
Journal of Homotopy and Related Structures (2023) 18:421–454
https://doi.org/10.1007/s40062-023-00332-3

Self-closeness numbers of rational mapping spaces

Yichen Tong1

Received: 7 December 2022 / Accepted: 6 September 2023 / Published online: 11 October 2023
© Tbilisi Centre for Mathematical Sciences 2023

Abstract
For a closed connected oriented manifold M of dimension 2n, it was proved byMøller
and Raussen that the components of the mapping space from M to S2n have exactly
two different rational homotopy types. However, since this result was proved by the
algebraic models for the components, it is unclear whether other homotopy invari-
ants distinguish their rational homotopy types or not. The self-closeness number of a
connected CW complex is the least integer k such that any of its self-maps inducing
an isomorphism in π∗ for ∗ ≤ k is a homotopy equivalence, and there is no result
on the components of mapping spaces so far. For a rational Poincaré complex X of
dimension 2n with finite π1, we completely determine the self-closeness numbers
of the rationalized components of the mapping space from X to S2n by using their
Brown–Szczarba models. As a corollary, we show that the self-closeness number does
distinguish the rational homotopy types of the components. Since a closed connected
oriented manifold is a rational Poincaré complex, our result partially generalizes that
of Møller and Raussen.

Keywords Self-closeness number · Mapping space · Rational homotopy theory ·
Brown–Szczarba model

Mathematics Subject Classification 55P10 · 55P62 · 55P15

1 Introduction

Given two spaces X and Y , we can associate the mapping space Map(X , Y ). It is a
classical problem in algebraic topology to classify the homotopy types of the path-
components of Map(X , Y ) for given X and Y . This problem dates back, at least to the
work of Whitehead [25] in 1946, and there are many classification results for specific
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X and Y . For instance, [5, 8, 10, 25] studied the problem for X = Y = Sn . More
recently, the problem was intensively studied in [9, 11, 13, 14, 20, 21, 24] when Y is
the classifying space of a Lie group G, as the components are the classifying spaces
of gauge groups by [4]. There are also results in [3, 26] for other X and Y . See [19]
and its references for more details.

Let M be a closed connected oriented manifold of dimension n. We recall a clas-
sification result on the mapping space Map(M, Sn). By the Hopf degree theorem, the
mapping degree gives a one-to-one correspondence between the path-components of
Map(M, Sn) and Z. Let Map(M, Sn; k) denote the path-component of degree k. In
[6], for M with vanishing first Betti number, Hansen classified the homotopy types
of the components of Map(M, Sn) such that Map(M, Sn, k) and Map(M, Sn; l) are
homotopy equivalent if and only if one of the following conditions hold:

(1) |k| = |l| for n even;
(2) the parity of k and l are equal for n odd but not equals to 1,3,7;
(3) any k and l for n = 1, 3, 7.

Now we consider the rational homotopy types of Map(M, Sn; k). Since the rational-
ization of an odd sphere is an H-space, all components Map(M, Sn; k) have the same
rational homotopy type for n odd. Since the degree k self-map of Sn is a rational
homotopy equivalence for k �= 0, all components Map(M, Sn; k) but Map(M, Sn; 0)
have the same rational homotopy type for n even. Then it remains to show whether
or not Map(M, Sn; 0) and Map(M, Sn; 1) have the same rational homotopy type.
Møller and Raussen [15] proved that they are not of the same rational homotopy type
by considering their algebraic models, instead of specific homotopy invariants such
as homology.

The self-closeness number of a connected CW complex X , denoted by NE(X), is
defined to be the least integer k such that every self-map of X inducing an isomorphism
in the homotopy groups of dimension ≤ k is a homotopy equivalence. The self-
closeness number was introduced by Choi and Lee [2] in 2015, and there are several
results on it [2, 12, 16–18, 23, 27]. However, there are few explicit computations. Li
[12] and Oda and Yamaguchi [18] determined the self-closeness numbers for some
special homogeneous spaces. Later, the author [23] computed those for some non-
simply-connected finite complexes, which covers the previous results on non-simply-
connected spaces. So far, all explicit computations are only for finite complexes, and
there is no result on the components of mapping spaces. In this paper, we consider:

Problem 1.1 Does the self-closeness number distinguish the rational homotopy types
of Map(M, Sn; 0) and Map(M, Sn; 1) for n even?

A space X is called a rational Poincaré complex of dimension n if it is a finite
complex of dimension n such that Hn(X; Z) ∼= Z and the map

Hi (X; Z) → Hn−i (X; Z), x �→ w � x

is an isomorphism after tensoringwithQ, wherew is a generator of Hn(X; Z). Clearly,
a closed connected oriented manifold of dimension n is a rational Poincaré complex of
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dimension n. Moreover, we can consider Problem 1.1 for a rational Poincaré complex
of dimension n, instead of a manifold M .

To state the main result, we set notations. For a graded algebra A, let Q Ai denote
its module of indecomposables of degree i . Let X be a rational Poincaré complex of
dimension 2n. We say that X is primitive if Q Hi (X; Q) = Hi (X; Q) for i < 2n,
as Hi (X; Q) consists of primitive homology classes for i < 2n with respect to the
comultiplication of H∗(X; Q) induced by the diagonal map of X . We define d(X)

to be the least integer d such that Hd(X; Q) �= 0 and d ≥ n. Let Y(0) denote the
rationalization of a nilpotent space Y in the sense of [7]. Now we state the main
theorem.

Theorem 1.2 Let X be a rational Poincaré complex of dimension 2n with finite π1.
Then we have

NE(Map(X , S2n; 1)(0)) = 4n − 1

and

NE(Map(X , S2n; 0)(0)) =
{
2n X is primitive,

d(X) X is not primitive.

We immediately get the following corollary, which gives a positive answer to Prob-
lem 1.1.

Corollary 1.3 Let X be a rational Poincaré complex of dimension 2n with finite π1. The
self-closeness number distinguishes the rational homotopy types of Map(X , S2n; k)

for k = 0, 1.

This paper is organized as follows. In Sect. 2, we introduce the self-closeness
number of a minimal Sullivan algebra, and prove that the self-closeness number of a
simply-connected rational space coincides with that of its minimal model. In Sect. 3,
we recall the Brown–Szczarba models for Map(X , S2n) and its components, where X
is a rational Poincaré complex of dimension 2n with finite π1. In Sects. 4 and 5, we
compute the self-closeness numbers of the minimal models for Map(X , S2n; k)(0) for
k = 0, 1.

2 Algebraic self-closeness number

In this section, we define the self-closeness number of a minimal Sullivan algebra,
and prove that it coincides with the self-closeness number of a corresponding rational
space. Hereafter, we will assume that all algebras and vector spaces will be over the
field Q.

We say that a dga A is an algebraic model for a space X if there is a zig-zag of
quasi-isomorphisms

A
	−→ A1

	←− A2
	−→ · · · 	←− An

	−→ APL(X)
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where APL(X) denotes the dga of piecewise linear forms on X . If X is a nilpotent space,
then the rationalization X → X(0) is a rational homotopy equivalence, implying that
a dga A is an algebraic model for X if and only if so is for X(0). We recall a minimal
model for a space. Let V be a positively graded vector space, and let �V denote the
free commutative graded algebra generated by V . We say that a dga is a minimal
Sullivan algebra if it is of the form (�V , d) such that

d(Vn) ⊂ �(V≤n−1)

for all n ≥ 1, where Vn and V≤n−1 are the degree n and degree ≤ n − 1 parts of V ,
respectively. If an algebraic model for a space X is a minimal Sullivan algebra, then
we call it a minimal model for X . If (�V , d) is a minimal model for a space X , then
a zig-zag of quasi-isomorphisms patch together to yield a quasi-isomorphism

(�V , d)
	−→ APL(X).

We state the fundamental theorem of rational homotopy theory.

Theorem 2.1 For every simply-connected rational space X of finite rational type, there
is a minimal model

α : (�V , d)
	−→ APL(X)

satisfying the following properties.

(1) (�V , d) is unique, up to isomorphism.
(2) The quasi-isomorphism α is natural, up to homotopy.
(3) There is a natural isomorphism

V ∼= Hom(π∗(X), Q).

If X is a nilpotent space of finite type such that X(0) is simply-connected, thenwe often
say that aminimalmodel for X(0) is aminimalmodel for X . For amap f : �V → �W
between free commutative graded algebras, we define its linear part f0 : V → W by
the composite

V
incl−−→ �V

f−→ �W
proj−−→ �W/(�+W )2 ∼= W

where �+W denotes the ideal of �W generated by elements of positive degrees. We
define the self-closeness number of a minimal Sullivan algebra.

Definition 2.2 The self-closeness number of a minimal Sullivan algebra (�V , d),
denoted by NE(�V , d), is the least integer n such that any dga map (�V , d) →
(�V , d) is an isomorphism whenever its linear part is an isomorphism in degree ≤ n.

Wewill use the following lemma to compute the self-closeness number of a rational
space.
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Proposition 2.3 Let X be a simply-connected rational CW complex of finite rational
type, and let (�V , d) be its minimal model. Then we have

NE(X) = NE(�V , d).

