax T [◦C] τe [s] σe [MPa]

I PS- 95S-545L-50w 8.6 50 4.4 130 0.16 0.68

II PS- 52S-390L- 4w 4.5 36 4.4 130 0.16 0.68

III PS- 52S-390L-14w 4.5 36 4.4 130 0.16 0.68

IV PS-100S-390L-14w 9.1 36 4.4 130 0.16 0.68

V PI- 23S-226L-20w 5.3 53 5.9 25 1.1× 10−5 1.2

VI PI- 23S-226L-40w 5.3 53 5.9 25 1.1× 10−5 1.2

5.2.2 Proposed Extension of a SORF Expression

At present, the contributions of SORF are determined by empirical order parameters correlated to the

stretch and orientation [132, 144]. In this study, we utilize the relation proposed by [132]. The expression

is accurate enough to reproduce the rheological properties.

We briefly explain the SORF mechanism considered in the original study for a monodisperse polymer

melt. To express the segments’ orientation and stretch to the elongational direction, [132] proposed the

stretch/orientation order parameter Fs/o defined as

Fs/o ≡ λ̃2S̄, (5.9)

where λ̃ = λ/λmax and S̄ is the averaged orientation anisotropy, defined as

S̄(S) ≡ |s1 − s2|, (5.10)

where S = ⟨uu⟩ is the orientation tensor, u(= r/|r|) is the normalized bond vector between the adjacent

sliplinks, and s1 and s2 are respectively the maximum and minimum eigenvalues of the orientation tensor.

[132] derived the empirical relation between the friction coefficient ζ and the order parameter Fs/o,

τe(Fs/o)

τe(0)
=

ζ(Fs/o)

ζ(0)

1

fFENE

=
1

(1 + β)γ

β +
1− tanh

{
α(F ′

s/o − F ′∗
s/o)
}

2

γ

, (5.11)

where fFENE(≡ 1/(1 − λ̃2)) is the FENE parameter. For F ′
s/o ≡ fFENEFs/o, the parameters α = 20,

β = 5.0 × 10−9, γ = 0.15, and F ′∗
s/o = 0.14 are obtained from the experiments in monodispersed PS

melts. F ′
s/o used here is the same as that used in [132]. The reason why they introduced F ′

s/o is that it

is impossible to experimentally separate fFENE from Fs/o. In this study, we just follow the way used by

[132]. Eq. (5.11) expresses the friction change to a lower value by exceeding the threshold parameter of

F ′
s/o, and was used for the multichain sliplink model [22] and the DT model [23]. [133] used Eq. (5.11)

with the above parameter values to examine polyisoprene and poly(n-butyl acrylate) melts and found

that the predictions were improved. Nevertheless, the parameter could not be applied universally for

chemical structures; thus, [85] reported that a smaller value of F ′∗
s/o ≃ 0.007 gives better predictions for

PI melts.

Note that there are other expressions for SORF. For example, [144] used a power-law-type function to

describe friction reduction. While these can also reasonably improve the predictions for the entangled
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and unentangled polymer melts, the functional form and the order parameter have not yet been fully

established.

We also note that the strength of the thermal fluctuation is determined using the friction coefficient

under flows through the fluctuation-dissipation theorem. Recently, Watanabe and coworkers discussed

the change in the Brownian force intensity under strong flow for unentangled chains[138, 139, 145].

Using the modified Rouse (or dumbbell) model to allow the spring strength, friction coefficient, and the

strength of the Brownian force to be changed, they formulated rheological quantities under shear and

elongational flow. Using these rheological quantities, they found that the fluctuation-dissipation theorem

might not be valid under strong flow. Since the origin of the friction is local dynamics, this argument

can also be applied to entangled melts. Nevertheless, considering the strength of the thermal fluctuation

is outside this study’s scope and deferred to future research.

The application of Eq. (5.11) to the polydisperse melts has arbitrariness in terms of averaging the

stretch and the orientational anisotropy. The SORF expressions are thus far obtained from monodis-

persed polymer melt systems. Unlike a monodisperse system where the state of a chain is statistically

the same as the states of the surrounding chains, in a polydisperse system, the state of a component

often differs from those of other components. For example, in a bidisperse system, the state of a longer

or shorter entangled chain and the state of the environment defined by an average over the surrounding

polymer chains might be different under a flow because the two types of chains have different relaxation

times. The friction of a chain moving relative to the surrounding chains can be considered to be a

consequence of many-body interaction among them, and the coupling of the state of the entangled chain

itself with the environment has not yet been clarified. Therefore, the following question arises regarding

how the friction coefficient (in general, friction coefficient tensor) of a polymer chain along its contour is

determined by (i) the state of the considering chain and/or (ii) the state of the environment around it,

and furthermore, which factor of the two is more dominant, (i) or (ii).

