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Abstract 

 

The COVID-19 pandemic has severely disrupted the public transportation (PT) system, and it is a 

challenge to assess the extent of its impact. Due to the broader concept of demand and the difficulty 

of measuring its changes directly, this research introduces a comprehensive concept, ‘vitality’, to 

demonstrate the changes in the movement of people at stations during the COVID-19 pandemic. In 

this research, ‘vitality’ is the population of people staying in the station area over a period of time. 

Vitality can be influenced by a variety of factors such as commercial activity, major events, station 

accessibility and overall functionality, and most importantly, passenger ridership. It reflects the 

multifaceted nature of station activity and provides a more comprehensive measure of station dynamics 

than traditional ridership metrics. The focus on vitality is a major contribution of this research. 

 

In this research, major railway stations in Japan have been selected to provide an in-depth analysis of 

the multiple impacts of the pandemic on the public transportation system, including the possible 

outcomes of the policies and the responses from operators. Possible common factors between stations 

with different levels of impact are analyzed, trends in station vitality in the context of the pandemic are 

predicted using different methodologies, and finally, some suggestions are made on how to balance the 

level of public transport service with operating costs from the operator's perspective. 

 

This research has two main objectives. Firstly, it aims to understand the patterns of changes in station 

vitality and the influencing factors during a pandemic by analyzing comprehensive data from major 

Japanese rail stations. Secondly, it addresses the trade-offs between service quality, operational 

constraints, and long-term demand. By evaluating forecasting methods and developing adjustment 

plans, it provides PT operators with insights to balance service continuity and retain demand in the 

post-pandemic period. 

 

The introduction underscores the critical need to address the repercussions of COVID-19 on PT, 

detailing the primary objectives and the structure of this research. A thorough literature review 

examines the pandemic's diverse effects on PT, emphasizing shifts in ridership patterns, operational 

challenges, and the implications for transportation planning and management. Methodologies for data 

collection and analysis are meticulously reviewed, underscoring the pivotal role of accurate and timely 

data in effective demand forecasting and strategic planning. 
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A novel analytical framework is introduced, integrating the 4R theory (Robustness, Redundancy, 

Resourcefulness, and Rapidity) to outline PT operator responses to the pandemic. This framework 

considers a range of factors, including institutional, physical, social, economic, and environmental 

dimensions. Advanced station clustering techniques analyze short- and medium-term changes in 

vitality, identifying key predictors of recovery and stations experiencing significant declines. 

 

Multinomial regression models elucidate the impact of land-use factors on station vitality, highlighting 

how variables such as point of interest (POI) density and land-use types influence station dynamics. 

Results indicate that the number of service lines and the local population ratio significantly impact 

demand loss, while other factors like population density and proximity to major cities have varying 

effects. 

 

For long-term demand forecasting, ARIMAX and LSTM models are employed to predict post-COVID 

demand trends. The ARIMAX model, incorporating external variables like COVID-19 cases and 

policy measures, shows higher accuracy in forecasting demand patterns. The LSTM model, though 

requiring substantial training data, excels in capturing complex demand trends, aiding PT operators in 

optimizing service frequencies and resource allocation. 

 

The strategic framework underscores the necessity for flexible frequency planning to ensure resilience 

and sustainability. The analysis emphasizes maintaining service levels that can adapt to fluctuating 

demand, minimizing financial instability risks for operators during prolonged crises. 

 

In summary, the COVID-19 pandemic has significantly impacted public transportation demand, with 

notable differences based on station characteristics. Station vitality is particularly crucial in Japan, 

where rail operators also generate revenue from nearby commercial activities. The size of the station, 

its city location, the type of travelers it serves, and its association with the city's functional areas all 

significantly affect the pandemic's impact and long-term recovery. Utilizing mobile spatial statistics 

(MSS), this research analyzes pandemic dynamics, providing a more accurate and comprehensive 

understanding of station vitality. By leveraging advanced analytical techniques and comprehensive 

data sources, this research aims to develop effective frequency planning strategies, enabling PT 

operators to better navigate future crises and ensure the resilience and sustainability of their services. 
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Chapter 1     Introduction 

 

1.1    Background 

The COVID-19 pandemic has caused an unprecedented crisis in public transportation (PT) systems 

worldwide, there is an urgent need for a method to comprehensively evaluate and anticipate changes 

in passenger demand. The pandemic led to a drastic reduction in ridership due to lockdowns, social 

distancing measures, and the shift to remote work and online learning. This decline has significantly 

affected the operational viability of PT services and disrupted the broader urban mobility framework. 

In Japan, where rail stations are essential for daily commuting and economic activity, the impact has 

been particularly severe. Stations have multiple attributes such as commerce and tourism in addition 

to passenger distribution, and the surrounding land is mostly operated by railway companies. Therefore, 

a basic conclusion for operators is that the popularity value of a station is a barometer of passenger 

flow, and the higher the station's vitality value, the higher the station's demand will be. 

 

Concerns about virus transmission have decreased public confidence in PT systems, prompting many 

to seek alternative modes of travel, such as private cars, bicycles, or walking. PT operators have 

implemented stringent hygiene and safety measures, including regular disinfection of vehicles and 

stations, increasing operational costs. The reduction in ridership has led to substantial fare revenue 

losses, putting financial strain on PT operators. Budget deficits have resulted in service reductions and 

delays in planned infrastructure projects. The broader economic downturn has exacerbated these 

challenges, as governments and PT operators struggle to balance budgets while ensuring the continuity 

of essential services. 

 

Public transportation is crucial for providing mobility to those without private vehicles, including low-

income populations, the elderly, and people with disabilities. The pandemic has disrupted this 

accessibility, making it harder for vulnerable groups to reach essential services such as healthcare, 

education, and employment. Reductions in service frequency and temporary route closures have 

disproportionately affected these communities, highlighting the need for inclusive recovery strategies. 
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PT systems have had to adapt quickly to changing circumstances, implementing new policies and 

procedures to ensure passenger and staff safety. These adaptations include modifying schedules to 

reduce crowding, introducing contactless payment systems, and enhancing communication with 

passengers. These changes have required significant logistical and financial resources, further straining 

already limited budgets. 

 

The shift away from public transportation towards private vehicles has potential long-term 

environmental implications. Increased car usage can lead to higher emissions and congestion, 

undermining efforts to promote sustainable urban mobility. The pandemic has thus highlighted the 

need for resilient PT systems that can support environmental goals even during crises.  

 

 

Figure 1.1 The resilience triangle illustrating system performance decline and recovery during a 

disruption 

 

In the context of system resilience, the concept of the 'Resilience Triangle' is introduced as a framework 

to evaluate the performance and recovery of public transportation systems during disruptions, such as 

the COVID-19 pandemic. The 'Resilience Triangle', as shown in Fig. 1.1, illustrates the decline in 

system performance due to a disruption, the subsequent recovery process, and the associated 

performance loss over time. The area within the triangle represents the total impact of the disruption, 
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including unexpected income loss due to reduced ridership and operational challenges. Understanding 

this dynamic is crucial for developing strategies that not only restore system performance but also 

enhance resilience to future shocks. 

 

The recovery phase for public transportation has been marked by efforts to restore ridership and 

financial stability while ensuring public health. Enhanced hygiene measures, such as regular 

disinfection of PT vehicles and stations, installation of hand sanitizers, and mandatory mask policies, 

have been introduced to reassure passengers and reduce the risk of virus transmission. Service 

adjustments have been made to manage fluctuating demand and promote social distancing, balancing 

operational efficiency with passenger safety. 

 

Financial support from governments has been crucial in covering revenue shortfalls and supporting 

essential services. Subsidies, grants, and loans have been provided to maintain service continuity and 

invest in necessary infrastructure improvements. The adoption of digital technologies, such as 

contactless payment systems, real-time passenger information apps, and data-driven demand 

forecasting tools, has been accelerated, enhancing operational efficiency and improving passenger 

experience. 

 

Effective communication strategies have been essential in rebuilding public trust in PT systems. 

Transparent communication about safety measures, service changes, and pandemic-related updates 

helps reassure passengers and encourage the return to public transportation. 

 

Understanding the patterns of change in station vitality during and after the pandemic is crucial for 

developing effective strategies to restore and enhance PT services. This includes analyzing how 

different factors, such as demographic shifts, changes in travel behavior, and economic conditions, 

influence station usage. By gaining insights into these patterns, PT operators can better adapt to 

ongoing challenges and future emergencies. 

 

This leads us to explore the data sources used to quantify the impact of COVID-19 on public 

transportation operators, which will be discussed in the next section. 
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1.2    Objectives 

This research aims to address the significant challenges faced by public transportation systems, 

particularly major Japanese rail stations, during and after the COVID-19 pandemic. The research 

focuses on two primary objectives, leveraging innovative approaches and methodologies to provide 

comprehensive insights and practical solutions: 

 

1) Understand the different patterns of changes in station vitality and the factors influencing 

them during a pandemic: 

 

The first objective is to comprehensively analyze station usage data to understand the different patterns 

of changes in station vitality during the pandemic and identify the factors influencing these changes. 

This involves selecting a diverse set of major Japanese rail stations to capture variations in location, 

size, and passenger demographics. A robust dataset, including ridership data, demographic information, 

economic indicators, and geographic factors, will be utilized. 

 

Advanced analytical techniques, such as clustering algorithms and spatial analysis, will be employed to 

identify distinct patterns of change in station vitality. By integrating innovative data selection techniques 

and analyzing various factors, including demographic shifts, travel behavior changes, economic 

conditions, and public health measures, the research aims to provide a holistic understanding of how 

external influences impact PT usage during crises and recovery phases. This understanding will enable 

policymakers and PT operators to develop targeted interventions to mitigate the impacts of future crises 

and enhance the resilience of public transportation systems. 

 

And, as part of this, the goal is to answer the following research questions: 

➢ How the travel patterns at major rail stations have changed during the COVID-19 pandemic 

➢ Determine the factors most influential in affecting station vitality during the pandemic 

➢ How different demographic and economic conditions impact the recovery of station vitality 

➢ The effectiveness of clustering algorithms and spatial analysis in identifying patterns of 

change 

➢ Identify key predictors of station vitality recovery in the post-pandemic period 
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2) Forecasting long-term demand and balancing the trade-offs between service quality and 

operational constraints: 

 

The second objective is to help PT operators make informed decisions about balancing service quality 

and operational constraints to maintain long-term demand. This involves assessing various long-term 

forecasting methods to determine their effectiveness during pandemics. Techniques such as time series 

analysis, machine learning algorithms, and hybrid models will be evaluated for their ability to capture 

the complex dynamics of PT usage during and after a pandemic. Plans for long-term adjustments will 

be developed, considering the magnitude and timing of changes, as well as constraints and interactions. 

These plans will address challenges such as fluctuating demand, financial uncertainty, and evolving 

passenger preferences. By providing PT operators with actionable insights into forecasting accuracy 

and adjustment plans, the research aims to help them adapt their operations effectively. The goal is to 

ensure that operators can balance the need to maintain service quality, which stabilizes long-term 

demand, with the necessity to manage operational costs during and after the pandemic. 

 

And through this analysis answer in particular the following research questions: 

➢ Explore the relationship between public health measures or policies and changes in station 

usage 

➢ Identify the most effective methods for forecasting long-term demand during and after a 

pandemic 

➢ Assess the role of resilience frameworks in informing PT operational decisions 

➢ Explore how PT operators can balance the trade-offs between maintaining service quality 

and managing operational constraints 

➢ Develop adjustment plans that PT operators can implement to stabilize long-term demand 

while controlling costs during and after the pandemic 

➢ Determine the impact of different service quality levels on future passenger demand 

 

By achieving these objectives, this research aims to offer practical insights and solutions that will assist 

policymakers, PT operators, and researchers in understanding and addressing the challenges posed by 

the COVID-19 pandemic. 
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1.3    Research outline 

The outline of the remaining chapters is as follows: 

 

After the introduction in Chapter 1, Chapter 2 delves into existing research on the COVID-19 

pandemic's impact on public transportation. It explores various data sources used to quantify these 

impacts and reviews methodologies for long-term demand forecasting. This chapter identifies gaps in 

the current understanding of station vitality and sets the foundation for the research objectives. 

 

Chapter 3 presents a framework for assessing the resilience of public transportation systems during 

pandemics. Using urban resilience theories and the 4R theory (robustness, redundancy, resourcefulness, 

and rapidity), the chapter evaluates transport-related containment policies during COVID-19. The 

Governance-Transport-Mobility-Resilience (GTMR) framework is applied to analyze the 

effectiveness of these policies. This framework will be used to guide subsequent data analyses and 

forecasts in Chapters 4, 5, and 6, and how operators should respond to a pandemic in Chapter 7. 