Proof Let f : X → X be a map, and let g : (�V , d) → (�V , d) be a dga map
corresponding to a map f , which exists, up to homotopy, by Theorem 2.1. Since
there is a natural isomorphism V ∼= Hom(π∗(X), Q) as in Theorem 2.1, there is a
commutative diagram

V
g0

∼=

V

∼=

Hom(π∗(X), Q)
( f∗)∗

Hom(π∗(X), Q).

Then g0 is an isomorphism in degree k if and only if f∗ : πk(X) → πk(X) is an isomor-
phism. Thus if NE(X) = m, then g is an isomorphismwhenever g0 is an isomorphism
in degree ≤ m, that is, NE(�V , d) ≤ m. On the other hand, if NE(�V , d) = n, then
f is an isomorphism in π∗ whenever it is an isomorphism in π∗ for ∗ ≤ n, implying
NE(X) ≤ n by the J.H.C. Whitehead theorem. Thus the proof is finished. �

For the rest of this section, let X denote a rational Poincaré complex of dimension
2n with finite π1. Then by [7, Theorem 2.5], the mapping space Map(X , S2n; k) is a
nilpotent complex of finite type. Then to apply Proposition 2.3 to Map(X , S2n; k)(0),
we need the following lemma.

Lemma 2.4 For any integer k, Map(X , S2n; k)(0) is simply-connected.

Proof By [7, Theorem 3.11], there is a homotopy equivalence

Map(X , S2n; k)(0) 	 Map(X , S2n
(0); r ◦ k)

where r : S2n → S2n
(0) denotes the rationalization. Since there is a (4n−1)-equivalence

i : S2n
(0) → K (Q, 2n), we get a (2n − 1)-equivalence

i∗ : Map(X , S2n
(0); r ◦ k) → Map(X , K (Q, 2n); i ◦ r ◦ k)

and since K (Q, 2n) is an H-group, we have

Map(X , K (Q, 2n); i ◦ r ◦ k) 	 Map(X , K (Q, 2n); 0).

On the other hand, by the theorem of Thom [22], there is a homotopy equivalence

Map(X , K (Q, 2n); 0) 	
2n−1∏
k=0

K (Hk(X; Q), 2n − k).
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Since π1(X) is finite, we have H2n−1(X; Q) ∼= H1(X; Q) = 0 by the definition of a
rational Poincaré complex. Thus the proof is finished. �

3 Brown–Szczarbamodel

In this section, we give an algebraic model for Map(X , S2n) of Brown and Szczarba
[1] for a general space X , and specialize it to the case when X is a rational Poincaré
complex of dimension 2n. We also give algebraic models for the components of
Map(X , S2n). We will write the rational homology and cohomology of X simply
by H∗(X) and H∗(X), respectively.

Brown and Szczarba [1, Theorem 5.3] proved that for a CW complex X and a
nilpotent complex Y of finite type, there is an algebraic model for Map(X , Y ) of the
form

(�(V ⊗ H∗(X)), d)

where (�V , d) is a minimal model for Y and we set

|x ⊗ y| = |x | − |y|

for x ∈ V and y ∈ H∗(X), where |a| denotes the degree of an element a in a
graded vector space. The differential is defined in terms of the differential of the
minimal model (�V , d) and the comultiplication of the chain complex of X , instead
of the comultiplication of H∗(X) in general. We specialize this algebraic model to
Map(X , S2n). Recall that S2n has a minimal model given by

(�(u, v), d), du = 0, dv = u2

where |u| = 2n and |v| = 4n − 1. Let V be a graded vector space spanned by u, v.
Then there is an algebraic model for Map(X , S2n) of the form

(�(V ⊗ H∗(X)), d)

where the differential is defined in terms of the comultiplication of the chain complex
of X . However, the proof of [1, Lemma 5.1] implies that in our special case, the
differential is actually defined in terms of the comultiplication of H∗(X) as follows.

Theorem 3.1 There is an algebraic model for Map(X , S2n) of the form

(�(V ⊗ H∗(X)), d)

such that

d(u ⊗ x) = 0 and d(v ⊗ x) =
∑

i

(u ⊗ yi )(u ⊗ zi )
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where �(x) = ∑
i yi ⊗ zi for the comultiplication � of H∗(X).

Hereafter, let X denote a rational Poincaré complex of dimension 2n with finite
π1. We specialize the algebraic model in Theorem 3.1. First, for x, y, z ∈ H∗(X), we
define a rational number ε(x, y, z) by

ε(x, y, z) = 〈y∗ � x∗, z〉

where x∗, y∗ ∈ H∗(X) denote the dual cohomology classes of x, y and 〈−,−〉 denotes
the pairing of cohomology and homology classes. Note that

|x | + |y| = |z| whenever ε(x, y, z) �= 0. (3.1)

Next, we choose a basis of H∗(X) as follows. Hereafter, we fix a generator w of
H2n(X) ∼= Q. Let

B0 = {1} ⊂ H0(X) and B2n = {w} ⊂ H2n(X).

We choose any basis Bi of Hi (X) for i = 2, 3, . . . , n − 1, where H1(X) = 0 since
π1(X) is finite. By definition, the cup product

Hi (X) ⊗ H2n−i (X) → H2n(X) ∼= Q, x ⊗ y �→ x � y

is nondegenerate. Then for each x ∈ Bi with i = 2, 3, . . . , n − 1, there is unique
PD(x) ∈ H2n−i (X) satisfying that for y ∈ Bi ,

ε(y,PD(x), w) =
{
1 y = x,

0 y �= x .

We set B2n−i = {PD(x) | x ∈ Bi } for i = 2, 3, . . . , n − 1. Then B2n−i is a basis
of H2n−i (X) for i = 2, 3, . . . , n − 1. Since H2n−1(X) ∼= H1(X) = 0, it remains to
choose a basis for Hn(X). Since the cup product

Hn(X) ⊗ Hn(X) → H2n(X) ∼= Q

is a nondegenerate symmetric bilinear form on Hn(X) for n even and a nondegenerate
anti-symmetric bilinear form on Hn(X) for n odd, we can choose a basis Bn =
{x1, . . . , xbn }of Hn(X) such that thematrix (ε(xi , x j , w))1≤i, j≤bn is a regular diagonal
matrix for n even and of the form⎛

⎜⎜⎜⎜⎜⎜⎝

0 −λ1
λ1 0

. . .

0 −λ bn
2

λ bn
2

0

⎞
⎟⎟⎟⎟⎟⎟⎠
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for n odd, where λ1 · · · λ bn
2

�= 0 and bi = dim Hi (X). We set

B = B0  · · ·  B2n .

Then B is a basis of H∗(X). By definition, we have

�(x) =
∑

x1,x2∈B
ε(x1, x2, x)x1 ⊗ x2.

for x ∈ B, where ε(x1, x2, x) = 0 unless |x1| + |x2| = |x | by (3.1). By Theorem 3.1,
we get:

Theorem 3.2 There is an algebraic model for Map(X , S2n) of the form

(�(V ⊗ H∗(X)), d)

such that for x ∈ B,

d(u ⊗ x) = 0,

d(v ⊗ x) =
∑

x1,x2∈B
ε(x1, x2, x)(u ⊗ x1)(u ⊗ x2).

Now we give an algebraic model for the component Map(X , S2n; k). Note that the
degree zero part of �(V ⊗ H∗(X)) is spanned by u ⊗ w and the unit 1. Let Ik be the
ideal of �(V ⊗ H∗(X)) generated by the element u ⊗ w − k of degree zero. Since
d(u ⊗ w − k) = 0, Ik is an ideal of dga. In particular, we can define the quotient dga
(�(V ⊗ H∗(X))/Ik, d). By [1, Theorem 6.1], we get:

Theorem 3.3 The quotient dga (�(V ⊗ H∗(X))/Ik, d) is an algebraic model for
Map(X , S2n; k).

Remark 3.4 Let Y be a connected CW complex of dimension at most 4n − 2. Then
there is a one-to-one correspondence between H2n(Y ; Z) and path-components of
Map(Y , S2n). For each λ ∈ H2n(Y ; Z), Møller and Raussen [15, Propositions 2.3,
2.4] constructed a minimal model for Map(Y , S2n; λ) by using the rational Postnikov
tower of S2n . We will construct minimal models for Map(X , S2n; k) with k = 0, 1 in
Corollary 4.1 and Proposition 5.2, which are the special cases of Møller and Raussen
[15, Propositions 2.3, 2.4] by Theorem 2.1. However, our minimal models are more
explicit so that we can determine the self-closeness numbers of Map(X , S2n; k)(0)
from them.

We show some properties of ε(x, y, z) that we will use later.

Lemma 3.5 For x, y, z ∈ H∗(X), we have:

ε(x, 1, x) = ε(1, x, x) = 1, ε(x, y, z) = (−1)|x ||y|ε(y, x, z).
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Proof The first identity follows from

ε(x, 1, x) = 〈1 � x∗, x〉 = 1 = 〈x∗ � 1, x〉 = ε(1, x, x).

The second identity follows from

ε(x, y, z) = 〈y∗ � x∗, z〉 = (−1)|x ||y|〈x∗ � y∗, z〉 = ε(y, x, z)

completing the proof. �
Lemma 3.6 For x1, x2, x3, x4 ∈ H∗(X), we have:

∑
y∈B

ε(x1, x2, y)ε(y, x3, x4) =
∑
z∈B

ε(x2, x3, z)ε(x1, z, x4).