In this study, we investigate bidisperse blend systems composed of long and short chains (hereafter C

stands for a component, i.e., C=”short” or ”long”), where we consider different types of SORF expressions

by replacing the statistical quantities in F ′
s/o in (5.11). Eight types of SORF expressions for a chain

belonging to a component C are possible by changing the averages for the statistical quantities: the chain

stretch ratio λ and orientation tensor S used in the parameter F ′
s/o, i.e.,

F ′(X Y Z)
s/o = fFENE(⟨λ̃⟩X)Fs/o(⟨λ̃⟩Y,SZ), (5.12)

for the bidisperse blend systems instead of F ′
s/o in Eq. (5.11). The superscript X Y Z refers to averaging

the arguments, where X stands for the normalized stretch ratio in the FENE factor, Y for the normalized

stretch ratio in the order parameter Fs/o, and Z for the orientation. F ′
s/o consists of the two contributions

fFENE and Fs/o, and one can consider that two contributions may have different physical origins. For

instance, in a monodisperse polymer system, the average quantities used in the two contributions are

considered to be identical; in a bidispersed polymer system, they might be different because the state

of a considering type of chain, e.g., a long chain can be different from the average over the whole long

and short chains. Therefore we retain possible combinations of variables in F ′
s/o, and discuss later which

combination is the better one.

The component average of a quantity Q, ⟨Q⟩C means the average of Q over the chains with the same

equilibrium length as a considering chain; on the other hand, the system average of Q, ⟨Q⟩S expresses

overall average of the chains (in other words, environment around the considering chain). The subscripts

S and C indicate the averages of stretch and orientation over the system and the component, respectively.
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For example, the superscript C S S on F ′
s/o means the component average is used for the FENE parameter,

the system average for the stretch ratio λ and the orientation tensor S in Fs/o. Note that [140] used the

system averages for all quantities in F ′
s/o; specifically, they used F ′

s/o, expressed as S S S in our notation.

In the next section, we focus on the three combinations, i.e., C S S, C C S, and S S S. Here, we can

consider the eight combinations at maximum. However, the four combinations S S Z and X C C clearly

give no meaningful results in agreement. In the remaining half, the two expressions, C S S and S C S,

gave similar results to each other for the examined samples in this study. Considering the roles of the

factors in F ′
s/o, the factor fFENE comes from the finite extensibility of chains, so we consider it natural

that fFENE is reflected from the state of the considered chain. In the next section, we discuss the results

using C for X in X Y Z on supposing the factor fFENE reflects the finite extensibility of the chains under

consideration. The remaining two combinations, C C S and C S C, provide mutually similar results to

each other for the examined samples. C C S clearly focuses on the stretch ratios of the considered chains

and the orientation anisotropy of the entire system. On the other hand, the interpretation of C S C on

the physical meanings has considerable complexity. Therefore, we provide the results in C C S, and the

discussion on the difference between C C S and C S C is excluded from the target of this research. To

summarize, in the next section, we discuss the results for three cases: S S S, C S S, and C C S; i.e., S S S

is chosen as a reference case for the previous research where just system averages were used, and C S S

and C C S are chosen as the representative cases where the component average for the stretch of the

considered chains is taken into account.

5.3 Results and Discussion

The systems considered here are bidisperse polymer blends. In Table 5.1, we show the characteristics of

each system and their simulation conditions. The sample code is given as PS-AAAS-BBBL-CCw, where

PS (or PI) stands for polystyrene (or polyisoprene), AAA is the molecular weight of the main-polymer

component in the unit of kDa, BBB also denotes the molecular weight of the secondary polymer component

in the unit of kDa, and CC expresses the weight percent of the secondary component in the system. ZS

is the number of entanglements at equilibrium Zeq for the short chain (the main component), and ZL

denotes that for the long chain (the secondary component).

5.3.1 Fitting to the Experimental Linear Viscoelasticity

We first compare the storage modulus G′(ω) and the loss modulus G′′(ω) calculated from the simulations

with experimental results to determine the unit values τe and σe, and thus obtain the Rouse relaxation

time τR(= Z2
eqτe) and the longest relaxation time τd. The fitted parameters are τe = 0.16 s and

σe = 0.68 MPa for 130 ◦C PS melts. These values are of similar order to the previous reports by [146]

and [85]. For 25 ◦C PI melts, the values are τe = 1.1 × 10−5 s and σe = 1.2 MPa. In appendix

5.3.1, we show the fitted complex moduli for the bidisperse PS and PI melts and the monodisperse PS

melts containing polymers of the same molecular weight polymers as before blending, as shown in Figs.

5.1, 5.2, 5.3, and 5.4. The predictions of the linear viscoelasticities (LVEs) are in agreement with the

experimental results obtained from the blends.
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(I) PS-_95S-545L-50w

Fig. 5.1 Storage (circles and red line) and loss (squares and blue line) moduli of (I)

PS- 95S-545L-50w. The solid lines represent those obtained by the DT model. Symbols express

those obtained by [126].

(II) PS-_52S-390L-_4w

(III) PS-_52S-390L-14w

(IV) PS-100S-390L-14w

Fig. 5.2 Storage (circles and red line) and loss (squares and blue line) moduli of (II)

PS- 52S-390L- 4w, (III) PS- 52S-390L-14w, and (IV) PS-100S-390L-14w. The solid lines rep-

resent those obtained by the DT model. Symbols express those obtained by [124].
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(V) PI-_23S-226L-20w

(VI) PI-_23S-226L-40w

Fig. 5.3 Storage (circles and red line) and loss (squares and blue line) moduli of (V)

PI- 23S-226L-20w, and (VI) PI- 23S-226L-40w. The solid lines represent those obtained by the

DT model. Symbols express those obtained by [147].

