1	Therapeutic potential of human iPS cell-derived cardiac tissue in an ischemic model
2	with unloaded condition mimicking left ventricular assist device
3	Daisuke Heima ^{a,b,e} , MD; Masafumi Takeda ^{b,f} , MD, PhD; Yasuhiko Tabata ^d , PhD,
4	D.Med.Sci, D.Pharm; Kenji Minatoya ^a , MD, PhD; Jun K. Yamashita ^{b,g,*} , MD, PhD;
5	Hidetoshi Masumoto ^{a,c,*} , MD, PhD
6	
7	^a Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto
8	University, Kyoto, Japan
9	^b Department of Cell Growth and Differentiation, Center for iPS Cell Research and
10	Application, Kyoto University, Kyoto, Japan
11	° Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics
12	Research, Kobe, Japan
13	^d Department of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto
14	University, Kyoto, Japan
15	^e Present affiliation: Department of Cardiovascular Surgery, Kansai Medical University,
16	Hirakata, Japan

17	^f Present affiliation: Department of Cardiology, Saiseikai Hyogoken Hospital, Kobe,
18	Japan
19	^g Present affiliation: Department of Cellular and Tissue Communications, Graduate
20	School of Medicine, The University of Tokyo. Tokyo, Japan
21	
22	Conflict of Interest Statement
23	J.K.Y. is a founder, equity holder, and scientific adviser of iHeart Japan Corporation. J.
24	K.Y. and H.M. are co-inventors on multiple pluripotent stem cell-related patents.
25	
26	Funding
27	This work was supported by grants from Japan Agency for Medical Research and
28	Development (AMED) under Grant Number JP18he0702246 (to H.M., Y.T., J.K.Y. and
29	K.M.).
30	

31 Animal experiments

32	All experimental procedures were carried out in accordance with the animal care
33	guidelines established by Kyoto University and the "Guide for the Care and Use of
34	Laboratory Animals" published by the National Institutes of Health. All animal
35	experimental protocols were approved by the Animal Experimentation Committee of
36	Kyoto University (#Med Kyo 15261).
37	
38	*Corresponding authors:
39	Hidetoshi Masumoto, MD, PhD
40	Department of Cardiovascular Surgery, Graduate school of Medicine, Kyoto University
41	54 Kawahara-cho, Shougoin, Sakyo-ku, Kyoto 606-8507, Japan
42	Phone: +81-75-751-3784
43	E-mail: masumoto@kuhp.kyoto-u.ac.jp
44	
45	Jun K. Yamashita, MD, PhD
46	Department of Cellular and Tissue Communications, Graduate School of Medicine, The
47	University of Tokyo
48	7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
49	Phone: +81-3-5800-9430
50	E-mail: juny@m.u-tokyo.ac.jp
51	
52	Word Count: 4434 words

54	Glossary of A	Abbreviations:
55	CTSs	= cardiac tissue sheets
56	hiPSC	= Human induced pluripotent stem cell
57	HiCT	= hiPSC-derived cardiac tissue
58	HTx	= heterotopic heart transplantation
59	ICM	= ischemic cardiomyopathy
60	LVAD	= left ventricular assist device
61	MI	= myocardial infarction
62	MuRF-1	= muscle-specific RING finger 1
63	PCM1	= pericentriolar material 1
64	SERCA2a	= sarcoplasmic/endoplasmic reticulum Ca ²⁺ -ATPase 2a
65	VAD	= ventricular assist device
66		

67 Central picture legend:

68	HiCT transplant on unloaded heart reduces infarct remodeling and promotes graft
69	survival.
70	
71	Central message:
72	HiCTs transplantation to ischemic hearts under unloading condition promotes graft
73	survival, attenuates infarct remodeling, promotes neovascularization and prevents
74	atrophy of cardiomyocytes.
75	
75 76	Perspective Statement:
75 76 77	Perspective Statement: HiCT treatment holds potential as an effective treatment for ischemic hearts supported by
75 76 77 78	Perspective Statement: HiCT treatment holds potential as an effective treatment for ischemic hearts supported by ventricular assist devices (VADs). It can promote graft survival, reduce infarct
75 76 77 78 79	Perspective Statement: HiCT treatment holds potential as an effective treatment for ischemic hearts supported by ventricular assist devices (VADs). It can promote graft survival, reduce infarct remodeling, stimulate neovascularization, and attenuate cardiomyocyte atrophy. These
75 76 77 78 79 80	Perspective Statement: HiCT treatment holds potential as an effective treatment for ischemic hearts supported by ventricular assist devices (VADs). It can promote graft survival, reduce infarct remodeling, stimulate neovascularization, and attenuate cardiomyocyte atrophy. These findings suggest that HiCT treatment could serve as a "bridge to recovery" strategy for

83 ABSTRACT

85	Objective: This study aimed to explore the therapeutic potential of hiPSC-derived cardiac
86	tissues (HiCTs) in the emerging approach of "Bridge to recovery (BTR)" for severe heart
87	failure with ventricular assist devices (VADs). We utilized a rat model of heterotopic
88	heart transplantation (HTx) to mimic VAD support and heart unloading.
89	Methods: HiCTs were created by inserting gelatin hydrogel microspheres between cell
90	sheets made from hiPSC-derived cardiovascular cells. Male athymic nude rats underwent
91	myocardial infarction (MI) and were divided into the following groups: MI (loaded,
92	untreated control), MI+HTx (unloaded, untreated control), MI+HTx+HiCT (unloaded,
93	treated), and MI+HiCT (loaded, treated). HiCTs were placed on the epicardium of the
94	heart in treated groups. We evaluated HiCT engraftment, fibrosis, neovascularization
95	using histological analysis.
96	Results: After four weeks, HiCTs successfully engrafted in five out of six rats in the
97	MI+HTx+HiCT group (83.3%). The engrafted HiCT area was greater under unloaded
98	conditions (MI+HTx+HiCT) than loaded conditions (MI+HiCT) (P<0.05).

