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Abstract

Classical magnetic skyrmions are topologically protected magnetic structures

with vortex-like configurations. The observation of skyrmions with sizes a few times

the atomic lattice spacing raises the question about the importance of quantum

effects in these systems. However, exact solutions for quantum systems exist only

when the number of particles is small and one has to resort to approximation meth-

ods to study them. These methods aim to approximate this ‘quantum many-body

problem’ efficiently and accurately. In recent years, machine learning techniques

have been increasingly used with the existing numerical methods to tackle the quan-

tum many-body problem. In this thesis we investigate the ground state properties

and dynamics of quantum skyrmions using variational Monte Carlo with the neu-

ral network quantum state as variational ansatz. We study the ground states of a

two-dimensional quantum Heisenberg model in the presence of the Dzyaloshinskii-

Moriya interaction (DMI) with different boundary conditions. We show that the

ground state accommodates a quantum skyrmion for a large range of parameters,

especially at large DMI. The spins in these quantum skyrmions are weakly entan-

gled, and the entanglement increases with decreasing DMI. We also find that for the

case of ferromagnetic boundaries, the central spin is completely disentangled from

the rest of the lattice, establishing a non-destructive way of detecting this type of

skyrmion by local magnetization measurements. Then, using the time-dependent

variational principle, we study the real-time evolution of quantum skyrmions after a

Hamiltonian quench with an nonuniform external magnetic field. We show that field

gradients are an effective way of manipulating and moving quantum skyrmions. Our

work shows that neural network quantum states can be efficiently used to describe

the quantum magnetism of large systems exceeding the size manageable in exact

diagonalization by far.
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Chapter 1

Introduction

To make better devices, we need to understand the physical properties of real ma-

terials. This understanding can only be obtained at the quantum scale, where in-

teractions of many particles can create states of matter that cannot be explained by

the independent electron picture. Although the physical laws necessary to describe

interacting quantum systems are well known, the exact application of these laws re-

sults in equations that cannot be solved [1]. While modern computers can be used to

study interacting quantum systems with a small number of particles, with increas-

ing number of particles, the Hilbert space increases exponentially, which results in

an exponential increase in computer memory required to represent the wave func-

tion. This is known as the quantum many-body problem. Therefore, approximation

methods are needed to study physically relevant properties of quantum many-body

systems in a finite amount of time. For more than 50 years, researchers have devel-

oped various numerical techniques that can approximate this quantum many-body

problem. Among these, variational Monte Carlo [2, 3], density matrix renormaliza-

tion group [4, 5, 6], dynamical mean field theory [7, 8] and quantum Monte Carlo

[9, 10, 11] are some of the most successful ones, shedding light on the physics of

interacting quantum systems, which would not have been possible to do with only

analytical methods.

One example of such an interacting quantum system is composed of quantum

spins in two dimensions in presence of ferromagnetic exchange and anti-symmetric

exchange interaction. Due to these competing interactions, the ground state of this

system can result in an exotic vortex like state known as a quantum skyrmion [12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. Classically, skyrmions are magnetic

structures that are topologically protected [24, 25, 26, 27, 28, 29]. Due to their

nontrivial topology and ease-of-motion under electric currents, they have potential
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applications in memory storage devices [30, 31, 32, 33, 34, 35]. Recently, small

sized skyrmions were discovered, with sizes as small as atomic lattice spacing [24,

29]. However, in almost all of the theoretical and numerical studies, the skyrmions

are composed of classical spins. The results of these studies might not apply to

the nanoscale skyrmions, where quantum effects can become important. Thus, new

studies are needed that consider a fully quantum treatment of the composing spins

of the skyrmion. Such studies would require using quantum spins, which limits the

size of the system that can be considered in exact diagonalization. This is a typical

quantum many-body problem, and again, approximation methods are needed to

study quantum skyrmions.

The problem in representing quantum many-body wave functions stems from

the exponential scaling of the Hilbert space with the system size. However, in

most cases we are interested only in the physically relevant states, such as the low

energy states, which are usually confined to a corner of the Hilbert space. A class of

numerical techniques, grouped under the name “variational methods”, attempt to

approximate the quantum many-body problem by finding a computationally efficient

representation of the physically relevant quantum states within the Hilbert space of

interest [36]. In these methods, the wave function is parameterized using a function

with adjustable parameters, also known as a variational wavee function or an ansatz.

Usually, the form of the ansatz depends of the type of physical problem. Widely

used variational methods are variational Monte Carlo (VMC) and tensor networks.

In particular, VMC methods are highly flexible and can be used independently of

the type of the Hamiltonian. The main limitation of VMC is the ansatz used to

approximate the high dimensional many-body wave function as it can have some

biases by design or limited representation power.

The problem of approximating high-dimensional functions is not unique in quan-

tum many-body physics. A central problem in computer science and machine learn-

ing has been to construct algorithms that can efficiently approximate highly complex

tasks like image recognition and generation, speech and language translation and

automated driving. For example, in natural language recognition tasks, each word

corresponds to a vector in a high dimensional space of all the possible words. While

classical machine learning methods like support vector machines, n-gram modeling

and dimensionality reduction were somewhat successful [37, 38], the real break-

through arrived a decade ago with the rapid improvement in artificial neural net-

works. In 2012, AlexNet [39], a convolutional neural network, achieved 15.3% error

on the ImageNet challenge, which was around 11 percentage points lower than the

runner up. ImageNet is a large databse of images with more than 14 million hand-

labelled images used to train and test machine learning models in image recoginition
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Quantum spins Neural network Quantum skyrmion ground state
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energy

Figure 1.1: Approximating the wave function ψ(x) using an artificial neural net-
work. The input to the neural network x is the spin configuration. The network is
optimized by minimzing its energy to obtain the quantum skyrmion ground state.
Renyi entropy is shown in the background of the spin expectation values.

tasks [40]. Though researchers had been studying artificial neural networks for more

than 30 years, it was only a decade ago that they have gained great popularity and

outperformed all the other machine learning models. This success of artificial neural

networks is fueled by the advancements in the computing architectures, especially

graphical processing units (GPUs), which can perform numerous calculations in par-

allel and reduce the calculation time by orders of magnitude over a cluster of CPUs.

Over the last 10 years, the single chip inference performance of nVidia GPUs has

increased by 1000 times [41].

Motivated by the success of artificial neural networks in machine learning tasks,

they were proposed as a variational ansatz to approximate the quantum many-body

wave function in the seminal work by Carleo and Troyer in 2017 [42]. Known as

neural-network quantum states (NQS), the authors showed that they can outper-

form state-of-the-art tensor networks methods at representing ground states in two

dimensions. This opened up a new research avenue to develop NQS-based varia-

tional methods for studying quantum many-body systems. The NQS ansatz may

bypass the main limitation of variational methods while enjoying all of their bene-

fits. Theoretically, artificial neural networks are universal approximators that can

approximate any smooth function given enough parameters [43, 44, 45, 46, 47]. The

main difficulty lies in doing this efficiently, i.e. number of parameters scaling at

most polynomially with the system size, and with high accuracy. Thus, in the past

6 years, a lot of research has been done in probing the efficacy and limitation of

neural networks in quantum systems, as well as applying them to study quantum

systems that were out of reach for traditional methods [48, 49, 50, 51, 52, 53, 54,

55, 56, 57, 58, 59].
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In this thesis, we have used NQS-based variational methods to study the ground

state and dynamics of quantum skyrmions. We studied the Heisenberg Hamiltonian

with Dzyaloshinskii-Moriya interaction on a two-dimensional quantum spin lattice.

We showed that this system hosts quantum skyrmions as ground states for a large

range of Hamiltonian parameters and boundary conditions. We also presented a

way to move quantum skyrmions using a nonuniform external magnetic field. Fig-

ure 1.1 summarizes this thesis in one image. This thesis is organized as follows.

In chapter 2, we review classical skyrmions and summarize the developments in

quantum skyrmion research. In chapter 3, we present the variational methods used

in this thesis and introduce artificial neural networks as a variational ansatz. In

chapter 4, we present our work in which we studied the ground state properties

of quantum skyrmion embedded in a ferromagnetic medium [21]. In chapter 5, we

present our work in which we studied the motion of quantum skyrmions in presence

of an external magnetic field [22]. Finally, we present the conclusions of this thesis.
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Chapter 2

Magnetic Skyrmions

In this chapter, we give a review of magnetic skyrmions. We start with classical

skyrmions in section 2.1 as they have been well studied theoretically and experi-

mentally over the years. Then in section 2.2, we describe the nanoscale skyrmions,

also known as quantum skyrmions. This area of research begun only five years ago

and deals with simulation of quantum spin lattices.

2.1 Classical Skyrmions

Classical magnetic skyrmions are vortex-like magnetic structures that are topologi-

cally protected. First proposed by Skyrme in the 1960s [60] to explain the stability

of hadrons in particle physics, skyrmions are now important in various condensed

matter systems as well [24, 61, 62, 63, 64]. Skyrmions were experimentally discov-

ered in single crystals of magnetic compounds with a noncentrosymmetric lattice 15

years ago [26, 27]. Due to the absence of inversion symmetry, these skyrmions were

stabilized by the Dzyaloshinskii-Moriya interaction (DMI) induced by the spin-orbit

coupling. Afterwards, magnetic skyrmions were found in other materials with dif-

ferent mechanisms - frustrated exchange interactions [65] and large interfacial DMIs

induced by strong spin-orbit coupling materials interlayered with ferromagnets [29].

Among these mechanisms, skyrmions stabilized by DMIs are the most prominent

and will be the focus of this work.

Magnetic skyrmions can be of various types, with a common feature being that

the magnetization changes from the center of the skyrmion to its boundary, with the

center spin pointing in the opposite direction of the boundary spins. Two skyrmions

with different orientation of the spins are shown in Figure 2.1.
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Figure 2.1: Two different types of skyrmions. (a) a Neel type skyrmion and (b) a
Bloch type skyrmion [66].

In systems without inversion symmetry, the spin-orbit coupling (SOC) can induce

an antisymmetric exchange interaction known as the Dzyaloshinkii-Moriya interac-

tion (DMI) HDMI
i,j between two neighboring magnetic spins si and sj,

HDMI
i,j = di,j · (si × sj). (2.1)

The DMI between two magnetic atoms is mediated by a third atom with large SOC

and di,j perpendicular to the plane of the triangle formed by the three atoms. DMI

can also be induced at the interface between magnetic films and metals with large

SOC. DMI is a chiral interaction that favors perpendicular alignment of spins. A

skyrmion state may exist because of the stabilization provided by the competition

between DMI and ferromagnetic exchange interaction, that prefers colinear spins.

Skyrmions can exist as ground states in the form of a skyrmion lattice or a single

skyrmion embedded in a ferromagnetic medium or as excited metastable states when

an external field is applied [29, 31, 67].
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The difference between skyrmions and other vortex-like structures that can also

be stabilized by the DMI, like magnetic bubbles, is the well defined chirality that

impacts their properties. Skyrmions are topologically protected, and a topological

index S, also known as the skyrmion number, can be defined as [24]

S =
1

4π

∫
m · (∂xm× ∂ym)dxdy. (2.2)

Here, S characterizes the winding of m, the normalized local magnetization, which

can be mapped on a unit sphere. For a skyrmion, the local magnetization covers

the whole sphere once (4π) and S = 1. As the topological index is nontrivial, it is

not possible to continuously deform a skyrmion with S = 1 to a configuration with

different S, for example, a ferromagnet with S = 0. Thus, skyrmions are topolog-

ically protected, i.e. they are robust against symmetry preserving perturbations.

The quantity in Eq. (2.2) is defined for continuous space. For spins on a lattice, as

is used in numerical methods, the discrete version of Eq. (2.2) was given by Berg

and Lüscher in [68]. The topological index Q on a lattice is defined as a function of

four spins si, sj , sk, sl of a plaquette u

Q =
∑
u

1

4π
[(σA)(si, sj , sk) + (σA)(si, sk, sl)] . (2.3)

Here, (σA)(si, sj , sk) is the signed area of a triangle with corners si, sj , sk. Thus,

the total lattice skyrmion number is given by adding the signed area of all the

elementary triangles. The signed area (σA)(si, sj , sk) is given as

exp(
1

2
iσA) =

1 + si · sj + sj · sk + sk · si + isi · (sj × sk)

{2(1 + si · sj)(1 + sj · sk)(1 + sk · si)}1/2
. (2.4)

A more convenient expression for Q is given as [13, 17]

Q =
1

2π

∑
∆

tan−1 8si · (sj × sk)

1 + 4(si · sj + sj · sk + sk · si)
, (2.5)

where the sum runs over all the elementary triangles ∆ with corners si, sj , sk. Q

is quantized to an integer and any local deformation in the spin field that does not

pass through an exceptional configuration will not change it [68].

The interest in magnetic skyrmions is due to their topological stability and chi-

rality and ease of motion under electric current. Many researchers have proposed

them to be used as the basis of next generation memory devices such as racetrack

memories [35]. Another advantage is the size of skyrmions, they are smaller than

the magnetic domains currently being employed in memory devices. Furthermore,
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it has been shown in experiments that moving skyrmions requires much lower cur-

rent than moving magnetic domains [33]. This field of research based on electron

spin rather than charge is known as spintronics. Very recently, another application

of magnetic skyrmions were proposed, where researchers theoretically showed how

skyrmions can be used as qubits [69].

A common method to study classical skyrmions is via many-spin simulations

using micromagnetic equations [70]. A simplified equation for the Hamiltonian to

study skyrmions on the lattice is given as

H = HH +HDMI = −
∑
i,j

Ji,jsi · sj −
∑
i,j

Di,j · (si × sj). (2.6)

Here, HH is the Heisenberg Hamiltonian which favors a parallel alignment of neigh-

boring spins, and HDMI is the Dzyaloshinskii-Moriya interaction that favors perpen-

dicular alignment of neighboring spins. For many-spin simulations, a continuous

magnetization field M(r), or the unit magnetization field m = M/Ms, where Ms

is the saturation magnetization, is used. Then, the total energy E can generally be

written with various contributions [71]

E =

∫ {
A(∇m)2 +Kf(m)+Dm · (∇×m)

− M2
s

2µ0

m · hd +MsHextm · hext
}
dV, (2.7)

where A is the exchange stiffness constant, K is the anisotropy energy constant, µ0

is the permeability of vacuum, D is the strength of the DMI, hd and hext are the

unit vectors for the demagnetization and external magnetic field (Hext) and f(m)

is anisotropy function dependent on the unit magnetization m. The energy can be

minimized to obtain the ground state using numerical techniques like Monte Carlo

methods.