The linear relaxation modulus G(t) is calculated from the autocorrelations as

G(t) =
V

5kBT
(⟨σxy(t)σxy(0)⟩+ ⟨σyz(t)σyz(0)⟩ (5.13)

+ ⟨σzx(t)σzx(0)⟩) +
V

30kBT
(⟨Nxy(t)Nxy(0)⟩

+ ⟨Nyz(t)Nyz(0)⟩+ ⟨Nzx(t)Nzx(0)⟩),

where σαβ is the αβ component of the stress tensor and Nαβ(= σαα−σββ) is the normal stress difference.

The multiple-tau method [148] enables us to evaluate the autocorrelations efficiently. The complex

modulus G∗(ω) composed of storage and loss moduli is evaluated from G(t):

G∗(ω) = G′(ω) + iG′′(ω) = iω

∫ ∞

0

G(t)e−iωtdt. (5.14)

The integral of G(t) is evaluated by the data of N points:∫ ∞

0

G(t)e−iωtdt =

N−1∑
k=1

∫ tk+1

tk

G(t)e−iωt

=

N−1∑
k=1

G(tk)e
−iωtkC +G(tk+1)e

−iωtk+1C̄, (5.15)

where C =
1− iω(tk+1 − tk)− e−iω(tk+1−tk)

ω2(tk+1 − tk)
.

C is the complex constant, and C̄ is the conjugate number of C.

The reference data and the predictions from the extended Doi-Takimoto model are shown by the

symbols and black lines, respectively, in Fig. 5.1 [126], Fig. 5.3 [147], and Fig. 5.2 [124]. These figures
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(a)

(b)

Fig. 5.4 (a) Storage modulus and (b) loss modulus. The graphs show the compared results

with 130◦C PS52K [124], PS95K [126], PS100K [124], PS200K [124, 149], PS390K [124, 149] and

PS545K [126]. Circles, upper triangles, lower triangles, squares, diamonds, and crosses show the

experimental results of PS52K, PS95K, PS100K, PS200K, PS390K and PS545K, respectively. The

unfilled, filled and left-filled markers show the results of experiments reported by [124], [149] and

[126], respectively. Lines show the results of the DT model simulations.

display only the regions of the terminal relaxation and the plateau, which can be calculated by the DT

model. The simulation results predict the two contributions of the short chains and the long chains.

Figs. 5.1-5.3 show that the DT model can successfully reproduce the linear rheological properties of

bidispersed polymers except for the high frequency region. The deviation from the experimental data in

the high frequency range is due to the lack of the Rouse-like dynamics in the DT model.

The values of τe and σe are determined from the LVE results of bidisperse entangled polymer melts.

Here, we show the comparison between the simulations and the data of monodisperse melts. Fig. 5.4

shows the linear viscoelasticity of the monodispersed polystyrene samples before blended. The numbers

of entanglements at equilibrium Zeq equal 4.5, 8.6, 9.1, 18, 36, and 50 for the molecular weights 52 K, 95

K, 100 K, 200 K, 390 K, and 545 K of the mono-dispersed PS melts (130◦C), respectively. The results

from the DT model, the storage and the loss moduli, match almost all the data, but the simulation

results for PS95K and PS100K slightly deviate from the data obtained from [126] and [124].

5.3.2 Tests with Polystyrene Melts for Comparing Four SORF Expressions

In this section, we compare selected SORF expressions defined in Eq. (5.12) to the experimental results

for the uniaxial elongations. Figures 5.5 and 5.6 show the predictions with the extended DT model for

the transient viscosities under elongational flows. Figure 5.5 displays the stress growth and relaxation

for the bidisperse system-I reported by [126], which consists of the high weight fraction of the long chains

(50 wt%). In contrast, Fig. 5.6 expresses the transient viscosities of the three samples with low weight

fractions (4 wt%-14 wt%). The two out of the three samples, II and IV, are reported by [124] and III is
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(a)

τ
(long)
R τ

(long)
d

τ
(long)
Rτ

(short)
dτ

(short)
R

(b)

(I) PS-_95S-545L-50w

1× 10−1

3× 10−2

3× 10−3

3× 10−4

1× 10−5

s−1

1× 10−1
s−1

3× 10−2
3× 10−3

Fig. 5.5 (a) Elongational transient viscosities and (b) transient viscosities in stress-growth-and-

relaxation measurements of (I) PS- 95S-545L-50w reported by [126], showing initial uniaxial elon-

gation deformation with a constant elongational strain rate up to the fixed Hencky strain ε0 = 3.5

and then a strain rate set to zero. The colored lines and black dotted lines are the results ob-

tained by the extended DT model with and without SORF, respectively. The blue dashed, red

solid, and green dash-dotted lines correspond to the SORFs calculated from the different combi-

nations for X Y Z: S S S, C S S, and C C S, respectively. The black solid line indicates the LVE

result. (a) The circles are the experimental results under elongational flows having the five strain

rates: 1× 10−5, 3× 10−4, 3× 10−3, 3× 10−2, and 1× 10−1s−1 from right to left. (b) The circles,

squares, and triangles represent the experiments with the three respective elongational strain rates

3× 10−3, 3× 10−2, and 1× 10−1s−1 from right to left.
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reported by [125].