99 MI+HTx+HiCT had a significantly smaller infarct area compared to MI and MI+HTx.

100 The MI+HTx+MiCT group exhibited higher vascular density in the border zone than MI

- 101 and MI+HTx. HiCT treatment suppressed cardiomyocyte atrophy due to LV unloading
- 102 (P=0.001). The protein level of MuRF1, an atrophy-related ubiquitin ligase, was lower in
- 103 the MI+HTx+HiCT group than MI+HTx (P=0.036). However, HiCT treatment did not
- 104 significantly improve LV systolic function in unloaded hearts.
- 105 Conclusions: Transplanting HiCTs into ischemic hearts under unloaded conditions
- 106 promoted engraftment, neovascularization, attenuated infarct remodeling, and suppressed
- 107 myocyte atrophy. These results suggest that HiCT treatment could contribute to future
- 108 advancements in BTR. (250 words)

109

110 Key words:

111 Ventricular assist device; stem cell; bridge to recovery.

112

114 INTRODUCTION

116	Cardiovascular disease continues to be the primary cause of death globally ¹ . Within this
117	category, ischemic heart disease (IHD) is responsible for most common cases of heart
118	failure with reduced ejection fraction ^{2, 3} . While heart transplantation is an effective
119	treatment for patients with end-stage heart failure who are unresponsive to other therapies,
120	the scarcity of heart donors limits the widespread application of this therapeutic option
121	for the majority of individuals suffering from severe heart failure.
122	One of the palliative therapies for end-stage heart failure is the use of a
123	ventricular assist device (VAD) ⁴ . The implantation of a VAD allows heart failure patients
124	to survive by maintaining systemic circulation. Clinically, VADs have been employed as
125	a bridging measure for heart transplantation while patients wait for a suitable donor
126	(bridge to transplantation), as well as a lifelong circulatory support (destination therapy) ^{5,}
127	⁶ Additionally, recent investigations have focused on "bridge to recovery (BTR)", which
128	is another option for utilizing VADs. BTR involves a multidisciplinary approach aimed
129	at anticipating functional recovery of the failing heart by combining VAD support.

Studies in animal models^{7, 8} and clinical settings⁹ have reported that left ventricular (LV)
unloading through VADs can restore cardiac gene expression and reduce LV dilatation,
along with other biomedical interventions.
In research aimed at achieving BTR, attempts have been made with gene

therapy or stem cell transplantation^{10, 11}. It is assumed that the combination therapy of 134 135 VAD therapy and cell transplantation not only provides an additive effect through LV 136 unloading with the VAD therapy and the paracrine effect of cell therapy but also offers a 137 synergistic effect where mechanical unloading creates a favorable condition for cell 138 transplantation. It has been reported that the unloading condition improved the 139 engraftment efficiency of cardiac stem cells in an infarcted heart during mouse 140 heterotopic heart transplantation (HTx) model¹². However, the reported clinical trials of 141 BTR utilizing stem cell transplantation have so far fallen short of expectations in terms 142 of the success rate of the strategy, including functional recovery and weaning from VAD support^{6, 13, 14}. 143

144 In our previous studies, we reported that transplanting human induced 145 pluripotent stem cell (hiPSC)-derived cardiac tissue sheets (CTSs) containing

146	cardiomyocytes, vascular endothelial cells, and vascular mural cells into rat and pig
147	subacute myocardial infarction (MI) models resulted in improved cardiac function by
148	attenuating infarct remodeling and promoting angiogenesis ^{15, 16} . Additionally, we
149	observed a higher therapeutic and myocardial regenerative effect in epicardial
150	transplantation of human iPS cell-derived cardiac tissue (HiCT) onto a rat MI model ¹⁷ ,
151	which involved layering CTSs using gelatin hydrogel microspheres (the gelatin hydrogel
152	microsphere layer and the cell layer exist adjacent to each other rather than being mixed)
153	to enhance oxygen and nutrient supply within the thick tissue ^{18, 19} . Transplanting HiCT
154	onto patients undergoing VAD therapy may hold promise as a new strategy for bridge to
155	recovery (BTR).
156	In this study, we examined the impact of transplanting HiCT onto an unloaded
157	rat heart, mimicking VAD support, and evaluated the potential for bridge to recovery
158	(BTR) in the experimental model. Additionally, we assessed the biological effects of
159	HiCT treatment on the unloaded heart, including graft survival and infarct remodeling.
160	

161 MATERIAL AND METHODS

163 Detailed methods are provided as Supporting Information online.

164

	165	Experimental protocol
--	-----	------------------------------

166 All experimental procedures were carried out in accordance with the animal care 167 guidelines established by Kyoto University and the "Guide for the Care and Use of Laboratory Animals" published by the National Institutes of Health. All animal 168 169 experimental protocols were approved by the Animal Experimentation Committee of 170 Kyoto University (#Med Kyo 15261). 171 The time course of the experiment is illustrated in Figure 1A. The rats that 172 successfully developed myocardial infarction (MI), characterized by fractional shortening 173 less than 40%, were divided into the following groups: (1) MI group (n=6) (loaded, 174 untreated control) underwent no HTx. A laparotomy was performed, and the abdominal 175 aorta was exposed as a sham operation for HTx. (2) MI+HTx group (n=31) (unloaded, 176 untreated control) underwent HTx. Sixteen rats survived after HTx. (3) MI+HTx+HiCT

177 group (n=28) (unloaded, treated) underwent HTx followed by HiCT treatment. Seventeen

178	rats survived after HTx. For the comparison of engraftment of HiCT with or without
179	unloading, we added a group as follows: (4) MI+HiCT group (n=5) (loaded, treated).
180	They did not undergo HTx but received HiCT treatment. The comparisons are explained
181	in Figure 1B and Figure 5A. The experimental group is presented in Supplemental Figure
182	1.
183	
184	Human iPSC-derived cardiac tissue (HiCT) formation
185	The cardiovascular cells differentiated from hiPSC line (201B6) were dissociated and
186	then plated onto a 10% fetal bovine serum (FBS)-coated 12-multiwell UpCell (CellSeed,
187	Tokyo, Japan) at a density of $10-12 \times 10^5$ cells per well. After 4 days in culture, the cells
188	were transferred to room temperature to allow for the detachment of monolayer cell sheets.
189	The size of the collected cell sheets was almost identical in every experimental repeats.
190	It was then plated onto a Matrigel-coated 6-cm dish, and 0.5 mg of gelatin hydrogel
191	microspheres ^{17, 18} dissolved in phosphate-buffered saline (PBS) was placed on the surface
192	of the cell sheet. After 45 minutes, another monolayer cell sheet was stacked on top of