The dynamics of spin structures is described by the Landau-Lifshitz-Gilbert

(LLG) equation
∂m

∂t
= −γm×Heff + αm× ∂m

∂t
(2.8)

where Heff is the effective magnetic field describing the total effect of all the inter-

actions present in the spin Hamiltonian (see Eq. (2.7))

Heff = −∂E(m)

∂m
. (2.9)

The LLG equation in Eq. (2.8) can be used to study the spin dynamics when in
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presence of an external magnetic field. Another method to excite the spins is using

an electric current, which creates a spin transfer torque (STT) that can be added

to the LLG equation [71]

T ∥ = −(vs · ∇)m, (2.10)

T⊥ = −gℏIe
2e

m2 × (m2 × m1). (2.11)

Here, T ∥ corresponds to the in-plane electric current with velocity vs = jePgµB/2eMs

with je denoting the current density, P the spin polarization, g the g-factor of an

electron, µB the Bohr magneton and e the electronic charge. The second equation

with T⊥ corresponds to the perpendicular current through the ferromagnetic layers

m1 and m2, with Ie denoting the total electric current. For the case of skyrmions,

a modified version of the LLG equation can be used [24]

∂m

∂t
+ vs · ∇m = −γm×Heff +m×

(
α
∂m

∂t
+ βvs · ∇m

)
(2.12)

where all the terms are as defined before and β denotes the ratio of nonadiabicity of

spin transfer. This equation can be used to derive the Thiele’s equation of motion

for the skyrmion’s center of effective mass a

Msk
dv

dt
+G× (j − v) + κ(αv − βj) = −∇U, (2.13)

where v = da/dt is the velocity of skyrmion, Msk is the mass of skyrmion, j

is the electron current density, U is the potential caused by the boundary effects

and magnetic fields, and G = 2πSẑ is the gyrovector with S the skyrmion number

defined in Eq. (2.2). Thiele’s equation can be used to study the motion of skyrmions

and predicts the skyrmion Hall effect, i.e. the diagonal motion of a skyrmion due to

a velocity component transverse to the applied current [72, 73, 74].

2.2 Quantum Skyrmions

While most skyrmions were of the sizes ranging from micrometer to nanometer,

recent experiments have found skyrmions with sizes a few times the atomic lattice

spacing [24, 29]. At this scale, quantum effects can become important. However, as

described in the previous section, most theoretical works are done with skyrmions

composed of classical spins, which does not take into account any quantum effect. To

clarify the importance of quantum effects in these nanoscale skyrmions, also termed

as “quantum skyrmions”, few works have tried a semiclassical approach [12, 75].

However, a proper understanding of quantum skyrmions can only be obtained with
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a full quantum treatment, i.e. by considering quantum spins [16]. Over the last 5

years, many works tackled this problem, most of them for small clusters of quantum

spins solvable by exact diagonalization [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

The starting point to study quantum skyrmions is usually the quantum Heisenberg

model with Dzyaloshinskii-Moriya interaction (DMI) on a two-dimensional lattice

H = −J
∑
⟨ij⟩

(σxi σ
x
j + σyi σ

y
j )−D

∑
⟨ij⟩

(uij × ẑ) · (σi × σj), (2.14)

where J is the Heisenberg exchange constant and D is the DMI strength. The

sums run over the nearest neighbors and σi = (σxi , σ
y
i , σ

z
i ) are the Pauli matrices

at i-th site (taking ℏ = 1). While this system may reveal quantum skyrmions as

ground states, it is often supplanted with an external magnetic field for stability of

quantum skyrmions. In the following, a brief review of quantum skyrmion research

is presented.

Initial works studied ground state and excited states of quantum Heisenberg

models on a two-dimensional lattice using exact diagonalization. One of the first

works considered a quantum skyrmion embedded in a ferromagnet [15]. They mod-

eled seven quantum spins, with various spin momentum S = 3ℏ/2, ℏ and 2ℏ, sur-
rounded by polarized classical spins. In addition to the exchange and DM interac-

tions (Eq. (2.14)), the Hamiltonian consisted of anisotropy, external magnetic field

and four-spin interactions. The authors showed that the ground state is a ferro-

magnet or a quantum skyrmion state, depending on DMI and four-spin interaction.

A phase transition between these states can also be induced by an external mag-

netic field. As the spins are quantum, the expectation values of their lengths is

not constant, a fundamental difference between quantum and classical skyrmions.

Finally, the authors discuss the stability of the quantum skyrmion state when in-

teracting with an electron. In [17], the authors address the question of topology

in quantum skyrmions. Classical skyrmions are topologically protected, but this

does not stay valid for the quantum case, which can become topologically trivial via

quantum tunneling. The authors studied a 19 quantum spin cluster with periodic

boundaries. Their Hamiltonian consisted of the Hamiltonian in Eq. (2.14) with a

uniform external magnetic field
∑

iB
zσzi applied along the ẑ direction. They show

that, unlike classical skyrmions, quantum skyrmions cannot be observed in experi-

ments by probing the local magnetization. They define a new quantity, a three spin

correlation function, which can be used to characterize quantum skyrmions. This

quantity, termed as the scalar chirality, is given in terms of the expectation value of
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the quantum spin operators σ

Qsc =
N∆

π
⟨σi · (σj × σk)⟩ . (2.15)

Here, the subscripts i, j, k denote the three spins making an elementary triangle

plaquette and N∆ is the total number of these non-overlapping triangles over the

whole lattice. The authors show that the scalar chirality converges to the clas-

sical topological invariant defined in Eq. (2.4) for large systems. Scalar chirality

stays nearly constant for different Hamiltonian parameters representing quantum

skyrmion states and thus can be used to identify them. In addition to the scalar

chirality, two additional quantities are defined in [14, 15] to characterize quantum

skyrmions

Q or C =
1

2π

∑
∆

tan−1

(
ni · (nj × nk)

1 + ni · nj + nj · nk + nk · ni

)
, (2.16)

where the sum runs over all the elementary triangles formed by nearest neighboring

sites i, j, k. Using the normalized spin expectation values n = ⟨σ⟩/|⟨σ⟩|, we obtain

the quantum skyrmion number C, which is equivalent to the skyrmion number for

classical spins and is quantized. This takes into account only the angular winding

properties of the quantum spins. To also take into account the magnitudes of the

spin expectation values, unnormalized spin expectation values n = 2⟨σ⟩ is used,

which gives us Q. The authors in [14] find that quantum skyrmions (with C = ±1)
but with small Q have vanishing spin expectation values and are unstable against

local perturbations. Again, this property is not seen in classical skyrmions. Q

is qualitatively similar to the scalar chirality Qsk and both of them can be used to

characterize quantum skyrmions and study their stability. Furthermore, the authors

here also described a way of creating quantum skyrmions from a trivial ferromagnetic

state by adiabatically rotating the magnetic field at boundaries.

To realize the applications of skyrmions in devices, it is important to understand

their motion and stability with time. A few recent works elucidate this in quantum

skyrmions [20, 76, 13, 77]. In [77], the authors studied the stability of quantum

skyrmions in time with a similar setup as in [17]. They performed local projective

measurements and showed that the properties of quantum skyrmions, like the scalar

chirality Qsk, does not change much with perturbations. In [76], the authors studied

dynamical quantum phase transitions in quantum skyrmions. Unlike the classical

phase transitions where the phase transitions are facilitated by thermal fluctuations,

quantum phase transitions are purely due to quantum fluctuations. Among these,

the phase transitions in out of equilibrium systems are known as dynamical quantum
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phase transitions, and it is characterized by a non-analytic behavior of the wave

function. In [76], the authors showed that the transition from a ferromagnet to

quantum skyrmion is a dynamical quantum phase transition while from a helical

phase to quantum skyrmion is not. This property is, of course, a purely quantum

feature as well.

The aforementioned works clarified the differences between quantum and classi-

cal skyrmions and established methods to characterize them. However, all of them

were done on small lattices which can be studied using exact diagonalization. Larger

quantum systems cannot be studied exactly and approximation methods are needed.

In [16], the authors studied the ground state properties of quantum skyrmions in a

large lattice using matrix product states and density matrix renormalization group

(DMRG). They discovered a quantum skyrmion lattice phase, which is not tractable

using exact diagonalization. Furthermore, they found that the spins in quantum

skyrmions are entangled with each other, the entanglement decreases with distance

between two spins. However, DMRG becomes very challenging in two dimensions

with increasing entanglement. Quantum Monte Carlo, another widely used approx-

imation method for large spin systems, suffers with the negative sign problem due

to the presence of complex terms in the Hamiltonian emerging from the DMI [78].

Studying non-equilibrium properties numerically is a much more challenging task

than studying the low energy states of quantum many-body systems. Only one

work [20] has studied the non-equilibrium properties of quantum skyrmions in large

systems. There, the authors considered a localized f-electron system coupled to

itinerant conduction electrons in presence of spin-orbit coupling and external mag-

netic field. They studied this strongly correlated system using dynamical mean

field theory and numerical renormalization group. They showed the existence of a

quantum skyrmion and a quantum antiskyrmion in f-electrons and c-electrons re-

spectively. Finally, in the linear response limit, they studied the real time evolution

of quantum skyrmions in presence of an electric current and showed the onset of

quantum skyrmion Hall effect, an analogue of the classical skyrmion Hall effect [72,

73, 74]. However, they could only look at short time intervals because of the linear

approximation, and a full nonequilibrium calculation is needed.

It is clear that there is a need of numerical methods that are not plagued by

the challenges mentioned above and can be used to study low energy properties and

dynamics of quantum skyrmions. Variational methods like variational Monte Carlo

do not have these limitations and offer a viable method to numerically study large

quantum spin lattices. But here, the main limitation is the choice of variational

ansatz, which has to be tailored to the physical problem. Towards this end, very
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recently in [23] a variational ansatz was proposed to represent quantum skyrmions

as bosonic operators. The authors verified their construction for large spin systems

by comparing their results with matrix product state simulations. A more general

method, and the focus of this thesis, is to use artificial neural networks to represent

the quantum skyrmion wave function [21, 22]. Artificial neural networks are powerful

mathematical functions that can approximate complex high-dimensional functions.

In the next chapter, we discuss them and their application to quantum many-body

problems.
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Chapter 3

Variational Methods

In this chapter, we review the theory of variational methods and neural-network

quantum states. First, we describe the quantum many-body problem and the expo-

nential complexity associated with it in section 3.1. Then, in section 3.2 we describe

the variational principle to obtain ground states and some widely used variational

wave functions to approximate the many-body wave function. In section 3.3, we

describe the variation Monte Carlo method, which provides a way to estimate the

quantum expectation value of an operator using sampling techniques like Markov

chain Monte Carlo. In section 3.4, we provide an overview of the time-dependent

variational principle to approximate the real time evolution of quantum systems.

Finally, in section 3.5, we give a review of the dominant machine learning technique,

artificial neural networks, and their application as a variational ansatz. Research in

machine learning applications to quantum physics is advancing rapidly and we refer

the reader to [79] for a detailed review on the subject.

3.1 The quantum many-body problem

An isolated quantum system is described by the quantum wave function. In inter-

acting quantum systems, e.g. electrons interacting via the repulsive Coulomb force,

each particle is affected by all the other particles and the wave function is a very

complex object which scales exponentially with the number of particles. Due to this

complexity, solving the Hamiltonians of these systems analytically is not possible.

Modern high performance computing offers some respite and many algorithms have

been developed to solve the Hamiltonians of interacting quantum systems exactly

as fast as possible. However, these methods also hit a wall very soon as the number
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of particles increase. For example, in the basis of the eigenstates of the spin angular

momentum σz operator (also known as the computational basis), the wave function

for a single spin can be written as |Ψ⟩ = α |↑⟩ + β |↓⟩. Here, the coefficients α

and β are the probability amplitudes of the spin being aligned along |↑⟩ and |↓⟩,
respectively. For N spins, the wave function can be written as

|Ψ⟩ = α |↑↑ . . . ↑⟩+ β |↑↑ . . . ↓⟩+ . . .+ γ |↓↓ . . . ↓⟩ . (3.1)

The number of coefficients α, β, γ... scale as 2N with the number of spins N . Prac-

tically, this means that the computer memory required to store the wave function

increases exponentially with number of particles and for more than 50 spins, it be-

comes impossible to calculate the wave function exactly. This exponential scaling

of the computational complexity with number of particles is known as the quantum

many-body problem.

In real materials, the number of particles run to the order of the Avogadro’s num-

ber. Since exact calculation of the wave function is not possible except for small

number of particles, we need approximation methods to study large systems, which

might be closer to approximate real materials. Towards this end, physicists have

worked over the last decades to devise clever numerical approximation methods.

Some notable ones among these are dynamical mean field theory for strongly corre-

lated electron systems [7, 8], numerical renormalization group methods for quantum

impurity models [80, 81], quantum Monte Carlo methods [36, 82], tensor network

methods and variational methods for ground states and dynamics of interacting

quantum systems [36, 82, 83, 84]. In the next sections, we will describe variational

methods, the focus of this thesis, and how it can be used to study quantum many-

body systems.

3.2 Variational wave functions and the variational

principle

As described in the previous section, the Hilbert space of the quantum many-body

systems increases exponentially with the system size. However, we do not often need

information about the whole set of states but a small portion of physically relevant

states, like the ground state and low-energy states. These physically relevant states

are usually confined to a corner of the Hilbert state with limited dimensions. Varia-

tional methods aim to represent the physically relevant states by approximating the

wave function coefficients using a parameterized function, known as the variational
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wave function. The variational wave function |Ψθ⟩ depends on the variational pa-

rameters θ, which can be optimized to describe the quantum state of interest. For

a system of N spins, the variational wave function in the computational basis can

be written as

|Ψθ⟩ =
∑
x

ψθ(x) |x⟩ , (3.2)

where, |x⟩ = |x1⟩ ⊗ |x2⟩ ⊗ · · · ⊗ |xN⟩ are the local basis states and ψθ(x) = ⟨x|Ψθ⟩.
The form of the variational wave function ψθ(x) is usually inspired from the physics

of the problem, for example, Hartree-Fock wave functions for weakly interacting

systems, Jastrow wave function for fermionic systems, Laughlin wave functions for

fractional quantum states and BCS wave functions for superconductivity [85]. The

variational wave functions can be broadly divided into two categories, depending on

whether they calculate the expectation values of operators exactly or approximately.

Mean-field states and tensor network states fall under the first category, whereas

Jastrow wave functions and neural-network quantum states fall under the second

category [79].

One of the simplest forms of variational wave functions is the mean-field ansatz.

Using the mean-field approximation, the many-body wave function is taken to be

the tensor product of single-particle wave functions. In case of spin systems, the

mean-field wave function
∣∣ΨMF

θ

〉
can be written as

∣∣ΨMF
θ

〉
=

N∏
i=1

∣∣ϕi(θi↑,θi↓)〉
=
∣∣ϕ1(θ

1
↑,θ

1
↓)
〉
⊗
∣∣ϕ2(θ

2
↑,θ

2
↓)
〉
⊗ · · · ⊗

∣∣ϕN(θN↑ ,θN↓ )〉 . (3.3)

Here,
∣∣ϕi(θi↑,θi↓)〉 is the single-body wave function for the spin at the i-th site and

N is the total number of spins. Each wave function has two variational parameters

θ↑ and θ↓ for a total of 2N variational parameters. Since this is a product state,

the expectation value of any operator can be decomposed to the expectation value

of local wave functions and can be calculated exactly. The mean-field wave function

can be optimized to find the ground state by minimizing the variational energy using

a gradient descent algorithm. Mean-field ansatz is easy to optimize and can give

reasonable results in the weak-coupling regime, but it is not suitable to represent to

represent moderate to strongly interacting systems.