Figure 5.5 shows (a) elongational transient viscosities and (b) transient viscosities (η+E for the start-

up and η−E after the cessation) in stress-growth-and-relaxation measurements of (I) PS- 95S-545L-50w

under elongational flows. In Fig. 5.5a, the five series data points of the transient viscosities expressed

as the symbols are for the experiments with constant elongational strain rates: 1 × 10−5, 3 × 10−4,

3 × 10−3, 3 × 10−2, and 1 × 10−1 s−1 from right to left. Fig. 5.5b shows the three data points of the

stress growth and relaxation after the cessation, displaying initial uniaxial elongation deformation with a

constant strain rate up to the fixed Hencky strain ε0 = 3.5 and then a strain rate set to zero. The three

strain rates are 3× 10−3, 3× 10−2, and 1× 10−1 s−1. As a reference, the Rouse relaxation time and the

longest relaxation time are evaluated to be τ
(long)
R (= (ZL)2τe) = 4.0× 102 s and τ

(long)
d = 1.6× 104 s for

the long chain, respectively. The relaxation times of the short chains are smaller than those of the long

chains, which are τ
(short)
R (= (ZS)2τe) = 12 s and τ

(short)
d = 36 s. These quantities for this sample I and

those for other samples (II-IV) and appear later as obtained by the analyses of the linear viscoelasticity

data (see Appendix 5.3.1).

In Figs. 5.5a and 5.5b, the predictions by extended DT models with C S S (colored solid lines), C C S

(colored dash-dotted lines), S S S (colored dashed lines), and by the DT model without SORF (black

dotted lines) are shown. From these figures, both C S S and C C S are in agreement with the experimental

results. On the other hand, those for S S S (colored dashed lines) and without SORF overestimate the

experimental values in the two high-deformation-rate flows: 3 × 10−2, and 1 × 10−1 s−1, which are

in the region ε̇ > 1/τ
(long)
R . When comparing the predictions with C S S and C C S, C S S gives the

best prediction for the steady values of the transient viscosities and the maximum values for the stress

growth. Under flows, the averaged stretch has the relation: ⟨λ⟩C=“long” > ⟨λ⟩S > ⟨λ⟩C=“short”. Thus,

the contribution of SORF is larger when using C S S and C C S, that is, the notable failure of S S S for

ε̇ > 1/τ
(long)
R comes from the less effect of SORF on the stress. Regarding the average of λ used in fFENE,

the results obtained by the component average is better than those by the system average. Thus, fFENE

in F ′
s/o should be determined by the average over the chains of the same type as the considering chain

as expected in Sec.2.2.

In Fig. 5.5a, the nonlinear behavior of the DT model changes from strain softening to strain hardening

with increasing the elongational strain rate. However, the experimental results of (I) PS- 95S-545L-50w

do not show such strain softening of the simulation results for the middle elongational strain rate region

1/τ
(long)
R < ε̇ < 1/τ

(long)
d . We suppose that the relaxation of the long chain is overestimated compared to

that expected from the experiments for bidisperse blend systems. The underestimation of the transient

viscosities appears in previous studies for polydisperse polymer melts with the original Doi-Takimoto

model [23] and for bidisperse polymer melts with the multichain sliplink model [140].

In Fig. 5.5b, especially in the case of ε̇ = 1.0×10−1 s−1, the best prediction by C S S (green solid line)

cannot fully reproduce the two-step relaxation after flow cessation. Considering the time, the first of the

two-step relaxation behavior seems to correspond to the Rouse relaxation time of the short chains. It is

assumed that the fast dynamics of the tensile balance not considered here cause the deviation. In the long-

term regime, the predictions show underestimates of the elongational viscosity from the experimental

results after cessation, notably for the lower deformation rates. [85] demonstrate the predictions for

PS145k show the deviation similar to this at the long time region. We consider that the dynamics of the

long chains dominate the relaxation on the long time scale, but the relaxation of the long chains in our

model seems faster than that expected by the experimental results.

Through these results for (I) PS- 95S-545L-50w in Fig. 5.5, we find that the statistical averages
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over each component are important in the system with the high weight fraction (50wt%) of the long

chains, where C S S is the best one. The success of C S S, as well as C C S, implies that fFENE should

be evaluated from the considering chains. In system (I), dominated by the long chains of 50 wt%, the

system averages used to evaluate Fs/o reasonably match the component averages over the long chains.

Hence, the difference in F ′
s/o between C S S and C C S should be small. In the next paragraph, by using

the three types of expressions of F ′
s/o, we discuss the prediction of rheology for the systems with the

lower-weight fractions of the long chains.