Proof By definition, we have

x∗
2 � x∗

1 =
∑
y∈B

ε(x1, x2, y)y∗.

Then we get

〈x∗
3 � x∗

2 � x∗
1 , x4〉 =

∑
y∈B

ε(x1, x2, y)〈x∗
3 � y∗, x4〉 =

∑
y∈B

ε(x1, x2, y)ε(y, x3, x4).

Quite similarly, we can get

〈x∗
3 � x∗

2 � x∗
1 , x4〉 =

∑
z∈B

ε(x2, x3, z)ε(x1, z, x4).

Thus the statement is proved. �

4 Degree zero component

In this section, we compute the self-closeness number of Map(X , S2n; 0)(0) by using
the algebraic model in Theorem 3.3. Let

B̂ = {x ∈ B | 0 < |x | < 2n}.

For a graded set S, let 〈S〉 denote the graded vector space spanned by S. We define a
graded vector space by

W = 〈u ⊗ x, v ⊗ x, v ⊗ w | x ∈ B0  B̂〉 (4.1)
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and a dga (�W , d) by

d(u ⊗ x) = 0,

d(v ⊗ x) =
∑

x1,x2∈B
ε(x1, x2, x)(u ⊗ x1)(u ⊗ x2),

d(v ⊗ w) =
∑

x1,x2∈B̂
ε(x1, x2, w)(u ⊗ x1)(u ⊗ x2)

for x ∈ B0  B̂.
Corollary 4.1 The dga (�W , d) is the minimal model for Map(X , S2n; 0).
Proof Bydefinition, the termu⊗w is not included in anydifferential of the quotient dga
(�(V ⊗ H∗(X))/I0, d) in Theorem 3.3, and so (�(V ⊗ H∗(X))/I0, d) is isomorphic
with (�W , d). Clearly, (�W , d) is minimal, and the statement is proved. �

By Lemmas 2.3 and 2.4, we aim to compute the self-closeness number of (�W , d)

for determining that of Map(X , S2n; 0)(0). Let f : (�W , d) → (�W , d) be a dga
map. We give a matrix representation of f0. For 0 ≤ k < 2n, we equip Bk with any
total order such that

Bk = {xk
1 < · · · < xk

bk
}.

Let Wk denote the degree k part of W . Then we have

W =
(
2n−2⊕
k=0

W2n−k

)
⊕

(
2n⊕

k=0

W4n−k−1

)
.

For 0 ≤ k ≤ 2n − 2, we have

W2n−k = 〈u ⊗ x | x ∈ Bk〉 and W4n−k−1 = 〈v ⊗ x | x ∈ Bk〉.

Moreover, we have W2n−1 = 〈v⊗w〉. For 0 ≤ k ≤ 2n−2, let Ak( f ) denote thematrix
representation of f0 : W2n−k → W2n−k with respect to the ordered basis B2n−k . For
0 ≤ k ≤ 2n, let Bk( f ) denote the matrix representation of f0 : W4n−k−1 → W4n−k−1
with respect to the ordered basis B4n−k−1. Let Ci j denote the (i, j)-entry of a matrix
C . Then by definition, we have

f0(u ⊗ xk
j ) =

bk∑
i=1

Ak( f )i j u ⊗ xk
i and f0(v ⊗ xk

j ) =
bk∑

i=1

Bk( f )i jv ⊗ xk
i

for 1 ≤ j ≤ bk . Obviously, a dga map f is an isomorphism if and only if its linear part
f0 is an isomorphism. Then the following lemma is immediate from the definition of
Ak( f ) and Bk( f ).
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Lemma 4.2 The following are equivalent:

(1) NE(�W , d) ≤ m;
(2) For any dga map f : (�W , d) → (�W , d), if Ak( f ) and Bl( f ) are regular for

2n − m ≤ k ≤ 2n − 2 and 4n − m − 1 ≤ l ≤ 2n, then Ak( f ) and Bl( f ) are
regular for all 0 ≤ k ≤ 2n − 2 and 0 ≤ l ≤ 2n.

For x ∈ Bi and k ≤ i , we also define an bk × bi−k matrix Ek(x) by

Ek(x)pq = ε(xk
p, xi−k

q , x).

By our choice of the basis B and the definition of a rational Poincaré complex, we
have:

Lemma 4.3 The matrix Ek(w) is regular for 0 ≤ k ≤ 2n.

We prove relations among Ak( f ), Bk( f ) and Ek(x).

Lemma 4.4 Let f : (�W , d) → (�W , d) be a dga map. For each xi
p ∈ Bi , we have

Ak( f )Ek(xi
p)Ai−k( f )T =

bi∑
a=1

Bi ( f )ap Ek(xi
a)

where 0 ≤ k ≤ i for i < 2n and 0 < k < 2n for i = 2n.

Proof We only prove the i < 2n case, and the i = 2n case can be proved verbatim,
where the only difference is the range of k. Let i < 2n. The quadratic part of f (d(v ⊗
xi

p)) is

i∑
k=0

bk∑
r=1

bi−k∑
t=1

ε(xk
r , xi−k

t , xi
p) f0(u ⊗ xk

r ) f0(u ⊗ xi−k
t )

=
i∑

k=0

bk∑
q,r=1

bi−k∑
s,t=1

ε(xk
r , xi−k

t , xi
p)Ak( f )qr Ai−k( f )st (u ⊗ xk

q )(u ⊗ xi−k
s )

and the quadratic part of d( f (v ⊗ xi
p)) is

d( f0(v ⊗ xi
p)) = d

⎛
⎝ bi∑

a=1

Bi ( f )apv ⊗ xi
a

⎞
⎠

=
bi∑

a=1

i∑
k=0

bk∑
q=1

bi−k∑
s=1

ε(xk
q , xi−k

s , xa)Bi ( f )ap(u ⊗ xk
q )(u ⊗ xi−k

s ).
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Then since f (d(v ⊗ z)) = d( f (v ⊗ z)) for z ∈ B, we get

bk∑
r=1

bi−k∑
t=1

ε(xk
r , xi−k

t , xi
p)Ak( f )qr Ai−k( f )st =

bi∑
a=1

ε(xk
q , xi−k

s , xa)Bi ( f )ap

for fixed q = 1, . . . , bk , s = 1, . . . , bi−k and k = 0, . . . , i . Thus the statement is
proved. �
Corollary 4.5 Let f : (�W , d) → (�W , d) be a dga map. For 0 ≤ i < 2n, we have

Bi ( f ) = A0( f )Ai ( f )

Proof Clearly, the matrix (Ei (xi
1), . . . , Ei (xi

bi
)) is the bi × bi identity matrix, and so

by Lemma 4.4, we have

Ai ( f )A0( f )T = Ai ( f )(Ei (xi
1), . . . , Ei (xi

bi
))A0( f )T = Bi ( f ).

Since A0( f ) is a 1 × 1 matrix, the proof is finished. �
We will use the following property of d(X).

Lemma 4.6 For x ∈ B, if 2n − |x | < d(X), then |x | > n.

Proof If d(X) = n, we have |x | > 2n − d(X) = n. If d(X) > n, we have |x | ≥
d(X) > n since by definition, Bi = ∅ for 2n − d(X) < i < d(X). In either case we
have |x | > n, completing the proof. �

Now we are ready to compute the self-closeness number of (�W , d).

Proposition 4.7 If X is not primitive, then

NE(�W , d) = d(X).

Proof First, we prove NE(�W , d) ≤ d(X). Let f : (�W , d) → (�W , d) be a dga
map such that f0 is an isomorphism in degrees ≤ d(X). Then Ak( f ) is regular for
2n − k ≤ d(X). By Lemma 4.2, it is sufficient to show that Ak( f ) and Bl( f ) are
regular for 0 ≤ k < 2n and 0 ≤ l ≤ 2n. To this end, we take two steps.
Step 1. By Lemma 4.4, for xi

p = w, we have

Ak( f )Ek(w)A2n−k( f )T = B2n( f )Ek(w) (4.2)

for 0 < k < 2n, where B2n( f ) is a 1×1 matrix. By definition, bd(X) = b2n−d(X) �= 0,
implying Wd(X) and W2n−d(X) are non-trivial. By assumption, A2n−d(X)( f ) is regular.
Moreover, since 2n − d(X) ≤ d(X), Ad(X)( f ) is regular too. Then the 1 × 1 matrix
B2n( f ) is regular by Lemma 4.3 and (4.2) for k = d(X). This implies that Ak( f ) is
regular for 0 < k < 2n too by Lemma 4.3 and (4.2).
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Step 2. By assumption, there is 0 < i < 2n such that Q Hi (X) �= Hi (X), implying
E j (xi

p) is non-trivial for some xi
p ∈ B j and 0 < j < i . This also implies that W2n−i ,

W2n− j and W2n−i+ j are non-trivial. On the other hand, by Lemma 4.4, we have

A j ( f )E j (xi
p)Ai− j ( f )T =

bi∑
a=1

Bi ( f )ap E j (xi
a).

We have seen in Step 1 that both A j ( f ) and Ai− j ( f ) are regular since 0 < j, i − j <

2n. Then A j ( f )E j (xi
p)Ai− j ( f )T is non-trivial, implying that Bi ( f ) is non-trivial too.