 

In Chapter 4, based on the 4R theory in the resilience framework, we delineate the zones where station 

vitality goes from peak to trough and then back to stability, focusing on analyzing changes in station 

vitality during the short and medium term. Utilizing mobile phone mesh data, the chapter employs 

clustering techniques to identify patterns in station usage. The analysis aims to capture the dynamics of 

station vitality and understand the factors influencing these changes during the pandemic. 

 

In Chapter 5, the research shifts to a detailed examination of the factors impacting station vitality 

through multinomial regression analysis. Based on the indicators in the existing framework, this 

chapter investigates the role of land-use factors, point of interest (POI) density, and other variables in 

predicting demand loss. The insights gained will help PT operators develop targeted interventions to 

mitigate the impact of future crises. 

 

Chapter 6 explores long-term forecasting methods to predict post-pandemic public transportation 

usage. The chapter evaluates the effectiveness of ARIMAX (Autoregressive Integrated Moving 

Average with Exogenous variables) and LSTM (Long Short-Term Memory) models in capturing 

complex demand dynamics. The aim is to provide PT operators with robust forecasting tools to 
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optimize service frequencies and resource allocation. Among the exogenous variables, the proportion 

of the affected population derived from the policy layer (top layer) of the resilience framework and the 

number of new cases were selected. 

 

Chapter 7 addresses the crucial trade-off between maintaining service quality and managing 

operational constraints during the COVID-19 pandemic. The chapter develops a theoretical model that 

balances the costs and benefits of different service levels. It discusses how high service quality can 

stabilize long-term demand but incurs higher costs, while lower service quality reduces costs but may 

lead to a decline in future demand. This analysis aims to guide PT operators in making informed 

decisions that ensure both cost efficiency and demand retention. 

 

Finally, Chapter 8 provides the conclusions of this research, including a summary of key findings, 

contributions to the field, and future research directions. 

 

The structure of this research is outlined in Fig. 1.2. This figure illustrates the logical flow of the thesis, 

starting with the background and literature review, moving through data collection and analysis, and 

culminating in the development of a theoretical model and its application through a case study. It also 

serves as a roadmap for the reader, providing a visual summary of the research process. Each chapter 

builds on the previous one, ensuring a cohesive and comprehensive exploration of the impact of 

COVID-19 on public transportation systems, particularly focusing on major Japanese railway stations. 
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Figure 1.2 Research outline 
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Chapter 2     Literature review 

 

This chapter explores existing research on the impacts of the COVID-19 pandemic on public 

transportation, focusing on several key areas. First, it examines the various data sources used to 

quantify these impacts, such as smart card data, cell phone data, and public transportation ridership 

data. Traditional data collection methods can be challenging during a pandemic due to issues like data 

cleansing. However, data collected automatically by mobile device operators can mitigate these 

problems, although it is crucial to consider the content and limitations of the data itself. Next, the 

chapter discusses the specific effects of the pandemic on public transportation, including the loss of 

passengers, layoffs of employees, and the financial instability of operators. For example, research has 

shown that ridership drops dramatically in major cities during pandemics, but the impact on different 

modes of transportation, such as subways and buses, may vary. The initial assumption is that the 

pandemic causes people to cancel trips and stay home, leading to fewer passengers, especially in 

crowded areas like stations, which makes them ideal for studying these impacts. Additionally, the 

chapter addresses the uncertainty of post-pandemic travel behavior. Once restrictions are lifted, it is 

unclear whether people will resume traveling as much as they did before the pandemic. This 

uncertainty underscores the importance of summarizing methods for long-term demand forecasting 

and understanding how different studies have approached the challenge of predicting public transport 

demand during a crisis. 

 

We highlight the need for an integrated approach to assessing the impact of pandemics on public 

transport systems by examining both global and regional studies. This comprehensive review sets the 

stage for developing the framework presented in the next chapter. 

 

2.1    Global impact of COVID-19 on public transportation and tourism 

Like many catastrophic events, the COVID-19 pandemic has wrought significant damage across 

various industries. Particularly hard-hit are sectors such as public health, tourism, and public 

transportation (Gaskin et al., 2021; McCartney, 2021). Research by Ganguly et al. (2020) further 

underscores that nations with a heavy reliance on tourism saw more pronounced declines in GDP 

during the COVID-19 crisis. 

 



10 

The global impact of the COVID-19 pandemic, with severe restrictions in many countries and a sharp 

decline in the use of public transport, has been costly as discussed in a wide range of literature (Liu et 

al., 2020; Wielechowski et al., 2020; Hasselwander et al., 2021; Borkowski et al., 2021; Habib et al., 

2021; Safitri et al., 2022). In addition, travel patterns are gradually changing in the wake of the 

pandemic, and with the recovery of demand (Beck et al., 2020; Tashiro et al., 2020; Gudmundsson et 

al., 2021; Wang et al., 2022), a “new normal” has emerged in many countries (Haarlem et al., 2022; 

Ha et al., 2023; Östh et al., 2023; Dantsuji et al., 2023). In some cases, likely irreversible changes in 

travel patterns and changes in commuters are affecting the subsequent operational strategies of public 

transport agencies (Zhou et al., 2021; Bert et al., 2021; Hu et al., 2021; Shimamoto et al., 2023). Recent 

discussions also argue that repeated states of emergency may not be effective in controlling the spread 

of COVID-19 (Liu et al., 2022), that movement restrictions may be effective for a short period of time 

but ineffective in reducing trips (Kim et al., 2021). Based on this, others conclude that the length of 

the policy lag and the magnitude of the impact on the transport system require more attention (Bian et 

al., 2021; Sun et al., 2023). 

 

Japan, being a country heavily dependent on tourism, suffered extensively due to the pandemic. 

Economically, the repercussions of the COVID-19 pandemic have been particularly devastating for 

cities heavily reliant on tourism as a cornerstone of their economies. The imposition of widespread 

global embargoes and travel restrictions has precipitated economic stagnation, soaring unemployment 

rates, and a protracted path to recovery (Gössling et al., 2020; Hall et al., 2020; Schmöcker, 2021). 

According to the "COVID-19 Tourism Index" provided by Yang et al. (2021), as of October 2020, the 

global tourism industry was operating at only around one-third of its pre-pandemic capacity, translating 

into trillions of dollars in lost export revenue from international tourism. Bui et al. (2021) underscored 

the necessity of prioritizing domestic tourism initiatives as a primary strategy for bolstering resilience 

during the recovery phase, pending the return of international demand. However, despite the potential 

temporary upsurge in domestic tourism resulting from de-globalization trends (Prayag, 2020), the 

overall trajectory of the tourism sector remains downward (Niewiadomski, 2020), with projections 

indicating that tourism may be among the last industries to rebound fully (McCartney et al., 2021). 

Matei et al. (2021) suggested recovery timelines ranging from one year to 18 months. Given its inherent 

dependence on human interaction, the tourism sector faces significant challenges in cultivating 

resilience through traditional means of innovation and adaptability (Gupta and Sahu, 2021). 

Consequently, strategies aimed at curbing tourist numbers while enhancing the quality of the tourist 
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experience (and subsequent spending) have emerged as imperative measures for the sector's sustained 

viability. 

 

Japan consistently has one of the highest public transport ridership rates in the world, meaning that the 

potential impact of a COVID-like crisis would be greater (Schouten et al., 2024). The impact was 

uneven across different segments of the network (Shimamoto et al., 2023). The importance of city size 

has been studied before, with data showing that metropolitan areas are suffering more (Ribeiro et al., 

2020; Armstrong et al., 2020; Chang et al., 2021). During the pandemic, intra- and inter-city public 

transport is kept to a minimum, which means that the type of travelers and travel OD are restricted, 

often with strong characteristics (Chowdhury et al., 2022; Tan et al., 2021). Further, clearly the number 

of COVID-19 cases as well as government restrictions can significantly affect the travel demand of 

travelers (Sun et al., 2020; de Paiva et al., 2021). Arimura et al. (2020), using time-series data, 

discussed that it led to a redistribution of population density. Rasca et al. (2021) suggest that population 

density plays a key role to understand the differences in public transport decline during the pandemic. 

Their data suggests that during COVID-19, the decrease in public transport patronage is strongly 

related to the regional infection rate, with the virus spreading significantly faster in cities with strong 

hubs (Bao et al., 2022). Others have shown that the number of pandemic-related cases and deaths are 

increasing the closer to the airport (Gaskin et al., 2021; Wang et al., 2021). However, the specific role 

of transport hubs in these effects has not been discussed in detail in these studies. 

 

2.2    Data sources and targets to quantify COVID impacts on operators 

Numerous studies have analyzed the impact of the COVID-19 pandemic on transit demand worldwide, 

showing a severe reduction in public transportation usage due to stringent restrictions adopted by many 

countries. Data obtained from smart cards can provide insights into how travelers adjusted their travel 

patterns. For instance, Halvorsen et al. (2021) quantified the dramatic demand loss in New York using 

such data. Similarly, an analysis by Siewwuttanagul et al. (2023) in Bangkok found that ridership 

levels decreased significantly, with the metro experiencing larger declines. Comparable impacts have 

been reported from the UK, Hong Kong, and Seoul (Vickerman et al., 2021; Zhang et al., 2021; Ku et 

al., 2021). 
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In addition to smart card data, cell phone data obtained from operators and other sources have received 

attention from researchers for quantifying COVID-19 impacts (Östh et al., 2023; Alessandretti, 2022; 

Liu and Yamamoto, 2022). This data provides a comprehensive and accurate picture of movements, 

including user attributes and origins-destinations (OD) information, rather than just the station where 

people board and alight. Smart card data and cell phone data can complement each other in the analysis 

of COVID impacts. For instance, Hara et al. (2021) used cell phone data to estimate Japan-wide 

indicators of behavioral change, finding a significant decrease in travel and cross-province travel with 

a slow recovery. 

 

Focusing on the COVID impacts on stations is crucial as these are important economic hubs for many 

cities. The busyness of a railway station reflects the communication between this place and other areas 

as well as the prosperity of the city itself. The vitality of the city is closely related to the proximity to 

the station (Yang et al., 2021). In Japan, many shops at stations are owned by rail operators, so the 

reduction in travel leads to multiple economic losses. 

 

Ridership is the most obvious characteristic of change, but current ridership clustering studies are 

limited by issues such as data availability, making temporal impact comparisons difficult (Yan et al., 

2021; Gupta et al., 2021; Roman et al., 2022). Other studies have used online surveys (Harantová et 

al., 2023), daily county vehicle miles traveled (VMT) (Fisher et al., 2023), and other parameters to aid 

the analysis. The impacts of the pandemic will clearly differ between stations. When categorizing 

different stations, it is common practice to consider the absolute number of travelers present (Lu et al., 

2024). However, quantifying the impact of a pandemic is more informative when considering the 

amount or percentage reduction in travelers. Furthermore, distinguishing types of travelers is important 

for understanding the total economic impact. Commuters might purchase some small products, but 

certain goods sold at a station are mostly bought by tourists and other longer-distance travelers. 

Therefore, mobile statistics are suggested as a good alternative to measure impact. 

 

Obtaining indicators of the demand impact alone is insufficient to derive policy implications. It is 

necessary to explore the reasons behind these indicators. Station characteristics, related to the size and 

economic situation of the city, can be used as explanatory variables. At the “macro-level,” factors such 

as city size, economic status, and network location can be considered (Zhou et al., 2021). For example, 

Cao et al. (2020) found that the location balance of JR (Japan Railway) is better compared to private 
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railways in the Tokyo metropolitan area, contributing to resilience. Similarly, countries with high-

speed rail networks exhibit polycentric characteristics, which can also contribute to resilience (Yang 

et al., 2018). 

 

At a more “micro-level,” it is necessary to consider the characteristics of the stations themselves, 

including the shops present and the Points of Interest (POI) in its vicinity. Niu et al. (2023) found that 

transport facilities, businesses, and population density are the main influences on the choice of station 

location, and these factors also influence the nature and extent of passenger congestion at different 

stations (Lu et al., 2024; Ma et al., 2023). External factors, such as improving service quality and 

reducing fares during periods of low ridership, should not be ignored as they can motivate people to 

travel (Taylor et al., 2003; Zhu et al., 2023; Lu et al., 2024). 