Figure 5.6 displays the transient elongational viscosities η+E for (II) PS- 52S-390L- 4w, (III)

PS- 52S-390L-14w, and (IV) PS-100S-390L-14w. The data in graphs II and IV are obtained from

[124], and the data in graph III are obtained from [125]. The characteristic times of the long chain have

the values τ
(long)
R = 2.1 × 102 s and τ

(long)
d = 5.0 × 103 s for PS390k. The values of the short chain for

II and III are τ
(short)
R = 3.2 s and τ

(short)
d = 3.8 s for PS52K, and those for IV are τ

(short)
R = 13 s and

τ
(short)
d = 44 s for PS100K. The circles are the experimental results under elongational flows having the

five elongational strain rates 3 × 10−3, 1 × 10−2, 3 × 10−2, 1 × 10−1, 3 × 10−1 s−1 for II and under the

elongational flows also having the five elongational strain rates: 1× 10−3, 3× 10−3, 1× 10−2, 3× 10−2,

and 1× 10−1 s−1 for III from right to left. For IV, the elongational flows have the six elongational strain

rates 1 × 10−4, 3 × 10−3, 1 × 10−2, 3 × 10−2, 1 × 10−1, and 3 × 10−1 s−1. In the three figures for II

(top), III (middle), and IV (bottom), the SORF effects with the component averages (C S S and C C S)

fundamentally improve the predictions for the higher elongational strain rates than 1/τ
(long)
R , which

correspond to the two or three ε̇ cases from the left. On the other hand, the predictions with the SORF

effects just with the system averages (S S S expressed by colored dashed lines) are almost the same as

those without SORF, especially in the results of II and III. The predictions of C S S (colored solid lines)

are the best for sample II, those of C C S (colored dash-dotted lines) are the best for sample III, and

those of C S S and C C S are in agreement for sample IV.

By focusing on the data from the higher deformation-rate flows (ε̇ > 1/τ
(long)
R ), we find that the C S S

and C C S predictions are the best for the steady viscosities in the two results, II and III, respectively.

The SORF expression with C C S shows the best results for the two samples, (III) PS- 52S-390L-14w

and (IV) PS-100S-390L-14w, while the predictions underestimate the viscosities for the two samples

(I) PS- 95S-545L-50w and (II) PS- 52S-390L- 4w. On the other hand, the predictions obtained from

C S S are the best for the two samples, I and II. The two samples, I and II, have the long chain’s high

and low weight fractions (50wt% and 4wt%) and are dominated by the contributions of the long and

short chains, respectively. Thus, on the assumption that the order parameter Fs/o should describe the

environment around the considered chain in the experiments, we find that the Fs/o obtained from the

system averages rather than the component averages can describe the elongational rheological properties

of the two systems, I and II. On the other hand, this Fs/o obtained from the system averages does not

fully describe the two systems, III and IV, with the long chain’s middle weight fractions.

In this section, we found that the importance in using the component averages from the comparison

in the different SORFs. The SORF expression with the component average improves the predictions for

all the examined samples having the molecular weights (4-50 wt%) of the minor component under the

high-deformation-rate flows with a large elongational strain rate (ϵ̇ > 1/τ
(long)
R ). For the dynamics of the

polymer chain, taking into account the state of the considered chain is necessary for the evaluation of

the reduction of friction. We should confirm how much the condition of a shorter or longer component is

extremely different from that of the other under flows. In the next subsection, we investigate how much

difference in the states appears between long and short chains.
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(II) PS-_52S-390L-_4w

(III) PS-_52S-390L-14w

(IV) PS-100S-390L-14w
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Fig. 5.6 Transient elongational viscosities of (II) PS- 52S-390L- 4w, (III) PS- 52S-390L-14w, and

(IV) PS-100S-390L-14w. (circles) The data in graphs II and IV are obtained from [124], and the

data in graph III are obtained from [125]. The blue dashed, red solid, and green dash-dotted

lines correspond to the SORFs calculated from the different arguments: S S S, C S S, and C C S,

respectively. The black dotted and solid lines are the simulation results without the SORF and the

LVE result, respectively. The vertical lines across the graphs correspond to the Rouse and longest

relaxation times of the long chain. The circles are the experimental results under elongational flows

having six strain rates: 1 × 10−3, 3 × 10−3, 1 × 10−2, 3 × 10−2, 1 × 10−1, and 3 × 10−1 s−1 from

right to left. Here, the graphs for II, III, and IV show the experimental results with only the five

smaller strain rates, only the five larger strain rates, and all the strain rates, respectively.
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Fig. 5.7 (a) Elongational viscosities, (b) normalized stretch rates, (c) orientational anisotropy,

and (d) normalized numbers of entanglements for (II) PS- 52S-390L- 4w, (III) PS- 52S-390L-14w,

and (IV) PS-100S-390L-14w. The black, red, and blue lines with symbols express the statistical

value averaged over the system, the major component (short chains), and the minor component

(long chains), respectively. The solid and dotted lines correspond to the results with and without

the SORF mechanism, respectively. In graph (a), the dashed horizontal line displays the three

times of the zero viscosity 3η0 calculated from the LVE results by the DT model, and the dotted

and dash-dotted vertical lines show the inverse of the Rouse relaxation times τR of the long and

short chains.

5.3.3 Investigation of Steady Elongational Viscosity

Next, we investigate the rheological properties of bidisperse blend systems and the state for each compo-

nent of polymer chains by using the DT model with a SORF expression using the component averages

(C S S as an example). As shown in the previous section, we could not find the clear superiority or

inferiority between C S S and C C S; of course, these two are superior to the other combination, say,

S S S. The expressions S Y Z and C C C do not take this aspect into consideration because they do not

give better results or it is difficult to give clear physical meanings to them. For example, it has been

confirmed that the results with C C C show a clear underestimate for the experimental results although

we do not show data in the present chapter due to excessively large deviations.