Tensor networks are an important class of variational wave functions that can

capture correlations between the local degrees of freedoms and can calculate the

expectation values exactly. Among these, matrix product states have been very

successful for one-dimensional systems [86, 83]. The wave function coefficients in
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Figure 3.1: Tensor product notation of matrix product states for 5 particles [87].

Eq. (3.1) can be considered a tensor of rankN and can be decomposed into a product

of lower dimensional matrices as

∣∣ΨMPS
θ

〉
= A

(s1)
1 A

(s2)
2 . . .A

(sN )
N |s1s2 . . . sN⟩ , (3.4)

where Ai are the matrices of dimensions χ, also known as the bond dimension,

and si are the basis states. An exact representation of the wave function requires

exponential scaling of ξ with N . The MPS ansatz truncates the dimension of the

indices of the tensors A using methods like singular value decomposition. This

results in the scaling of variational parameters as Nχ2. For some specific states,

such as the gapped Hamiltonians of one-dimensional systems and states under area

law entanglement, MPS are the state of the art. However, the bond dimension

increase exponentially for two-dimensional systems described by the area law and

MPS becomes numerically challenging.

The second type of variational wave functions draws samples from a probability

distribution to approximate the expectation values instead of calculating them ex-

actly as it scales exponentially with the system size. The accuracy of the expectation

value calculation can be systematically increased by increasing the number of sam-

ples. Any function can be used to approximate the exact wave function. However,

to be computationally tractable, i.e. the expectation values can be estimated with

at most polynomial scaling in number of particles, the variational wave function

must satisfy two conditions [79]:

1. The probability amplitude ψθ(x) = ⟨x|Ψθ⟩ can be calculated efficiently for any

basis state |x⟩.

2. Samples from the distribution P (x) = |⟨x|Ψθ⟩|2
⟨Ψθ |Ψθ⟩

can be generated efficiently.

Here, efficiently means that the computational time scales in polynomial terms with

17



system size for 1. and with accuracy for 2. An example of this type of variational

wave function is the Jastrow wave function

ψJW
θ (s) = exp

[
−1
2

∑
i ̸=j

θijsisj

]
. (3.5)

Here, the sum runs over all the possible pairs of spins. The pairwise spin correlation

is encoded in θij. The Jastrow wave function assumes that the two body interactions

are the most relevant and allows for local density fluctuations. Advantage of this

type of variational wave functions is that a suitable parameterization allows us to

consider a wide range of quantum phases like metals, superconductors and insulators.

If the above two conditions are satisfied, the variational wave function can be

efficiently optimized to reach the lowest energy state. Thus, variational wave func-

tions offer a flexible approach to study the low-energy properties of various quantum

phases and are not bound by the type of Hamiltonian. However, the variational wave

function itself is the limiting factor of these methods and may contain a relevant

bias that cannot be removed within the chosen parameterization [3]. Recently, arti-

ficial neural networks have been used as variational wave functions and promise to

alleviate some of the limitations of variational methods. They do not have a bias

baked into the form of the variational wave function, and can theoretically represent

any continuous function. We discuss artificial neural networks based variational

methods in section 3.5.

There are certain properties of variational wave functions that determine its

power and applicability to a quantum many-body system:

1. Capacity - it determines the representation power of the variational ansatz.

For example, while mean-field states can represent noninteracting and give rea-

sonable results for weakly interacting systems, they cannot represent strongly

correlated states. Capacity plays an important role in selecting the type of

variational ansatz for a given physical system. States like spin liquids usually

result from a highly frustrated spin model and has long range entanglement

which is notoriously difficult to be accurately represented by variational wave

functions.

2. Scaling - this means the scaling of variational parameters with the system

size. A polynomial scaling of parameters represents an efficient representation

of the wave function. For example, the bond parameter for matrix product

states scales exponentially for two or three dimensional systems with area law

entanglement and thus, it cannot be used for more than a few particles.
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3. Systematically improvable - another important property of variational wave

functions is that it should be possible to improve their accuracy systematically,

for example, by increasing the number of parameters.

4. Optimization - existence of efficient optimization algorithms is also crucial to

obtain the correct representation of a wave function. The DMRG algorithm

is the most efficient for one dimensional states.

As we will discuss in 3.5.3, neural-network quantum states satisfy all of these re-

quirements.

The Variational Principle

Approximating the low-energy states of interacting quantum systems correctly re-

quires the use of the variational principle. Here, we follow the derivation in [85].

Given a Hamiltonian H and a variational wave function |Ψθ⟩, with the variational

parameters θ, to approximate the exact ground state |Φ0⟩ of H, the variational

energy Eθ of |Ψθ⟩ can be defined as

Eθ =
⟨Ψθ|H |Ψθ⟩
⟨Ψθ|Ψθ⟩

. (3.6)

The variational state can be expanded in terms of the eigenstates |Φi⟩ of the Hamil-

tonian H with energies Ei as

|Ψθ⟩ =
∑
i

ai |Φi⟩ , (3.7)

where ai = ⟨Φi|Ψθ⟩ with normalization ⟨Ψθ|Ψθ⟩ =
∑

i |ai|2 = 1. Using Eq. (3.7), we

can obtain

Eθ = |a0|2E0 +
∑
i>0

|ai|2Ei, (3.8)

and using |a0|2 = 1−∑i>0 |ai|2, we get

ϵ = Eθ − E0 =
∑
i ̸=0

|ai|2(Ei − E0) ≥ 0. (3.9)

Thus, the energy of variational states is bounded from below by the exact energy. To

find the ground state, we have to optimize the variational state |Ψθ⟩ to minimize the

variational energy Eθ. To be considered a good approximation of the exact ground

state, the difference between the exact energy and variational energy ϵ = E0 − Eθ
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should be much smaller than the energy gap between the ground state and the first

excited state ∆ = E1 − E0.

3.3 Variational Monte Carlo

Once we have a variational wave function |Ψθ⟩, we can optimize it to approximate

desired quantum of state of interest, such as the ground state. This requires cal-

culation of the expectation values of observables and their variances, as well as

algorithms to find the optimal variational parameters θ. In this section, we present

the general framework to achieve this using the variational Monte Carlo (VMC)

techniques, which rely on the variational principle described in the previous section.

These techniques can be applied to a wide variety of variational wave functions and

Hamiltonians, irrespective of the range of interactions and dimensions of the local

Hilbert space. This flexibility of VMC methods is due the stochastic approximation

of the expectation values, which has a downside of introducing stochastic errors in

the observables.

3.3.1 Expectation values

Given a variational wave function |Ψθ⟩, and a complete and orthonormal basis set

|x⟩ in the Hilbert space such that

|Ψθ⟩ =
∑
x

|x⟩ ⟨x|Ψθ⟩ =
∑
x

ψθ(x) |x⟩ . (3.10)

The quantum expectation value of any operator O can be calculated as

⟨O⟩ = ⟨Ψθ| O |Ψθ⟩
⟨Ψθ|Ψθ⟩

(3.11)

=

∑
x,x′ ⟨Ψθ|x⟩ ⟨x|O|x′⟩ ⟨x′|Ψθ⟩∑

x |ψθ(x)|2

=

∑
x |ψθ(x)|2

∑
x′ ⟨x|O|x′⟩ ψθ(x

′)
ψθ(x)∑

x |ψθ(x)|2

=
∑
x

pθ(x)Oloc
θ (x), (3.12)
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where

pθ(x) =
|ψθ(x)|2∑
x |ψθ(x)|2

, (3.13)

Oloc
θ (x) =

∑
x′

⟨x|O|x′⟩ ψθ(x
′)

ψθ(x)
. (3.14)

Here, pθ(x) is the Born probability distribution of the state ψθ(x) and Oloc
θ (x) is the

local estimator. If O is the Hamiltonian H, then Hloc
θ (x) is called the local energy.

Thus, the quantum expectation value of an observable O is recast into the classical

expectation value a random variable Oloc
θ (x) over the probability distribution pθ(x).

Since the sum over all the states |x⟩ scales exponentially with the system size,

various Monte Carlo techniques can be used to approximate Eq. (3.12) by drawing

samples |xn⟩ from the probability distribution pθ(x) and stochastically estimating

the expectation values as

⟨O⟩ ≈ 1

N

N∑
n=1

Oloc
θ (xn), (3.15)

where N is the total number of samples. The error in the estimated expectation

value is given by

ϵMC =

√
σ2
O
N
, (3.16)

where σ2
O is the variance of the local estimator. Thus, the expectation value esti-

mated using Monte Carlo scales with the number of samples as 1/
√
N and converges

as N →∞.

To find the ground state, we minimize the energy ⟨H⟩ with respect to the varia-

tional parameters θ. The variance of the random variableHloc
θ (x) plays an important

role here because of its zero-variance property. If the variational state |Ψθ⟩ coin-
cides with an exact eigenstate of H, so that H |Ψθ⟩ = E |Ψθ⟩, then the local energy

Hloc
θ (x) is constant

Hloc
θ (x) =

⟨x|H|Ψθ⟩
⟨x|Ψθ⟩

= E
⟨x|Ψθ⟩
⟨x|Ψθ⟩

= E. (3.17)

Thus, the random variable Hloc
θ (x) does not depend on |x⟩ and its variance is zero.

While this does not happen in real VMC calculations for general correlated systems,

the zero-variance property provides us with a metric to judge the accuracy of our

variational approximation. In general, the variance of the local energyHloc
θ (x) should

decrease as it approaches an eigenstate of the Hamiltonian H. To calculate the

variance of the random variable Hloc
θ (x), we first note that the expectation value of
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H2 can be written as

〈
H2
〉
=
⟨Ψθ|H2 |Ψθ⟩
⟨Ψθ|Ψθ⟩

=

∑
x ⟨Ψθ|H|x⟩ ⟨x|H|Ψθ⟩∑

x |ψθ(x)|2

=

∑
x |ψθ(x)|2|Hloc

θ (x)|2∑
x |ψθ(x)|2

. (3.18)

Using the above equation, we can write the variance of Hloc
θ (x) as the quantum

variance of the Hamiltonian over the variational wave function Ψθ

σ2
H =

⟨Ψθ|(H− E)2|Ψθ⟩
⟨Ψθ|Ψθ⟩

(3.19)

3.3.2 Markov chain Monte Carlo

To estimate the quantum expectation value in Eq. (3.12), we need to draw samples

from the probability distribution pθ(x). Doing this exactly is still an exponentially

hard problem. However, this problem can be approximated using the Markov chain

Monte Carlo (MCMC) method to draw samples that are correctly distributed ac-

cording to pθ(x). In MCMC, a Markov chain represents a series of samples x(n)

obtained by a transition probability T (x(n) → x(n+1)) which describes the proba-

bility of the state x(n) to transition to the state x(n+1). The chain is said to be

stationary with some probability distribution p(x) as its equilibrium distribution if

T preserves p(x), i.e.,

p(x(n+1)) =
∑
x

T (x(n) → x(n+1))p(x(n)). (3.20)

To calculate the expectation value of a random variable, as in Eq. (3.15), a stationary

Markov chain with N samples is generated from pθ(x). In practice, multiple Markov

chains are used to reduce the correlations between samples. Furthermore, initial

samples are discarded as the chain starts from a random distribution and must first

converge to the equilibrium distribution before we can use it to estimate observables.

This phase is called the burn-in phase. Finally, there is still no assurance that the

Markov chain has converged and additional metrics might be used to assess its

convergence [88, 89].

The Metropolis-Hastings algorithm can be used to construct a Markovian stochas-

tic process that preserves any distribution p(x). Since the process is Markovian,

the transition probability depends only on the current state. According to the
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Metropolis-Hastings algorithm, the transition probability T is first written as a

product of a local transition rule T and an acceptance probability of the local up-

date A as

T (x(n) → x(n+1)) = T (x(n) → x(n+1))A(x(n) → x(n+1)). (3.21)

This separation of T gives us freedom to easily define a local update rule T instead

of a global transitional probability T . The acceptance of the update move to go

from x(n) to x(n+1) is given by the probability

A(x(n) → x(n+1)) = min

(
1,
p(x(n+1))T (x(n+1) → x(n))

p(x(n))T (x(n) → x(n+1))

)
. (3.22)

If the transition rule T is symmetric, i.e. T (x(n) → x(n+1)) = T (x(n+1) → x(n)), then

p(x(n+1))

p(x(n))
=

∣∣∣∣∣
〈
x(n+1)||Ψθ

〉〈
x(n)|Ψθ

〉 ∣∣∣∣∣
2

. (3.23)

Thus, if the new state has a higher probability amplitude than the old state, it is

accepted. If it has lower probability amplitude, it is accepted randomly according

to the probability ratio. This also allows us to use unnormalized variational ansatz,

which is crucial for using neural-network quantum states. With this procedure,

the probability distribution p(x) generated by the Metropolis-Hastings algorithm

satisfies the detailed balance condition

p(x(n))T (x(n) → x(n+1)) = p(x(n+1))T (x(n+1) → x(n)). (3.24)

The detailed balance is a sufficient condition to ensure that the distribution p(x) is

stationary. That is, it ensures that regardless of the initial configuration x(0), the

Markov chain eventually converges to the correct distribution p(x).

Selecting a transition rule T to update the state x(n) can be quite tricky as

we need to make sure that the rule respects the symmetries of the system and is

ergodic, i.e., any state with a finite probability can be reached by the Markov chain

in a finite number of steps. Even if these conditions are met, it can be the case that

the samples generated are not independent but correlated to some degree. Thus, an

appropriate choice of the transition rule T is important, and usually depends on the

type of system that is considered. For spin systems, flipping a single spin randomly

or exchanging two spins randomly are some of the common choices.
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3.4 Time-dependent variational principle

In this section, we describe a method to approximate the real time evolution of quan-

tum many-body systems using the time-dependent variational principle (TDVP).