 

Understanding the multifunctionality of stations, including shopping, leisure, entertainment, and office 

activities, is also important. Smart card data can only capture information about traveling, but not other 

activities at the station. Mobile phone data can capture the time that visitors (and station staff) spend 

at the station, providing a comprehensive view of “station vitality.” Station vitality encompasses a 

variety of factors such as commercial activity, accessibility, and overall functionality in addition to 

passenger flow. Vongvanich et al. (2023) used “Google Popular Times” to analyze trends in station 

“popularity,” but the lack of absolute values was a major drawback. The mobile phone data used in 

this research provides information on the changing trends of users within the station, in addition to the 

personal attributes of the users, offering a breadth and depth that is beneficial for analysis (Yamaguchi 

et al., 2023; Wu et al., 2023). 

 

2.3    Urban resilience and long-term demand forecast under COVID-19 

The COVID-19 pandemic has had a profound impact on healthcare systems worldwide, particularly 

exposing vulnerabilities in weaker health infrastructures. Surprisingly, even more developed health 

systems in Europe and North America faced significant challenges in responding effectively to the crisis 

(Rathnayake et al., 2021). Health systems globally have had to navigate a delicate balance between 

pandemic response measures and ongoing healthcare needs, necessitating innovative strategies such as 

reverse triage or the establishment of alternative healthcare facilities (Lam et al., 2006). For instance, 

the construction of temporary hospitals to augment bed capacity has proven instrumental in both 
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containing the epidemic's spread and relieving pressure on strained healthcare services (Roosa et al., 

2020). However, reduced transport accessibility can hinder access to medical facilities, exacerbating 

the situation (Dingil and Esztergár-Kiss, 2021). This underscores the interdependence between the 

health system and transportation infrastructure, emphasizing the importance of integrated strategies and 

close coordination between these sectors (K. L. Chen et al., 2021). Collaborative efforts can include the 

dissemination of real-time epidemic and transport information through shared channels to enhance 

infection prevention awareness, manage travel demand, and mitigate health risks (Cochran, 2020; 

Darsena et al., 2020). 

 

While the definition of urban resilience may vary across different domains, it consistently revolves 

around two primary measurements: absorption capability and recovery capability. Moreover, 

considerable attention has been devoted to identifying the factors associated with these two 

measurements during pandemics. 

 

The absorption capability, a crucial aspect of urban resilience during pandemics, encompasses various 

factors. Previous experiences with epidemics play a significant role in this regard (Malhotra and 

Venkatesh, 2009). For instance, cities that faced the SARS outbreak drew upon their crisis recovery 

plans, implementing similar strategies to combat COVID-19 outbreaks swiftly. Lessons learned from 

SARS emphasized the importance of prompt quarantines and the adoption of sanitary and personal 

protective measures (Chien and Law, 2003). Additionally, factors such as land use and city size are 

pertinent. While higher urban density is often deemed sustainable for conserving land resources and 

reducing per capita carbon emissions (Y. Chen and Zhang, 2020; Egidi et al., 2020), it presents 

challenges during pandemics. Larger cities may struggle to contain the spread of diseases due to 

increased population movement and economic activity (Bui et al., 2021). However, the completeness 

of health care infrastructure and advanced urban governance capability in these cities can counter such 

negative factors and improve the timeliness of pandemic control and thus resistance to COVID-19 (J. 

Chen et al., 2021). To bolster urban resilience in pandemic emergency management, early and 

proactive measures, such as allocating resources toward healthcare, are imperative in urban resource 

management. 

 

In addition to managing the immediate aftermath of a disaster, resilience is also gauged by the capacity 

to recover to a state that is, at minimum, equivalent to pre-disaster conditions. Amidst challenging 
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economic circumstances, research has increasingly focused on COVID-19 exit and recovery strategies 

(Jamal and Budke, 2020; McCartney, 2021), with emerging technologies poised to play a pivotal role 

in the recovery phase (Gretzel et al., 2020; Hall et al., 2017). Leveraging big data analytics and 

information and communication technologies (ICTs), population movements are being monitored 

more rigorously during the COVID-19 pandemic than ever before (Haraguchi et al., 2022; Mahajan et 

al., 2021; Peak et al., 2020; Wilder-Smith and Freedman, 2020). This enhanced monitoring facilitates 

the implementation of effective intervention policies, such as travel bans and quarantines (Bauch and 

Anand, 2020; Chinazzi et al., 2020; Lancet, 2020a, 2020b). Given the significant alterations in urban 

life induced by the pandemic, scholars have suggested that COVID-19 may prompt a reevaluation of 

existing practices, particularly in hard-hit sectors like tourism (Carr, 2020; Sigala, 2020). Notably, 

Ritchie and Jiang (2019) advocate for a focus on building resilience in future research endeavors. 

Considering the potential for future outbreaks, there is an urgent imperative for disaster response and 

post-disaster recovery planning. This necessitates collaboration among stakeholders across various 

industries and the systematic development of proactive pandemic response strategies by cities. 

Accordingly, in Section 3, we present an implementation framework that outlines the process from 

disaster impact mapping to decision-making, aiming to facilitate comprehensive and effective 

responses to pandemics. 

 

The existing literature has convincingly quantified how much public transport demand is affected 

during certain waves of the COVID-19 pandemic, and studies using smartcard or public transport 

passenger data are common (Jenelius et al., 2020; Almlöf et al., 2023). However, it is more temporal 

and short-term, and the long-term is not yet well understood. In order to better understand the demand 

resilience patterns of different stations, we also need to forecast long-term demand. 

 

In time series forecasting studies, ARIMA and SARIMA are very common methods, and many 

researchers have used these methods in their studies (Atabay et al., 2022; Milenković et al., 2018; 

Chuwang et al., 2022). However, COVID-19 does not have a clear time period and the frequency, 

lengths and strengths of the waves are varying (Kolozsvári et al., 2021). ARIMAX can be used to 

include external factors, such as station characteristics (Su et al., 2020). Jiao et al. (2021) have also 

used ARIMAX models to predict daily bus ridership. However, there are limitations, for example, 

most station characteristics are fixed (e.g. land use, POIs, etc.) and hence cannot be used to predict 

relative changes for that station unless the “general importance” of such a POI for demand trends is 
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understood. Therefore, many researchers have focused on the field of deep learning, and LSTM 

methods are one of the most widely used approaches, as it is very effective in dealing with continuous 

values (Hochreiter et al., 1997). Halyal et al. (2022) analysed the traffic situation in developing 

countries using the LSTM method and showed more satisfactory results than using SARIMA. For 

understanding and forecasting the impact of an event like COVID-19, however, no single method may 

be able to fully summarize its characteristics (Ghalehkhondabi et al., 2019; Jiao et al., 2019). 

 

2.4    Conclusion 

In summary, existing literature has well quantified that public transportation demand is indeed heavily 

affected by COVID-19, but most studies take the city or country as a whole and do not pay much 

attention to the characteristics of the station itself. Station vitality is, however, important especially in 

Japan where many rail operators are generating revenues also from stores, restaurants and hotels in and 

near the station buildings. The size of the station, the location of the city in which it is located, the type 

of travelers it carries, and its association with the functional area of the city are likely to impact the 

pandemic’s impact including long-term recovery. Considering the limitations of smart card data in 

quantifying station vitality, we base our analysis on mobile spatial statistics (MSS). Such data have been 

widely used previously for analysis and early warning of population movements during disasters 

(Arimura et al., 2020; Wu et al., 2021; Hashimoto et al., 2022). Further, Tatsu et al. (2017) analyzed the 

impact of the opening of the Shinkansen on the number of tourists in Kanazawa and Toyama cities using 

MSS data and found an increase in the total number of tourists around the stations as well as out-of-

town tourists along the railroad line. This suggests that total changes in the number of travelers and 

people visiting the stations can be captured more accurately and completely with our data. 

 

This research will use this data to analyze the dynamics during the COVID-19 pandemic in terms of 

number of people in mesh areas. We select meshes where major stations are located to obtain the 

change in the number of persons staying in the station area including travelers, based on which the 

station characteristics can be explored more deeply. Since the mesh area covers all the people in the 

station, station staff, shoppers as well as local and long-distance travelers using the same station are 

counted, which is different from smart card data and analysis with other payment data that usually 

focuses on urban travel. 
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Next, we will present a comprehensive framework for evaluating and responding to the impacts of 

such pandemics on public transportation systems. This framework will guide the analysis in 

subsequent chapters, providing ideas for possible solutions. 
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Chapter 3     Urban resilience framework and  

public transport operator implications 

 

3.1    Introduction 

The increasing occurrence of both natural and man-made disasters has driven a surge in the 

development of urban resilience evaluation frameworks. These frameworks are essential for informed 

decision-making when urban systems face disruptions. They encompass various dimensions, 

methodologies, and types of disasters, offering a comprehensive approach to understanding and 

enhancing urban resilience. In the context of the COVID-19 pandemic, public transportation (PT) 

systems have been significantly impacted, necessitating a specific focus on PT resilience within the 

broader scope of urban resilience. 

 

Urban resilience evaluation frameworks are designed to support decision-making by assessing how 

well urban systems can absorb, recover, and adapt to disruptions. These frameworks are categorized 

based on dimensions they consider, types of disasters they address, and whether they utilize qualitative 

or quantitative methodologies. Table 3.1 provides a detailed comparison of various urban resilience 

evaluation frameworks, highlighting their key characteristics and supporting decision-making. By 

categorizing these frameworks based on dimensions, types of disasters, and methodologies, Table 3.1 

helps in identifying the most suitable framework for specific urban resilience assessments. The table 

illustrates the diversity in approaches and the need for a multifaceted understanding of urban resilience 

to effectively address different types of disruptions. 

 

Urban resilience can be conceptually divided into five overarching dimensions: institutional, physical, 

social, economic, and natural. Each dimension encompasses a range of factors critical for assessing 

the overall resilience of urban systems. For instance, terms such as "physical," "built infrastructure," 

"built environment," and "infrastructural" are synonymous and represent the physical dimension. 

Similarly, "natural," "ecological," and "environmental" describe the natural dimension, while 

"institutional," "policy," "governance," and "organizational" denote the institutional dimension. Table 

3.2 details the components and indicators used to measure these dimensions, compiled from sources 

like Ribeiro and Pena Jardim Gonçalves (2019) and Datola (2023). This table provides a structured 
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approach to assessing urban resilience, detailing components and indicators for the five key 

dimensions, thereby aiding in evaluating the overall resilience of urban systems. The indicators in 

Table 3.2 offer a comprehensive view of the factors influencing resilience, underscoring the 

importance of a holistic approach to urban resilience that considers physical infrastructure, social 

systems, governance, economic stability, and natural environments. 

 

Table 3.1 Urban resilience evaluation frameworks 
 

Publication Dimensions Disasters Resilience properties Type 

Ribeiro and 

Pena Jardim 

Gonçalves 

(2019) 

Physical, natural, 

economic, 

institutional, social 

Natural, 

climate 

Redundancy, diversity, 

efficiency, robustness, 

connectivity, adaptation, 

resources, independence, 

innovation, inclusion, 

integration 

Qualitative 

Zuniga-Teran et 

al. (2020) 

Policy, built 

infrastructure, natural, 

social 

General 

 

Robustness, redundancy, 

resourcefulness, rapidity 

Qualitative 

Datola (2023) Physical, natural, 

economic, 

institutional, social 

General Robustness, redundancy, 

diversity, integration, 

resourcefulness, inclusivity, 

reflectiveness, flexibility, 

transparency 

Qualitative 

Zhao et al. 

(2022) 

Built environment, 

metabolic flow, 

governance, social 

General  Quantitative 

Xun and Yuan 

(2020) 

Ecological, economic 

development, social 

development 

Natural, 

climate 

 Quantitative 

Liu et al. (2021) Economic, social, 

infrastructural, 

environmental 

Natural  Quantitative 
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B. Wang et al. 

(2022) 

Economic, social, 

infrastructural, 

ecological 

General  Quantitative 

Feng et al. 

(2020) 

Ecological General  Quantitative 

Xu et al. (2021) Economic, 

environmental, 

governance, 

technological, built 

infrastructure 

Flooding  Quantitative 

Rezvani et al. 

(2022) 

Environmental,  

    economic, 

organizational, social, 

technical 

Constructed 

asset 

 Quantitative 

Ruan et al. 