Thus, the reason to use C S S and not C C S is the simplicity and relatively clear physical meaning of the

formula, in that the FENE parameter fFENE in Eq. (5.11) expresses the contribution of the considered

chains and the order parameter Fs/o in Eq. (5.11) expresses that from the environment. Figure 5.7
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displays the steady-state properties for the three PS samples reported by [124] for investigating the

difference in the states of the long and short chains under elongational flows. In addition, to test the

chemical dependence of the friction reduction mechanism in other bidisperse polymer melts, we also

study the transient viscosities under steady shears in Figure 5.8 with two PI systems reported by [147].

Figure 5.7 shows the (a) steady state elongation viscosity, (b) stretch ratio, (c) orientation anisotropy,

and (d) numbers of entanglements on a chain for (II) PS- 52S-390L- 4w, (III) PS- 52S-390L-14w, and

(IV) PS-100S-390L-14w, from top to bottom. The solid and dotted lines are the results with and without

SORF, respectively. Here, we adopt the C S S expression to evaluate the parameter F ′
s/o. The red and

blue lines are the averages over short chains and long chains, respectively. The black solid lines and

the black dashed lines are the steady viscosities and the LVE results, respectively. The symbols are

the experimental values having unimodal shapes obtained from the report by [124]. As seen from the

three columns of II (left), III (center), and IV (right), the states of the short and long chains are notably

different from each other. The long chains are fully oriented and stretched under the region where the

anisotropy and the stretch of the short chain do not largely change. The difference in the state between

the components should be critical when considering friction reduction.

The decrease in the steady elongation viscosities appears under high-deformation-rate flows, while the

orientational anisotropy of the short chains increases. This tendency of the decrease is in agreement with

the experimental results. From the right column for IV, the behavior in the steady viscosities clearly

appears to suppress the stretch ratios of the long chains. In the left column II, the steady viscosities

evaluated by the DT model with and without the SORF are slightly different for the small strain rate

region, and the difference is considered to originate from the thermal fluctuations. Note also that the

steady viscosities obtained by the PCN model [140] slightly increase even with the small elongational

strain rate, but our simulations do not show such increases. The major difference between their PCN

model and the DT model is whether the dynamics of the force balances exist. The strands of the long

chains pull the short chains, and both dynamics with and without force balance may cause the difference.

In the left and center columns for II and III, the (a) viscosities, (b) stretch ratios, and (c) orientational

anisotropy are similar to each other, but (d) the numbers of entanglements of (III) PS- 52S-390L-14w

remarkably decrease around the vertical dotted line (1/τ
(long)
R ) with the elongational strain rate compared

to those of (II) PS- 52S-390L- 4w. The difference between II and III systems is simply the weight

percent of the minor component (the long chains), that is, the ease in the releasing “long-long” chains

entanglements changes more than that in the “long-short” chains entanglements under convection. We

suppose that the long chains easily release the entanglements under the small elongational deformation

rate flows.

In the right column of Fig. 5.7(d), the normalized number of entanglements shows an upturn in

the high deformation rate region. We consider that the upturn of ⟨Z⟩ /Zeq is unphysical, and should

be improved. Nevertheless, the previous study [85] demonstrates that the increase of Z in the region

ϵ̇ > 1/τR does not bring the unreasonable rheological properties and the unphysical conformation since

the increased entanglements near the ends only slightly contributes to the stress. Since the upturn is

not observed in the PCN model from the comparison with the DT model reported by [85], this might

come from the difference between the DT model and the PCN model, e.g., the Rouse dynamics faster

than 1/τR.

82



5 Nonlinear Rheology of Bidispersed Polymer Systems in Entangled States

(V) PI-23S-226L-20w

(VI) PI-23S-226L-40w

τ
(long)
R τ

(long)
d

Fig. 5.8 The transient viscosities of (V) PI- 23S-226L-20w under shear (VI) PI- 23S-226L-40w

under shear or uniaxial elongation were reported by [147]. Colored solid lines and black dotted lines

are the results of the extended DT model with or without the SORF, respectively. Blue dashed

lines are the results under uniaxial elongations with the tuned parameter F ′∗
s/o = 0.007 by [85]. The

black solid line is the LVE result. Symbols show the experimental results.

5.3.4 Application to Polyisoprene Melts

Figure 5.8 shows the transient viscosities (η+ for shear and η+E for elongation) of (V) PI- 23S-226L-20w

under steady shears and (VI) PI- 23S-226L-40w under steady shears and uniaxial elongations. The

values of the two units, τe and σe, are already written in the second paragraph of Section 5.3. The

characteristic times of the long chain have the values τ
(long)
R = 3.1×10−2 s and τ

(long)
d = 1.3 s for PI226k.

Those of the short chain have the values τ
(twoshort)
R = 3.1 × 10−4 s and τ

(twoshort)
d = 4.6 × 10−4 s for

PI23k.

In Figure 5.8, the transient viscosities under small elongational strain rate flows are in agreement with

the LVE result for a long time. On the other hand, under sufficiently high elongational strain rate flows,

the responses show nonlinearity, i.e., strain hardening within short times. For both samples under shear

flows, the viscosities under higher shear rate flows display stress overshoots and a decrease in the steady

values with the shear rate. Regarding the transient shear viscosities, simulations both with and without

SORF reasonably reproduce the data of (V) PI- 23S-226L-20w and (VI) PI- 23S-226L-40w, even if

the shear rates are larger than the inverse of the Rouse relaxation time of the long chains (γ̇τ
(long)
R ∼ 20),
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which is the same tendency observed in the Rolie-double-Poly model [142].