193	the previous one. This stacking process was repeated 4 times, resulting in a five-layered
194	cell sheet known as human iPSC-derived cardiac tissue (HiCT) (Figure 1C).
195	
196	Flow cytometry
197	The monolayer cell sheet was dissociated and then stained with surface markers specific
198	for each cell lineage. The cellular components of monolayer cell sheets before preparation
199	of the HiCTs included 52.0±4.9 % of cardiac isoform of troponin-T (cTnT)-positive
200	cardiomyocytes, 6.5 ± 2.2 % of vascular endothelial (VE)-cadherin-positive vascular
201	endothelial cells, 8.8±4.9 % of platelet-derived growth factor receptor beta (PDGFR β)-
202	positive vascular mural cells and 0.3 ± 0.1 % of TRA-1-60-positive undifferentiated cells,
203	respectively (Figure 1D).
204	
205	Subacute MI rat model
206	Male athymic nude rats (F344/N Jcl-rnu/rnu, CLEA Japan, Inc., Tokyo, Japan) aged 12-
207	17 weeks were utilized as donors and recipients for transplantation, respectively. The MI
208	model rats were generated following previously described methods ¹⁵ .

210 Heterotopic heart transplantation and HiCT treatment

211 Heterotopic heart transplantation was performed following previously established methods²⁰. Briefly, one week after creating the MI, the donor rat was anesthetized, the 212 213 right and left superior vena cava and IVC were ligated, and 5 mL of cold cardioplegia 214 solution (Miotector; Mochida, Tokyo, Japan) were injected from the ascending aorta for 215 cardioprotection. Once cardiac arrest was achieved, the infarcted heart and lung were 216 harvested and preserved in cold cardioplegia solution. Next, the recipient rat was 217 anesthetized and underwent laparotomy. The ascending aorta of the donor heart was 218 anastomosed end-to-side to the recipient rat abdominal aorta. After reperfusion, the 219 transplanted heart spontaneously resumed beating immediately. In the MI+HTx+HiCT 220 group, the HiCT was placed on the epicardium of the MI region and manually spread to 221 cover the entire area of the infarction (Figure 1E).

222

223 Histological analysis

224	Hearts were harvested 4 weeks after HTx (5 weeks after MI induction). The animals were
225	anesthetized with 1% isoflurane while placed on a volume cycled ventilator for small
226	animals. After opening the chest and abdomen, 100 ml of heparinized cold saline (500
227	IU) followed by 50 mL of 4% paraformaldehyde (PFA) were infused through the apex of
228	the recipient's heart. The heterotopically transplanted heart in the abdomen was rapidly
229	excised and placed in 4% PFA overnight. Afterward, it was embedded in OCT compound
230	(Sakura Finetek Japan, Tokyo, Japan) and frozen. The tissue was transversely sliced into
231	7 μ m sections just below the ligation point and subjected to Hematoxylin-Eosin and
232	Masson trichrome staining, as well as immunofluorescence staining. For
233	immunofluorescence staining, the sections were treated with Protein Block Serum Free
234	(DAKO, Glostrup, Danish) and incubated overnight with primary antibodies at 4°C. Anti-
235	mouse Alexa 546 (1:500) and anti-rabbit Alexa 488 (Invitrogen, Eugene, OR, USA)
236	(1:400) were used as secondary antibodies. The area of engrafted human cells was
237	manually traced as positive cell clusters, identified by staining with anti-cTnT antibody
238	(rabbit polyclonal; Abcam, Cambridge, UK; 1:500) and human nuclear antibody (HNA)
239	(mouse monoclonal, clone 235-1; Millipore, Billerica, MA, USA; 1:200). To evaluate the

240	proliferation of transplanted cardiomyocytes, double-positive cells stained with anti-Ki67
241	antibody (rabbit monoclonal, clone D3B5; Cell Signaling Technology, Danvers, MA,
242	USA) and anti-cTnT antibody (rabbit polyclonal antibody; Thermo Fisher Scientific,
243	Waltham, MA, USA; 1:500) were visualized. The length of fibrotic lesions at the
244	endocardium level and the total length of the endocardium were manually traced and
245	measured using Masson's trichrome-stained sections, and the ratio of the MI length to the
246	total length was calculated for each section. The MI area was measured as the ratio of the
247	area of fibrotic lesions to left ventricular myocardium. The area of fibrotic lesion and left
248	ventricular myocardium were manually traced and measured using Masson's trichrome-
249	stained sections. We established a standardized criterion by preparing one section at the
250	same location for each rat, specifically just below the permanent ligation thread of the
251	coronary artery introduced during MI induction. Wall thickness was calculated as the
252	average of five randomly selected vertical distances of the wall (including both ends) in
253	the MI area. For vascular density (number of vessels/mm ²), four views of the border zone
254	(two views on each side) were selected from vWF-stained sections, and the number of
255	vessels was manually counted in each view. A rabbit polyclonal vWF antibody (DAKO;

256	1:1000) was used as the primary antibody for vWF staining. A mouse monoclonal cTnT
257	antibody (clone 13211, Thermo Fisher Scientific; 1:500) was used for double staining
258	with cTnT and vWF. To measure the size of cardiomyocytes, five views of the non-
259	infarcted area in the left ventricle were selected from Pericentriolar Material 1 (PCMI)
260	and eosin-stained sections. The size of cardiomyocytes was calculated from randomly
261	selected 50 cardiomyocytes (10 cardiomyocytes in each view) whose nuclei were stained
262	with anti-PCMI antibody (a cardiomyocyte nuclear marker ²¹) and whose cytoplasmic
263	membrane appeared intact and had a round shape. For PCMI staining, a rabbit polyclonal
264	antibody (Thermo Fisher Scientific; 1:400) was used as the primary antibody. Images
265	were captured using an all-in-one digital microscope (BIOREVO BZ-9000; Keyence,
266	Osaka, Japan) and analyzed using the BZ-X Analyzer (Keyence) software and ImageJ ²²
267	(U.S. National Institutes of Health, Bethesda, MD, USA).