(2021) 

Ecological, economic, 

social 

Flooding  Quantitative 

 

 

Table 3.2 Components and indicators of the five dimensions of urban resilience (largely based on Liu 

et al. (2021), Zhao et al. (2022), and Wang et al. (2022)) 

Dimensions Components Indicators 

Institutional Governance, organized 

governmental services, warning and 

evacuation, emergency response, 

disaster recovery 

II1: Household registered population 

II2: Proportion of population joining basic pension 

insurance for employeesII3: Fiscal expenditure 

II4: Maintenance and construction funds 

II5: Proportion of employees of enterprises, 

institutions and government in population 

II6: Unit density of hospitals and health centers 

II7: Number of doctors 

Physical Physical infrastructure, land use, 

transport, housing, structural design 

PI1: Road surface area 

PI2: Number of public vehicles 

PI3: Total inventory turnover rate 
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PI4: Communication network coverage 

PI5: Area covered by public hazard maps 

PI6: Length of drainage pipes 

PI7: Density of water supply pipelines in built-up 

area 

PI8: Density of sewers in built-up area 

PI9: Total size of emergency shelter area 

PI10: Population of internet users 

Social Human capital, lifestyle and 

community competence, 

community capital, social and 

cultural capital, demographic 

behavior, risk Knowledge, 

vulnerable people 

SI1: Per capita disposable income 

SI2: Living area of urban residents 

SI3: Population density 

SI4: Proportion of expenditure for social security 

and employment in fiscal expenditure 

SI5: Registered unemployment rate 

SI6: Engel coefficient 

SI7: Number of college students 

Economic Economic development, 

employment level, 

business sectors 

EI1: GDP per capita 

EI2: GDP growth rate 

EI3: Proportion of tertiary industry in GDP 

EI4: Dependence on foreign trade 

EI5: Proportion of fiscal revenue in GDP 

EI6: Per capita disposable income of urban 

residents 

EI7: Scientific research fund intensity 

Natural Ecosystems, waste and water NI1: Green-covered area 

NI2: Area of public green land 

NI3: Annual average emission of SO2 

NI4: Water consumption 

NI5: Air quality excellent days ratio 

NI6: Ratio of wastewater centralized treated 
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Existing urban resilience frameworks can be broadly categorized into qualitative and quantitative 

approaches. Qualitative frameworks typically establish connections between the dimensions of urban 

resilience and resilience properties, elucidating how aspects like institutional resilience contribute to 

the robustness of the urban system. However, these frameworks often lack the granularity needed to 

analyze the dedicated impact of individual components. For instance, Datola (2023) and Ribeiro and 

Pena Jardim Gonçalves (2019) discuss how qualitative frameworks connect resilience properties with 

urban resilience dimensions but note their limitations in quantifying specific impacts. 

 

Quantitative frameworks, on the other hand, decompose dimensions into urban components/subsystems 

and define performance indicators for each, enabling the quantification of urban resilience through an 

index system. Methods such as the Entropy weighting model, deviation maximization, and factor 

analysis are used to calculate indicator weights. For example, Zhao et al. (2022) and Wang et al. (2022) 

utilized the Entropy weighting model, while Xun and Yuan (2020) applied deviation maximization, and 

Liu et al. (2021) employed factor analysis to determine the weights of indicators. 

 

These quantitative methods allow for a more detailed and data-driven approach to assessing urban 

resilience. However, they also have limitations, such as potential biases due to endogeneity among 

performance indicators of subsystems and a primary focus on long-term resilience with limited 

attention to short-term response actions (Liu et al., 2021; Zhao et al., 2022). 

 

Urban resilience frameworks are further distinguished by their focus on general disaster scenarios 

versus specific types of disasters. General frameworks provide broad insights into urban resilience at 

a macroscopic level, while disaster-specific frameworks focus on the functions and effects of 

subsystems in response to particular disasters. For instance, general frameworks often analyze the 

potential damage caused by natural disasters, which can limit their applicability to other types of 

emergencies (Xu et al., 2021; Rezvani et al., 2022). 

 

In the context of public transportation, the COVID-19 pandemic has exposed significant vulnerabilities, 

highlighting the need for a tailored resilience framework. This chapter introduces a comprehensive 

framework to assess and enhance the resilience of PT systems during pandemics, drawing upon 

established urban resilience theories and adapting them to the specific context of PT resilience. The 

framework incorporates key dimensions of urban resilience, including robustness, redundancy, 
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resourcefulness, and rapidity (4R theory), and addresses the unique challenges posed by the COVID-

19 pandemic. 

 

By integrating the principles of urban resilience with the specific needs of PT systems, the proposed 

framework aims to enhance the capacity of PT systems to withstand and recover from pandemic-

induced disruptions. This approach not only supports the immediate response to crises but also 

promotes long-term sustainability and resilience of urban transportation infrastructures. 

 

3.2    Application of urban resilience against pandemics to PT resilience 

Evaluating the effectiveness of transport-related containment policies is crucial for understanding how 

these measures influence system resilience during a pandemic. Using the Governance-Transport-

Mobility-Resilience (GTMR) framework, we analyze how these policies impact urban resilience, 

focusing on their implications for public transportation systems affected by COVID-19. In this section, 

we will expound upon the effectiveness of transport-related containment policies from the perspective 

of system resilience. The GTMR framework is then applied to interpret how these policies influence 

urban resilience. 

 

 

Figure 3.1 GTMR framework for urban resilience against pandemics  
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Selected transport-related containment policies have been instrumental during the COVID-19 

pandemic. Table 3.3 presents 15 commonly adopted transport-related emergency response policies (S1 

– S15) utilized in combating the COVID-19 pandemic. In the framework outlined in Fig. 3.1, these 

policies correspond to the effects manifested in Gs-Te, Te-M, and partially T-R components. The 

potential impacts of these policies are summarized into five distinct groups (E1 – E5), as depicted at 

the bottom of the table. 

 

Table 3.3 Emergency response strategies for the COVID-19 pandemic and their effects 
 

ID Strategy Effect 

S1 Cancellation of international passenger flights E1 

S2 Reduction of intercity buses, trains, high-speed trains, planes, etc. E1 

S3 Cancellation of intra-city public transport operation E2 

S4 Publishing infection risk warnings, appeal citizens not to make non-essential trips E2, E5 

S5 Posting trajectories of the infected E3, E5 

S6 Daily disinfection of public transport vehicles E4 

S7 Wearing a mask and maintaining social distancing in public transport vehicles E4 

S8 Scale management of taxis E2 

S9 Stay-at-home orders E2, E3 

S10 Ride-sharing companies laid off management staff and froze driver sign-ups E2 

S11 Using taxis to provide point-to-point goods delivery to residents E2, E3 

S12 Offering free usage of city bicycles E3 

S13 Back-door-only loading policy E3, E4 

S14 Opening specific lanes to bicycle users E3 

S15 Improving the public transport information system E3, E5 

Effect category 

E1 Reducing connections to other cities  

E2 Reducing intra-city mobility  

E3 Managing crowdedness  

E4 Improving health and safety management system of public transport  

E5 Improving the update, release and forecast of public information  
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Specifically, policies S1 and S2 are aimed at reducing the number and capacity of available 

transportation options, thereby weakening the connections of the target city to other places (E1). Others, 

such as S3, S8, and S10, seek to minimize intra-city mobility (E2) by either reducing supply or demand. 

These measures focus on limiting human mobility to curb transmission. Conversely, a third group of 

policies aims to manage public crowding (E3) by increasing awareness of precautions (S5, S15), 

reducing the need for public outings (S9, S11), and minimizing physical contact in public 

transportation (S12, S13, S14). Policies like S13, S6, and S7 primarily aim to create a healthy and safe 

public transport environment (E4). Additionally, policies focused on enhancing the dissemination and 

forecasting of public information (E5), such as S4, S5, and S15, play a crucial role during the pandemic 

outbreak. Considering long-term strategies, we designate corresponding policies with similar effects 

as S(E1), S(E2), S(E3), S(E4), and S(E5), respectively. In the framework outlined in Fig. 3.1, these 

long-term policies are responsible for interactions Gl-Gs, Gl-Ti, Gl-Te, Ti-M, and partially T-R. 

 

 

Figure 3.2 Policies categorization and contribution to resilience properties 

 

Faturechi and Miller-Hooks (2015) delineate four distinct stages in disaster management based on the 

disaster life cycle: mitigation, preparedness, response, and recovery. Mitigation, preparedness, and 

recovery strategies are considered long-term, while emergency responses are short-term. Mitigation 

strategies aim to diminish the likelihood of a disaster occurring or limit its consequences. Preparedness 

strategies are crafted to ensure swift and effective responses post-disaster. Response strategies entail 

short-term adaptive measures implemented to restore system functionality. Recovery strategies can be 

seen as an extension of emergency responses. All policies listed in Table 3.3 fall under response 
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strategies. Their long-term counterparts, designated as S(E1) – S(E5), may be categorized as mitigation, 

preparedness, and/or recovery strategies based on their effects, as elaborated in Fig. 3.2. Furthermore, 

we will demonstrate how these strategies enhance resilience properties (i.e., robustness, redundancy, 

resourcefulness, and rapidity) as defined in the "4R framework" detailed by Bruneau et al. (2003). 

 

In Fig. 3.2, we illustrate how these strategies bolster system resilience by linking strategy groups to 

stages of the disaster life cycle and associating them with resilience properties. It is worth noting that 

long-term strategies addressing E1 and E2, i.e., S(E1) and S(E2), serve as mitigation strategies aimed 

at enhancing the system's robustness. While E3, E4, and E5 represent valid goals for both short- and 

long-term strategies, the long-term counterparts of E1 and E2 could be termed “reducing dependency 

on other cities” and “minimizing the need for intra-city mobility”, respectively. Consequently, S(E1) 

aims to foster a self-sufficient industrial structure and a more autonomous city, while S(E2) strives to 

mitigate significant spatial and functional heterogeneity in land use. S(E3) can be classified as either 

mitigation or preparedness strategies since routine crowdedness management can mitigate the 

likelihood of large-scale transmission early in outbreaks (mitigation), while experience and developed 

techniques can expedite response times (preparedness). These strategies contribute to the system’s 

robustness and rapidity. S(E4) and S(E5) are geared towards developing a responsive public health 

management system and an advanced information dissemination system, making them preparedness 

strategies that enhance the system’s resourcefulness. Additionally, S(E5) can also bolster rapidity. 

However, it is essential to note that none of the strategies directly contribute to the redundancy property. 

In the context of pandemics, redundancy could entail ensuring sufficient professional staffing at critical 

positions, enabling the system to function effectively even when some personnel are quarantined. It is 

pertinent to mention that all strategies listed in Table 3.3 can be extended and adjusted until the end of 

the pandemic, effectively transitioning into recovery strategies. 

 

By definition, the system's performance during a disturbance can be divided into disruption and 

recovery phases. As outlined by Zhou et al. (2019), the disruption phase assesses the system's ability 

to maintain functionality, focusing primarily on robustness and redundancy. In contrast, the recovery 

phase evaluates the system's capacity to restore functionality, primarily influenced by resourcefulness 

and rapidity. Resilience loss is then quantified as the integral of the difference between the pre-disaster 

normal functionality and the actual functionality throughout the entire disaster period. It is important 
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to note that all short-term strategies are implemented to expedite recovery from the disruption phase. 

However, for the sake of clarity, this aspect is not depicted in Fig. 3.2. 

 

As an illustrative example, we employ the GTMR framework to analyze the strategies delineated in 

Table 3.3. Fig. 3.3 highlights five distinct strategy groups (SGs) categorized according to the effect 

categories outlined in the table. In the ensuing discussion, we primarily focus on transport services 

under emergency, which signify the immediate impact of policies. Specifically, we delve into their 

effects on public transport services, with a particular emphasis on five key aspects: service frequency, 

provision of real-time information, operating hours, pricing adjustments, and vehicle cleanliness. 

 

 

Figure 3.3 Applying the GTMR framework for urban resilience in COVID-19 

 

Indeed, SG1 is primarily geared towards diminishing connectivity with other cities. This strategic 

approach entails a notable reduction in the availability and frequency of transportation services to and 

from other urban centers. Given the dynamic nature of the strategies involved, challenges may arise in 

various other facets, including pricing considerations. For instance, in response to dwindling passenger 

demand, airlines might opt to hike ticket prices to safeguard their profitability. Furthermore, a 

noticeable decline in both inter-city and event-induced mobility is anticipated under these 

circumstances. This suggests that SG1 holds the potential to curtail the importation of cases and bolster 
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local epidemic control efforts, rendering strategies within SG1 typically viable at the outset of a local 

epidemic or during periods of rapid escalation in infected cases. It is imperative to note that the 

implementation of SG1 necessitates robust local control measures to maximize efficacy. 