The time evolution of a wave function |Ψ(t)⟩ at time t is given by the Schrodinger

equation (taking ℏ = 1):
d

dt
|Ψ(t)⟩ = H |Ψ(t)⟩ . (3.25)

For a time-independent Hamiltonian H, the solution of this equation is give by

|Ψ(t)⟩ = e−iHt |Ψ(0)⟩ . (3.26)

As the Hilbert space grown exponentially with the system size, exact evolution of

equation (3.26) is possible only for small systems and approximation methods are

needed. Time dependent mean field approximation is not accurate for interacting

many-body systems as it cannot represent the correlation effects. Quantum Monte

Carlo methods struggle with the sign problem when the Hamiltonian contains com-

plex off-diagonal elements, as is the case for quantum skyrmions. Tensor network

methods can provide accurate results for one dimensional systems, but they strug-

gle in two or three dimensions and with increasing time the entanglement increases,

which requires an increasing bond dimension with time. The variational Monte

Carlo method described in the previous section to obtain the ground state of many-

body Hamiltonians can be extended to deal with the time evolution of variational

wave functions.

The main idea behind time-dependent variational principle (TDVP) is that the

time dependence of the wave function
∣∣Ψθ(t)

〉
is encoded into the variational pa-

rameters θ(t) [36]. The exact infinitesimal real-time evolution of ψθ(t)(x) is given

as

ϕ(t+ δt, x) = ψθ(t)(x)− iδt ⟨x|H
∣∣Ψθ(t)

〉
+O(δt2). (3.27)

Given the variational parameters θ(t) at time t, our task is to find the new variational

parameters θ̃(t+δt) at time t+δt that can approximate the exact infinitesimal time

evolution in Eq. (3.27). Expanding θ̃ in the first order as θ̃(t+ δt) = θ(t)+ δtθ̇(t)+

O(δt2), we can write the new variational wave function amplitudes ψθ̃(t+δt)) in the

first order as

ψθ̃(t+δt)(x) = ψθ(t)+δtθ̇(t)(σ) = ψθ(t)(σ)− δtθ̇(t)∂θ(t)ψθ(t)(x) +O(δt2). (3.28)

Thus, we can define a cost function between the two wave functions |Φ(t+ δt)⟩ =
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∑
x ϕ(t + δt, x) |x⟩ (Eq. (3.27)) and

∣∣∣Ψθ̃(t+δt)

〉
=
∑

x ψθ̃(t+δt)(x) |x⟩ (Eq. (3.28)) to

minimize:

L(θ̃) = dist
(∣∣Ψθ̃(t+δt)

〉
, |Φ(t+ δt)⟩

)
. (3.29)

The distance dist (|ψ⟩ , |ϕ⟩) between two wave functions |ψ⟩ and |ϕ⟩ in Eq. (3.29)

is given by the Fubini-Study metric

dist(|ψ⟩ , |ϕ⟩) = cos−1

(√
⟨ψ|ϕ⟩ ⟨ϕ|ψ⟩
⟨ψ|ψ⟩ ⟨ϕ|ϕ⟩

)2

. (3.30)

Minimizing this equation in the limit of δt → 0 results in an equation for the time

derivative of the variational parameters θ̇ (see [59] for a full derivation)

Sθ̇ = −iF . (3.31)

Here, S is the quantum geometric tensor and F is the force vector defined as (drop-

ping the t dependence of θ(t) for readability),

Sij =

〈
∂θi
ψθ|∂θj

ψθ

〉
⟨ψθ|ψθ⟩

− ⟨∂θi
ψθ|ψθ⟩

⟨ψθ|ψθ⟩

〈
ψθ|∂θj

ψθ

〉
⟨ψθ|ψθ⟩

,

Fi =
⟨∂θi

ψθ|H |ψθ⟩
⟨ψθ|ψθ⟩

− ⟨∂θi
ψθ|ψθ⟩

⟨ψθ|ψθ⟩
⟨ψθ|H |ψθ⟩
⟨ψθ|ψθ⟩

. (3.32)

Both S and F can be computed by estimating the expectation values in the Monte

Carlo scheme, as described in section 3.3. Finally, Eq. 3.31 can be integrated using

any of the established numerical integration methods. A common choice is to use

the Euler method or the fourth order Runge-Kutta method.

3.5 Neural network quantum states

In this section we discuss the variational wave functions that use an artificial neural

network to represent the wave function, known as neural-network quantum states

(NQS). In 3.5.1 we review artificial neural networks. In 3.5.2, we describe how they

are used as variational wave functions for quantum many-body systems and in 3.5.3

we describe how to optimize them for quantum systems.
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Figure 3.2: A schematic image of a biological neuron. The input signals from other
neurons are received at dendrites, denoted by x1, x2, ..., xn. Processing of the signal
takes place in the cell body and the outputs, y1, y2, ..., ym, are transmitted through
the axon, which then acts as inputs for other neurons [93]. An artificial neuron is
modeled in a similar way.

3.5.1 Machine learning and artificial neural networks

Machine learning is a branch of computer science that deals with statistical algo-

rithms that can learn from data and make predictions about unseen data. They

are different from other statistical optimization methods in that there is no explicit

instruction given for learning and a general algorithm can work for a wide variety of

tasks. Machine learning is now used ubiquitously in every technology and even in

research in sciences. Artificial neural networks have outperformed all the machine

learning algorithms. They are the basis of highly successful models like alphafold for

predicting protein structures and drug discovery [90], natural language models for

language translation [91], generation and conversation and text-to-image generators

[92].

Artificial neural networks (ANNs) are mathematical functions that can approx-

imate complex nonlinear functions. Inspired from biological neural networks, arti-

ficial neural networks form the backbone of modern machine learning and artificial

intelligence. Figure 3.2 shows a schematic diagram of a single biological neuron. A

biological neural network is made of millions of these neurons connected in a com-

plex manner. On the other hand, an artificial neural network has fewer neurons,

called parameters or weights, and is connected in layers in a much simpler manner.
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Figure 3.3: A multilayer feed forward neural network with inputs x1, x2, ..., xN and
a single output y. There are 3 hidden layers in this network. At each neuron of the
hidden layer Eq. (3.33) is carried out. The simplest form of this neural network will
have only a single hidden layer.

The goal of an ANN is to approximate a function f̃ , given the input x and

output y, such that y = f̃(x). The ANN defines a mapping y = f(x,θ) and learns

the parameters θ that results in the best approximation of f̃ . The parameters θ,

analogous to the biological nueron, are often connected in multiple layers so that

the output of one layer is the input of another. The theoretical power of ANN has

been established in the numerous universal approximation theorems that show that

an ANN can approximate any continuous function given enough parameters in a

single layer, i.e. with increasing the width of the network or with enough layers, i.e.

increasing the depth of the network [43, 44, 45, 46, 47].

The simplest form of ANN is a single layer feedforward neural network, in which

the information flows in one direction, i.e., there are no feedback connections. Rep-

resentation power of the neural networks generally increase with increasing hidden

layers. A more powerful, 3 hidden layer feedforward architecture is shown in 3.3.

The fundamental unit in a feedforward neural network (and most other neural net-
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works) is a neuron. An i-th neuron hji in layer j takes inputs vj−1
k from the previous

layer j − 1, weighted by the weights wjik and offset by a bias bji . This weighted

linear combination then passes through a nonlinear activation function g, which is

the most important part of the neural network and differentiates it from a linear

approximator. The output of a single neuron is

hji = g
(
wji,1 · vj−1

1 + wji,2 · vj−1
2 + · · ·+ wji,N · vj−1

N + bji
)

= g

(∑
k

wji,kv
j−1
k + bji

)
(3.33)

This equation can be written simply in a vector form for the whole layer j as

hj = g ·
(
W jvj−1 + bj

)
, (3.34)

where, W j is the weight matrix for the layer j, vj−1 is the input vector from layer

j−1, bj is the bias vector for layer j and g ·() denotes an element-wise application of

the nonlinear activation function g. The choice of g is important and depends on the

inputs and outputs of the ANN. For example, a sigmoid function g(x) = (1+e−x)−1

is a common choice when probabilities are the output of the network. Another

popular activation function is the rectified linear unit (reLU), which is defined as

g(x) = max(0, x), which more closely represents a biological neuron firing and has

been used in all kinds of neural networks. For stable iterative optimization and

calculation of gradients, it is desirable that the activation function is continuously

differentiable on almost every part of its domain. For more details refer [38, 37].

The dominance of ANN in machine learning tasks has two main factors behind it.

First, the training of neural networks require huge amount of data, which has been

possible only in the last decade. Second, the advancements in computing power,

especially the graphical processing units that can compute millions of floating point

products in parallel, much faster than central processing units. This combination of

availability of data and GPUs allows us to train big neural networks with billions of

parameters, creating machine learning models that was not possible before [91, 90,

92]. This also opens up the avenue for using advancements in machine learning for

solving problems in other fields such as quantum physics.
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Figure 3.4: A restricted Boltzmann machine (RBM) used to represent the many-
body wave function ψ(x). The input layer consists of spin configurations. The
output is the log of the wave function Eq. (3.35).

3.5.2 Artificial neural networks as variational wave func-

tions

Due to their high representation power and successes in representing high dimen-

sional data in machine learning community [90, 91, 92], artificial neural networks

were proposed as variational functions. In the seminal work by Carleo and Troyer

[42], neural-network quantum states (NQS) were used as the variational wave func-

tion to study the quantum many-body problem. They showed that NQS can be used

to study ground state and unitary time evolution of quantum spin systems, achiev-

ing accuracy better than the tensor network methods in two dimensions. Since then,

this field has generated a lot of interest and many works have explored different kinds

of NQS architectures, capacity and limitations of NQS and application of NQS to

a variety of quantum many-body systems [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,

59, 94, 95, 96, 97].

The most commonly used NQS architecture is the restricted Boltzmann machine

(RBM), shown in Figure 3.4. The RBM consists of an input layer that takes the

spin configurations x as input and a hidden layer with variational parameters θ =

(a,W, b). Here, a are input biases, and W and b are hidden weights and biases,

respectively. To capture the sign structure of the ground state wave function, the

weights and biases of the RBM are taken to be complex numbers. The total number

of spins is given by N , and α is the hidden neuron density, i.e. αN total neurons. To

calculate the expectation values in variational Monte Carlo, it is not required for the
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wave function to be normalized. The output of the RBM, hence, is the logarithm

of the unnormalized wave function

ψθ(x) =
∑
{hi}

exp

(∑
i

aixi +
∑
i

bihi +
∑
i,j

Wi,jhjxi

)
, (3.35)

where hi = {−1, 1} is a set of αN hidden variables. Since there are no intra-layer

connections in the hidden layer, the sum over hi can be traced out and we get

ψθ(x) =
∑
{hi}

exp

(∑
i

aixi

)
αN∏
j=1

2cosh

{∑
i

Wi,jxi + bj

}
(3.36)

Since the probability amplitude ψθ can span several orders of magnitude, using

the logarithm ln(ψθ(x)) is better for the stability of the training procedure. The

RBM is a special kind of single layer feedforward neural network described in the

previous section, with visible biases a and ln cosh(x) as the activation function.

RBMs have been used to achieve state-of-the-art results for the ground state of

quantum spin systems [98, 99], to study real time evolution [42, 100, 101], high

temperature properties and fermionic systems [48, 49, 102]. It has been shown that

RBMs can efficiently represent quantum states that have volume-law scaling of the

entanglement. These states are out of reach for tensor-network approaches, implying

the great potential of RBMs, and NQSs in general, for quantum many-body systems

[56, 55].

It is possible to implement lattice symmetries like translational symmetry or

rotational symmetry in an NQS. The HamiltonianH is invariant under the symmetry

operation, i.e. it commutes with a set of symmetry operators T = {T̂k}Kk=1. This

reduces the number of variational parameters and restricts the Hilbert space to

only symmetric states which usually results in better accuracy. If the Hamiltonian

commutes with an operator, the ground state it is also invariant under the operation

of that operator. This means that the probability amplitude for two states |x⟩ and
T̂k|x⟩ must be the same

ψθ(x) = ψθ(T̂kx). (3.37)

This is implemented in an NQS by making the first layer of the network respect the
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Figure 3.5: A one-dimensional, multilayered convolutional neural network (CNN).
The kernel size is 3, meaning each hidden neuron takes the input from the previous
3 neurons. Unlike a fully connected neural network (Figure 3.3), the connections
in a CNN are sparse and parameters are shared. This reduces the total number of
parameters and the architecture is translation equivariant [103].

symmetries of the Hamiltonian. For an RBM (Eq. (3.35), this can means [42]

ψθ(x) =
∑
{hi,k}

exp

(
α∑
f

af

k∑
k

N∑
i

xi(k)+

α∑
f

bf

K∑
k

hf,k +
α∑
f

K∑
k

hf,k

N∑
i

W f
i xi(k)

)
. (3.38)

The visible and hidden biases are now vectors in the feature space af and bf where

f = 1, ..., α and the weight matrix has the dimensions α × N . For the case of

translational symmetry, we have N translational operators K = N . In machine

learning language, this means a convolutional neural network with stride as N (see

below). The above expression can again be simplified by tracing out the hidden

variables

ψθ(x) = exp

(∑
f,k,i

afxi(k)

)
×
∏
f

∏
k

2cosh

(
bf +

N∑
i

W f
i xi(k)

)
. (3.39)

While RBMs have been quite successful, they struggle in representing frustrated spin

systems and scale poorly (αN2, where N are the input spins) with the system size.

In machine learning, the representation power of artificial neural networks increase

with increasing depth of the network, i.e. the number of hidden layers. The same

procedure for RBMs results in multilayer RBMs, called deep Boltzmann machines

and in general, multilayer feedforward neural networks (see Figure 3.3) [55, 49].
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Specialized neural network architectures can be used according to the type of

input data and symmetries of the Hamiltonian. Convolutional neural networks

(CNNs) are appropriate for systems with translational equivariance, such as images.

The convolutional operation for an input function x(t) and kernel w is defined as

s(t) = (x ∗ w)(t) =
∫
x(a)w(t− a)da. (3.40)

The output s(t) is the weighted average of x(t). The output is also known as the fea-

ture map. CNNs and their variants are used for quantum systems with translational

and other lattice symmetries, as they scale better than RBMs and feedforwards neu-

ral networks, use fewer parameters and may result in better accuracy [104]. This is

because while an RBM is fully connected, a CNN is sparsely connected while sharing

weights as they should be translational equivariant. A simplified architecture for a

CNN is shown in Figure 3.5.

Another example of a specialized ANN is a recurrent neural network (RNN)

used for sequential data such as text, speech and time series data. In contrast to

feedforward architectures like RBMs, DBMs and CNNs, an RNN has bi-directional

flow of information, i.e. the output from a nueron affects the input to the same

neuron. The hidden neurons of an RNN encodes the history of the previous inputs

due to which it can predict the next step in a sequence, see Figure 3.6. In the

context of quantum systems, RNNs were used to study the ground state of spin

models. A big advantage of an RNN is that is allows for sampling directly from the

wave function and thus avoiding the need for Markov chain Monte Carlo sampling,

resulting in completely independent samples. A downside is that the computation in

RNNs take place sequentially, which is slower than in an RBM which can utilize the

parallel processing of GPUs. However, very recently transformer wave functions are

taking the spotlight as NQS for frustrated spin systems. Transformers are the state-

of-the-art models used in the field of natural language processing and sequential

data. In quantum systems, they do not struggle with sequential processing of an

RNN and achieve better accuracy than an RBM.