269 Statistical analysis

270 The data were analyzed using GraphPad Prism software for Mac (version 7.0, San Diego,

271 California, USA). The results are presented as mean \pm standard deviation. Comparisons

272	between two groups were performed using the unpaired t-test or Mann-Whitney test.
273	Comparisons among three groups were carried out using one-way analysis of variance
274	(ANOVA) followed by Tukey's test as a post hoc analysis. The correlation was assessed
275	using Pearson's correlation coefficient. A p-value of less than 0.05 was considered
276	statistically significant.
277	
278	RESULTS
279	
280	Baseline surgical data
281	The baseline echocardiogram data prior to MI induction are presented in Supplemental
282	Table 1. The survival rate following MI induction and subsequent heterotopic
282 283	Table 1. The survival rate following MI induction and subsequent heterotopic transplantation is illustrated in Supplemental Figure 1. As demonstrated in Supplemental
282 283 284	Table 1. The survival rate following MI induction and subsequent heterotopic transplantation is illustrated in Supplemental Figure 1. As demonstrated in Supplemental Table 2, there were no significant differences in cardiac function among the three groups
282 283 284 285	Table 1. The survival rate following MI induction and subsequent heterotopic transplantation is illustrated in Supplemental Figure 1. As demonstrated in Supplemental Table 2, there were no significant differences in cardiac function among the three groups of rats enrolled in the study, as confirmed by echocardiography one week after MI.
282 283 284 285 286	Table 1. The survival rate following MI induction and subsequent heterotopic transplantation is illustrated in Supplemental Figure 1. As demonstrated in Supplemental Table 2, there were no significant differences in cardiac function among the three groups of rats enrolled in the study, as confirmed by echocardiography one week after MI. Additionally, there were no significant differences in the total operation time of whole

the time from donor heart resection to reperfusion of the transplanted heart (ischemictime) (Figure 1F).

290

291 Engraftment after HiCT transplantation onto a rat MI model

292 Immunofluorescent staining revealed successful engraftment of transplanted HiCTs, 293 covering the infarcted region in 5 out of 6 rats in the MI+HTx+HiCT group, four weeks 294 after transplantation (Figure 2A,B). Almost all engrafted HiCTs consisted of HNA-295 positive human cells, with the majority being cardiac troponin-T (cTnT)-positive 296 cardiomyocytes. Additionally, we observed a higher content of Ki67-positive 297 cardiomyocyte nuclei in the engrafted HiCTs compared to the native myocardium of rats, 298 even at 4 weeks after HiCT treatment (Figure 2C). We confirmed that proliferating cells 299 remained on the epicardium and did not penetrate into the myocardium. These findings 300 suggest that HiCTs are successfully engrafted after transplanted into unloaded hearts, and 301 the engrafted cardiomyocytes retain their ability to proliferate in the absence of 302 mechanical loading.

303

304	HiCT transplantation for unloaded heart attenuated infarct remodeling after MI
305	Subsequently, we assessed the extent of infarct remodeling following MI under each
306	condition. The hearts in the MI group exhibited fibrosis extension and thinning of the
307	infarcted wall five weeks after MI, indicating the progression of infarct remodeling
308	(Figure 3A). However, the ratio of MI length to total LV length was significantly reduced
309	in the MI+HTx+HiCT group compared to the other two groups [MI vs. MI+HTx vs
310	MI+HTx+HiCT: 33.69±6.26 vs. 34.56±8.49 vs. 22.43±5.51%; P=0.032 (MI vs
311	MI+HTx+HiCT), 0.021 (MI+HTx vs MI+HTx+HiCT)] (Figure 3B). The percentage of
312	MI area in whole LV area was significantly reduced in MI+HTx+HiCT group compared
313	to that in MI+HTx group [MI vs MI+HTx vs MI+HTx+HiCT: 21.99±4.63 vs 28.08±7.10
314	vs 19.05±4.05%; P=0.028 (MI+HTx vs MI;HTx+HiCT)] (Figure 3C). On the other hand,
315	the wall thickness of the MI+HTx group tended to be thicker and was significantly thicker
316	in the MI+HTx+HiCT group compared to the MI group [MI vs. HTx vs. MI+HTx+HiCT:
317	0.761±0.129 vs. 1.295±0.294 vs. 1.570±0.562 mm; P=0.063 (MI vs MI+HTx), 0.005 (MI
318	vs MI+HTx+HiCT)] (Figure 3D). These results indicate that heterotopic transplantation

319 tends to preserve LV wall thickness following MI, and HiCT treatment under unloading 320 conditions attenuates infarct remodeling after MI. 321 322 HiCT treatment under unloaded condition promoted neovascularization in border 323 zone of MI 324 We previously have reported that the limited extent of infarct remodeling observed with HiCT treatment is due to the promotion of neovascularization in the border zone of the 325 326 MI mediated by the engrafted HiCTs in loaded hearts¹⁷. Here, we examined the vascular 327 density in the border zone following HiCT treatment. There was no significant difference 328 in vascular density of the border zone between the MI group and the MI+HTx group. 329 However, the MI+HTx+HiCT group exhibited a higher vascular density in the border 330 zone compared to the other two groups [MI vs. MI+HTx vs. MI+HTx+HiCT: 12.8±4.728 vs. 16.07±1.684 vs. 70.54±58.35/mm²; P=0.025 (MI vs MI+HTx+HiCT), 0.035 331 332 (MI+HTx vs MI+HTx+HiCT)] (Figure 4A, B). Furthermore, there was a correlation 333 between vascular density and the area of engrafted HiCTs in the MI+HTx+HiCT group 334 (R²=0.756, P=0.0245) (Figure 4C). These results suggest that HiCT treatment under