Then since Bi ( f ) is non-trivial and A0( f ) is a 1× 1 matrix, it follows from Corollary
4.5 that A0( f ) is regular. Thus we have obtained that Ak( f ) is regular for 0 ≤ k < 2n
by Step 1. Moreover, by Corollary 4.5, Bl( f ) is regular for 0 ≤ l < 2n too, and so we
obtained that Bl( f ) is regular for 0 ≤ l ≤ 2n. Thus we obtain NE(�W , d) ≤ d(X).

Next, we prove NE(�W , d) ≥ d(X). Consider a self-map of a commutative graded
algebra g : �W → �W such that g(v ⊗ w) = 0, g(v ⊗ x) = 0 and

g(u ⊗ x) =
{

u ⊗ x 2n − |x | < d(X),

0 2n − |x | ≥ d(X)

for x ∈ B0  B̂. Then g0 is an isomorphism in degrees < d(X) and trivial in degree
d(X), where Wd(X) is non-trivial. By definition, we have

dg(u ⊗ x) = 0 = g(d(u ⊗ x))

for x ∈ B0  B̂. For x ∈ B, d(v ⊗ x) is a linear combination of (u ⊗ x1)(u ⊗ x2) such
that |x1| + |x2| = |x |. If 2n − |x1| < d(X) and 2n − |x2| < d(X), we have |x | =
|x1| + |x2| > 2n by Lemma 4.6, which is impossible. Thus either 2n − |x1| ≥ d(X)

or 2n − |x2| ≥ d(X), implying that

dg(v ⊗ x) = 0 = g(d(v ⊗ x))

for x ∈ B. Thus g is a dga map, implying NE(�W , d) ≥ d(X). Therefore the proof
is finished. �

Proposition 4.8 If X is primitive, then

NE(�W , d) = 2n.

Proof Let f : (�W , d) → (�W , d) be a dga map. Suppose that f0 is an isomor-
phism in degrees ≤ 2n. Then Ak( f ) and B2n( f ) are regular for 0 ≤ k < 2n. So by
Corollary 4.5, Bk( f ) is regular for 0 ≤ k < 2n too. Thus by Lemma 4.2, we obtain
NE((�W , d)) ≤ 2n.
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Consider a self-map of a commutative graded algebra g : �W → �W given by

g(u ⊗ x) =
{
0 |x | = 0,

u ⊗ x 0 < |x | < 2n
and g(v ⊗ x) =

{
0 0 ≤ |x | < 2n,

v ⊗ x |x | = 2n.

Then we have

dg(u ⊗ x) = 0 = g(d(u ⊗ x))

for 0 ≤ |x | < 2n. Since Q Hi (X) = Hi (X) for i < 2n, we have ε(x1, x2, x) = 0 for
0 ≤ |x | < 2n unless x1 = 1 or x2 = 1. Then we have

d(v ⊗ x) =
{

(u ⊗ 1)2 |x | = 0,

2(u ⊗ 1)(u ⊗ x) 0 < |x | < 2n,

implying d(g(v ⊗ x)) = 0 = g(d(v ⊗ x)) for 0 ≤ |x | < 2n. By definition, d(v ⊗ w)

is a linear combination of (u ⊗ x1)(u ⊗ x2) for 0 < |x1|, |x2| < 2n. Then we have

dg(v ⊗ w) = d(v ⊗ w) = g(d(v ⊗ w)).

Thus g is a dga map. Clearly, g0 is an isomorphism in degrees < 2n and trivial in
degree 2n, where W2n = 〈u ⊗ 1〉 is non-trivial. Thus we get NE(�W , d) ≥ 2n,
completing the proof. �

5 Degree one component

In this section, we determine the self-closeness number of Map(X , S2n; 1)(0). To this
end, we take two steps. In the first step, we construct the minimal model (�W , d) for
Map(X , S2n; 1)(0) by using its algebraic model in Theorem 3.3, where W concentrates
in degrees ≤ 4n − 1. If there is an isomorphism of dgas

(�U , d) ⊗ (�(s), 0)
∼=−→ (�W , d)

where U is the degree < 4n − 1 part of W and |s| = 4n − 1, then the self-closeness
number of (�W , d) turns out to be 4n − 1. To prove the existence of such an iso-
morphism, it is sufficient to show that a certain element in (�U , d) of degree 4n is a
coboundary. In the second step, we show that the sum of the above element of degree
4n and a certain coboundary belongs to a vector subspace of �U having a direct sum
decomposition. Then we show that the above sum is trivial in each direct summand,
implying that the above element of degree 4n turns out to be a coboundary.
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5.1 Minimal model

The algebraicmodel forMap(X , S2n; 1) in Theorem 3.3 is notminimal, unlikely to the
degree zero component in the previous section. Then we construct a minimal model
for Map(X , S2n; 1)(0) from it. Let W be the graded vector space as in (4.1). We define
a dga (�W , d) by

d(u ⊗ x) = 0, (5.1)

d(v ⊗ x) =
∑

x1,x2∈B
ε(x1, x2, x)(u ⊗ x1)(u ⊗ x2), (5.2)

d(v ⊗ w) = 2(u ⊗ 1) +
∑

x1,x2∈B̂
ε(x1, x2, w)(u ⊗ x1)(u ⊗ x2) (5.3)

for x ∈ B0  B̂, which is different from the one in the previous section. Quite similarly
to Corollary 4.1, we can see that the dga (�W , d) is isomorphic with the quotient dga
(�(V ⊗ H∗(X))/I1, d) in Theorem 3.3, and so we get:

Lemma 5.1 The dga (�W , d) is an algebraic model for Map(X , S2n; 1)(0).
By definition, the dga (�W , d) is not minimal, and so we construct a minimal

model for Map(X , S2n; 1)(0) from it. Consider an element

η = d(v ⊗ w) − 2(u ⊗ 1)

of �W . Then we have dη = 0. We define

v � x = (v ⊗ w)(u ⊗ x) − v ⊗ x and v � 1 = v ⊗ 1 − 1

4
(v ⊗ w)(2(u ⊗ 1) − η)

for x ∈ B̂. Then by (5.1), (5.2) and (5.3), we have

d(v � x) = η(v ⊗ x) −
∑

x1,x2∈B̂
ε(x1, x2, x)(u ⊗ x1)(u ⊗ x2), (5.4)

d(v � 1) = 1

4
η2 (5.5)

for x ∈ B̂. Consider a vector subspace

W = 〈u ⊗ x, v � x, v � 1 | x ∈ B̂〉

of�W . Then since η ∈ �W , it follows from (5.1), (5.4) and (5.5) that we get a subdga
(�W , d) of (�W , d).

Proposition 5.2 The dga (�W , d) is a minimal model for Map(X , S2n; 1)(0).
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Proof By definition, (�W , d) is minimal, and so it remains to show that the inclusion
(�W , d) → (�W , d) is a quasi-isomorphism. Consider a vector subspace

Ŵ = 〈v ⊗ w, 2(u ⊗ 1) + η〉

of �W . Then since d(v ⊗ w) = 2(u ⊗ 1) + η, we get a contractible subdga (�Ŵ , d)

of (�W , d), and so we get a dga map

f : (�W , d) ⊗ (�Ŵ , d) → (�W , d), x ⊗ y �→ xy.

Clearly, f0 is an isomorphism, hence so is f . Thus we may identify the inclusion
(�W , d) → (�W , d)with the inclusion of (�W , d) into the first factor of (�W , d)⊗
(�Ŵ , d), completing the proof. �

By Lemmas 2.3 and 2.4, we aim to compute the self-closeness number of (�W , d)

for determining that ofMap(X , S2n; 1)(0). LetU be the vector subspace of W spanned
by elements of degree ≤ 4n − 2. Then we have

W = U ⊕ 〈v � 1〉.

By (5.1) and (5.4), we get a subdga (�U , d) of (�W , d).

Proposition 5.3 There is an isomorphism

(�U , d) ⊗ (�(s), 0)
∼=−→ (�W , d)

where |s| = 4n − 1.

Assuming Proposition 5.3, we determine NE(�W , d).

Proposition 5.4 NE(�W , d) = 4n − 1.

Proof The largest degree of elements of W is 4n − 1, and so NE(�W , d) ≤ 4n − 1.
By Proposition 5.3, it is easy to construct a dga map f : (�W , d) → (�W , d) such
that f0|U is an isomorphism but f0 itself is not an isomorphism. Then NE(�W , d) ≥
4n − 1, completing the proof. �

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 Combine Propositions 4.7, 4.8 and 5.4. �
It remains to prove Proposition 5.3. Suppose that there is a decomposable element

ζ of �U such that
1

4
η2 = dζ. (5.6)
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Then we can define a dga map

f : (�U , d) ⊗ (�(s), 0) → (�W , d)

by f (x ⊗ 1) = x for x ∈ �U and f (1⊗ s) = v � 1− ζ . Indeed, d f (x ⊗ 1) = dx =
f (dx ⊗ 1) since dx ∈ �U , and

ds = 0 = d(v � 1) − 1

4
η2 = d(v � 1 − ζ )

by (5.5). Since ζ is decomposable, f0 is an isomorphism, and so f is an isomorphism
too. Thus Proposition 5.3 is proved by the following lemma.