Now, we discuss the characteristics of a variational wave functions in section 3.2

for NQSs:

1. Capacity - It has been shown that NQS can represent all tensor network states

in polynomial number of parameters, while the vice versa is not true [56]. This

means that NQS have greater capacity than the tensor network states and they

can even represent states with volume law of entanglement [106].
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Figure 3.6: A simple recurrent neural network. On left is the compressed architec-
ture. On right is the unfolded architecture in time. The inputs and outputs are
sequential and the information flows back to the hidden neuron, which makes RNNs
different from the uni-directional feedforward architectures like RBMs and CNNs
[105].

2. Scaling - The scaling of variational parameters of NQS, also known as weights,

highly depends on the type of neural network architecture. For example, an

RBM has poor scaling αN2 with number of particles N . For translationally

symmetric systems, a CNN scales much better. However, more research is

needed to shed light on scaling of NQS in general.

3. Systematically improvable - NQSs are systematically improvable as, theoreti-

cally, it is possible to increase the accuracy by increasing the number of neu-

rons. Practically, this results in slower training and optimization difficulties

with increasing depth.

4. Optimization - One benefit of using NQSs is the advancements in machine

learning carry over and one can use the optimization tools developed there for

quantum systems. Furthermore, as we describe in the next section, optimiza-

tion methods for NQSs are well established.

3.5.3 Optimization of NQS

The optimization of neural networks is carried out in an iterative manner by up-

dating the parameters θ of the neural network such that some loss function L(θ) is
minimized. To find the ground state of a many-body Hamiltonian H using an NQS

|ψθ⟩, the loss function is the energy E

L(θ) = E =
⟨ψθ|H|ψθ⟩
⟨ψθ|ψθ⟩

. (3.41)

33



A common optimization procedure is the gradient descent algorithm, a first order

algorithm in which each parameter θj at i-th iteration is updated in the opposite

direction of the gradient of the loss function with respect to that parameter

θi+1
j = θij − η∂E/∂θij. (3.42)

In practice, more sophisticated gradient descent algorithms like stochastic gradient

descent and momentum based algorithms like ADAM [107] provide faster conver-

gence with better accuracy.

For the case of variational methods, the first order gradient descent algorithms

mentioned above can be further improved to achieve more accurate ground state

energies and faster convergence. This is done by combining them with the second

order methods such as stochastic reconfiguration [36], which leverages the imaginary

time evolution of the quantum states. If the exact ground state of Hamiltonian H
is |ϕ⟩, the imaginary time evolution

|ψθ(τ)⟩ = e−τH |ψθ(0)⟩ (3.43)

converges to |ϕ⟩ in the limit of τ →∞. The procedure to obtain the imaginary time

evolution is similar to the one for the real time evolution described in 3.4 and one

ends up with an equation of motion similar to Eq. (3.31) but without the complex

factor i

Sθ̇ = F . (3.44)

To obtain θ̇, the pseudo-inverse of S has to be calculated. Since this matrix can be

singular, a regularization term ϵ→ 0 is added to its diagonal elements (S + ϵI) for

stability of the procedure.
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Chapter 4

Ground state properties of

quantum skyrmions

With the foundations of the variational Monte Carlo (VMC) and neural-network

quantum state (NQS) established in the previous chapter, here we present our first

study on the ground state properties of quantum skyrmions using VMC with the

NQS as the variational wave function. We study a quantum spin-1/2 Heisenberg

model in two dimensions with Dzyaloshinskii-Moriya interaction and Heisenberg

anisotropy. We show that quantum skyrmions are the ground states for a wide

range of Hamiltonian parameters. To study quantum entanglement in this system,

we calculate Renyi entropy of second order and demonstrate that the entanglement

in the quantum skyrmion ground state decreases with increasing DMI. Previous work

with density matrix renormalization group (DMRG) indicated that the central spin

of a quantum skyrmion can have vanishing concurrence with its surrounding spins

[16]. Interestingly, we also find that the central spin in the quantum skyrmion ground

state is completely disentangled from the rest of the spins within the error bars of

our method. This opens up a way of detecting quantum skyrmions experimentally

without destroying their quantum nature. While we find stable quantum skyrmion

ground states at large DMI, the variational method is insufficient to learn the ground

state wave function at small DMI. An analysis of small systems reveals that the

variational method finds a superposition of the ground state and the first excited

state due to a tiny excitation gap. Motivated by this, we present a projection-based

method to improve the variational ground state in this region. Finally, we analyze

the internal structure of our NQS ansatz by inspecting the trained network weights

and pruning. While the lowly entangled NQS does not change significantly upon

pruning, the performance degrades rapidly with pruning in the highly entangled

NQS. Our work shows that an NQS variational ansatz can be used to efficiently
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approximate spin systems with medium to high DMI at system sizes out of reach

for exact methods.

We present the model in section 4.1. In section 4.2, we present the details and

hyperparameters of the NQS based VMCmethod. The ground state diagram, energy

convergence and spin expectation values are described in section 4.3. Analysis of

quantum entanglement in the ground state is given in section 4.4. We provide an

interpretation of the parameters of the ground state neural-network quantum state

in section 4.5 and summarize this chapter in section 4.6.

4.1 Model

We study a two-dimensional spin-1/2 Heisenberg Hamiltonian on a square lattice in

the presence of the Dzyaloshinskii-Moriya interaction (DMI)

H =− J
∑
⟨ij⟩

(σxi σ
x
j + σyi σ

y
j )− A

∑
⟨ij⟩

σzi σ
z
j

−D
∑
⟨ij⟩

(uij × ẑ) · (σi × σj) +Bz
∑
b

σzb .
(4.1)

Here, J is the Heisenberg exchange interaction, A is the Heisenberg anisotropy term,

D is the DMI, and Bz is the external magnetic field along the ẑ-axis acting only

on the boundary spins indexed with b. The Pauli operator at the i-th lattice site

is σi = (σxi , σ
y
i , σ

z
i ) and uij is the unit vector pointing from site i to site j. We

consider ℏ = 1. The sum in the first three terms is over the nearest neighbor lattice

sites, while the last term only covers the boundary sites.

The Hamiltonian in Eq. (4.1) can be considered the quantum analog of a clas-

sical spin model in which the competition between the noncolinear DMI and the

ferromagnetic Heisenberg exchange interaction gives rise to the formation of mag-

netic skyrmions. Our Hamiltonian is similar to the one used in [14], where they

considered a quantum spin lattice coupled to a classical boundary and studied this

system using exact diagonalization. In classical systems, skyrmions are often stabi-

lized by an external magnetic field over the whole lattice. However, we only apply

the magnetic field (Bz = 10J) to fix the spins at the boundaries. This is the main

difference between the Hamiltonian in our work and that in [16], where the authors

study a similar system but with a bulk external magnetic field. Thus, our model

describes a single quantum skyrmion embedded in a ferromagnetic medium. We

leave the study of a quantum skyrmion lattice with NQS and the comparison with
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DMRG results [16] for future works.

4.2 Method

We use the output of an artificial neural network to represent the complex-valued

coefficients ψθ(σ) in the variational wave function,

|Ψθ⟩ =
∑
x

ψθ(x) |x⟩ . (4.2)

Here, |x⟩ are the local basis states, which in our case are the eigenstates of the

σz operators, and θ are the variational parameters of the neural network. In this

chapter to study the ground states of the Hamiltonian in, we use two fully connected

feedforward neural networks (see section 3.5.1) to each represent the phase and

modulus part of the wave function, as depicted in Figure 4.1, and take the logarithm

of the wave function as the total output [52]

ln (ψθ(x)) = ρ(x) + iϕ(x). (4.3)

The NQS takes the configuration of the spins on the two-dimensional lattice

as the input. Both the phase and the modulus part of the neural network consist

of two fully connected hidden layers with αN2 neurons in each layer, where N is

the length of one side of the lattice, and we use α = 2 in this study. We use the

rectified linear unit (reLU) as the nonlinear activation function. According to the

variational principle (3.2), the variational energy is bounded from below by the exact

ground state energy. The optimization of the variational wave function is achieved

by minimizing the loss function Lθ, i.e., the variational energy, with respect to the

variational parameters

Lθ = ⟨ψθ|H|ψθ⟩ . (4.4)

The variational energy is calculated using variational Monte Carlo, as described

in section 3.3. The phase part of the neural network is trained first while keeping

the modulus part constant before optimizing the whole network. This method of

optimization results in better learning of the sign structure of the ground state wave

function, as demonstrated in Ref. [52] and also found by our testing. We use Adam

as the optimizer [107], with the moments β1 = 0.9 and β2 = 0.999. The learn-

ing rate η is set to η = 0.001 for the phase part and increases linearly from 0 to

0.001 over the first 5000 iterations for the modulus part of the NQS. The learning
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Figure 4.1: Neural network structure used as the NQS [21]. The inputs xi are the
spin configurations in the σz basis, and the output is the logarithm of the wave
function. There are two fully connected networks, with two hidden layers in each,
to learn the phase and the amplitude part of the wave function separately. Each
hidden layer consists of αN2 neurons.

rate is then reduced to η = 0.0001 after some iterations, depending on the sys-

tem size. We also tried a stochastic gradient descent optimizer with a stochastic

reconfiguration method as a preconditioner to the gradient [42] (see section 3.5.3)

and obtained similar results as with the Adam optimizer but with increased com-

putational cost. The input samples are generated using the Markov chain Monte

Carlo with Metropolis-Hastings algorithm. The transition rule T (x(n) → x(n+1)) to

update the configuration from x(n) to x(n+1) is to flip a spin locally N times, each at

a random location, where N is the total number of spins in the lattice. This makes

one Monte Carlo sweep and generates a new sample. We use 104 samples for the

energy calculation and 107 for all other expectation values. The calculations were

performed on a Xeon Gold 6338 CPU with multi-threading up to 4 cores. To im-

plement the NQS and Monte Carlo algorithms, we use NetKet and JAX in python

[108, 109, 110].

The iterative procedure to obtain the ground state of Eq. (4.1) is given as:
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Algorithm 1 Finding the ground state using NQS

Define an NQS ψθ(x)
Initialize θ randomly
for n = 1 to niter do

Using MCMC generate N samples x1,x2, ...,xN
Calculate the energy gradient w.r.t. θ, ∂E/∂θ
Minimize energy by optimizing θ ▷ e.g. θj ← θj − η∂E/∂θj

end for

4.3 Ground state analysis

First, we discuss the ability of the NQS ansatz to represent the ground state of the

Hamiltonian in Eq. (4.1). To check that our method works correctly, we compare

the NQS ground state energy, ENQS, for 3× 3 and 5× 5 spin lattices with the exact

ground state energy, Eexact, obtained using exact diagonalization. We find that the

NQS correctly describes all parameter regimes besides the small DMI regime. While

the NQS ground state energies are in agreement with the exact energies within the

error margin in this regime, the NQS spin expectation values do not match that of

the exact ground state. The reason for this problem lies in an almost degeneracy of

the ground state with the first excited state resulting in a significant overlap of the

NQS ground state with the excited state found by exact diagonalization. Because

of the above, we first present our results for the parameter regime where NQS is

accurate and discuss the small DMI regime afterward.

4.3.1 Strong DMI regime

The energy convergence plot for the 5×5 lattice at D = 0.8J and A = 0.3J is shown

in Figure 4.2(a) . Here, the NQS correctly describes the quantum skyrmion ground

state. The inset shows the relative error ∆E in the ground state energy over the

number of iterations,

∆E =
|ENQS − Eexact|
|Eexact|

. (4.5)

The energy convergence for a 9 × 9 lattice over the number of iterations for the

Hamiltonian parameters D = 0.5J and A = 0.2J is shown in Figure 4.2(b).

The ground state diagram for the 9× 9 lattice is shown in Figure 4.3, depending

on the DMI, D, and the anisotropy, A. The quantum skyrmion is the ground state

for a wide range of parameters (triangles in Figure 4.3, especially at stronger DMI,

which favors a noncolinear alignment of the neighboring spins. The spin expectation

value at the i-th site, ⟨Si⟩ = ⟨σi/2⟩, for the ground state atD = 0.5J and A = 0.2J is
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(a)

(b)

Figure 4.2: Convergence of the NQS training procedure: The figure shows the con-
vergence of variational energy per spin to the ground state of a 5 × 5 lattice (a)
and a 9 × 9 lattice (b) over the number of iterations at the bottom axis and time
elapsed at the top axis (see 4.2 for hardware specifications). The inset in (a) shows
the relative error ∆E in the ground state energy (see Eq. (4.5)) with respect to the
exact ground state energy (black line). The inset in (b) shows the energy variance
per spin in dependence on the number of iterations. Light blue and orange lines
show the values at each iteration while dark blue and red lines show the moving
average over 30 iterations [21].
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shown in Figure 4.4(a). A fundamental difference from the case of classical magnetic

skyrmions is that the expectation value of the length of the spins, | ⟨Si⟩ |, is reduced
in the quantum skyrmion state. For the ground state in Figure 4.4(a), | ⟨Si⟩ | ranges
from 0.92ℏ

2
in the ring around the center to 1.00ℏ

2
at the boundary and the center of

the quantum skyrmion. Among the quantum skyrmion ground states, the minimum

of | ⟨Si⟩ | = 0.90ℏ
2
is found at D = 0.6J and A = 0. The spins are not merely

rotated from the boundary to the center, as is the case with classical spins, but

are a superposition of the local eigenstates of spin operators in different directions.

Finally, for large A and small DMI, the ground state is a ferromagnet (FM) as the

spins align in the direction parallel to the boundary fields (squares in Figure 4.3).

An example is shown in Figure 4.4(b) for D = 0.1J and A = J .
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Figure 4.3: Ground state diagram for a 9×9 square lattice. QS denotes the quantum
skyrmion state, FM the ferromagnetic state aligned with the boundary fields, and
MS the mixed state (see the main text). The color map shows the maximum Renyi
entropy between two spins [21].
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4.3.2 Weak DMI regime

Now, we discuss the parameter regime where the NQS struggles to find the correct

ground state. As both DMI and A decrease, the magnitude of the spin expectation

values also decreases. We find that in this regime, marked by circles in Figure 4.3, the

quantum skyrmion only exists as a metastable state for some parameters, observed

in the form of a local minimum during the optimization procedure where the NQS

is stuck for some iterations before converging to the ground state. The ground state

is characterized by almost vanishing spin expectation values aligned along the x

or y direction. As mentioned earlier, for small DMI values, the NQS is not able

to resolve the nearly degenerate ground state from the first excited state even in

smaller lattices. Hence, we label this regime where our method does not find either

a quantum skyrmion or an FM ground state as a “mixed state” (MS) (circles in

Figure 4.3).