335	unloaded conditions promotes neovascularization in the border zone, and the extent of
336	neovascularization might be mediated by the engrafted HiCTs. Additionally, we
337	confirmed that neovascularization was also promoted in the adjacent region (Figure 4D)
338	and within the engrafted HiCTs (Figure 4E), supporting the notion that
339	neovascularization aids in the engraftment of HiCTs.
340	
341	Enhancement of the engraftment efficiency of HiCT in the unloaded heart
342	Next, we examined how the unloaded condition affect the efficiency of the HiCT
343	engraftment. We compared the efficiency of HiCT engraftment between under unloaded
344	condition (MI+HTx+HiCT group) and under loaded condition (MI+HiCT group) (Figure
345	5A). In MI+HiCT group, only 3 out of 5 transplanted HiCT (60%) were engrafted 4 weeks
346	after transplantation, while 5 out of 6 transplanted HiCT (83%) were engrafted in
347	MI+HTx+HiCT group. The engrafted area in MI+HTx+HiCT group was significantly
348	larger than that in MI+HiCT group (MI+HiCT vs MI+HTx+HiCT: 0.216±0.229 vs
349	0.841±0.632mm ² ; P=0.0498) (Figure 5B,C). These results indicate that the unloaded
350	condition is more desirable for the engraftment of HiCT than loaded condition. The

351	positive ratio of Ki-67 (Figure 5D) was equivalent with that of engrafted HiCTs in
352	unloaded heart (Figure 2C), indicating that the proliferation of cardiomyocytes is not
353	affected by the loaded condition.
354	
355	HiCT treatment attenuates the atrophy of cardiomyocytes under unloaded
356	condition
357	According to reports, long-term LVAD implantation has been found to cause atrophy of
358	cardiomyocytes ²³ . Therefore, we conducted an investigation to examine how HiCT
359	treatment under unloading conditions affects the progression of cardiomyocyte atrophy
360	caused by unloading. As illustrated in Figures 6A and 6B, the cross-sectional area of
361	cardiomyocytes in the non-infarcted area was significantly smaller in the MI+HTx group
362	compared to the MI+HTx+HiCT group (MI+HTx vs MI+HTx+HiCT: 336±72.2 vs
363	$622\pm139 \ \mu\text{m}^2$; P=0.001). Previous studies have reported that atrophy of skeletal muscle
364	and myocardium during unloading is partly attributed to increased degradation of muscle
365	protein triggered by the activation of the ubiquitin-proteasome system during unloading ^{23,}
366	²⁴ . Consequently, we examined the protein expression level of muscle-specific RING

367	finger 1 (MuRF-1), which is one of the ubiquitin ligases associated with muscle atrophy.
368	In the MI+HTx+HiCT group, the protein expression level of MuRF-1 was significantly
369	lower than that in the MI+HTx group (MI+HTx vs MI+HTx+HiCT: 0.953±0.734 vs
370	0.197±0.185; P=0.036) (Figures 6C,D). These findings suggest that HiCT treatment
371	under unloading conditions mitigated cardiomyocyte atrophy by suppressing the
372	activation of MuRF-1 protein expression during unloading.
373	
374	DISCUSSION
375	
376	In this study, we demonstrated the therapeutic potential of HiCT treatment in a rat
377	subacute MI model under unloaded conditions (Figure 7). This was achieved by
378	attenuating infarct remodeling, which we previously reported to be mediated by the
379	promotion of neovascularization under loaded conditions as well ^{15, 16} . Furthermore, we

- 381 conditions as opposed to loaded conditions, which would further enhance the therapeutic
- 382 mechanisms. These findings suggest that HiCT treatment may offer a potential solution

383	for BTR, and it could be a viable therapeutic approach to simultaneously perform
384	epicardial transplantation of HiCTs during VAD implantation aiming to BTR. The
385	unloaded hearts showing preserved MI wall thickness (Figures 3A, D) would also provide
386	an advantage for functional recovery through HiCT treatment compared to the loaded
387	condition. It is worth noting that weaning from VAD is rare and mostly observed in
388	younger patients with non-ischemic cardiomyopathy or those with acute conditions like
389	myocarditis, rather than patients with ischemic cardiomyopathy ²⁵⁻²⁸ . Therefore, HiCT
390	treatment could emerge as a novel approach to enhance BTR for ischemic
391	cardiomyopathy. However, it is important to note that we were unable to observe
392	significant improvement in LV function by the HiCT treatment because it was technically
393	demanding to evaluate cardiac function of the heterotopically implanted hearts located in
394	abdominal region which may hinder the realization of a complete BTR approach based
395	solely on this strategy. Furthermore, in order to translate the treatment approach in this
396	study into practical applications for clinical BTR, it is necessary to go beyond using
397	subacute myocardial infarction models like the one employed in this study. We may need
398	to verify the therapeutic effects by including models of chronic ischemic cardiomyopathy

399	with fully developed scar tissue, and non-ischemic cardiomyopathy. Additionally, a more
400	extended period of observation after treatment would be required to further assess
401	whether HiCT transplantation therapy can indeed contribute to the clinical BTR.
402	Regarding the engraftment efficiency of HiCTs, it was found that the unloaded
403	condition yielded better results compared to the loaded condition. This aligns with a study
404	by Kurazumi et al., who reported an increased efficiency of cell engraftment in a mouse
405	model when cardiac stem cells were intramyocardially injected under unloaded
406	conditions ¹² . In our study, we explored tissue sheet transplantation on the surface of the
407	heart and demonstrated that the unloaded condition was favorable even for this method,
408	as it led to improved engraftment of transplanted cells. We assume there are two reasons
409	for this result. First, the transplanted cells may benefit from improved blood supply under
410	unloaded conditions. Watanabe et al. conducted a study using a pig model of ischemic
411	heart failure and reported that the implantation of temporary ventricular support device
412	(IMPELLA®) improved blood flow to the coronary artery ²⁹ . This suggests that the
413	presence of a circulatory support device creates a better host condition for cell
414	transplantation. In chronic heart failure, systemic perfusion decreases due to low cardiac

415	function or underlying ischemic heart diseases affecting coronary arterial perfusion.
416	Therefore, it is assumed that the unloaded condition provides a more favorable
417	environment for the host heart, enhancing the efficiency of transplanted cell engraftment
418	through increased coronary blood flow facilitated by circulatory support. Here, we made
419	an intriguing discovery that neovascularization facilitated by HiCT treatment also
420	supported the engraftment of HiCTs. This was evidenced by the observation that the
421	engrafted area showed a correlation with the density of capillaries in the border zone
422	(Figure 4C). Moreover, we observed enhanced neovascularization in the adjacent region
423	and inside the engrafted HiCTs (Figures 4D,E). It is possible that the improved
424	engraftment of HiCTs not only attenuated infarct remodeling but also sequentially
425	promoted neovascularization, thereby enhancing the host condition for engraftment.
426	Another reason is that the removal of LV distension through unloading might create a
427	more favorable environment for cell transplantation. In a failing heart, the LV experiences
428	excessive pressure and volume, resulting in tension on the LV wall ³⁰ which may hinder
429	the survival of the cells. In a state of cardiac overload, it is suggested that mitochondrial
430	production is promoted, leading to the activation of reactive oxygen species production