 

SG2 is geared towards minimizing physical contact by curtailing intra-city travel demand. Specifically, 

S3 entails a reduction in service frequency and availability, necessitating service rescheduling and 

potential fare adjustments. Similarly, S8 and S10, crucial measures for the survival of taxi and transport 

network companies (TNCs) amid economic downturns, are expected to result in reduced traffic volume. 

Moreover, S11 underscores the interchangeability of various transportation modes. Analogous to SG1, 

SG2 is anticipated to have adverse effects on “availability”, “frequency”, and “ticketing”. 

Implementation of SG2 is expected to lead to decreased intra-city and event-induced mobility. 

 

SG3 targets the reduction of public crowding. Strategies like S5, S9, and S11 achieve this by curbing 

intra-city mobility demand, while S12 and S14 promote cycling for short-distance trips. Consequently, 

the strategies within SG3 exhibit conflicting effects on mobility demand. However, the promotion of 

cycling usage can mitigate the infection risk associated with public transportation while still facilitating 

intra-city mobility. Furthermore, S15 furnishes operators with information regarding demand 

fluctuations, aiding in the development of an appropriate fare structure. 

 

SG4 focuses on enhancing the safety of public transportation by ensuring vehicles are clean and 

hygienic. When public transport is perceived as safer and more reliable, there may be an increase in 

intra-city travel demand. However, the requirement to wear masks and maintain social distancing 

within vehicles (S7) may deter some passengers from using public transport due to physical discomfort 

or personal preference. Therefore, S7 has a mixed impact on mobility demand. 

 

The reduction in inter-city, intra-city, and event-induced mobility can help mitigate the spread of 

COVID-19. However, these measures aimed at restricting mobility can also have adverse effects on 

the economy. Therefore, it is essential to consider both the effectiveness of pandemic control measures 

and the economic losses incurred when evaluating urban resilience to pandemics such as COVID-19. 
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3.3    Discussion on impact of service reduction 

Service reduction, a common response to the decline in ridership during the COVID-19 pandemic, has 

significant implications for PT resilience. Evaluating the effectiveness of transport-related 

containment policies through the GTMR framework provides insights into how these reductions 

impact urban resilience, particularly in terms of robustness, resourcefulness, and rapidity. 

 

Reducing services can lead to multiple potential outcomes, influenced by the interplay of different 

strategies within the GTMR framework. Policies aimed at reducing inter-city and intra-city 

connectivity (S1, S2, S3, S8, S10) weaken the ties of a city to other areas (E1) and minimize intra-city 

mobility (E2). While these measures can help control the spread of the virus by limiting movement, 

they also pose risks of economic isolation and a decline in commercial activities around transit hubs. 

This can lead to prolonged economic stagnation and reduced accessibility if not managed well. 

 

The demand sensitivity to service reduction varies. Special offers like fare reductions, similar to 

Germany's "9 Euro Ticket," can stimulate demand by making PT more affordable, particularly for 

price-sensitive users. Enhancing passenger confidence through rigorous hygiene measures and clear 

communication about safety protocols can also help recover demand. Passengers are more likely to 

return to PT if they perceive it as safe, convenient, and cost-effective. 

 

However, service reductions must consider several limitations. Timing is critical; reducing services 

during peak hours can severely affect commuters. Essential needs must be met, ensuring that critical 

services remain accessible. Operational requirements must balance cost savings with maintaining 

infrastructure and equipment, avoiding long-term damage. 

 

Strategies like S5, S9, S11, S12, and S14 aim to reduce public crowding and promote alternative modes 

of transport such as cycling. These measures can maintain mobility while enhancing safety, though 

they require substantial infrastructure investment and public acceptance. By promoting cycling and 

other alternatives, these strategies contribute to robustness and rapidity by providing alternative travel 

options. 
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Policies aimed at ensuring clean and hygienic public transport (S6, S7, S13) can improve public 

confidence and potentially increase ridership. Enhanced safety measures contribute to resourcefulness 

by maintaining a safe travel environment, but they also incur additional costs and operational 

challenges. Long-term strategies (S(E4), S(E5)) focus on developing responsive public health 

management systems and advanced information dissemination, enhancing the system’s 

resourcefulness and rapidity. 

 

The outcomes of service reduction, therefore, depend on the implementation and effectiveness of these 

strategies. Prolonged reduction in services, particularly inter-city connectivity, can lead to economic 

isolation. If cities fail to adapt by developing self-sufficient structures, the economic impact could be 

severe, leading to long-term stagnation and reduced economic resilience. Effective long-term strategies 

that mitigate intra-city mobility and enhance spatial balance could lead to more sustainable urban 

development. This outcome requires coordinated efforts to ensure accessibility and mobility are 

maintained, particularly for vulnerable groups. Investments in safety and hygiene can rebuild public 

trust and increase ridership. If paired with robust health management systems and effective 

communication, this can lead to a resilient PT system capable of quickly recovering from disruptions. 

 

Promoting alternative modes of transport such as cycling can reduce dependence on public transport, 

providing a buffer during service reductions. This requires significant investment in infrastructure and 

public buy-in but can enhance overall urban mobility and resilience. 

 

In conclusion, service reductions necessitated by the COVID-19 pandemic must be strategically 

managed to balance immediate needs with long-term resilience. The GTMR framework provides a 

structured approach to understanding these impacts and guiding adaptive strategies. By focusing on 

robustness, resourcefulness, and rapidity, PT operators can mitigate the adverse effects of service 

reductions and support the recovery of urban mobility. Understanding these impacts through the 

GTMR framework provides valuable insights into balancing immediate needs with long-term 

resilience, ensuring public transportation systems remain robust, flexible, and capable of recovering 

from future disruptions. With this foundational framework in place, the next chapter will focus on 

short- and medium-term demand change analysis using station clustering techniques, providing 

detailed data analysis on station usage patterns during the pandemic. 
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Chapter 4     Station clustering and short and 

medium-term demand change analysis 

 

After obtaining a comprehensive framework for resilience analysis, we need to know the impacted 

conditions in a real situation in order to decide what decisions to use to intervene. In this chapter, we 

utilize mobile spatial mesh data to examine changes in station vitality during the COVID-19 pandemic. 

We present comprehensive vitality data for all stations in a time-space format, filtering out the most 

severely impacted periods and including timeframes before and after the pandemic to capture the entry 

and exit phases. By selecting weekly average vitality data as the clustering object, we identify several 

typical patterns of change at major Japanese stations during the pandemic and explore the factors 

influencing these changes. For instance, some stations experienced a significant drop in demand 

followed by a swift recovery, while others continued to face declining ridership. This chapter delves 

into the specific paths of change at different stations within the context of the pandemic, providing 

detailed analyses of various scenarios. Understanding these patterns is crucial as it allows us to identify 

and categorize stations based on their responses to the pandemic, setting the groundwork for the 

regression analysis of influencing factors that will be conducted in the next chapter. By examining 

these detailed paths of change, we can better understand the dynamics of station vitality and the 

underlying reasons for differing recovery rates. 

 

4.1    The mobile phone mesh data 

 

4.1.1    MSS data and station vitality 

The mobile spatial statistics (MSS) used in this research are created based on the Nippon telegraph and 

telephone corporation (NTT) DOCOMO mobile network mechanism (Masayuki et al., 2013). MSS uses 

operational data from the mobile terminal network for population estimation and estimates coverage in 

essentially the same way as the mobile terminal service area. MSS provides data by gender, age, and 

county (or municipal) residence under standard grids (e.g., 1km and 500m grids) for hourly or longer 

time intervals. For data privacy and security considerations, age, gender information and residence 
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information are, however, not linked. For our purposes, we primarily used information on place of 

residence, which will be discussed later. 

 

Its data production process consists of three processes: non-identification, aggregation, and hiding 

(Ichiro et al., 2013), and mainly consists of privacy of identity information, number of devices by area, 

and deletion of less populated areas. It is hence important to understand that the MSS information 

reflects the number of mobile devices that appear in the standard grid at a given time. For example, if 

a device stays in a grid for 10 min (1 in 6 h), then the final result reflected in the system for that device 

is 1/6, and so on. 

 

 

Figure 4.1 Station areas (painted in red) fit or exceed a standard 500m grid (red lines). Hakata station 

(left) and Tokyo station (right) as example 

 

The MSS is fed by information from about 80 million devices. Since the total population of Japan in 

2021 is counted at 126 million, this accounts to a high market share. Differences to the total population 

are corrected by NTT DOCOMO according to their share in each region and among age groups 

(Masayuki et al., 2013). The only situation that requires attention is the potential variation in behavior 

between different subscriber groups of different cell phone operators. However, for a basic need such 

as travel, such differences are unlikely to occur and therefore the estimation accuracy of the MSS data 

can be considered sufficiently accurate (Hara et al., 2021). In this research, we use 500m x 500m mesh 

data considering the usual building size of train stations (one mesh grid). Some large stations, such as 

Shinjuku and Tokyo, extend beyond one grid. At these stations in particular the platforms are longer 

than 500m, as shown in Fig. 4.1. However, considering the usually short time travelers spend on 
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platforms and the increase in non-station space that may result from increasing the number of grids, 

we stick to using one grid per station and choose the one that covers the main part of the station building. 

 

Our research process begins with the selection of suitable stations based on characteristics, and after 

data preparation a cluster analysis of the amount of change in transit demand during COVID-19 and 

an attempt to explain the intrinsic reasons, as shown in Fig. 4.2. 

 

 

Figure 4.2 Station clustering research process 

 

4.1.2    Target station selection 

The selection of stations for transit demand loss analysis depends on the research question, the scope of 

the research, and the availability of data. To obtain an understanding on the differences across Japan we 

choose major stations that are, generally, well-connected and heavily used. Table 4.1 lists factors 

considered in our data analysis.  

 

Further to the selection rules, given our research objective, we chose at least one station from each of 

the 47 prefectures of Japan. The resulting 69 stations selected according to the above principles of 

importance and geographical diversity are shown in Table 4.2. For ease of understanding and graphing, 

we numbered the stations in the order of the mesh area code from largest to smallest, along with their 

station name abbreviations in capital letters. 
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To illustrate the locations of the 69 stations, we have mapped them in Fig. 4.3, using the station name 

abbreviations introduced in Table 4.1. Locations of the same color in the map represent the same area: 

from top to bottom, Tohoku-Hokkaido area (light green), Kanto area (green), Shin-Etsu area (pink), 

Chubu area (orange), Kansai area (blue), Chugoku area (light orange), Shikoku area (light blue) and 

Kyushu area (red). 

 

 

Figure 4.3 Location of the selected stations 
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Table 4.1 Station selection considerations 

Factor Consideration 

Location 

Stations located in central areas of the city or near major transportation hubs 

are more likely to have higher demand and greater sensitivity to changes in 

transit services. 

Ridership 
Stations with higher ridership are more likely to be affected by changes in 

transit services, and therefore more suitable for demand loss analysis 

Transit network 

Stations that are part of a larger transit network or serve as important 

transfer points are more likely to be suitable for analysis, as they are more 

likely to have a broader impact on travel patterns 

Availability of data 

The availability of data on transit demand, such as ridership data, mobile 

phone data, or other relevant data sources, can also influence station 

selection 

 

Table 4.2 Stations information 

Sta No. Station Abbr. Sta No. Station Abbr. 