QS

(a)

FM

(b)

-1

-0.5

 0

 0.5

 1

Spin wave

(c)

Figure 4.4: Spin expectation values of different ground states of Eq. (4.1) for a
9 × 9 square lattice. (a) Quantum Skyrmion state (QS) at D = 0.5J,A = 0.2J
and (b) Ferromagnetic state (FM) at D = 0.1J,A = J . (c) For periodic boundary
conditions, we obtain a cycloidal spin spiral instead of a quantum skyrmion at
D = J,A = 0.5J [21].
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A conclusion that must be drawn from this result is that energy convergence

cannot be taken as the sole measure of accuracy for the variational ground state. To

have an additional metric for quantifying the accuracy of our approach, we calculate

the gap between the ground state and the first excited state. This is achieved in the

variational Monte Carlo scheme by optimizing a second NQS, |ψ1
θ⟩, orthogonal to

the ground state NQS, |ψ0
θ⟩, by adding an additional term in the loss function

Lθ =
〈
ψ1
θ|H|ψ1

θ

〉
+ J |

〈
ψ0
θ|ψ1

θ

〉
|2. (4.6)

We calculate the relative energy gap as ∆Eg = (E0 − E1)/E0, where E0 and E1

are the energies corresponding to |ψ0
θ⟩ and |ψ1

θ⟩ respectively, and plot it over the

DMI in Figure 4.5. For ∆Eg < 2 × 10−4, we do not obtain a quantum skyrmion

or FM ground state. This corresponds to the MS region in the parameter space,

where quantum skyrmions with very low spin expectation values might exist for

some parameters that our method is not able to resolve, as found for small systems

by exact diagonalization [14, 17, 13]. This suggests that the NQS-based variational

methods generally struggle with almost degenerate states. This scenario observed

here for quantum spin systems, is well known from finite size electronic topological

systems, which only reach exact degeneracy in the thermodynamic limit.

Variational wave functions can be improved by projection techniques, which re-

quire the variational state to have a finite overlap with the exact ground state. Then,

the high-energy components can be projected out by applying the “power method”.

However, this method can be done exactly only for systems manageable by exact

diagonalization. In other cases, stochastic methods have to be used, requiring the

Hamiltonian’s off-diagonal terms to be real and non-negative. When this condition

is not fulfilled, as in our case with Eq. (4.1) with complex off-diagonal terms, there

is a fixed-node approximation for Hamiltonians with real and negative off-diagonal

terms and its modification fixed-phase approximation for complex off-diagonal terms

[9].

Here, we propose another method to filter out high-energy components by pro-

jecting the Hamiltonian on a few low-energy states, which can be directly obtained

by the variational Monte Carlo scheme introduced in the section 3.3. Given a Hamil-

tonian H, its eigenvalue equation is

H |ϕ⟩ = E |ϕ⟩ , (4.7)

where E and |ϕ⟩ are the eigenvalues and eigenvectors, respectively. By expanding

this equation in a complete but not necessarily orthonormal basis |n⟩, we obtain the
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generalized eigenvalue equation

1

Ω

∑
ni,nj

⟨nj|H|ni⟩ ⟨ni|ϕ⟩ − E ⟨nj|ni⟩ ⟨ni|ϕ⟩

 = 0. (4.8)

Using an incomplete set of states, |ni⟩, we can define the projection of the Hamil-

tonian into the space spanned by these states as Hproj = ⟨nj|H|ni⟩ and the overlap

matrix X = ⟨nj|ni⟩. If |ni⟩ are approximations of the ground state and the lowest

excited states of the Hamiltonian, the ground state of the projected Hamiltonian

will be an improved version of the variational ground state of the full Hamiltonian.
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Figure 4.5: Relative energy gap ∆Eg between the ground state and the first excited
state found by the NQS method over DMI at A = 0.2J and A = 0.4J [21].

In the converged variational NQS ground state |n0⟩, the main component is the

exact ground state with small contributions from the excited states. By optimizing

a second NQS, which is nearly orthogonal to the ground state NQS, using the cost

function

Lθ = ⟨n1|H|n1⟩+ J | ⟨n0|n1⟩ |2, (4.9)

as described in the main text in Eq. (4.6), the first excited state can be approxi-

mated as |n1⟩. This procedure can be repeated to approximate the excited states of
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H. We then can use these variational low-energy states to calculate the projected

Hamiltonian and the overlap matrix in a Markov Chain Monte Carlo scheme. We

note that even by using the cost function Eq. (4.9), there is no guaranty that the

overlap of |n0⟩ and |n1⟩ exactly vanishes. We use a similar procedure as in Eq. (3.12)

to calculate the matrix elements of the projected Hamiltonian and the overlap ma-

trix. For the projection on two low-energy states, we sample using the product of

these two wave functions |n0(x)||n1(x)|, as it gave us the best results. The projected
Hamiltonian and the overlap matrix are then given as

⟨ni|H|nj⟩
Ω

=

∑
xx′

|n0(x)||n1(x)|
|n0(x)||n1(x)|n

⋆
i (x

′)nj(x) ⟨x|H|x′⟩∑
x |n0(x)||n1(x)|

(4.10)

⟨ni|nj⟩
Ω

=

∑
x

|n0(x)||n1(x)|
|n0(x)||n1(x)|n

⋆
i (x)nj(x)∑

x |n0(x)||n1(x)|
(4.11)

which determines the normalization constant in Eq. (4.8) as Ω =
∑

x |n0(x)||n1(x)|.
The wave functions in Eq. (4.8) do not need to be normalized because the overlap

matrix X takes care of any factors arising due to the absence of normalization.

Hence, this method can be used in the variational Monte Carlo scheme, which usually

considers unnormalized wave functions.

Then, by solving the generalized eigenvalue problem, Eq. (4.8), we can filter out

the high energy components from the variational ground state. The new variational

ground state is |n0⟩new =
∑

i ϕ0i |ni⟩, where ϕ0i are the components of the lowest

energy eigenvector of Eq. (4.8). This procedure is feasible when only a few excited

states are mixed in the approximation of the ground state, as the calculation of the

excited state itself is variational, and the errors build up with each excited state

calculation. This method works well for the 3× 3 lattice over the entire parameter

range, as the variational ground state has negligible overlap with the second and

higher excited states. Then, only the calculation of the first variational excited

state is required. However, while it improves the variational energy slightly for

larger lattices, we do not obtain the correct ground state in the small DMI and A

region of the ground state diagram.

After this improvement of the wave function, we obtain the correct ground state

for the 3 × 3 lattice but not for the 5 × 5 lattice. Thus, while the NQS is able to

represent the correct ground state for all parameters in the case of a 3 × 3 lattice,

it is not able to learn it in the small DMI region in our variational Monte Carlo

scheme. Our model is similar to the one in [14], where the authors found that

quantum skyrmions can appear as a ground state for even infinitesimal DMI, which
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is not found for classical skyrmions (see Fig. 1 in [14]). These quantum skyrmions

in the small DMI regime have vanishing magnitude of spin expectation values. We

expect this to be the case in our model as well, where some regions of small DMI

host a quantum skyrmion ground state.

4.3.3 Skyrmion number

In addition to the spin expectation values, we calculate the skyrmion number C

using the normalized spin expectation values, ni = ⟨Si⟩ /| ⟨Si⟩ |, to define quantum

skyrmions (see section 2.2)

C =
1

2π

∑
∆

tan−1

(
ni · (nj × nk)

1 + ni · nj + nj · nk + nk · ni

)
, (4.12)

where the sum runs over all elementary triangles ∆ of the triangular tessellation of

the quadratic lattice, having the sites i, j, and k as corners. C gives the number of

times the spins wind around a unit sphere and is an integer for quantum skyrmions.

In our model, we find C = 1 for the quantum skyrmion ground state and C = 0

otherwise. Furthermore, using unnormalized spin expectation values in Eq. (4.12),

ni = ⟨2Si⟩, results in a non-integer number Q that indicates the ‘quantum’ nature

of skyrmions [14], similar to other quantum measures [17]. Q decreases as the

entanglement increases and the spin expectation values decrease. For the quantum

skyrmion ground states, we find a lower threshold of Q = 0.9.

Lastly, we note that using periodic boundary conditions without ferromagnetic

boundaries (Bz = 0), we do not find a quantum skyrmion ground state. Instead,

we obtain a cycloidal spin spiral (Figure 4.4(c)), which is consistent with DMRG

findings [16] and the fact that unfrustrated classical skyrmions require a magnetic

field for stabilization. Here, a quantum skyrmion state minimizes the energy of a

finite region of the lattice if the boundary of this region is ferromagnetically ordered.

Furthermore, the quantum skyrmion ground state is stable in the presence of an

additional bulk magnetic field Bz
ext

∑
j σ

z
j with B

z
ext up to the order of 2J (not shown

here), above which the ground state is a ferromagnet aligned along the applied field.

4.4 Entanglement in quantum skyrmions

Entanglement is an important property of quantum systems that is absent in classi-

cal systems. In this section, we investigate whether the spins in the ground state are
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entangled by calculating the Renyi entropy as a measure of entanglement. Renyi

entropy generalizes different kinds of entropy measures like Hartley entropy and

Shannon’s entropy. The Renyi entropy of the order α, where α ≥ 0 and α ̸= 1, is

defined as,

Sα(ρA) =
1

1− α log(Tr(ρ
α
A)). (4.13)

Here, ρA is the reduced density matrix obtained after splitting the system into

two regions A and B and tracing out the degrees of freedom in region B. The

Renyi entropy is a non-negative quantity that is zero for a pure state and takes

the maximum value log(min(d1, d2)), where d1 and d2 are the dimensions of the

Hilbert space in region A and B, respectively. We take region A as a single spin and

region B as the rest of the lattice to obtain the entanglement of each spin with its

environment. We calculate the α = 2 Renyi entropy, S2(ρA), using the expectation

value of the ‘Swap’ operator [53, 111] in the VMC scheme, as described below.

When a system is divided into two parts, A and B, the variational wave function

can be written as

|ψθ⟩ =
∑
σAσB

ψθ(σAσB) |σA⟩ |σB⟩ , (4.14)

where σA and σB are the basis states in region A and region B, respectively. The

Renyi entropy of order α between A and B is

Sα(ρA) =
1

1− α log(Tr(ρ
α
A)), (4.15)

where ραA is the reduced density matrix obtained after tracing out the degrees of

freedom in region B. To calculate the Renyi entropy of the second order (α = 2),

we use the replica trick to evaluate the expectation value of the ‘Swap’ operator on

two copies of the variational wave function. The Swap operator swaps the spins in

one region with that of another region between the two wave functions [111]

SwapA |ψθ⟩ ⊗ |ψθ⟩ = SwapA

(∑
σAσB

ψθ(σAσB) |σA⟩ |σB⟩
)

⊗

∑
σ′
Aσ

′
B

ψθ(σ
′
Aσ

′
B) |σ′

A⟩ |σ′
B⟩


=
∑
σAσB

ψθ(σAσB)
∑
σ′
Aσ

′
B

ψθ(σ
′
Aσ

′
B) |σ′

A⟩ |σB⟩ ⊗ |σA⟩ |σ′
B⟩ , (4.16)

where σ and σ′ are the basis states for the two copies of the wave function. The
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expectation value of SwapA is then given by,

⟨SwapA⟩ =
⟨ψθ ⊗ ψθ| SwapA |ψθ ⊗ ψθ⟩
⟨ψθ ⊗ ψθ|ψθ ⊗ ψθ⟩

=

∑
σAσBσ

′
Aσ

′
B
ψ∗
θ(σAσB)ψ

∗
θ(σ

′
Aσ

′
B)ψθ(σ

′
AσB)ψθ(σAσ

′
B)∑

σσ′ |⟨ψθ ⊗ ψθ|σ ⊗ σ′⟩|2

= Tr(ρ2A)

= exp(−S2(ρA)). (4.17)

For the final step we use the definition in Eq. (4.15) with α = 2. In the Monte

Carlo scheme, Eq. (4.17) can be evaluated as

⟨SwapA⟩

=
∑

σAσBσ
′
Aσ

′
B

|ψθ(σAσB)|2∑
σ |ψθ(σ)|2

|ψθ(σ
′
Aσ

′
B)|2∑

σ′ |ψθ(σ′)|2
·

ψθ(σ
′
AσB)ψθ(σAσ

′
B)

ψθ(σAσB)ψθ(σ′
Aσ

′
B)

=
∑

σAσBσ
′
Aσ

′
B

pθ(σ)pθ(σ
′)
ψθ(σ

′
AσB)ψθ(σAσ

′
B)

ψθ(σAσB)ψθ(σ′
Aσ

′
B)
.

(4.18)

The maximum Renyi entropy associated with the parameters is shown as a

heatmap in the ground state diagram in Figure 4.3. In the QS state for large values

of DMI, we find S2(ρA) ≈ 0 irrespective of which spin A we consider, which means

that these quantum skyrmions can be approximated as product states. However, as

we reduce the DMI, we find that the entanglement among the spins increases, with

the maximum reaching maxAS2(ρA) = 0.09 at D = 0.6J and A = 0.0 for the most

entangled spin. Here, the quantum skyrmion cannot be described as a product state.

We plot the Renyi entropy S2(ρA) as a heat map over the quantum skytmion ground

state in Figure 4.6 for the parameters D = 0.5J and A = 0.2J . As the boundary

spins are fixed with a large magnetic field, they are not entangled with the rest

of the spins. The entropy first increases and then decreases from the boundary to

the center, reaching its maximum between the two. One unexpected feature of this

state is that the central spin is also disentangled from the surrounding spins, even

though there is no external magnetic field acting on this site. We find that the Renyi

entropy of the central spin is numerically zero for all quantum skyrmions that we

obtain in our analysis; there are no accepted spin configurations during the Monte

Carlo integration where the central spin points in the opposite direction than the
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ferromagnetic environment. This means that the quantum skyrmion ground state

is a product state of the central spin and a superposition of the rest of the spins.

The disentangled central spin can be used to detect quantum skyrmions using the

central spin magnetization as an observable in measurements without destroying the

quantum nature of the skyrmionic state.

Figure 4.6: Renyi entropy of each spin with its environment for the QS at D = 0.5J
and A = 0.2J [21].

We note that our results of the entropy for the QS ground state match with those

in [16], in which the authors considered a bulk magnetic field instead of a ferromag-

netic boundary. There, the DMRG calculations indicate a vanishing entanglement

of the central spin in a quantum skyrmion with the rest of the system for a certain

parameter regime. Thus, a disentangled central spin might be a general feature of

quantum skyrmions.

In the FM parameter region, the entropy is S2(ρA) = 0, and these states can

be represented as product states of the spins aligned with the boundary fields.