431	which may promote cell death ³¹ . It would be possible that by relieving the pressure and
432	volume overload, the tension on the transplanted HiCT is reduced, leading to an improved
433	engraftment efficiency of HiCT.
434	In our research, we discovered that HiCT treatment effectively reduced the
435	atrophy of cardiomyocytes in the non-infarcted area under unloaded conditions. Some
436	studies have previously reported that the implantation of a VAD in an unloaded condition
437	can morphologically restore hypertrophic cardiomyocytes caused by cellular remodeling
438	after myocardial infarction ^{32, 33} . However, other reports have suggested that this change
439	leads to the atrophy of cardiomyocytes under unloaded conditions ²³ . This notion is further
440	supported by research showing the atrophy of cardiomyocytes in a normal goat heart after
441	VAD transplantation ³⁴ . Additionally, another study found that the ventricular volume of
442	a rat normal heart decreased by 60% one month after heterotopic heart transplantation ³⁵ .
443	The underlying mechanism behind this atrophy is believed to be the activation of atrophy-
444	related ubiquitin ligases, which are specific to skeletal and cardiac muscles. These ligases
445	promote the degradation of cardiac proteins under unloaded conditions ²³ . In fact, studies
446	have shown an increase in atrophy-related ubiquitin ligase expression in heterotopically

447	transplanted mouse hearts and human hearts equipped with LVADs after unloading ³⁶ . In
448	our study, we found that the HiCT treatment onto unloaded hearts exhibited lower
449	expression of MuRF-1, one of the atrophy-related ubiquitin ligases, compared to the
450	hearts without HiCT treatment. These results indicate that HiCT treatment under
451	unloaded conditions suppresses the atrophy of cardiomyocytes in the non-infarcted area
452	by attenuating the protein expression of MuRF-1. This suppression of atrophy, a major
453	drawback of long-term LVAD support, may increase the likelihood of successful BTR.
454	There are several limitations in the present study. First, in our current research,
455	we attempted to replicate the physiological state of an unloaded heart supported by LVAD
456	using a rat heterotopic transplantation model. However, this model does not fully replicate
457	the cardiac physiology of the hearts supported by LVAD in a clinical context. To address
458	this challenge, as the next step in our study, we believe it is necessary to assess the effects
459	of HiCT transplantation in a setting more closely resembling the clinical use of LVAD,
460	possibly by utilizing a LVAD implantation model in large animals. Second, due to
461	technical complexities, we were unable to assess the function of the transplanted heart in
462	this study. To explore the potential for BTR through HiCT transplantation, it would be

463	desirable to demonstrate an improvement in cardiac function with an unloaded heart
464	mediated by HiCT transplantation, which can be considered a limitation in this study. In
465	future experiments using large animals and LVAD implantation, rather than heterotopic
466	transplantation, we plan to accurately evaluate how HiCT transplantation has affected
467	cardiac function.
468	
469	CONCLUSIONS
470	
471	Transplanting HiCTs into ischemic hearts while in an unloaded condition has been shown
472	to enhance neovascularization, reduce infarct remodeling, and prevent cardiomyocyte
473	atrophy caused by unloading, a disadvantage associated with long-term LVAD
474	implantation. Additionally, the engraftment efficiency of HiCTs was found to be higher
475	under unloaded conditions compared to loaded conditions. These findings suggest that
476	HiCT treatment has the potential to effectively treat ischemic hearts supported by LVAD
477	and may serve as a strategy for achieving a BTR for VAD in the future.

479 ACKNOWLEDGMENTS

481	The authors thank Mr. Shuichi Miyake (Kyoto University) for providing expert technical
482	assistance. The authors thank Dr. Hemant Poudyal (Kyoto University) for valuable
483	advises for the functional evaluations.
484	
485	Declaration of generative AI and AI-assisted technologies in the writing process
486	
487	During the preparation of this work the authors used ChatGPT in order to improve
488	language and readability, with caution. After using this tool/service, the authors reviewed
489	and edited the content as needed and take full responsibility for the content of the
490	publication.

REFERENCES

494	1.	World Health C	Organization (W	HO) Global	Health Estima	tes: Life expe	ectancy and
495		leading	causes	of	death	and	disability.
496		https://www.wl	no.int/data/gho/d	data/themes	/mortality-and	-global-healtl	<u>n-estimates</u> .
497	2.	Tsao CW, Ada	y AW, Almarzo	ooq ZI, et a	l. Heart Diseas	se and Stroke	e Statistics-
498		2023 Update:	A Report Fron	n the Ame	rican Heart A	ssociation. C	Circulation.
499		2023;147:e93-e	e621.				
500	3.	Glynn P, Lloyd	l-Jones DM, Fei	instein MJ,	Carnethon M,	Khan SS. Di	sparities in
501		Cardiovascular	Mortality Relate	ed to Heart]	Failure in the U	United States.	J. Am. Coll.
502		Cardiol. 2019;	73:2354-2355.				
503	4.	Miller RJH, Te	uteberg JJ, Hunt	SA. Innova	ations in Ventri	icular Assist l	Devices for
504		End-Stage Hea	rt Failure. Annu.	. Rev. Med.	2019;70:33-44	ŀ.	
505	5.	Yuzefpolskaya	M, Schroeder	SE, Housto	n BA, et al. T	The Society of	of Thoracic
506		Surgeons Inter	macs 2022 Ann	ual Report:	Focus on the	2018 Heart	Transplant
507		Allocation Syst	em. Ann. Thora	c. Surg. 202	23;115:311-32	7.	