1 Sapporo SPR 36 Kanayama KAY 

2 Odori ODR 37 Kintetsu-Yokkaichi YOK 

3 Aomori AOM 38 Tsu TSU 

4 Morioka MOR 39 Kusatsu KUS 

5 Akita AKT 40 Gion-Shijo GIO 

6 Sendai SEN 41 Kyoto KYT 

7 Yamagata YAM 42 Ishibashi handai-mae HAN 

8 Koriyama KOR 43 Gakuemmae GAK 

9 Niigata NIG 44 Kintetsu-Nara NAR 

10 Toyama TOY 45 Shin-Osaka OSN 

11 Mito MIT 46 Namba NAM 

12 Utsunomiya UTS 47 Osaka OSA 

13 Takasaki TSK 48 Koshien KSE 

14 Nagano NGN 49 Shin-Kobe SKB 

15 Matsumoto MAM 50 Sannomiya SAN 
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16 Kanazawa KAZ 51 Kobe UKB 

17 Moriya MOY 52 Himeji HIM 

18 Kashiwa KAS 53 Tennoji TNJ 

19 Omiya OMI 54 Wakayama WAK 

20 Nishifunabashi NIF 55 Takamatsu TAK 

21 Kitasenju KIT 56 Tokushima TKS 

22 Tokyo TYO 57 Okayama OKY 

23 Ginza GIZ 58 Hiroshima HIR 

24 Shinjuku SJK 59 Harimayabashi HAR 

25 Tachikawa TKW 60 Matsuyama City MAT 

26 Shin-Yokohama YKN 61 Shimonoseki SHN 

27 Yokohama YKH 62 Hakata FUK 

28 Kofu KOF 63 Tenjin TEJ 

29 Gifu GIF 64 Meinohama MEH 

30 Tottori TTR 65 Oita OIT 

31 Matsue MTE 66 Saga SAG 

32 Shizuoka SZO 67 Kumamoto KUM 

33 Matsumoto HAM 68 Miyazaki MIY 

34 Sakae SAK 69 Kagoshima-Chuo KAG 

35 Nagoya NGY    

 

4.1.3    Data Correlation to Station Demand (with ridership) 

The accuracy of MSS as an estimate for the number of people in a mesh can be considered to be good 

(Hara et al., 2021). However, in this research, its correlation with transit demand needs further 

examination as clearly not only traveling is a reason to visit the station mesh. Further, as noted, people 

who stay longer in the station mesh will be counted more than people who only stay briefly. We selected 

20 stations with high passenger ridership in Table 4.2 in 2019 for the analysis, where station passenger 

ridership data is counted and updated annually by the Ministry of Land, Infrastructure, Transport and 

Tourism. (Note that we do not have more detailed monthly or weekly data from the Ministry). The data 

contains the average daily number of passengers boarding and alighting at all stations in operation in 
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Japan. The MSS data is then selected for a more typical week, with a time period of 6am to 11pm, the 

hours of operation for most stations. 

 

As can be seen from the data in Table 4.3, the ratio between ridership data and MSS data is not constant 

because the two types of data are not collected in the same way and the stations themselves do not 

have the same attributes, but the correlation coefficient value between the two reaches 0.72, which 

implies that the MSS data is suitable for studying changes in transit demand. Moreover, we suggest 

that the “error” is also meaningful as it describes the degree to which the station is visited for non-

travel purposes, such as shopping or eating at the restaurants in the station building or in its immediate 

vicinity. We take the ratio of 2019 and 2020 MSS data as the x-axis and ridership as the y-axis, as 

shown in Fig. 4.4, and most of the stations are in the region around 1.5. Of the eight stations that 

deviate significantly from the majority, the top one is No. 22, Tokyo Station, the leftmost is No. 3 

Aomori Station (the northernmost point of the main island), and the six rightmost stations are all from 

Kyushu Island. This suggests that though ridership did significantly reduce in Kyushu, the impact on 

station vitality is not as significant. We suggest this is because stations are not as highly attractive for 

non-travel activities as some of the other stations in our database and travelers do not stay for long. 

 

Table 4.3 Ridership and MSS mesh population in 2019 

Station Ridership MSS Ratio Station Ridership MSS Ratio 

Shinjuku 3836469 704298 5.45 Sannomiya 682346 263275 2.59 

Osaka 2357064 572609 4.12 Kyoto 675559 290831 2.32 

Yokohama 2101709 458887 4.58 Kanayama 478556 159499 3.00 

Tokyo 1339555 560795 2.39 Hakata 460926 370065 1.25 

Kitasenju 1294209 148505 8.71 Shin-Osaka 449455 121931 3.69 

Nagoya 1272809 415475 3.06 Tachikawa 413541 262590 1.57 

Namba 830531 351535 2.36 Kashiwa 400105 222571 1.80 

Tennoji 732512 244883 2.99 Sendai 387724 205596 1.89 

Omiya 700854 318763 2.20 Sapporo 370484 277069 1.34 

Nishifunabashi 693803 129573 5.35 Ginza 297002 510787 0.58 

Correlation coefficient 0.723 
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Figure 4.4 Ratio of ridership vs MSS data in 2019 and 2020 by station numbers 

 

4.2    Clustering variables and results 

 

4.2.1    Cluster time period (obvious resilience triangle) and the number of clusters 

The focus of the subsequent analysis is the first COVID-19 pandemic. Fig. 4.5 shows the averages of 

MSS data for all 69 stations from October 2019 to October 2021 at 9 AM and 6 PM. As can be seen 

from the graph, the values in January 2020 were able to remain at a level comparable to that of 2019; 

however, after the first relatively significant drop in March 2020, there was a severe drop in April, and 

by May demand was down to 30% of the previous level, mainly due to the COVID-19 pandemic and 

the severe control measures implemented by the Japanese government at the same time. In June, when 

the controls were lifted, the values gradually rebounded, reaching the first post COVID-19 peak from 

early June to mid-July. Therefore, we targeted the time period from March 2020 to July 2020. Since the 

ridership characteristics are not the same for weekdays and holidays (loss of ridership on holidays is 

less than on weekdays), we only consider data for stations on weekdays. 

 

We take the population at different stations during the same observation period as input for clustering 

to find groups of stations with similar patterns. Here we use the K-means algorithm, the most 

commonly used clustering algorithm, to obtain the results. 
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Figure 4.5 All stations time-series average at 9am and 6pm 

 

Since the absolute population varies greatly among the stations, we focus on relative demand change. 

That is, for each station 𝑛 the data during COVID-19 is divided by the average before COVID-19, as 

in Eq. (1). 

 

𝑥̅ 𝑛𝑤 = 𝑥𝑛𝑤
𝑐 /𝑥𝑛

𝑏 (4.1) 

 

In Eq. 4.1, 𝑥𝑛
𝑏 is the average value of weekly workdays at each station n before COVID-19 (October 

2019 to December 2019) and 𝑥𝑛𝑤
𝑐  is the average value for week w during the first COVID-19 wave, 

that is, the 20 weeks from March 2020 to June 2020). Although most cities are negatively affected by 

the pandemic, there are a few exceptional cases, i.e., the range of values for 𝑥̅ 𝑛𝑤 may also be greater 

than 1. 

 

The set of n stations (𝑥1, 𝑥2, … , 𝑥𝑛), are divided into 𝑘 sets (𝑘 ≤ 𝑛) such that the sum of squares 

within the group is minimized. That is, we find the clusters 𝑆𝑖 that satisfy Eq. 4.2, where 𝜇𝑖 is the 

mean value of all points in 𝑆𝑖 (Angela et al., 2022): 

 

arg min
S

∑𝑖=1
𝑘  ∑𝑥∈𝑆𝑖

 ∥∥𝑥̅ 𝑛𝑤 − μi∥∥
2 (4.2) 
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Our research process begins with the selection of suitable stations based on characteristics, and after 

data preparation a cluster analysis of the amount of change in transit demand during COVID-19 and 

an attempt to explain the intrinsic reasons, as shown in Fig. 4.2. 

 

Next, we need to determine the optimal number of clusters, and many methods have been provided in 

the past literature. We use the elbow method (an internal clustering validation method) in this research 

to cluster the dataset with a series of k-values of k-means and calculate the sum of squares of the 

distances between each point and its nearest center of mass, also known as the sum of squares of errors 

(SSE) and sum of squares within clusters (WCS). 

 

As shown in Fig. 4.6, we start with 𝑘 = 2 and keep increasing until 𝑘 = 12. After reaching a certain 

value of k, the training cost (i.e., diminishing returns) decreases sharply and eventually reaches a stable 

level as the value of k increases further. 𝑘 = 2 has the largest diminishing returns, slows down 

significantly after 𝑘 = 5, and the rate of change becomes indistinguishable from 𝑘 = 7. Thus, we 

conclude that 𝑘 = 5 is the optimal number of clusters. 

 

 

Figure 4.6 Choice of number of clusters and sensitive test 
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To test the stability of the clustering, we also performed a sensitivity analysis. Nine of the 69 stations 

were randomly removed, and the remaining stations were clustered and compared with the previous 

results. As can be seen in Fig. 4.6, the best k value for the four sensitivity tests remains 5 and the 

deviation of the clustering results is around 10% for three of the four tests, where deviation is measured 

in terms of number of stations being assigned to a different cluster. Only in one case is the deviation 

significant, with 54%. Nevertheless, accounting for the randomness present in the clustering results, 

we consider the results obtained to be within acceptable limits and consider our clustering as stable as 

also the following discussion will show. 

 

4.2.2    Cluster results and features (location, ridership, population) 

Fig. 4.7 shows the change in ridership for the 5 different clusters for the 20 consecutive weeks starting 

from March 2020. It can be seen that all clusters have different degrees of decline starting from week 

4, reaching the lowest value in week 10, and then start to recover, reaching the first stable peak after the 

impact in week 18. In terms of transit demand analysis, we can say that the demand is steady when there 

is no significant change in ridership levels over a period of time. The length of time required for demand 

to be considered steady depends on the context and specific characteristics of the transit system being 

analyzed. In the current research, we combined the stabilization at weeks 16-20 and the small peak at 

week 18 to make a judgment. Cluster 5 was the most affected, with a 60% reduction in ridership, the 

lowest value was only about 20% of the pre-COVID-19 demand, and by week 19 it did not recover to 

90% of the level of week 4. Cluster 4 shows a similar trend to Cluster 5, but with a “shift” of about 

+10% for all weeks. Cluster 3 and Cluster 2 were less affected, but still the demand dropped to 40% of 

the pre-COVID demand. A common feature, but different to Clusters 4 and 5 is that for both the demand 

recovered to the pre-COVID level by week 18; Cluster 1 was largely unaffected by the pandemic, with 

the lowest value being only 5% less. Further the stations in Cluster 1 recovered rapidly, on average even 

exceeding the pre-COVID level at week 14. We note that ridership gradually increases from Cluster 1 

to Cluster 5 not only during the COVID period but also in the pre-COVID period. This can be interpreted 

as more travel demand and more diverse travel purposes worsen the impact. 

 

In conclusion, the five clusters can hence be subdivided into three types: unaffected (e.g., cluster 1); 

affected but ridership can largely recover (e.g., clusters 2 and 3); and significantly affected and 

ridership fails to recover (e.g., clusters 4 and 5). 
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As we can see from the previous analysis, Cluster 1 has hardly been affected in terms of ridership, 

which appears surprising given the scale of the pandemic. There could be several reasons why some 

stations may not have been affected or even experienced an increase in transit demand during the 

COVID-19 pandemic. One possibility is that the station is located in a residential area where people 

are not dependent on public transit for their daily commute (as seen in the local rates). Another 

possibility is that the station is a transfer point for a critical transportation route that was not 

significantly impacted by the pandemic. 

 

 

Figure 4.7 Ratio changes of the 5 clustering groups on the time series 

 

Fig. 4.8 shows a map with the clusters illustrated by different colors. We labeled Clusters 1 through 5 

as yellow, green, cyan, indigo, and red, respectively, with darker colors representing a greater degree 

of COVID-19 impact. The yellow Cluster 1 stations are usually distributed in remote areas and around 

big cities. Travelers mostly pass through and stay only for a short time at these stations as they do not 

offer extensive shopping and leisure facilities. This means that the weight of these travelers in the MSS 

data will be relatively low. Cluster 5, red stations, are all urban center stations in Japan's three major 

metropolitan areas (no exceptions), and usually these stations have commercial facilities attached to 
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these in which travelers will stay longer. As hence travelers tend to stay longer at these stations, this 

means the impact in our MSS data is highlighted. 

 

Cluster 3 and Cluster 4 are mainline stations in various regions of Japan. Cluster 4 stations are closer 

to major cities than Cluster 3 and are more affected. Instead, Cluster 2 stations are usually in more 

remote or longer commuting areas, with mainly local traffic or a large amount of stable traffic to major 

cities (e.g. satellite towns). With these observations we can depict the general characteristics of the 

stations in each cluster as shown in Table 4.4. 

 

We close this section by noting that for Tokyo, Nagoya and Osaka we have more than one station in 

our dataset. As can be seen in Fig. 4.8, stations in the same city are not necessarily in the same cluster. 

We observe that the main JR station in each of these cities is in Cluster 5 due to the above discussed 

reasons. Other stations in each of these cities are often in different clusters as they fulfill different roles. 

Examples include Kitasenju Station in Tokyo, Sakae Station in Nagoya and Namba Station in Osaka 

(all subway stations). They are all in Cluster 3 or 4, probably because they cater more for intra-city 

travel including commuting, which is less impacted by COVID than inter-city travel. 