Lemma 5.5 There is a decomposable element ζ of �U satisfying (5.6).

5.2 The vector spaceU

To prove Lemma 5.5, we define a vector subspace

U = 〈(u ⊗ x1)(u ⊗ x2)(u ⊗ x3) | |x1| + |x2| + |x3| = 2n〉

of �U . First, we will find an element ξ of U and a decomposable element α of �U
such that

η2 = ξ + dα. (5.7)

For each x ∈ Bi ⊂ B̂, there is a unique element x̂ ∈ B such that ε(x, x̂, w) �= 0,
where |x | + |x̂ | = 2n. We abbreviate ε(x, x̂, w) by ε(x). Since ˆ̂x = x , we have

η =
∑
x∈B̂

ε(x)(u ⊗ x)(u ⊗ x̂).

We define

ξ =
∑

x1,x2,x3∈B̂
ε(x3)ε(x1, x2, x3)(u ⊗ x1)(u ⊗ x2)(u ⊗ x̂3). (5.8)

Then ξ is a decomposable element of �U .

Lemma 5.6 There is a decomposable element α ∈ �U satisfying (5.7).

Proof Let

α =
∑
x∈B̂

ε(x)(v � x)(u ⊗ x̂)
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Then α is a decomposable element of �U , and by (5.1) and (5.4) we have

dα = d

⎛
⎝∑

x∈B̂
ε(x)(v � x)(u ⊗ x̂)

⎞
⎠

=
∑
x∈B̂

ε(x)(d(v � x))(u ⊗ x̂)

=
∑
x∈B̂

ε(x)

⎛
⎝η(u ⊗ x)(u ⊗ x̂) −

∑
x1,x2∈B̂

ε(x1, x2, x)(u ⊗ x1)(u ⊗ x2)(u ⊗ x̂)

⎞
⎠

= η2 − ξ.

So the statement is proved. �
Next we define a decomposable element μ ∈ �U such that dμ ∈ U . Let

B− = {x ∈ B | 0 < |x | < n}.

For x ∈ B−, let

λ(x) = 3(n − |x |)
n

ε(x̂), μ(x) = (−1)|x ||x̂ |(v � x)(u ⊗ x̂) − (v � x̂)(u ⊗ x)

and let

μ =
∑

x∈B−
λ(x)μ(x).

By (5.1) and (5.4) we have

dμ(x) = d
(
(−1)|x ||x̂ |(v � x)(u ⊗ x̂) − (v � x̂)(u ⊗ x)

)
= (−1)|x ||x̂ | (d(v � x)) (u ⊗ x̂) − (

d(v � x̂)
)
(u ⊗ x)

=
∑

x1,x2∈B̂
ε(x1, x2, x̂)(u ⊗ x1)(u ⊗ x2)(u ⊗ x)

− (−1)|x ||x̂ | ∑
x1,x2∈B̂

ε(x1, x2, x)(u ⊗ x1)(u ⊗ x2)(u ⊗ x̂). (5.9)

Then it is easy to see that dμ(x) belongs to U , hence so does dμ too.

Proposition 5.7 There is an equality

ξ = dμ.

We prove Lemma 5.5 by assuming Proposition 5.7.
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Proof of Lemma 5.5 Let ζ = 1
4 (α + μ). Then by Lemma 5.6 and Proposition 5.7, ζ is

a decomposable element of �U and satisfies (5.7). �
We devote the rest of this paper to prove Proposition 5.7. Since both ξ and dμ

belong to U , we need to understand the structure of the vector space U . We introduce
a total order on B̂. First, we equip Bi with any total order for each 0 < i ≤ n. Next,
for each n < i < 2n we equip Bi with a total order such that x < y if and only if
x̂ < ŷ. Finally, we extend to a total order on B̂ such that |x | < |y| implies x < y. We
write

B− = {θ1 > · · · > θm}.

Then Bn+1  · · ·  B2n−2 = {θ̂1, . . . , θ̂m}. Let F0 = Bn , and for 1 ≤ i ≤ m, let
Fi = Fi−1  {θi , θ̂i }. Then we get a filtration

Bn = F0 ⊂ F1 ⊂ · · · ⊂ Fm = B̂.

Since θm < · · · < θ1 < x for all x ∈ Bn  · · ·  B2n−2, the least element of Fi is θi

for 1 ≤ i ≤ m.
We introduce a filtration of U by using the above filtration of B̂. For 0 ≤ i ≤ m,

we define a linear map fi : U → U by

fi ((u ⊗ x1)(u ⊗ x2)(u ⊗ x3)) =
{

(u ⊗ x1)(u ⊗ x2)(u ⊗ x3) x1, x2, x3 ∈ Fi ,

0 otherwise.

Let Ui = Im fi for 0 ≤ i ≤ m.

Lemma 5.8 The vector space U0 is trivial.

Proof Let (u ⊗x1)(u ⊗x2)(u ⊗x3) be an element of U . By definition, f0((u ⊗x1)(u ⊗
x2)(u⊗x3)) �= 0 if and only if x1, x2, x3 ∈ F0 = Bn , implying |x1|+|x2|+|x3| = 3n.
This is impossible because |x1| + |x2| + |x3| = 2n, and so the statement is proved. �
It is easy to see that fm is the identity map onU sinceFm = B̂. Then we get a filtration

0 = U0 ⊂ U1 ⊂ · · · ⊂ Um = U .

For 1 ≤ i ≤ m, let

Vi = 〈(u ⊗ x1)(u ⊗ x2)(u ⊗ θi ) ∈ U | x1, x2 ∈ Fi 〉

be a vector subspace of U .
Lemma 5.9 There is an equality

U = V1 ⊕ V2 ⊕ · · · ⊕ Vm .

123



440 Y. Tong

Proof It is sufficient to show Ui = Ui−1 ⊕ Vi for 1 ≤ i ≤ m. By definition, the
vector space Ui is the direct sum of Ui−1 and a vector subspace of U spanned by
(u ⊗ x1)(u ⊗ x2)(u ⊗ x3) such that x1, x2 ∈ Fi and x3 = θi or θ̂i . If x3 = θ̂i , then

|x1| + |x2| = 2n − |x3| = |θi |

implying x1, x2 < θi . Then we get x1, x2 /∈ Fi , which is impossible. Clearly, the
x3 = θi case is possible, completing the proof. �

5.3 The derivation@i

For 1 ≤ i ≤ m, let pi : U → Vi denote the projection. Then by Lemma 5.9, in order
to prove Proposition 5.7, it is sufficient to show

pi (ξ − dμ) = 0 (5.10)

for 1 ≤ i ≤ m. To this end, we introduce the derivation ∂i . Let

Û = 〈u ⊗ x | x ∈ B̂〉.

Then U is a vector subspace of�Û . For 1 ≤ i ≤ m, we define a derivation ∂i : �Û →
�Û by

∂i (u ⊗ x) =
{
1 x = θi ,

0 x �= θi

for x ∈ B̂ and the Leibuniz rule

∂i (ab) = ∂i (a)b + (−1)|a|a∂i (b)

for a, b ∈ �Û . The following is immediate.

Lemma 5.10 For a non-trivial element (u ⊗ x1)(u ⊗ x2)(u ⊗ θi ) ∈ Vi , we have

∂i ((u ⊗ x1)(u ⊗ x2)(u ⊗θi )) =

⎧⎪⎨
⎪⎩

(−1)|x1|+|x2|(u ⊗ x1)(u ⊗ x2) x1, x2 �= θi ,

2(u ⊗ x1)(u ⊗ θi ) x1 �= θi , x2 = θi ,

3(u ⊗ θi )
2 x1, x2 = θi .

Proof Since (u ⊗ x1)(u ⊗ x2)(u ⊗ θi ) ∈ Vi , we have |x1| + |x2| + |θi | = 2n.
(1) For x1, x2 �= θi ,

∂i ((u ⊗ x1)(u ⊗ x2)(u ⊗ θi )) = (−1)|u⊗x1|+|u⊗x2|(u ⊗ x1)(u ⊗ x2)∂i (u ⊗ θi )

= (−1)|x1|+|x2|(u ⊗ x1)(u ⊗ x2).
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(2) For x �= θi , x2 = θi , |u ⊗ θi | is even since (u ⊗ x1)(u ⊗ x2)(u ⊗ θi ) �= 0. This also
implies that |x1| is even since |x1| = 2n − |x2| − |θi | = 2n − 2|θi |. Then we have

∂i ((u⊗x1)(u⊗x2)(u⊗θi )) = (−1)|u⊗x1|(u ⊗ x1)∂i

(
(u ⊗ θi )

2
)
=2(u ⊗ x1)(u⊗θi ).

(3) For x1, x2 = θi , similarly to the above, we have |θi | even. Then we get

∂i ((u ⊗ x1)(u ⊗ x2)(u ⊗ θi )) = 3(u ⊗ θi )
2.

Thus the proof is finished. �
The derivation ∂i has the following pleasant property.

Lemma 5.11 For 1 ≤ i ≤ m, the derivation ∂i is injective on Vi ⊂ �Û .

Proof Note that Bi = {(u ⊗ x1)(u ⊗ x2)(u ⊗ θi ) ∈ U | x1, x2 ∈ Fi } is a basis of Vi .
Then by Lemma 5.10, ∂i a for a ∈ Bi are linearly independent, proving the statement.