Decreasing A for small DMI, we approach the MS, and the entropy reaches its

maximum. Thus, the difficulties in obtaining a correct solution in this parameter

region might also be due to the highly entangled spins that have almost vanishing

spin expectation values, along with the small energy gap between the eigenstates.
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Figure 4.7: Weight distribution in the hidden layers of the quantum skyrmion ground
state in a 5 × 5 lattice at D = J and A = 0.5J . Phase1 (Phase2) and Modulus1
(Modulus2) denote the phase and modulus parts in the first (second) hidden layer,
respectively. Each block shows the weights inside one hidden neuron. While the first
hidden layer learns the essential features of the ground state, most of the neurons
in the second hidden layer show a similar pattern [21].

4.5 Neural network interpretation

In this final results section, we shift our focus towards interpreting the working and

training of the neural network. Understanding how the network learns the target

problem is integral to machine learning research and provides insights that cannot

be obtained only through the final prediction. However, the interpretation of neural

networks is a nontrivial problem, and a large number of neurons in multiple layers,

as in the present network shown in Figure 4.1, makes it even more challenging.

For the case of NQS and many-body physics, inspecting the weights of the neural

network may offer clues towards understanding the inner workings of the network

[42, 52]. To achieve this and to avoid dealing with an unmanageable amount of

50



variational parameters, we study the QS ground state of the 5× 5 lattice. We also

use a smaller, fully connected feed-forward neural network as our variational ansatz,

with two hidden layers and each layer consisting of 25 neurons for the phase and

modulus parts, corresponding to α = 1 in Figure 4.1. We then transfer the results

of our analysis to the calculation in the 9× 9 lattice.

We plot the weights of all neurons of our NQS after training, in a 5× 5 grid for

each layer, in Figure 4.7. We consider the QS solution at D = J and A = 0.5J for

our analysis. Inspecting the weights of the first hidden layer, we see that in the phase

part, which is trained first to improve the learning of the sign structure of the wave

function, each neuron learns a specific part of the wave function. In the modulus

part of the first hidden layer, we find that most of the neurons have a skyrmion-like

distribution of the weights. This is because the first hidden layer directly takes the

spins as inputs; it learns the most important features of the ground state. However,

in the second hidden layer, we find that most of the weights in both the phase

and the modulus neurons are distributed in a similar pattern and, visually, do not

offer a physical interpretation. This raises two questions: first, whether the second

hidden layer is essential in the network, and second, whether the neurons with a

similar distribution of weights are redundant and can be removed without loss in

the accuracy of the network.

In machine learning, pruning is often used to reduce the number of parameters

in a neural network to increase computational efficiency without any loss in the ac-

curacy of the network [112, 113, 114]. In most cases, pruning is done post-training

by removing the weights with the smallest magnitude and adjusting the remaining

weights. After all the pruning steps, only the most important weights are left in

the neural network, which can shed some light on the most significant underlying

features of the target problem. Pruning could also be important for NQS as a vari-

ational ansatz since, with increasing system sizes, the size of the network increases

[115].

We analyze the effects of pruning to answer the questions we raised above. Again,

we consider the 5× 5 lattice with two types of ground states - the low entanglement

QS state at D = J ,A = 0.5J and the high entanglement MS state at D = 0.1J ,A =

0.1J in Figure 4.8(a)-(b). Starting from the second hidden layer, at each pruning

step, 10% of the neurons from both phase and modulus parts are randomly deleted

until only one neuron is left in each of them. Then the same procedure is applied to

the first hidden layer. After deleting the neurons, the pruned network is trained to

adjust the remaining weights (pr). Furthermore, a network with the same structure

as the pruned network is also trained from scratch (prsc) to compare with the pr
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networks.

As metrics for the performance, we use the relative error, ∆Ep, and the fidelity,

F , between the original network and the pr or prsc networks [116],

∆Ep =
|Efull − Ep|
|Efull|

, (4.19)

F = |⟨ψfull|ψp⟩|2 , (4.20)

where p = pr, prsc. To calculate the fidelity between two NQSs, |ψ1⟩ and |ψ2⟩
(dropping the dependence on θ for clarity), we follow a similar procedure as in

Eq. (3.12),

F =
|⟨ψ1|ψ2⟩|2

⟨ψ1|ψ1⟩ ⟨ψ2|ψ2⟩

=

∑
σ,σ′ ⟨ψ1|σ⟩ ⟨σ|ψ2⟩ ⟨ψ2|σ′⟩ ⟨σ′|ψ1⟩∑

σ |ψ1(σ)|2
∑

σ′ |ψ2(σ′)|2

=
∑
σ

|ψ1(σ)|2∑
σ |ψ1(σ)|2

ψ2(σ)

ψ1(σ)

∑
σ′

|ψ2(σ
′)|2∑

σ′ |ψ2(σ′)|2
ψ1(σ

′)

ψ2(σ′)

=
∑
σ

p1(σ)
ψ2(σ)

ψ1(σ)

∑
σ′

p2(σ
′)
ψ1(σ

′)

ψ2(σ′)
.

Thus, F can be evaluated by first sampling from two different probability distri-

butions corresponding to the two NQSs, and then computing the ratio of the wave

function amplitudes.

In Figure 4.8(a)-(b), we plot ∆Ep and F over the pruning for the 5× 5 solution,

with the maximum Renyi entropies in the insets. For the low entanglement QS

solution, the degradation in performance is small even after removing 97% of the

weights, and the fidelity stays over 97% for both pr and prsc networks. However,

for the high entanglement MS solution, the pr and prsc networks show different

behavior. The fidelity gradually decreases in the prsc network as the weights are

removed. The performance of the pruned network in the high entanglement MS

state is worse than in the low entanglement solution. This is expected as it becomes

considerably more difficult for fewer neurons to describe the highly entangled state

correctly. Moreover, the performance degradation in the pr network is much more

severe than in the prsc network. This could be due to the difficulty in leaving the

local minimum by the optimizer for the already trained pr network, while prsc net-

works have the advantage of starting from random weights and thus more flexibility.

The maximum Renyi Entropy in both Figure 4.8(a) and (b) decreases as the weights

are removed. Interestingly, it only becomes zero when only one neuron is left in both

52



hidden layers, showing that NQS can represent entanglement even with a minimal

number of neurons. Lastly, we note that on reducing the number of neurons, the

optimization process becomes unstable and requires much fine-tuning to converge

near the ground state.
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Figure 4.8: Performance metrics after pruning the neural network. ∆Ep denotes
the relative error in energy and F denotes the fidelity. pr denotes a pruned NQS
trained after removing the weights from the full NQS and prsc denotes an identical
network to the pr one but trained from scratch. (a) 5× 5 lattice QS ground state at
D = J and A = 0.5J , (b) 5× 5 lattice MS ground state at D = 0.1J and A = 0.1J ,
(c) 9 × 9 lattice QS ground state at D = 0.5J and A = 0.2J , and (d) 9 × 9 lattice
MS ground state at D = 0.1J and A = 0.1J . The inset shows the maximum values
of the Renyi entropies [21].

In Figure 4.8(c) and (d), we show the same results for the 9×9 lattice, calculating
only prsc networks as they have better performance than the pr. The degradation

in energy and fidelity, while qualitatively similar to the 5 × 5 case, is more severe.

In all four cases, we find that removing neurons from the first hidden layer affects

the network’s performance more than removing them from the second hidden layer,

signifying the importance of the former over the latter. This is seen in the very

low error in energy until about half of the total weights are removed, after which

the error rises drastically. Does this mean we can remove the second hidden layer

entirely without strongly deteriorating the performance? We find that this is not
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the case because the performance drastically drops, and the optimization, especially

in the high entanglement region, becomes unstable with only one hidden layer. We

find that (not shown here) having even a single neuron in the second hidden layer

results in greater accuracy than having only one hidden layer with as much as four

times the number of neurons. Thus, increasing the width of the network is not the

optimal strategy here. On the other hand, having three or more hidden layers makes

the optimization process more challenging, and the network is prone to get stuck

in a local minimum. Hence, we conclude that the optimal network for our problem

should have two hidden layers, with a large number of neurons in the first hidden

layer and fewer neurons in the second hidden layer.

4.6 Summary

In this chapter, we have studied the ground states of the spin-1/2 Heisenberg model

in the presence of Dzyaloshinskii-Moriya interaction and Heisenberg anisotropy on

a square lattice with ferromagnetic boundaries using variational Monte Carlo. We

use a neural network as the variational wave function, with different parts to learn

the phase and amplitude of the wave function. We show that a weakly entangled

quantum skyrmion ground state, with the skyrmion number C = 1, exists for a

wide range of Hamiltonian parameters. The entanglement increases with decreasing

DMI. For large DMI values, a product state can describe the QS ground state. Re-

markably, the central spin in the QS state is disentangled from the rest of the spins.

Furthermore, we analyze the weights of our NQS ansatz and find that while the

first hidden layer learns the most important features of the ground state, the second

hidden layer is essential to achieve high accuracy. We then test the limits of the

NQS by pruning and find that the higher the entanglement, the more deterioration

in the performance.

Finally, we emphasize two of our results: First, our finding that the central spin

decouples from the rest of the system and points into the opposite direction than

the surrounding ferromagnet can be potentially used as a nondestructive detection

scheme for quantum skyrmions by local spin measurements, e.g., by a magnetic

scanning tunneling microscope. Second, we obtain a region in the parameter space

where our method cannot resolve the correct ground state. Instead, we find a su-

perposition between the ground state and the first excited state. This can be traced

back to a tiny excitation gap between the ground state and the first excited state

and reveals that the NQS ansatz has problems with almost degenerate states, which

typically appear in finite size topological systems. While we could devise a scheme
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to improve the variational state further and separate the ground state from the first

excited state in small systems, we could not do this in large spin systems. Thus,

while NQS-based variational methods offer an effective tool to study the quantum

skyrmion systems at medium to large DMI, they struggle in the small DMI regime.

It is an open question whether other methods like DMRG also struggle in this regime.

Improvement of the learning algorithm for NQS-based methods and its comparison

with established methods is an important task for development of these methods.
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Chapter 5

Dynamics of quantum skyrmions

In this chapter we present our second paper in which we study the real-time evolution

of a quantum skyrmion lattice in the presence of an external magnetic field gradient

using neural-network quantum states (NQS) and time dependent variational Monte

Carlo (t-VMC). First, we obtain a quantum skyrmion lattice as the ground state of

a two-dimensional spin-1/2 Heisenberg Hamiltonian with Dzyaloshinskii-Moriya in-

teraction (DMI). The spins in this quantum skyrmion lattice have nonzero quantum

entanglement, similar to the ground states in previous chapter. Then, we quench

the Hamiltonian with a nonuniform external magnetic field and evolve the system

according to the time-dependent Schrödinger equation using t-VMC. We show that

quantum skyrmions move diagonally to the field gradient, resembling a skyrmion

Hall effect, with a velocity that is larger in the direction perpendicular to the mag-

netic field gradient. The quantum skyrmions interact with each other, leading to the

formation of an exceptional configuration with the topological charge of a meron,

which causes the decay of a quantum skyrmion. Merons and antimerons are vortex-

like spin textures that are quantized to half the skyrmion number N , a topological

invariant used to characterize skyrmions (see section 2.2). Our work shows that NQS

can be used as a variational ansatz to study the ground state and nonequilibrium

properties of quantum skyrmions with system sizes that are not feasible using exact

methods.

The quantum spin model we study is described in section 5.1. The details of

the method and hyperparameters used are described in section 5.2. We present

our ground state results in section 5.3 and time evolution of quantum skyrmions in

section 5.4. We summarize this chapter in section 5.5.
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5.1 Model

We study the same Hamiltonian as in (4.1) but with different boundary conditions -

a spin-1/2 Heisenberg Hamiltonian with DMI and anisotropy on a two-dimensional

lattice with periodic boundaries,

H0 =− J
∑
⟨ij⟩

(σxi σ
x
j + σyi σ

y
j )− A

∑
⟨ij⟩

σzi σ
z
j

−D
∑
⟨ij⟩

(uij × ẑ) · (σi × σj) +Bz
∑
i

σzi .
(5.1)

Here, J is the Heisenberg exchange term, A is the Heisenberg anisotropy term, D

is the strength of the DMI, and Bz is the strength of the homogeneous external

magnetic field. We take ℏ = 1. The Pauli matrices on the i-th site are denoted by

σi = {σxi , σyi , σzi } and uij is the unit vector from site i to site j. The first three terms

are summed over the nearest neighbors denoted by ⟨ij⟩. A quantum skyrmion state

can emerge due to the competition between the ferromagnetic exchange term and

the noncolinear DMI term, stabilized by the anisotropy and the external magnetic

field.

5.2 Method

To obtain the ground state of the Hamiltonian in Eq. (5.1), we use variational Monte

Carlo with a neural-network quantum state (NQS) as the variational ansatz. The

many-body wave function is approximated using an artificial neural network that

encodes the complex-valued coefficients ψθ(x),

|ψθ⟩ =
∑
x

ψθ(x) |x⟩ . (5.2)

Here, θ are the variational parameters, and |x⟩ are the local basis states, which in

our case are the eigenvalues of the σzj operators. We use a restricted Boltzmann

machine (RBM) with complex weights and biases as the variational wave function.

The RBM consists of an input layer that takes the spin configurations |x⟩ as input
and a hidden layer with variational parameters θ = (a,W, b), see Figure 5.1. Here,

a are input biases, and W and b are hidden weights and biases, respectively. The

length of one side of the lattice is given by L, and α is the hidden unit density.

In this study, α = 2 is used for both ground state and time evolution calculations.

Increasing α increases the expressiveness of the network, resulting in slightly better
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Figure 5.1: Restricted Boltzmann machine used as the neural network quantum
state. The inputs are the spin configurations in σz basis, and the output is the
logarithm of the wave function (Eq. (5.3)). The hidden layer contains αL2 neurons,
where α = 2 in our case [22].

energies but with higher computational cost. The output is the logarithm of the

unnormalized wave function

ln(ψθ(x)) =
αL2∑
i

aixi + ln cosh[Wx+ b]i. (5.3)

It is important to choose differentiable activation functions for deriving the real-

time evolution, which relies on the wave function being differentiable at every point

of the variational manifold [59]. Thus, instead of the reLU(x) activation function

(nondifferentiable at x = 0), that was used previously to study the ground states of

quantum skyrmions [21], in this work, we use an RBM with ln cosh(x) activation

function. The loss function L0(θ) for ground state calculations is the energy of the

Hamiltonian H0 which is minimized with respect to the variational parameters θ

L0(θ) = ⟨ψθ|H0 |ψθ⟩ . (5.4)

The weights and biases are initialized randomly with a normal distribution hav-

ing a standard deviation of 0.01. To optimize the RBM using gradient descent, we

use the Adam optimizer with the moments β1 = 0.9 and β2 = 0.999 [107]. The

learning rate η is varied from η = 10−3 to η = 10−5 in the steps of 10−1 after every

4 × 104 iterations. Using a stochastic gradient descent optimizer with stochastic

reconfiguration [42] gives similar results but with increased computational costs.