 

Table 4.4 Characteristics of stations in each cluster 

Cluster 

number 

Distance to big 

cities 
Description Example 

1 
Very near or 

very far 

Suburban stations or central stations in 

remote areas 
Akita, Moriya 

2 Near or far 
Central cities or coastal cities with less 

traffic, satellite cities of large cities 

Kagoshima, 

Kobe 

3 Medium Cities on major transportation routes 

Sendai, 

Hiroshima, 

Kumamoto 

4 Close 
Areas with a high concentration of tourists, 

shopping centers 
Hakata, Sapporo 

5 No distance Big cities 
Tokyo, Nagoya, 

Osaka 
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Figure 4.8 Distribution of the 5 different clustering groups on the map 

 

This chapter conducted an in-depth analysis of short- and medium-term changes in station vitality 

using clustering techniques and mobile phone mesh data. We identified patterns and factors 

influencing station usage during the pandemic. Building on these findings, the next chapter will use 

multinomial regression analysis to further explore the impact of various factors on station dynamics, 

offering deeper insights into the predictors of demand loss and recovery. 
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Chapter 5     Explaining the station clustering with land-

use and other characteristics  

 

Having identified the types of changes in station dynamics, it is natural to wonder what factors 

influence which cluster a station is classified into. Building on the cluster analysis in the previous 

chapter, this chapter employs multivariate logistic regression modeling to understand the impact of 

various factors on station dynamics. This requires a comprehensive characterization of each station. 

We incorporate numerous variables, including land use, point of interest (POI) density, geography, 

and human factors, to explore their roles in predicting demand loss. Essentially, we aim to determine 

which factors, when present, can predict the magnitude of demand loss with high probability. For 

instance, we examine whether urban stations with higher densities of commercial and residential areas 

exhibit greater resilience compared to those primarily serving as transportation hubs. We also 

investigate whether stations in remote areas experience a significant decline in vitality due to the 

pandemic. By identifying key factors that influence station categorization, we provide valuable 

insights into the variability of station responses. This can help in developing targeted interventions to 

mitigate the impacts of future crises. The results of the analysis in this chapter will inform the long-

term forecasting models discussed in the next chapter, allowing for more accurate predictions and 

better strategic planning. 

 

5.1    Independent variables and indicators by cluster results 

We now introduce different variables which we consider to be potentially suitable variables to explain 

the membership of a station in a particular cluster. 

 

Government policies such as travel restrictions have a significant impact on transit demand. For 

example, when a region or country imposes travel bans or quarantine requirements on incoming 

travelers, the number of people traveling to that region may drop significantly. If restrictions are in 

place for a longer period of time, people may become accustomed to them and adjust their travel habits 

accordingly, resulting in a continued decrease in traveler demand. 
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As there is no mandatory travel ban in Japan, we can refer to the length of time each place is under a 

state of emergency. Depending on the region and the severity of the outbreak, the duration of the ranges 

from 28 to 48 days, with the three major metropolitan areas of Nagoya, Osaka and Tokyo, exceeding 

40 days and being the latest to lift the state of emergency. 

 

Station vitality in remote areas is likely less affected by travel restrictions. For one, there are less 

tourists and business travelers. Secondly, there have been less cases of COVID-19 in rural areas so 

that travelers might also be less concerned to travel. 

 

We hence define six large cities based on geographic location and economic status, from north to south 

as important attractors of the trip and hypothesize that the distance to these will affect the COVID-19 

impact: Sapporo, Sendai, Tokyo, Nagoya, Osaka, and Fukuoka. Tokyo, Nagoya and Osaka are the 

centers of the three biggest economic regions of Japan. Sapporo and Fukuoka are the largest cities on 

Hokkaido and Kyushu respectively. Sendai, as the largest city in the large North-eastern region is 

further added. 

 

The farthest city from any of these major cities is Matsue City in Shimane Prefecture, 270 km from 

Osaka. The farthest city from all major cities on average is Kagoshima City, 890 km away on average, 

and the farthest city, Sapporo, is 1,500 km away. 

 

Following our discussion in Section 4.3 we include population growth and economic development 

indicators. Higher population growth rates increase the demand for transportation services and people 

move more frequently. Economic development, demographic changes and environmental issues 

resulting from technological changes can also affect transit demand, such as the rise of 

teleconferencing and sustainable modes of transportation. We note that our data comes from the 

official publication of the Japanese government, where the smallest statistical unit is the city, ward, 

town or village so that we can also distinguish trends for different stations in the same metropolitan 

area.  Furthermore, as noted, the MSS data includes information as to the percentage of people being 

registered in different prefectures. We use this information to obtain the percentage of the local 

population being present in the station mesh, where we define “local” as persons from the same 

prefecture the station is located in. (Assuming that the address used for registration is the same as the 

one where the person is living now.) 
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When public transit ridership decreases, stations with more lines connected to them may experience 

more of a decline because the station is an interchange point for multiple transit lines and riders will 

use it more. A decrease in ridership on one line can have a ripple effect on other lines connected to 

that station, leading to an overall decrease in ridership demand. 

 

Table 5.1 shows the above discussed indicators as well as the population loss during the 10th week of 

the analysis period. This week has the lowest ridership and coincided with the Golden Week holiday 

within Japan, which overlapped with the government declared emergency, leading to a more severe 

ridership decline. (Otherwise, during public holidays many of the stations in our database are busy due 

to domestic tourism). It should be noted that the government dynamically adjusted the length of the 

emergency and lifted it once the number of cases fell below a certain threshold. 

 

Looking at the patterns in Table 5.1 more closely, we firstly find that population density has the same 

increasing ordering as the COVID impact for Clusters 5 to 2, that is, stations in cities with higher 

population density are more impacted. This observation is in line with some of the literature discussed 

afore (Arimura et al., 2020; Rasca et al., 2021). The exception is Cluster 1, which has a higher 

population density than Clusters 2 and 3 but is less affected. We also consider the city growth in the 

last 5 years as an indicator as to how attractive the city is. We find that faster growing cities are more 

impacted, again with the exception of stations in Cluster 1. The information regarding the proportion 

of population over 65 years of age appears to be also useful: Cities with a larger degree older people 

tend to be slightly less impacted by the pandemic. 

 

Also, the percentage of local travelers bears explanatory power: We can see a gradual decrease from 

Cluster 1 to Cluster 5, showing that stations with more local travelers are less impacted. Cluster 1 here 

does follow the trend. 

 

In terms of station characteristics, the number of lines connected to the station can be approximated as 

gradually increasing from Cluster 1 to 5. All of the stations in Cluster 1 have less than four lines, while 

this is only true for nearly 60% of the stations in Cluster 2. All of the stations in Cluster 5 are served 

by more than nine lines. We also include some other factors in the table, such as distance to nearest 
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city, which, if no other variable is controlled for, does show a less clear trend. In the following section 

we deepen this discussion with the support of regression analysis. 

 

Table 5.1 Relevant indicators for each cluster 

Indicators (All in average) Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 

Population loss in week 10 12% 43% 56% 67% 80% 

Days in state of emergency 36 31 30 37 43 

MSS data in 2019 41781 69860 109154 206310 479055 

Passenger ridership in 2019 51529 104969 174362 325719 1572628 

Population of the area in 2020 289239 296842 493503 586598 2724896 

Lines connected to the station 2.4 3.7 5.0 4.7 9.9 

Population density / km² 3770 2376 2939 7028 12473 

Population change in 5 years 2.3% -0.5% 0.2% 4.4% 8.2% 

Population loss from 2020 -0.24% -0.61% -0.55% -0.34% -0.4% 

People over 65 years old 26% 28% 27% 23% 20% 

% local population in 2019 94% 92% 90% 85% 65% 

Shortest distance to a big city 93 125 153 119 39 

 

5.2    Land-use factors as explanatory variables 

In order to improve the multinomial logistic regression model, we include additional geographic and 

socio-demographic variables: POIs, land use and a range of accessibility measures. 

 

All available Points of interest (POIs) including landmarks and attractions, as well as station facilities 

are extracted. POIs must contain information such as name, category, longitude, latitude, elevation, 

etc. in order to be presented on an electronic map. We input the coordinates of the four vertices of the 

mesh where each station is located into OSM (Open Street Map) to extract and classified all the POIs 

within the mesh. To ensure the validity and analyzability, we only selected POI types with a large 

number as the object of analysis. The food and beverage category are the most numerous, followed by 

shopping places, public facilities, and transportation facilities. As an example, Fig. 5.1 shows the mesh 

map of Nagoya and Sapporo Station, and the small dots in the map are the various types of POIs. 
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The land use data contains the dominant land use status for 100*100m grids (“micro-meshes”), 

distinguishing following categories: rice fields, other agricultural land, forests, wasteland, high-rise 

buildings, factories, low-rise buildings, roads, railways, public utility land, open spaces, parks and 

green spaces, river areas and lakes, beaches, salt water areas, and golf courses. Since the mesh size of 

the station is 500*500m, there will hence be 25 site type data in each mesh, and we enter the ratio of 

each site type to the total area into the regression model. For illustration, in Fig. 5.2 the different site 

types are represented in different colors, such as railway (red), road (black), high-rise building (cyan), 

low-rise building (magenta) and vacant land (green). We can see that the ratio of railway to high-rise 

buildings is almost equal for the Osaka station area, while the Kyoto station mesh is mostly occupied 

by railway. This does not imply that the railway occupies more space but that it is the dominant factors 

for most micro-meshes. In Osaka, there are high-raise buildings near the tracks which are classified as 

dominant land-use for those micro-meshes. (We note that Kyoto City restricts high-rise buildings). 

There are even vacant areas (green) in the area around Sendai Station. 

 

Figure 5.3 illustrates the number of land-use categories in the station mesh for various stations, 

showing significant variation depending on the station's geographic and urban context. Stations in 

more urbanized areas, such as Tokyo and Osaka, tend to have a greater number of categories, including 

high-rise buildings and dense road networks, which influence their resilience and demand dynamics 

during the pandemic. Conversely, stations in less urbanized areas show a different pattern of land-use 

distribution, which could contribute to differing levels of impact. 

 

The accessibility of the station to other cities is considered in three main dimensions: minimum travel 

time, minimum travel distance and minimum travel cost. Due to the large number of stations in a 

metropolitan area, only the most important stations in several metropolitan areas are selected for the 

calculation in order to avoid bias in the weighting. This data mainly reflects the effect of station 

location on people's willingness to travel, as people travel more in areas that are convenient to travel 

to. 
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Figure 5.1 Station mesh map with POIs indicated as small dots, Nagoya station (left) and Sapporo 

station (right) as example 

 

 

Figure 5.2(a) Land use of Osaka station (left) and Kyoto station (right) 

 

 

Figure 5.2(b) Land use of Sendai station (left) and Omiya station (right) 
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Figure 5.3 Distribution of land-use categories in station meshes across selected stations 

 

5.3    Multinomial regression results 

After obtaining the clustering result, we explore the factors of its variation. Since the dependent 

variable is categorical we employ multinomial logistic regression, an extension of binomial logistic 

regression, for predicting the probability of category membership based on multiple independent 

variables as in Eq. 5.1 and 5.2 (Hamid et al. 2018). Let 𝑆 be the outcome of the clustering with 𝑆 = 0 

as the reference category and 𝑘 = (0,1, … , 𝑘 − 1). 𝑋 is the set of independent predictor variables. 

Multinomial logistic regression allows for more than two categories of the dependent or outcome 

variable and requires consideration of sample size, outliers, and the ranking of the clustering results. 

The results we obtained after selecting appropriate variables for the regression model are shown in 

upper half of Table 5.2. 

 

𝑃( 𝑆 = 0 ∣∣ y ) =
1

1 + 𝑒𝑔1(𝑋)+⋯+𝑔𝑘−1(𝑋)
 (5.1) 

𝑃(𝑆 = 𝑘 − 1 ∣ y) =
𝑒𝑔𝑘−1(𝑋)

1 + 𝑒𝑔1(𝑋)+⋯+𝑔𝑘−1(𝑋)
 (5.2) 
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Figure 5.4 Ratio of two datasets and local population rate by different clusters 

 

The results of the logistic regression model show that the number of lines and the rate of local 

population are more significant when distinguishing stations belonging to different clusters, provided 

that demand loss is used as a clustering condition. In general, demand loss will be larger in bigger 

cities and tourist cities than in other regions. We imply the latter by the fact that the percentage of the 

population from the local area has a significant positive impact on a city being not in Cluster 1. This 

is understandable given the restrictions during COVID-19. 