In order to show (5.10), it is sufficient to prove

∂i (pi (ξ − dμ)) = 0 (5.11)

for 1 ≤ i ≤ m by Lemma 5.11. So we describe ∂i pi (ξ) and ∂i pi (dμ) respectively. To
this end, we need the following properties of ε(x, y, z).

Lemma 5.12 For x ∈ B−, we have

ε(x) = 1 and ε(x̂) = (−1)|x ||x̂ |.

Proof The first equality follows immediately from the definition. Since ˆ̂x = x , we
have

ε(x̂) = ε(x̂, x, w) = (−1)|x̂ ||x |ε(x, x̂, w) = (−1)|x̂ ||x |ε(x)

by Lemma 3.5. Then we get the second equality. �
Lemma 5.13 For x1, x2, x3 ∈ B̂, we have the following:

(1) ε(x1, x2, x̂3)(u ⊗ x1)(u ⊗ x2)(u ⊗ x3) = ε(x2, x1, x̂3)(u ⊗ x2)(u ⊗ x1)(u ⊗ x3).
(2) For 1 ≤ i ≤ m, pi (ε(x1, x2, θi )(u ⊗ x1)(u ⊗ x2)(u ⊗ θ̂i )) = 0.
(3) ε(x̂3)ε(x1, x2, x̂3) = ε(x1)ε(x2, x3, x̂1).
(4) If at least two of x1, x2, x3 are of the same degree and

ε(x1, x2, x̂3)(u ⊗ x1)(u ⊗ x2)(u ⊗ x3) �= 0,

then |x1|, |x2|, |x3| are even.

123



442 Y. Tong

Proof (1) The equality follows at once from Lemma 3.5.
(2) By (3.1), |x1|+|x2| = |θi |whenever ε(x1, x2, θi ) �= 0, which implies that x1, x2 /∈
Fi . Thus pi (ε(x1, x2, θi )(u ⊗ x1)(u ⊗ x2)(u ⊗ θ̂i )) = 0 by definition.
(3) By Lemma 3.6, we have

ε(x̂3)ε(x1, x2, x̂3) = ε(x̂3, x3, w)ε(x1, x2, x̂3)

= ε(x1, x̂1, w)ε(x2, x3, x̂1)

= ε(x1)ε(x2, x3, x̂1)

where ˆ̂x3 = x3.
(4) We only prove the |x1| = |x2| case because other cases are proved quite similarly.
Since ε(x1, x2, x̂3) �= 0, we have |x1| + |x2| = |x̂3| = 2n − |x3| by (3.1). Since
(u ⊗ x1)(u ⊗ x2)(u ⊗ x3) = (u ⊗ x1)2(u ⊗ x3) �= 0, |u ⊗ x1| = 2n − |x1| is even.
Then we get that |x1|, |x2|, |x3| are even too. �
We prove a lemma which we are going to use.

Lemma 5.14 For x2 ∈ Fi−1, we have

∂i pi

⎛
⎜⎝ ∑

x1,x ′
1∈B̂

ε(x1, x ′
1, x̂2)(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ x2)

⎞
⎟⎠

= 2
∑

x1∈Fi

ε(θi , x1, x̂2)(u ⊗ x1)(u ⊗ x2).

Proof By definition, pi ((u ⊗ x1)(u ⊗ x ′
1)(u ⊗ x2)) �= 0 if and only if x1, x ′

1 ∈ Fi and
at least one of x1, x ′

1 is θi . Then we have

pi

⎛
⎜⎝ ∑

x1,x ′
1∈B̂

ε(x1, x ′
1, x̂2)(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ x2)

⎞
⎟⎠

=
∑

x1,x ′
1∈Fi

ε(x1, x ′
1, x̂2)(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ x2)

= ε(θi , θi , x̂2)(u ⊗ θi )
2(u ⊗ x2)

+
∑

x1∈Fi−1{θ̂i }
ε(x1, θi , x̂2)(u ⊗ x1)(u ⊗ θi )(u ⊗ x2)

+
∑

x ′
1∈Fi−1{θ̂i }

ε(θi , x ′
1, x̂2)(u ⊗ θi )(u ⊗ x ′

1)(u ⊗ x2).
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where the last equality holds because Fi = Fi−1  {θi , θ̂i }. By Lemma 5.13 (1),

∑
x1∈Fi−1{θ̂i }

ε(x1, θi , x̂2)(u ⊗ x1)(u ⊗ θi )(u ⊗ x2)

+
∑

x ′
1∈Fi−1{θ̂i }

ε(θi , x ′
1, x̂2)(u ⊗ θi )(u ⊗ x ′

1)(u ⊗ x2)

=
∑

x1∈Fi−1{θ̂i }
ε(θi , x1, x̂2)(u ⊗ θi )(u ⊗ x1)(u ⊗ x2)

+
∑

x ′
1∈Fi−1{θ̂i }

ε(θi , x ′
1, x̂2)(u ⊗ θi )(u ⊗ x ′

1)(u ⊗ x2)

= 2
∑

x1∈Fi−1{θ̂i }
ε(θi , x1, x̂2)(u ⊗ θi )(u ⊗ x1)(u ⊗ x2).

Then since x2 ∈ Fi−1, we have

∂i pi

⎛
⎜⎝ ∑

x1,x ′
1∈B̂

ε(x1, x ′
1, x̂2)(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ x2)

⎞
⎟⎠

= ∂i

(
ε(θi , θi , x̂2)(u ⊗ θi )

2(u ⊗ x2)
)

+ 2∂i

⎛
⎝ ∑

x1∈Fi−1{θ̂i }
ε(θi , x1, x̂2)(u ⊗ θi )(u ⊗ x1)(u ⊗ x2)

⎞
⎠

= 2ε(θi , θi , x̂2)(u ⊗ θi )(u ⊗ x2)

+ 2
∑

x1∈Fi−1{θ̂i }
ε(θi , x1, x̂2)(u ⊗ θi )(u ⊗ x1)(u ⊗ x2)

= 2
∑

x1∈Fi

ε(θi , x1, x̂2)(u ⊗ θi )(u ⊗ x1)(u ⊗ x2)

where the second equality holds by Lemma 5.10 and the last equality holds because
Fi = Fi−1  {θi , θ̂i }. Thus the proof is finished. �

First, we describe ∂i pi (ξ).

Lemma 5.15 For 1 ≤ i ≤ m, we have

∂i pi (ξ) = ε(θ̂i )∂i pi (dμ(θi )) + 2
∑

x1∈Fi
x2∈Fi−1

ε(x1, x2, θ̂i )(u ⊗ x1)(u ⊗ x2).
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Proof By (5.8) we have

∂i pi (ξ) = ∂i pi

⎛
⎜⎝ ∑

x1,x ′
1,x2∈B̂

ε(x2)ε(x1, x ′
1, x2)(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ x̂2)

⎞
⎟⎠

= ∂i pi

⎛
⎜⎝ ∑

x1,x ′
1,x2∈B̂

ε(x̂2)ε(x1, x ′
1, x̂2)(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ x2)

⎞
⎟⎠

=
∑

x2∈Fi

⎛
⎜⎝∂i pi

⎛
⎜⎝ ∑

x1,x ′
1∈B̂

ε(x̂2)ε(x1, x ′
1, x̂2)(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ x2)

⎞
⎟⎠

⎞
⎟⎠

where the second equality holds because ˆ̂x2 = x2 and the last equality holds by the
definition of pi . Since Fi = Fi−1  {θi , θ̂i }, we have

∑
x2∈Fi

⎛
⎜⎝∂i pi

⎛
⎜⎝ ∑

x1,x ′
1∈B̂

ε(x̂2)ε(x1, x ′
1, x̂2)(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ x2)

⎞
⎟⎠

⎞
⎟⎠

=
∑

x2∈Fi−1

ε(x̂2)

⎛
⎜⎝∂i pi

⎛
⎜⎝ ∑

x1,x ′
1∈B̂

ε(x1, x ′
1, x̂2)(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ x2)

⎞
⎟⎠

⎞
⎟⎠

+ ε(θ̂i )∂i pi

⎛
⎜⎝ ∑

x1,x ′
1∈B̂

ε(x1, x ′
1, θ̂i )(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ θi )

⎞
⎟⎠

+ ε(θi )∂i pi

⎛
⎜⎝ ∑

x1,x ′
1∈B̂

ε(x1, x ′
1, θi )(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ θ̂i )

⎞
⎟⎠

=
∑

x2∈Fi−1

ε(x̂2)

⎛
⎜⎝∂i pi

⎛
⎜⎝ ∑

x1,x ′
1∈B̂

ε(x1, x ′
1, x̂2)(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ x2)

⎞
⎟⎠

⎞
⎟⎠

+ ε(θ̂i )∂i pi

⎛
⎜⎝ ∑

x1,x ′
1∈B̂

ε(x1, x ′
1, θ̂i )(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ θi )

⎞
⎟⎠

123



Self-closeness numbers of rational... 445

where the last equality holds by Lemma 5.13 (2). By Lemma 5.14, we have

∑
x2∈Fi−1

ε(x̂2)

⎛
⎜⎝∂i pi

⎛
⎜⎝ ∑

x1,x ′
1∈B̂

ε(x1, x ′
1, x̂2)(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ x2)

⎞
⎟⎠

⎞
⎟⎠

= 2
∑

x1∈Fi
x2∈Fi−1

ε(x̂2)ε(θi , x1, x̂2)(u ⊗ x1)(u ⊗ x2).