As the Hilbert space is very large, we use Markov chain Monte Carlo to generate
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samples that are used in the computation of expectation values. The samples are

generated by flipping one spin randomly, and the process is repeated L2 times to

complete one Monte Carlo sweep. We use 214 samples for energy calculation and 217

samples for all the other expectation values.

For the real-time evolution, we use the time-dependent variational principle,

which corresponds to the time dependence of the variational parameters, θ(t), as

described in the section 3.4 . The RBM representing the ground state is used as the

initial state at tJ = 0. We use a time step of δt = 10−4. At each time step, the

quantum geometric tensor S and the forces vector F are computed with 214 samples.

The equation of motion, Eq. (3.31), can be very unstable due to the presence of noise

in the calculation of the matrix S [59, 94, 117]. To improve stability, we add a small

shift of ϵ = 0.01 to the diagonal elements of the S matrix to regularize the equation

of motion. We experimented with different values of ϵ and found that while the

quantum skyrmion motion was similar for all 1.0 < ϵ < 10−5 qualitatively, a smaller

ϵ resulted in unstable energy. Finally, to integrate Eq. (3.31), we use a fourth-order

Runge-Kutta integration scheme. Both the ground state optimization and real-time

evolution calculations were performed on an NVIDIA A100 GPU.

The procedure to obtain the real time evolution after a quench using NQS is

given as:

Algorithm 2 Real time evolution with NQS using TDVP

t← 0
Quench the Hamiltonian
while t ≤ tend do

t← t+ δt
Calculate S and F (Eq. (3.32)) for ψθ(t)

Calculate θ(t+ δt) (Eq. (3.31)) using fourth order Runge-Kutta scheme
end while

5.3 Ground state analysis

A quantum skyrmion lattice (QSL) is the ground state of the Hamiltonian in Eq. (5.1)

for large DMI and finite anisotropy and magnetic field if the lattice size is large

enough to accommodate the QSL, consistent with previous findings [16, 21]. The

ground state energy E0 minimization plot for the RBM used to describe the QSL in

a 9× 9 lattice is shown in Figure 5.2, with the energy variance ⟨ψθ| (H0 −E0)
2 |ψθ⟩

in the inset. Here, the Hamiltonian parameters are D = J , A = 0.5J , and Bz = J .
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Figure 5.2: Convergence of variational energy per spin over the number of iterations
for a 9× 9 lattice, with the energy variance per spin in the inset. The lighter color
shows the values at each iteration, while the darker color shows the moving average
over 30 iterations. The Hamiltonian parameters are D = J , A = 0.5J and Bz = J
[22].

The RBM converges to a QSL as the variance vanishes. The spin expectation val-

ues ⟨S⟩ = ⟨σ⟩ /2 in Figure 5.3 show two quantum skyrmions in the ground state,

encircled by dashed lines. As this is a quantum spin model, the lengths of the spins

are not normalized due to quantum fluctuations, and thus | ⟨S⟩ | < 1/2.

To characterize quantum skyrmions, we calculate the local skyrmion density for

the nearest neighbor spins i, j, and k forming an elemental triangle ∆ as [68, 14,

20]

Ω∆ =
1

2π
atan2(ni · (nj × nk), 1 + ni · nj + nj · nk + nk · ni). (5.5)

Here, we use the normalized spin expectation values ni = ⟨Si⟩ /| ⟨Si⟩ |. The skyrmion

number N is given by the sum over all triangles

N =
∑
∆

Ω∆. (5.6)

Using twice the unnormalized spin expectation values in Eq. (5.5) instead of n

results in a non-quantized number Q, which depends on the length | ⟨S⟩ | of the
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spins and is an indicator of the stability of quantum skyrmions, with Q → N if

and only if the spin expectation values have maximal amplitude [14] and quantum

fluctuations completely vanish. For the ground state solution in Figure 5.3, we find

N = 2 corresponding to two quantum skyrmions in the ground state and Q = 1.93,

implying that these skyrmions have spin expectation values with magnitude close

to ℏ/2.

-0.5

-0.25

0

0.25

0.5

Figure 5.3: Quantum skyrmion lattice ground state spin expectations of Eq. (5.1)
at parameters D = J , A = 0.5J and Bz = J . The skyrmion number N = 2 as there
are two quantum skyrmions in the lattice. The color map indicates the z component
of the spin expectation value [22].

We note that the existence of a QSL depends not only on the DMI D, anisotropy

A, and external magnetic field Bz but also on the size of the lattice. For square

lattices smaller than 9×9 spins, we do not find any ground state hosting a quantum

skyrmion in the parameter range 0 < D/J < 2, 0 < A/J < 2 and 0 < Bz < 2.

While it is possible to obtain a QS ground state in smaller lattices when embedded
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Figure 5.4: Renyi entropy in the ground state shown in Figure 5.3. The heatmap
shows the entropy of a single spin with all the other spins. The entropy is largest in
the space between two skyrmions [22].

in a ferromagnetic medium [14, 21], in the presence of periodic boundaries, we only

obtain a spin spiral or a ferromagnet as the ground state. For larger lattice sizes up

to 13× 13, we also obtain a QSL as the ground state with N = 2 for large DMI.

Next, we study entanglement in the QSL ground state as previously done for

single quantum skyrmions in section 4.4 [16, 21]. Using the expectation value of the

“Swap” operator, we calculate the second order Renyi entropy S2(ρA) as a measure

of entanglement in quantum skyrmions [111, 53, 21],

S2(ρA) = −
1

2
ln(Tr(ρ2A)). (5.7)

Here, ρA is the reduced density matrix obtained by dividing the system into subsys-

tems A and B and tracing out the degrees of freedom in subsystem B. In all our

Renyi entropy calculations, we take subsystem A to be a single spin and partition B
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Figure 5.5: Magnetic field gradient used to move quantum skyrmions in Eq. (5.8).
The magnetic field points along the z-axis and depends on the x-coordinate [22].

to be the remaining spins to see how the spins are entangled with their environment.

The heat map in Figure 5.4 shows the Renyi entropy in the QSL ground state. The

entanglement is largest (S2(ρA) = 0.061) in the region between two skyrmions and

smallest (S2(ρA) = 0.004) around the center of the skyrmions. The entropy for

the central spin is nonzero (S2(ρA) = 0.013), different from the case of a quantum

skyrmion embedded in a ferromagnetic medium where the central spin was disentan-

gled from the rest of the lattice. This might be due to different parameter regimes,

boundary conditions, and system sizes [16, 21]. As 0 ≤ S2(ρA) ≤ ln(2), the Renyi

entropies are still small in the QSL ground state.

5.4 Real time evolution

In this section, we study the real-time evolution of the QSL ground state after

quenching the Hamiltonian with a magnetic field gradient. Magnetic field gradients

have been shown to be an effective way of manipulating classical skyrmions and

can induce a motion perpendicular to the gradient [118, 119, 120]. We quench the
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Validity regime

(a) (b)

Figure 5.6: Energy and skyrmion number with time. (a) Time evolution of energy
per spin of the quenched Hamiltonian in (Eq. (5.8)) over time as a quality check
for the unitarity of the method. Blue shows the energy at each iteration, and
yellow shows the moving average over 30 iterations. (b) Evolution of the normalized
skyrmion number N and the unnormalized skyrmion number Q with time. While
Q continuously decreases, N is quantized and a transition from N = 2 to N = 1
takes place at tJ = 2.81 [22].

Hamiltonian in Eq. (5.1) with a static, nonuniform magnetic field

Hq = H0 +
∑
i

Bg
i σ

z
i ,

where, Bg
i =


g(xi + 1) if 0 ≤ xi < 4

0 if xi = 4

g(xi − L) if 4 < xi < L

(5.8)

Here, g is the strength of the gradient, xi is the x-coordinate of i-th spin, and

xi = 4 is the x-coordinate of the center of one of the skyrmions at t = 0. The

gradient is along the x-axis. With this Bg, the magnetic field gradient is largest

at the center of the middle skyrmion xi = 4 and decreases away from it, see Fig-

ure 5.5. The speed at which the quantum skyrmions move depends on the gradient,

similar to the classical case [119]. With this choice of Bg, the interaction of quan-

tum skyrmions can be observed in the time scales accessible by our method while

maintaining the stability of the nontrivial spin structure. The ground state of the

HamiltonianHq with magnetic field gradient is a spin spiral phase. Thus, the quench

is made from a nontrivial quantum skyrmion phase to a trivial spiral phase. We

therefore expect a tendency for the quantum skyrmions to eventually transition to

a spiral with N = 0. With g = 0.2J , Figure 5.6(a) shows the evolution of the

energy Eq =
〈
ψθ(t)

∣∣Hq

∣∣ψθ(t)

〉
with time t. After the quench, the Hamiltonian is

time-independent, the time evolution is unitary, and the energy is supposed to be
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(a) (b)

(c)(d)

(e) (f)

Figure 5.7: Real-time evolution of spin expectation values: snapshots of spin expec-
tation values at different times with the skyrmion density Ω∆ in the background. The
quantum skyrmions (marked by arrows) move towards each other (a)-(b), interact
and an exceptional configuration is formed between tJ = 2.80 and tJ = 2.81 (c)-
(d), after which one quantum skyrmion decays and an elongated quantum skyrmion
remains (e)-(f) [22]. 65



conserved. While the energy Eq is indeed nearly constant in our simulations, we see

that it changes at longer times due to the accumulation of errors [121, 117] and we

constrain ourselves to the interval tJ ≤ 5.

The time evolution of spin expectation values is shown in Figure 5.7. The color

plot in the background shows the local skyrmion density Ω∆ (Eq. (5.5)). The speed of

the quantum skyrmions depends on the magnetic field gradient, and as the quantum

skyrmion at xi = xc = 4 experiences a larger gradient than the quantum skyrmion

at xi = 8, it moves faster. The speed of the quantum skyrmions is also proportional

to the magnitude of g (not shown here). However, a larger g increases the errors

in t-VMC and can even destroy the QSL state. The quantum skyrmions move

in a Hall-like motion [118], with the velocity perpendicular to the field gradient

larger than the velocity parallel to it. The two quantum skyrmions experience

opposite magnetic field gradients and move towards each other (Figure 5.7(b)). The

skyrmion density Ω∆ builds up especially for one triangle of spins at (7, 1) as the

two quantum skyrmions interact. The skyrmion density reaches a maximum of

Ω∆ = 0.5 for this triangle at tJ = 2.80 Figure 5.7(c). Then, it passes through an

exceptional configuration, where the denominator in Eq. (5.5) changes sign [68], and

Ω∆ changes from Ω∆ ≈ 0.5 to Ω∆ ≈ −0.5 which results in the change of skyrmion

number N from N = 2 to N = 1 in Figure 5.7(d). Thus, the quantum skyrmion

decay is mediated by exceptional configurations carrying the topological charge of

a meron. By this, the two quantum skyrmions merge to an elongated quantum

skyrmion (Figure 5.7(f)). Although Ω∆ changes discontinuously at tJ = 2.81, the

spin expectation values and the wave function do not change discontinuously and

the real-time evolution remains valid at this singular point. We also note that we

did not observe a dynamical quantum phase transition here, which is accompanied

by the nonanalytic behavior of the wave function [76].

To obtain this decay of quantum skyrmions, it is necessary that the two quantum

skyrmions interact. By changing the gradient profile, it becomes possible for the two

skyrmions to move in the same direction without interaction. Alternatively, starting

with a single skyrmion state (achieved by optimizing the ground state RBM in the

presence of large pinning fields such that only one skyrmion remains), the time

evolution of a single skyrmion can be obtained. In both cases, we do not observe

a quantum skyrmion decay. However, when two quantum skyrmions are driven

towards each other, they collide, and this interaction leads to the formation of an

exceptional configuration and deletion of a quantum skyrmion.

Finally, let us discuss the evolution of the Renyi entropy with time, shown in Fig-

ure 5.8. At tJ = 0, the entropy is low and concentrated between the two skyrmions,
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(a) (b) (c)

(d) (e) (f)

Figure 5.8: Evolution of Renyi entropy over time. The entropy increases when the
quantum skyrmions interact [22].

which is shown in Figure 5.8(a). As the quantum skyrmions move toward each

other, the entropy between them increases, reaching a maximum of S2 = 0.48 at

tJ = 4.50. The increase in entropy is due to the interaction between the two quan-

tum skyrmions, and it increases continuously, even after one quantum skyrmion

decays. The merging of two quantum skyrmions results in large entropy regions,

demonstrating the necessity of quantum calculations to capture the correct behav-

ior of this process.

5.5 Summary

In this chapter, we studied the ground state properties and real-time evolution of

quantum skyrmions. Using variational Monte Carlo with a restricted Boltzmann ma-

chine as the variational ansatz, we obtained the ground state of a spin-1/2 Heisen-

berg model in the presence of Dzyaloshinskii-Moriya interaction and Heisenberg

anisotropy. The ground state hosts a quantum skyrmion lattice with nonzero Renyi

entropy and skyrmion number N = 2. The Renyi entropy is largest between the two

quantum skyrmions. These quantum skyrmions can be manipulated by applying a

magnetic field gradient. The quantum skyrmions move in a direction mostly perpen-

dicular to the gradient, with a small parallel component. The velocity of quantum
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skyrmions depends on the magnitude and direction of the gradient. An exceptional

configuration with the topological charge of a meron is formed due to the interaction

of the time-evolving quantum skyrmions, resulting in a quantum skyrmion decay as

the skyrmion number N = 2 changes to N = 1. Thus, neural network quantum

states can effectively approximate the real-time evolution of quantum skyrmions and

reveal previously unknown quantum phenomena. Stabilizing longer-time evolution

is an interesting aspect for future work.
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Conclusion

In this thesis, we have investigated the properties of low-energy states and real time

evolution of quantum skyrmion. We used variational Monte Carlo methods and

artificial neural networks as the variational wave functions for studying system sizes

that are outside the realm of exact diagonalization methods. We showed that a

spin-1/2 Heisenberg Hamiltonian on a two-dimensional lattice with Dzyaloshinskii-

Moriya interaction can host quantum skyrmions as ground states for a large range of

Hamiltonian parameters. The spins in quantum skyrmions are entangled with each

other, a property that cannot be observed in classical skyrmions. We showed that

depending on the boundary conditions, the central spin of the quantum skyrmion

can be disentangled from the rest of the spins. This can be important for establish-

ing ways to measure quantum skyrmions without destroying the entanglement of

the whole state. Then, using time-dependent variational principle, we studied the

motion of quantum skyrmions and showed that external magnetic field gradients are

effective in moving quantum skyrmions. As the quantum skyrmions move towards

each other and interact, the entanglement between them increases greatly. This

interaction eventually leads to the decay of quantum skyrmions. We also studied

how the neural network learns the quantum skyrmion ground states and examined

the limits of its representation power by pruning. Our work showed that artificial

neural networks based variational Monte Carlo methods are effective in studying

physics of large quantum magnetic systems.
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