508	6.	Kirklin JK, Naftel DC, Pagani FD, et al. Seventh INTERMACS annual report:
509		15,000 patients and counting. J. Heart Lung Transplant. 2015;34:1495-1504.
510	7.	Tsuneyoshi H, Oriyanhan W, Kanemitsu H, et al. Heterotopic transplantation of
511		the failing rat heart as a model of left ventricular mechanical unloading toward
512		recovery. ASAIO J. 2005;51:116-120.
513	8.	Muranaka H, Marui A, Tsukashita M, et al. Prolonged mechanical unloading
514		preserves myocardial contractility but impairs relaxation in rat heart of dilated
515		cardiomyopathy accompanied by myocardial stiffness and apoptosis. J. Thorac.
516		Cardiovasc. Surg. 2010;140:916-922.
517	9.	Hall JL, Birks EJ, Grindle S, et al. Molecular signature of recovery following
518		combination left ventricular assist device (LVAD) support and pharmacologic
519		therapy. Eur. Heart J. 2007;28:613-627.
520	10.	Tseng CC, Ramjankhan FZ, de Jonge N, Chamuleau SA. Advanced Strategies for
521		End-Stage Heart Failure: Combining Regenerative Approaches with LVAD, a
522		New Horizon? Front Surg. 2015;2:10.

523	11.	Ibrahim M, Rao C, Athanasiou T, Yacoub MH, Terracciano CM. Mechanical
524		unloading and cell therapy have a synergistic role in the recovery and regeneration
525		of the failing heart. Eur. J. Cardiothorac. Surg. 2012;42:312-318.
526	12.	Kurazumi H, Li TS, Takemoto Y, et al. Haemodynamic unloading increases the
527		survival and affects the differentiation of cardiac stem cells after implantation into
528		an infarcted heart. Eur. J. Cardiothorac. Surg. 2014;45:976-982.
529	13.	Ascheim DD, Gelijns AC, Goldstein D, et al. Mesenchymal precursor cells as
530		adjunctive therapy in recipients of contemporary left ventricular assist devices.
531		Circulation. 2014;129:2287-2296.
532	14.	Stempien-Otero A, Helterline D, Plummer T, et al. Mechanisms of bone marrow-
533		derived cell therapy in ischemic cardiomyopathy with left ventricular assist device
534		bridge to transplant. J. Am. Coll. Cardiol. 2015;65:1424-1434.
535	15.	Masumoto H, Ikuno T, Takeda M, et al. Human iPS cell-engineered cardiac tissue
536		sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci. Rep.
537		2014;4:6716.

538	16.	Ishigami M, Masumoto H, Ikuno T, et al. Human iPS cell-derived cardiac tissue
539		sheets for functional restoration of infarcted porcine hearts. PLoS One.
540		2018;13:e0201650.
541	17.	Osada H, Kawatou M, Fujita D, et al. Therapeutic potential of clinical-grade
542		human induced pluripotent stem cell-derived cardiac tissues. JTCVS Open.
543		2021;8:359-374.
544	18.	Tabata Y, Nagano A, Muniruzzaman M, Ikada Y. In vitro sorption and desorption
545		of basic fibroblast growth factor from biodegradable hydrogels. Biomaterials.
546		1998;19:1781-1789.
547	19.	Matsuo T, Masumoto H, Tajima S, et al. Efficient long-term survival of cell grafts
548		after myocardial infarction with thick viable cardiac tissue entirely from
549		pluripotent stem cells. Sci. Rep. 2015;5:16842.
550	20.	Wang J, Tsukashita M, Nishina T, et al. Chronic partial unloading restores beta-
551		adrenergic responsiveness and reverses receptor downregulation in failing rat
552		hearts. J. Thorac. Cardiovasc. Surg. 2009;137:465-470.

553	21.	Bergmann O, Zdunek S, Alkass K, Druid H, Bernard S, Frisen J. Identification of
554		cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover.
555		Exp. Cell Res. 2011;317:188-194.
556	22.	Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of
557		image analysis. Nat Methods. 2012;9:671-675.
558	23.	Hill JA, Olson EN. Cardiac plasticity. N. Engl. J. Med. 2008;358:1370-1380.
559	24.	Rudrappa SS, Wilkinson DJ, Greenhaff PL, Smith K, Idris I, Atherton PJ. Human
560		Skeletal Muscle Disuse Atrophy: Effects on Muscle Protein Synthesis,
561		Breakdown, and Insulin Resistance-A Qualitative Review. Front. Physiol.
562		2016;7:361.
563	25.	Birks EJ, Tansley PD, Hardy J, et al. Left ventricular assist device and drug
564		therapy for the reversal of heart failure. N. Engl. J. Med. 2006;355:1873-1884.
565	26.	Goldstein DJ, Maybaum S, MacGillivray TE, et al. Young patients with
566		nonischemic cardiomyopathy have higher likelihood of left ventricular recovery
567		during left ventricular assist device support. J. Card. Fail. 2012;18:392-395.

568	27.	Simon MA, Kormos RL, Murali S, et al. Myocardial recovery using ventricular
569		assist devices: prevalence, clinical characteristics, and outcomes. Circulation.
570		2005;112:I32-36.
571	28.	Mano A, Nakatani T, Oda N, et al. Which factors predict the recovery of natural
572		heart function after insertion of a left ventricular assist system? J. Heart Lung
573		Transplant. 2008;27:869-874.
574	29.	Watanabe S, Fish K, Kovacic JC, et al. Left Ventricular Unloading Using an
575		Impella CP Improves Coronary Flow and Infarct Zone Perfusion in Ischemic
576		Heart Failure. J Am Heart Assoc. 2018;7.
577	30.	Tonnessen T, Knudsen CW. Surgical left ventricular remodeling in heart failure.
578		Eur. J. Heart Fail. 2005;7:704-709.
579	31.	Canseco DC, Kimura W, Garg S, et al. Human ventricular unloading induces
580		cardiomyocyte proliferation. J. Am. Coll. Cardiol. 2015;65:892-900.
581	32.	Diakos NA, Selzman CH, Sachse FB, et al. Myocardial atrophy and chronic
582		mechanical unloading of the failing human heart: implications for cardiac assist
583		device-induced myocardial recovery. J. Am. Coll. Cardiol. 2014;64:1602-1612.