By Lemmas 5.12 and 5.13 (3), we have

ε(x̂2)ε(θi , x1, x̂2) = ε(θi )ε(x1, x2, θ̂i ) = ε(x1, x2, θ̂i )

for x1, x2 ∈ B̂. This implies that

∑
x2∈Fi−1

ε(x̂2)

⎛
⎜⎝∂i pi

⎛
⎜⎝ ∑

x1,x ′
1∈B̂

ε(x1, x ′
1, x̂2)(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ x2)

⎞
⎟⎠

⎞
⎟⎠

= 2
∑

x1∈Fi
x2∈Fi−1

ε(x1, x2, θ̂i )(u ⊗ x1)(u ⊗ x2). (5.12)

On the other hand, by Lemma 5.13 (2), we get

pi

⎛
⎜⎝ ∑

x1,x ′
1∈B̂

ε(x1, x ′
1, θ̂i )(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ θi )

⎞
⎟⎠

= pi

⎛
⎜⎝ ∑

x1,x ′
1∈B̂

ε(x1, x ′
1, θ̂i )(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ θi )

⎞
⎟⎠

− (−1)|θi ||θ̂i | pi

⎛
⎜⎝ ∑

x1,x ′
1∈B̂

ε(x1, x ′
1, θi )(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ θ̂i )

⎞
⎟⎠

= pi (dμ(θi )) (5.13)

where the last equality holds by (5.9). Thus the proof is finished by combining (5.12)
and (5.13). �
Hereafter, we write

α(x1, x2) = ε(x1, x2, θ̂i )(u ⊗ x1)(u ⊗ x2)(u ⊗ θi ). (5.14)

Let ∂i pi (dμ(θi )) = ∑
x1≤x2∈Fi

â(x1, x2)(u ⊗ x1)(u ⊗ x2) for â(x1, x2) ∈ Q.
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Lemma 5.16 There are equalities

â(x1, x2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε(x1, x2, θ̂i ) θi < x1 = x2 ∈ Fi ,

4ε(x1, x2, θ̂i ) θi = x1 < x2 ∈ Fi ,

(−1)|x1|+|x2|2ε(x1, x2, θ̂i ) θi < x1 < x2 ∈ Fi ,

3ε(x1, x2, θ̂i ) θi = x1 = x2 ∈ Fi .

Proof We have

pi (dμ(θi )) =
∑

x1,x2∈Fi

α(x1, x2)

=
∑

θi <x1=x2∈Fi

α(x1, x2) +
∑

θi <x1<x2∈Fi

(α(x1, x2) + α(x2, x1))

+
∑

θi =x1<x2∈Fi

(α(x1, x2) + α(x2, x1)) +
∑

θi =x1=x2∈Fi

α(x1, x2).

By Lemma 5.13 (1), we have α(x1, x2) = α(x2, x1). By Lemma 5.10, we can make
the following calculations, in which it suffices to assume α(x1, x2) �= 0.
(1) For θi < x1 = x2, |x1|, |x2|, |θi | are even by Lemma 5.13 (4). Then we have

∂iα(x1, x2) = (−1)|x1|+|x2|ε(x1, x2, θ̂i )(u ⊗ x1)(u ⊗ x2)

= ε(x1, x2, θ̂i )(u ⊗ x1)(u ⊗ x2).

(2) For θi = x1 < x2, |x1|, |x2|, |θi | are even by Lemma 5.13 (4). Then we have

∂i (α(x1, x2) + α(x2, x1)) = 2∂i (α(x1, x2))

= 2ε(x1, x2, θ̂i )∂i

(
(u ⊗ θi )

2(u ⊗ x2)
)

= 4ε(x1, x2, θ̂i )(u ⊗ θi )(u ⊗ x2)

= 4ε(x1, x2, θ̂i )(u ⊗ x1)(u ⊗ x2).

(3) For θi < x1 < x2,

∂i (α(x1, x2) + α(x2, x1)) = 2∂i (α(x1, x2))

= (−1)|x1|+|x2|2ε(x1, x2, θ̂i )(u ⊗ x1)(u ⊗ x2).

(4) For θi = x1 = x2,

∂iα(x1, x2) = 3ε(x1, x2, θ̂i )(u ⊗ x1)(u ⊗ x2).

Thus the statement is proved. �
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Note that we can write

∂i pi (ξ) =
∑

x1≤x2∈Fi

a(x1, x2)(u ⊗ x1)(u ⊗ x2).

for a(x1, x2) ∈ Q. We compute a(x1, x2) explicitly in order to compare them with the
coefficients of (u ⊗ x1)(u ⊗ x2) in ∂i pi (dμ) later, for all x1 ≤ x2 ∈ Fi .

Proposition 5.17 For x1, x2 ∈ Fi , we have

a(x1, x2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
3ε(x1, x2, θ̂i ) θi < x1 = x2,

6ε(x1, x2, θ̂i ) θi = x1 < x2,

6ε(x1, x2, θ̂i ) θi < x1 < x2,

3ε(x1, x2, θ̂i ) θi = x1 = x2.

Proof By Lemmas 5.11, 5.15 and 5.16, pi (ξ) is a linear combination of α(x1, x2),
where α(x1, x2) is as in (5.14). Thus it suffices to assume α(x1, x2) �= 0. By Lemma
5.10, we can make the following calculations.
(1) For θi < x1 = x2, |θi | is even by Lemma 5.13 (4). Then since ε(θ̂i ) = 1 by Lemma
5.12, we have

a(x1, x2) = ε(θ̂i )â(x1, x2) + 2ε(x1, x2, θ̂i ) = 3ε(x1, x2, θ̂i ).

(2) For θi = x1 < x2, similarly to the above, we get ε(θ̂i ) = 1. Then we have

a(x1, x2) = ε(θ̂i )â(x1, x2) + 2ε(x1, x2, θ̂i ) = 6ε(x1, x2, θ̂i ).

(3) For θi < x1 < x2, we get ε(θ̂i ) = (−1)|θi ||θ̂i | = (−1)|θ̂i | = (−1)|x1|+|x2| by
Lemma 5.12 and (3.1). Then by Lemma 3.5, we have

a(x1, x2) = ε(θ̂i )â(x1, x2) + 2ε(x1, x2, θ̂i ) + (−1)|u⊗x1||u⊗x2|2ε(x2, x1, θ̂i )

= (2((−1)|x1|+|x2|)2 + 2 + 2)ε(x1, x2, θ̂i )

= 6ε(x1, x2, θ̂i ).

(4) For θi = x1 = x2, similarly to the θi < x1 = x2 case, we get ε(θ̂i ) = 1. Then we
have

a(x1, x2) = ε(θ̂i )â(x1, x2) = 3ε(x1, x2, θ̂i ).

Thus the proof is finished. �
Next, we describe ∂i pi (dμ). We extend the definition of λ(x) to B̂−B− as follows.

Let λ(x) = −λ(x̂) for n < |x | < 2n and λ(x) = 0 for |x | = n.
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Lemma 5.18 For 1 ≤ i ≤ m, we have

∂i pi (dμ) = λ(θi )∂i pi (dμ(θi ))

+ 2
∑

x1∈Fi
x2∈Fi−1

(−1)|x2||x̂2|λ(x2)ε(x1, x2, θ̂i )(u ⊗ x1)(u ⊗ x2).

Proof By definition, we have

∂i pi (dμ) = ∂i pi

⎛
⎝ ∑

x2∈B−
λ(x2)dμ(x2)

⎞
⎠

=
∑

x2∈Fi ∩B−
λ(x2)∂i pi (dμ(x2))

= λ(θi )∂i pi (dμ(θi )) +
∑

x2∈Fi−1∩B−
λ(x2)∂i pi (dμ(x2)).

where the second equality holds by the definition of pi and the last equality holds
because Fi ∩ B− = (Fi−1 ∩ B−)  {θi }. Let x2 ∈ Fi−1 ∩ B−, and let

A(x2) =
∑

x1,x ′
1∈B̂

ε(x1, x ′
1, x̂2)(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ x2),

B(x2) =
∑

x1,x ′
1∈B̂

ε(x1, x ′
1, x2)(u ⊗ x1)(u ⊗ x ′

1)(u ⊗ x̂2).

Then dμ(x2) = A(x2) − (−1)|x2||x̂2| B(x2) by (5.9). Since x2, x̂2 ∈ Fi−1, by Lemma
5.14, we have

∂i pi (A(x2)) = 2
∑

x1∈Fi

ε(θi , x1, x̂2)(u ⊗ x1)(u ⊗ x2),

∂i pi (B(x2)) = 2
∑

x1∈Fi

ε(θi , x1, x2)(u ⊗ x1)(u ⊗ x̂2).