In the upper part in the graph for VI, the elongational viscosity growth functions are also dis-

played. The elongational viscosities in the DT model, even with the SORF mechanism, are overes-

timated compared with the experimental viscosities. Here, remembering that the parameters in Eq.

(5.11) are for polystyrene, [85] proposed a different value of the parameter F ′∗
s/o = 0.007 for polyiso-

prene. With F ′∗
s/o = 0.007, they have shown that the predictions of the steady viscosities approach

the experimental results in the monodispersed polyisoprene. Thus, we test the proposed parameter for

the bidispersed polyisoprene melts, expecting the overestimations to be suppressed. The lower graph

for (VI) PI- 23S-226L-40w shows the elongational viscosities with F ′∗
s/o = 0.14 (black solid lines) and

F ′∗
s/o = 0.007 (blue dashed lines). The results with the smaller F ′∗

s/o = 0.007 approach the experimen-

tal results under flows with high elongational strain rates, but still, the F ′∗
s/o = 0.007 does not bring

sufficiently good agreement to the data of the nonlinear behavior between the simulations and the ex-

periments. Judging from these deviations, the chemical dependence of the friction reduction mechanism

and the appropriate functional form and parameters are not resolved in this study and should be sought

in a future study.

In this section, we have confirmed the three following findings: (i) The states of the long chain and

the short chain clearly differ from each other under steady elongations; (ii) the DT model with SORF

using the component average (C S S) brings the improvement in the prediction not only for the transient

viscosities but also for the steady state elongational viscosities, and (iii) for shear flows, the results

with and without SORF predictions are not important for shear flows even with a high shear rate

(γ̇τ
(long)
R ∼ 20).

5.4 Conclusions

We studied the rheological predictions by dual sliplink model (extended version of the Doi-Takimoto

model) for six samples of the bidisperse entangled polymer melts that have already been measured

experimentally. In the extended model, the improvement of stretch- and orientation-induced friction

reduction effect is addressed. The rheological predictions basically support the applicability of the SORF

expression even for the bidisperse melts under shear and uniaxial elongational flows. The results satisfy

the aim of this study: additional confirmation of the SORF mechanism for bidisperse entangled polymer

melts.

Through this study, there are three findings. First, the SORF expression proposed by [132] improves the

rheological prediction for bidisperse entangled polymer melts under the uniaxial elongational flows with

strain rates comparable to or larger than the inverse of the Rouse relaxation time of the longer chain.

Second, the predictions with the SORF using the component average for the stretches quantitatively

reproduce the steady viscosities because the states of the components with different molecular weights

differ from each other under elongational flows. Third, the SORF effect does not affect the prediction

of the nonlinear rheology of the bidisperse system under shear even for a high deformation rate for the

specific polyisoprene systems. In particular, the second point means that in the frictional dynamics of

an entangled polymer chain in a polydisperse system, the state of the considered chain is also important

as well as the state of the environment. We show guidelines for the extension of the reduction friction

effect obtained from monodisperse melts.

Further studies are clearly required for a deeper understanding of the friction reduction in bidisperse

systems. While this study considers two averages (i.e., component and system averages) to reproduce the
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experimental rheological data, this treatment has not been fully validated. For such a purpose, Molecular

dynamics simulations are highly desirable.

This study is intended to guide the future application of the SORF expression for the prediction of

entangled polymer melts under flows not only with a bidisperse distribution, but also with an arbitrary

molecular weight distribution for the analysis of polymer processing. Recently, some multiscale simu-

lation (MSS) studies have focused on this model [35–37, 139] due to the computational convenience.

The confirmation of the applicability of the DT model into which the SORF mechanism is incorporated

is essential for future analysis by using MSS for polymer processing consisting of polydisperse entan-

gled polymer melts. Our research helps us understand effective polymer processing by controlling the

molecular weight.
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Chapter 6

Concluding Remarks

6.1 Summary

In this thesis, we developed a scheme of MLMSS efficiently simulating the polymer melt flows. We have

proposed a protocol for MLMSS, and the studies in the previous chapters have improved the technical

elements. The results and discussions are summarized as follows.

In Chapter 2, we established an MLMSS protocol by researching flow analysis to predict flows of

polymer melts for simple problems. The time derivative of stress is assumed as a function of stress and

velocity gradient. We employ the sliplink model to express the dynamics of well-entangled polymers as a

fluid exhibiting a nonlinear stress response. Using microscopic simulators, we successfully predicted flows

between two parallel plates with only shear deformations under typical elastic conditions specified by the

elastic number, the rate of Weissenberg number to the Reynolds number. Overall, our machine-learning

method demonstrates good predictive capabilities for both transient responses and the nonlinear behavior

at steady-state, i.e., shear-thinning. We accurately track the evolution of stress for both weak and strong

elastic cases, although velocity predictions for the latter show decreased accuracy in the transient regime.

Furthermore, our simulation scheme is more computationally efficient than conventional MSS, which uses

microscopic simulators containing a system of coarse-grained polymers to evaluate macroscopic stress.