584	33.	Zafeiridis A, Jeevanandam V, Houser SR, Margulies KB. Regression of cellular
585		hypertrophy after left ventricular assist device support. Circulation. 1998;98:656-
586		662.
587	34.	Kinoshita M, Takano H, Takaichi S, Taenaka Y, Nakatani T. Influence of
588		prolonged ventricular assistance on myocardial histopathology in intact heart. Ann.
589		Thorac. Surg. 1996;61:640-645.
590	35.	Brinks H, Tevaearai H, Muhlfeld C, et al. Contractile function is preserved in
591		unloaded hearts despite atrophic remodeling. J. Thorac. Cardiovasc. Surg.
592		2009;137:742-746.
593	36.	Baskin KK, Rodriguez MR, Kansara S, et al. MAFbx/Atrogin-1 is required for
594		atrophic remodeling of the unloaded heart. J. Mol. Cell. Cardiol. 2014;72:168-
595		176.
596		
597	FIGU	RE LEGENDS
598		
599	FIGU	RE 1: Heterotopic heart transplantation and HiCT transplantation.

600	(A) The time course of the experiments. (B) Schema of surgical groups. (C)
601	Representarive Macroscopic appearance of HiCT. Scale bar: 1 cm. (D) Cellular
602	components of monolayer cell sheets before preparation of HiCTs (n=8). (E)
603	Representative surgical appearance of HTx and HiCT transplantation. (F) Duration of
604	surgeries. WB, Western blotting; MI, myocardial infarction; HTx, heterotopic heart
605	transplantation; HiCT, human iPS-derived cardiac tissue sheets; CM, cardiomyocyte; EC,
606	vascular endothelial cell: MC, vascular mural cell; cTnT, cardiac isoform of troponin-T;
607	VE-cad, vascular-endothelial cadherin; PDGFRb, platelet-derived growth factor receptor
608	beta.
609	
610	FIGURE 2: Myocardial regeneration after HiCT transplantation onto unloaded
611	hearts.
611 612	hearts. (A-C), Immunohistochemical analysis for engrafted HiCTs. (A) Representative
611 612 613	hearts.(A-C), Immunohistochemical analysis for engrafted HiCTs. (A) Representativeimmunostaining for HiCT on the surface of transplanted heart. HNA (red), cTnT (green)
611 612 613 614	hearts. (A-C), Immunohistochemical analysis for engrafted HiCTs. (A) Representative immunostaining for HiCT on the surface of transplanted heart. HNA (red), cTnT (green) and DAPI (blue). Scale bars: 1 mm. (B) Higher magnification [dashed square in (A)].

616	DAPI (blue) for engrafted HiCT and native rat myocardium. White dotted lines indicate
617	the margin of engrafted HiCT which was confirmed by consecutive sections stained with
618	HNA and cTnT. Yellow arrows indicate Ki67 and cTnT double-positive cells. Scale bar:
619	100 μm. HNA, human nucleic antigen; DAPI, 4',6-diamidino-2-phenylindole.
620	
621	FIGURE 3: HiCT transplantation attenuates left ventricular remodeling after MI
622	in unloaded hearts.
623	(A) Representative Masson's Trichrome staining of rat hearts 4weeks after HTx. Scale
624	bars: 1 mm (B) The ratio of MI length of Total length. (C) The ratio of MI area to the
625	total area of left ventricle. (D) Wall thickness.
626	
627	FIGURE 4: Neovascularization after HiCT transplantation onto unloaded MI
628	hearts.
629	(A) Representative immunostaining at 4 weeks after transplantation at border zone. vWF
630	(green), cTnT (red), and DAPI (blue). Engrafted region of HiCT is not shown. Scale bars:
631	100 μ m. (B) Vascular number (diameter <100 μ m) per 1mm ² . (C) Correlation between

632	engrafted area and vascular density. (D,E) Representative immunostaining for
633	neovascularization at adjacent region of HiCT (D) and inside of HiCT (E; White arrow).
634	White dotted line indicates the border of the engrafted region. Scale bars: 100 μ m.
635	
636	FIGURE 5: Comparison of engrafted area of HiCT between loaded and unloaded
637	MI hearts.
638	(A) Schema of surgical groups. (B) Representative immunostaining for HiCTs. HNA
639	(red), cTnT (green) and DAPI (blue). Scale bars: 1 mm. (C) Quantitation of engrafted
640	area. (D) Representative immunostaining for Ki67 (green), cTnT (red), and DAPI (blue)
641	for engrafted HiCT and native rat myocardium. Yellow arrows indicate Ki67 and cTnT
642	double-positive cells. Scale bars: 100 μ m.
643	
644	FIGURE 6: Attenuation of cardiomyocyte atrophy after HiCT transplantation onto
645	unloaded MI hearts.
646	(A) Representative histological staining of cardiomyocytes for PCM1 immunostaining
647	and eosin. Black enclosed lines indicate single cardiomyocyte. Scale bars: 100 µm. (B)

648	Cross section area of cardiomyocytes (n=50 each). (C) Representative Western blotting
649	for MuRF-1. (D) MuRF-1/B-actin protein level. PCM1, Pericentriolar material 1; MuRF-
650	1, muscle-specific RING finger 1.
651	
652	FIGURE 7: Schema of the research.
653	We utilized a rat model of heterotopic heart transplantation (HTx) to mimic VAD support
654	and heart unloading, investigating the therapeutic potential of hiPSC-derived cardiac
655	tissues (HiCTs) for severe heart failure with left ventricular assist devices (LVADs).
656	
657	VIDEO LEGEND
658	
659	VIDEO 1: Surgical procedure of the rat heterotopic heart transplantation model.
660	
661	
662	
663	

664 Graphical abstract

673 Central picture

674			
675			
676			
677			
678			
679			
680			
681			

MI Rat

Recipient Rat

)	
-20 CM EC MC undifferenti (cTnT') (VE-cad') (PDGFRB') (Tra-160	(%) 80 40 20 0 -20 -20 -20 -20 -20 -20	MC undifferentiated

Operation data

	Total operation Time (min)	Transplantation Time (min)	Ischemic time (min)
MI+HTx group (n=16)	57.6±7.7	39.7±6.2	28.7±3.1
MI+HTx+HiCT group (n=17)	59.2±5.5	42.5±3.9	27.9±4.5
P value	0.49	0.12	0.58

HiCT