Then we have

∂i pi (dμ(x2)) = ∂i pi

(
A(x2) − (−1)|x2||x̂2|B(x2)

)
= 2

∑
x1∈Fi

(
ε(θi , x1, x̂2)(u ⊗ x1)(u ⊗ x2)

− (−1)|x2||x̂2|ε(θi , x1, x2)(u ⊗ x1)(u ⊗ x̂2)
)

.
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By Lemmas 5.12 and 5.13 (3), we have

ε(θi , x1, x̂2) = ε(θi )

ε(x̂2)
ε(x1, x2, θ̂i ) = (−1)|x2||x̂2|ε(x1, x2, θ̂i ),

ε(θi , x1, x2) = ε(θi )

ε(x2)
ε(x1, x̂2, θ̂i ) = ε(x1, x̂2, θ̂i ).

Then we have

∂i pi (dμ(x2)) = 2
∑

x1∈Fi

(−1)|x2||x̂2|
(
ε(x1, x2, θ̂i )(u ⊗ x1)(u ⊗ x2)

− ε(x1, x̂2, θ̂i )(u ⊗ x1)(u ⊗ x̂2)
)

.

Write β(x1, x2) = (−1)|x2||x̂2|ε(x1, x2, θ̂i )(u ⊗ x1)(u ⊗ x2). Then we get

∑
x2∈Fi−1∩B−

λ(x2)∂i pi (dμ(x2))

= 2
∑

x2∈Fi−1∩B−

⎛
⎝λ(x2)

∑
x1∈Fi

(−1)|x2||x̂2|ε(x1, x2, θ̂i )(u ⊗ x1)(u ⊗ x2)

− λ(x2)
∑

x1∈Fi

(−1)|x̂2||x2|ε(x1, x̂2, θ̂i )(u ⊗ x1)(u ⊗ x̂2)

⎞
⎠

= 2
∑

x1∈Fi
x2∈Fi−1∩B−

(
λ(x2)β(x1, x2) − λ(x2)β(x1, x̂2)

)
. (5.15)

Let

C =
∑

x1∈Fi
x2∈Fi−1∩B−

λ(x2)β(x1, x2),

D =
∑

x1∈Fi
x̂2∈Fi−1∩B−

λ(x2)β(x1, x2),

E =
∑

x1∈Fi
x2∈Bn

λ(x2)β(x1, x2).
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Since ˆ̂x2 = x2 and λ(x̂2) = −λ(x2),

−
∑

x1∈Fi
x2∈Fi−1∩B−

λ(x2)β(x1, x̂2) =
∑

x1∈Fi
x2∈Fi−1∩B−

λ(x̂2)β(x1, x̂2)

=
∑

x1∈Fi
x̂2∈Fi−1∩B−

λ(x2)β(x1, x2)

= D.

Since λ(x2) = 0 for x2 ∈ Bn , we have E = 0. it follows from (5.15) that

=
∑

x2∈Fi−1∩B−
λ(x2)∂i pi (dμ(x2))

= 2
∑

x1∈Fi
x2∈Fi−1∩B−

λ(x2)β(x1, x2) + 2
∑

x1∈Fi
x̂2∈Fi−1∩B−

λ(x2)β(x1, x2)

+ 2
∑

x1∈Fi
x2∈Bn

λ(x2)β(x1, x2)

= 2C + 2D + 2E .

On the other hand, since

Fi−1 = (Fi−1 ∩ B−)  Bn  {x2 ∈ B̂ | x̂2 ∈ Fi−1 ∩ B−},

we have

C + D + E =
∑

x1∈Fi
x2∈Fi−1

λ(x2)β(x1, x2)

=
∑

x1∈Fi
x2∈Fi−1

(−1)|x2||x̂2|λ(x2)ε(x1, x2, θ̂i )(u ⊗ x1)(u ⊗ x2).

Thus the proof is finished. �
We show a property of λ(x) that we are going to use.

Lemma 5.19 If x1, x2, x3 ∈ B̂ satisfy |x1| + |x2| + |x3| = 2n, then

3∑
i=1

ε(x̂i )ε(xi )λ(xi ) = 3.
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Proof We may assume |x1| ≤ |x2| ≤ |x3|. Let x ∈ B̂. By Lemma 5.12, we have that
for 0 < |x | < n,

ε(x̂)ε(x)λ(x) = ε(x̂)2ε(x)
3(n − |x |)

n
= 3(n − |x |)

n

and for n < |x | < 2n, we have

ε(x̂)ε(x)λ(x) = −ε(x̂)ε(x)2
3(n − |x̂ |)

n
= −3(n − 2n + |x |)

n
= 3(n − |x |)

n
.

Then for |x1| ≤ |x2| ≤ |x3| < n, we have

3∑
i=1

ε(x̂i )ε(xi )λ(xi ) = 3

n
(3n − |x1| − |x2| − |x3|) = 3.

For |x1| ≤ |x2| ≤ |x3| = n, we have |x1| + |x2| = n and λ(x3) = 0. Then

3∑
i=1

ε(x̂i )ε(xi )λ(xi ) = 3

n
(2n − |x1| − |x2|) = 3.

For |x1| ≤ |x2| < n < |x3|, we have
3∑

i=1

ε(x̂i )ε(xi )λ(xi ) = 3

n
(3n − |x1| − |x2| − |x3|) = 3.

Thus the proof is finished. �
Now we are ready to prove Proposition 5.7.

Proof of Proposition 5.7 As mentioned above, it is sufficient to prove (5.11) for 1 ≤
i ≤ m. We can write

∂i pi (dμ) =
∑

x1≤x2∈Fi

b(x1, x2)(u ⊗ x1)(u ⊗ x2)

for b(x1, x2) ∈ Q. Then we aim to show a(x1, x2) = b(x1, x2) for all x1 ≤ x2 ∈ Fi ,
where a(x1, x2) is as in Proposition 5.17. By Lemmas 5.11, 5.16 and 5.18, pi (dμ) is
a linear combination of α(x1, x2) where α(x1, x2) is as in (5.14). Thus it suffices to
assume α(x1, x2) �= 0. Since |x1| + |x2| + |θi | = 2n by (3.1), we have

ε(x1)ε(x̂1)λ(x1) + ε(x2)ε(x̂2)λ(x2) + ε(θi )ε(θ̂i )λ(θi ) = 3

by Lemma 5.19. Then by Lemma 5.10, we can make the following calculations.
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(1) For θi < x1 = x2, x1, x2, θi /∈ Bn since |x1|+|x2|+|θi | = 2n. Since |x1|, |x2|, |θi |
are even by Lemma 5.13 (4), ε(x)ε(x̂)λ(x) = λ(x) for x = x1, x2, θi by Lemma 5.12.
Then we get

b(x1, x2) = λ(θi )â(x1, x2) + 2λ(x2)ε(x1, x2, θ̂i )

= (ε(x̂1)ε(x1)λ(x1) + ε(x̂2)ε(x2)λ(x2) + ε(θ̂i )ε(θi )λ(θi ))ε(x1, x2, θ̂i )

= 3ε(x1, x2, θ̂i ).

(2) For θi = x1 < x2, θi = x1 /∈ Bn since |x1|+ |x2|+ |θi | = 2n. If x2 /∈ Bn , similarly
to the above, we have ε(x)ε(x̂)λ(x) = λ(x) for x = x1, x2, θi . If x2 ∈ Bn , we also
have ε(x)ε(x̂)λ(x) = λ(x) for x = x1, x2, θi since λ(x2) = 0. Then we get

b(x1, x2) = λ(θi )â(x1, x2) + 2λ(x2)ε(x1, x2, θ̂i )

= 2(ε(x̂1)ε(x1)λ(x1) + ε(x̂2)ε(x2)λ(x2) + ε(θ̂i )ε(θi )λ(θi ))ε(x1, x2, θ̂i )

= 6ε(x1, x2, θ̂i ).

(3) For θi < x1 < x2, we have

(−1)|x2||x̂2|2λ(x2)ε(x1, x2, θ̂i ) + (−1)|u⊗x1||u⊗x2|+|x1||x̂1|2λ(x1)ε(x2, x1, θ̂i )

= (−1)|x2||x̂2|2λ(x2)ε(x1, x2, θ̂i ) + (−1)|x1||x̂1|2λ(x1)ε(x1, x2, θ̂i )

= 2(ε(x̂1)ε(x1)λ(x1) + ε(x̂2)ε(x2)λ(x2))ε(x1, x2, θ̂i )

by Lemmas 3.5 and 5.12. Then we get

b(x1, x2) = 2(ε(x̂1)ε(x1)λ(x1) + ε(x̂2)ε(x2)λ(x2))ε(x1, x2, θ̂i ) + λ(θi )â(x1, x2)

= 2(ε(x̂1)ε(x1)λ(x1) + ε(x̂2)ε(x2)λ(x2) + ε(θ̂i )ε(θi )λ(θi ))ε(x1, x2, θ̂i )

= 6ε(x1, x2, θ̂i ).

(4) For θi = x1 = x2, |θi | is even and 3|θi | = 2n by (3.1) and Lemma 5.13 (4)
respectively. Then we get

λ(θi ) = 3(n − 2n
3 )

n
= 1 and b(x1, x2) = λ(θi )â(x1, x2) = 3ε(x1, x2, θ̂i ).

Thus by Proposition 5.17, we obtain a(x1, x2) = b(x1, x2) for all x1 ≤ x2 ∈ Fi ,
completing the proof. �
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