In Chapter 3, following the research in Chapter 2, we extended the MLMSS method to two-dimensional

systems with time-dependent deformation mode flows. We summarize the research considering rotational

symmetry for stress rate in the constitutive relation of machine learning models, as required by the

objectivity principle. The applications have been validated with the analysis of contraction-expansion

channel flows driven by pressure gap. We succeeded in learning the constitutive relation using training

data generated from shears and planar elongations. The constitutive relation can express stress responses

to strain rate histories under a complex geometric system.

In Chapter 4, we assessed another data-driven methodology for the surrogate model of consecutive

relations of rheology. We proposed a novel method named Rheo-SINDy, which employs sparse identifica-

tion of nonlinear dynamics (SINDy) to discover constitutive models from rheological data. This method

plays a pivotal role for MLMSS in predicting material behavior by discovering governing equations that

relate deformation and stress, namely constitutive equations. Despite the critical importance of consti-

tutive equations in predicting dynamics of complex fluids, a systematic methodology for deriving these

equations from available data has remained a significant challenge in the rheology field. Rheo-SINDy

was applied to five distinct scenarios, including four cases with well-established constitutive equations

and one without predefined equations. Our results demonstrate that Rheo-SINDy successfully identi-

fies accurate constitutive models for the cases with known equations and derives physically plausible
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approximate models for the scenario with the unknown one. These findings validate the robustness of

Rheo-SINDy in handling MLMSS data complexities and underscore its efficacy as a powerful tool for

advancing the development of data-driven approaches.

In Chapter 5, we extended the microscopic entangled polymer model to predict the mechanical response

under high strain rate elongations. The SORF mechanism is significant in predicting the viscoelasticity

under uniaxial elongational flows, experimentally and theoretically validated for monodispersed polymer

systems. To extend the capability of predicting highly nonlinear rheology to a bidisperse molecular

weight system, we incorporated an expression of friction reduction into the Doi-Takimoto sliplink model.

For six experimental bidisperse systems, i.e., four polystyrene blends and two polyisoprene blends, the

extended DT model, where the order parameter is evaluated through component averages, succeeds

in reproducing the data under uniaxial elongation and shear. This success is due to the suppression

of stretch of longer chains using statistical averages over each component. Through this study, the

SORF expression improves rheological predictions for bidisperse entangled polymer melts under uniaxial

elongational flows with strain rates comparable to or larger than the inverse of the Rouse relaxation time

of the longer chains. This finding indicates that for chain dynamics, the friction coefficient is determined

by the state of surrounding polymer chains and the state of the chain. For future use in MLMSS, this

accurate rheological prediction ensures the reliability of flow analysis.

6.2 Future Outlooks

Finally, we provide outlooks for extending our proposed MLMSS for potential future developments. When

using a machine learning-based model for constitutive relations, we encounter four significant challenges:

(i) developing a machine learning-based regression model that fully satisfies the physical requirements

of constitutive relations, (ii) designing an effective protocol for creating datasets for the external fields

applied to microscopic systems, (iii) introducing an active learning protocol to ensure prediction accuracy

when the model encounters inexperienced data regions during simulations.

Possible solutions for these challenges are proposed here: For (i), a regression model must meet two

requirements: first, it must adhere to the objectivity principle, demanding rotational symmetry for tensor

variables; second, it must demonstrate stability around the equilibrated state of reference systems even

under highly deformed states. For (ii), deformation gradient tensors can be algebraically decomposed

and classified into key components, possibly reducing the degrees of freedom to smaller dimensions (see

[17]). For (iii), the low-fidelity region in predictions of a learned constitutive relation can be detected

using Bayesian approaches, utilizing the uncertainty of predicted points. However, this method requires

improvement alongside (ii) to generate additional training points by incorporating deformation rate

history in inexperienced regions during training processes. Solving these problems is challenging as the

three subjects are interrelated, but we should attempt to address them based on the initial steps provided

by this thesis.

Improving the description of microscopic polymer models is crucial for fluid flow predictions, not

only for the development of the MLMSS protocol itself. The reliability of flow prediction results is

evidently limited by the quality of data based on the reference system of a microscopic model when

not combined with other data sources. In this thesis, our focus primarily lies on polymer melts of

mono-dispersed systems with well-established rheological models, but the methodology of MLMSS can

be applied to analyze the flow of other complex fluids. As the first step toward broader application, we

have developed an accurate model based on the sliplink model. When aiming to describe more complex
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systems comprehensively, such as polydisperse polymer systems, we should consider adding additional

descriptors to the regression model to represent almost all aspects of the reference system’s state under

deformations. Polymer systems with polydisperse molecular weight distributions exhibit multi-mode

relaxations of stress corresponding to the length distributions of polymer chains.

Once we verify the accuracy and efficiency of the MLMSS method, we can begin investigating complex

and heterogeneous fluids used in industrial processes. Conventional methods typically analyze simple and

homogeneous systems, which are far removed from natural materials. Colloidal dispersions in polymeric

fluids serve as a prime example of such problematic systems. Despite their functional properties in

chemical engineering, understanding their behavior remains significantly challenging. We hope that

extending MLMSS from this study will shed light on the origins of rheology observed in industrial

processes and soft substances encountered in daily life.
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