 

We explore the relationship between ridership and MSS data further with Fig. 5.4. The horizontal 

coordinate is the ratio of ridership to the MSS data in 2019, which we can regard as a coefficient 

reflecting “station mobility” or “pass-through rate”. This is because the shorter the traveler dwell time, 

the smaller the MSS data, but the ridership data remains the same. Thus, the higher the ratio the less 

the people stay in the station. Hence the data points in the lower right quadrant indicate stations where 

many non-local travelers pass through the station. Six of the eight stations in Cluster 5, which has the 

highest average number of lines and the highest demand loss, have a local rate of 0.7 and below. 

Further, we can notice that Cluster 5 stations tend to have lower local traveler rates and a higher 

Ridership/MSS ratio compared to the majority of the stations, illustrating the distinct characteristics 

of stations in this cluster. There is one outlier for Cluster 5 located in the lower left quadrant. This is 
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Ginza Station in Tokyo, and the location in the graph is possibly explainable by people visiting this 

station staying longer due to plenty of shopping opportunities in or nearby the station. 

 

Table 5.2 Multinomial regression results with Cluster 5 as reference category. Top: Results estimated 

in original model. Below: improved results 

Variable Unit Cluster1 Cluster2 Cluster3 Cluster4 

Regulation days day -0.001 -0.126 -0.181 -0.108 

Lines serving / -2.727*** -1.451*** -1.081*** -1.295*** 

Population change % 0.208 -0.329 -0.202 -0.191 

Age over 65 % 0.204 -0.056 0.034 -0.190 

% local population % 74.72*** 28.397** 21.52** 18.67* 

Distance to big cities kilometer -0.0004 -0.0004 0.0015 0.003 

Pseudo R2  0.658    

      

Improved results      

POI - Convenience / -1.645*** -0.230 -0.250* 0.938*** 

POI - Bank / -8.668*** -0.783** -0.304 -1.061*** 

POI – Public Toilets / 3.612*** 0.456 0.639 -1.078** 

POI - Supermarket / 5.348*** 1.679** 1.035* 0.780 

Land use - Road % -223.6*** -119.4*** -106.6*** 114.49*** 

Land use - Railway % -228.9*** -66.32*** -62.72*** 26.33** 

Time to Tokyo minute -0.119*** 0.135*** 0.136*** -0.047** 

Distance to Nagoya kilometer 0.013** -0.004 -0.002 0.002 

% local population % 134.1*** 27.84* 21.20* -9.296 

Lines serving / -8.297*** -3.247*** -2.673*** -6.695*** 

Pseudo R2  0.774    
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The reason why the tightness of COVID-19 controls which generally determines people's willingness 

to travel is not significant in the results to explain the clusters may be because the difference in the 

length of controls between cities is not large (about two weeks). The amount of population changes 

over the last 5 years and the percentage of the population over 65 years old are similar in the regression 

results, but are also not strongly associated with ridership loss. The distance of the station from the 

nearest large city also apparently does not have much effect on ridership change, a conjecture 

introduced based on the attractiveness of large cities to small and medium-sized cities, but distance is 

not the only factor. 

 

Following data preparation of the various POIs and land-use variables and other station characteristics, 

to avoid multicollinearity issues, we remove a number of variables before proceeding. Utilizing 

correlation analysis, variance inflation factors and intra-cluster variance, those variables having lower 

correlations are retained with backward stepwise analysis. Having obtained a manageable set of 

variables we turn to forward stepwise analysis. 

 

For this we take the original model as basis and sequentially add variables that are not in the current 

model and select the variable that improves the R-squared value of the model the most, while ensuring 

that all variables in the model are significant in at least one cluster. This step continues until the 

algorithm no new variables that are both significant and not overly correlated with the current variables 

are found. After repeated trials, the model with the largest R-squared value, i.e. the final model, is 

obtained. The results of the model are shown in lower part of Table 5.2. The coefficients represent the 

effect of the predictor variables on the log odds of entering a category versus the log odds of entering 

the reference category. 

 

With the introduction of additional explanatory variables, we can observe that the most important 

variable contributing to the loss of vitality in the previous model changes from the number of lines to 

the proportion of road and railway around the station, and its significance is specifically large for 

Clusters 1, 2 and 3. These two land use variables reflect the size of the station and, indirectly, the 

number of people and the radius it can serve. In COVID-19, the larger the area covered by the station, 

the greater the population loss, as is the case in Tokyo and Osaka. Road has an even larger influence, 

which can also be explained. Stations with a higher proportion of roads in the mesh have fewer other 

activities, carry more passengers, and move in and out of the station more efficiently, and tend to be 
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less likely to have people stay in the area for long periods of time. Thus, stations with better road 

access are more vulnerable to experience demand loss. A third variable that is related to the size of the 

station is the number of lines by which the station is served. Compared to the original model it 

decreases in weight but it remains a significant variable for all four clusters and confirms that larger 

stations experience more demand loss. 

 

The share of local population visiting the station is significant for Clusters 1, 2 and 3. The more locals 

use the station, the more active the station remains during the pandemic. On further investigation we 

find that stations with high share of local passengers can be either neighborhood stations (where people 

have to make basic journeys also during the pandemic) or interchange stations (where passengers stop 

for a short time without much connection to the surrounding area). 

 

We can also find that some POIs and geographical factors are determinants of cluster membership. We 

do clearly not imply causality for these independent variables, but include them as proxy to 

characterize the meaning of the station for the city and the land-use around the station. The number of 

banks around the station is significant in Cluster 1 and 2, suggesting that the lower the number, the 

more likely the station is to be in these clusters. In other words, stations that are in areas where financial 

activities are an important business are more affected. Further, we find that the presence of 

supermarkets and convenience stores to some degree characterizes the stations with the effect of the 

number of convenience stores being opposite to that of the number of supermarkets. Convenience 

stores are usually visited by people for shorter periods of time and are more frequented by travelers 

changing trains. Supermarkets, on the other hand, are more likely to be visited by locals and stay for 

more time. It is hence understandable that stations with supermarkets in their vicinity tend to be more 

robust to activity loss during COVID. Related to this explanation we also include the number of public 

toilets in the model. We interpret their presence as indicator of people staying usually for longer time 

in and around the station. It is therefore understandable that stations frequented by people for various 

reasons are more robust to the pandemic than stations where people only briefly come and go. 

 

To understand if the network location of the station is also an indicator of robustness we further tested 

the inclusion of distance and travel time to major cities in Japan and retained distance to Nagoya (the 

third major city and in the geographic center of Japan) as well as travel time to Tokyo. Time to Tokyo 

is significant for all clusters but with a difficult to interpret tendency. The least affected stations tend 
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to have a lower travel time to Tokyo. Stations in Clusters 2 and 3 tend to be further away whereas 

stations in Cluster 4 tend to be again closer to Tokyo. The effect is small but significant. Looking at 

Fig. 4.8, Cluster 4 stations tend to be regional fairly large cities in central Japan. Their stations have 

suffered significantly due to less interregional activities, possibly including interactions with Tokyo. 

Regarding distance to Nagoya, we find a positive effect for Cluster 1. In other words, stations far away 

from the center to Japan tend to be slightly less impacted. Reasons could be that a) COVID-19 

restrictions were less strictly obliged and that these regions experience less long-distance travel that 

was hit hardest during COVID-19. 

 

Overall, it can be concluded, that the interpretability and richness of the model increases with the 

additional variables. Also, the R-squared value increases by 0.12 to 0.77. We also emphasize that all 

variables are significant for Cluster 1 and only the number of lines is significant for Cluster 4. This 

reflects the fact that, with the exception of Cluster 1, the other clusters are not as differentiated from 

Cluster 5 as Cluster 1. The results of the multivariate explanations reflect the importance of site size 

and local population on the one hand, and the fact that the two are not very compatible on the other. 

In terms of the general trend of current development, hub stations in large cities are bound to attract 

large numbers of people from surrounding regions, which is an important feature of metropolitan areas. 

This polarization becomes more pronounced as the demographic gap between cities widens.  

 

This chapter utilized multinomial regression analysis to examine the impact of land-use factors and 

other variables on station vitality. This detailed examination identified significant predictors of demand 

loss, providing valuable insights for targeted interventions. The next chapter will extend this analysis 

to long-term forecasting methods, evaluating techniques like ARIMAX and LSTM to predict post-

pandemic public transportation usage. 
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Chapter 6     Long-term forecasting of vitality recovery 

 

In the previous chapters, we have analyzed trends in station vitality and explored the factors 

influencing these trends. We also examined how to assess the level of vitality of a station in the 

post-pandemic era. The next logical step is to determine how we can use existing data in 

conjunction with long-term forecasting methods to obtain a reference value and validate it with 

real-world situations. This chapter evaluates the effectiveness of mainstream time-space series 

long-term forecasting models, such as ARIMAX and LSTM, in capturing complex demand 

dynamics and predicting the recovery of station vitality. We consider external factors such as 

policy impacts and demographic changes in our analysis. While the forecasting logic of these 

approaches varies, their goal is similar: capturing the hidden patterns in the available data. The 

predictive results of these models are critical to understanding long-term trends in station vitality. 

By utilizing these models, we can provide public transportation operators with insights that inform 

their planning and decision-making processes. This understanding of long-term trends will be 

crucial in the next chapter, where we focus on strategic planning and operational adjustments 

based on the forecasted data. 

 

6.1    Time-series forecasting methods 

As can be seen in Fig. 6.1, the different clusters that were defined based on the demand loss during the 

first wave, maintain essentially the same order in subsequent waves. After the first wave Clusters 1, 2 

and 3 can recover fairly quickly to nearly the original level of demand after being affected. Instead 

Clusters 4 and 5 can only recover to a level that is still 10 to 20% lower than before the wave. They 

only recover to nearly the pre-pandemic level the following summer. 

 

For the following waves the stations are all less affected but the relative impact among the clusters is 

in line with that observed for the first wave. Looking at the end of the observed period it is noteworthy 

that Cluster 1 even exceeds the pre-COVID-19 level of activity. Clusters 2, 3 and 4 have recovered to 

nearly pre-pandemic levels whereas Cluster 5 has not. 

 

This figure also shows the number of COVID cases. The first, important, though in terms of number 

small, wave of cases precedes the loss in activity slightly due to policies coming in effect as a response 
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of the cases being observed. For the subsequent waves the activity loss and peak in COVID-19 cases 

occur almost simultaneously. It is important to note that the number of cases continues to increase in 

subsequent waves, but that the impact on station demand decreases. Therefore, also the number of 

cases is only a weak indicator of station demand loss. 

 

 

Figure 6.1 Changes in viability of each cluster over a long-term period 

 

6.1.1    ARIMAX (autoregressive integrated moving average with exogenous variable) 

Firstly, Autoregressive Integrated Moving Average (ARIMA) models are tested. These models are 

denoted as ARIMA (p, d, q), where p is the order of autoregression, representing the number of lag 

observations included in the model; d is the degree of differencing, indicating the number of times the 

series needs to be differenced to achieve stationarity; q is the order of the moving average, representing 

the size of the moving average window. Examining the autocorrelation function (ACF) and partial 

autocorrelation function (PACF) helps identifying the moving average (MA) order (q), and the 

autoregressive (AR) order (p). In the Fig. 6.2 we use Cluster 5 as an example and plot these which 

suggest that p = 1 and q = 2 are appropriate. Further we find that stationarity of the sequence has been 

best at d = 1. On the fitting results, we find even after multiple test that ARIMA does not fit well as 

COVID-19 is not periodic. As shown in Fig. 6.7, we observe low R-squared values and the maximum 

does not reach 0.2. 
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Figure 6.2 d =1, PACF and ACF of Cluster 5 

 

The ARIMAX (Autoregressive Integrated Moving Average with Exogenous Variables) model extends 

the basic ARIMA model by incorporating external or exogenous variables that can influence the time 

series. This is particularly useful when there are additional factors outside the time series itself that 

impact its behavior. We test the number of new cases per day and the proportion of people affected by 

COVID-19 restrictions and associated policy measures as exogenous variables for our research. These 

two factors are presumed to capture the irregular patterns of the COVID-19 waves and might also 

indicate the magnitude of the to be expected station activity loss. 

 

The ARIMAX model can be expressed with the following equations: 

 

𝑦𝑡 =  𝛼 + ∑ ∅𝑖𝑦𝑡−𝑖

𝑝

𝑖=1
+ ∑ 𝜃𝑗𝜖𝑡−𝑗

𝑞

𝑗=1
+ ∑ 𝛽𝑘𝑋𝑘,𝑡

𝑚

𝑘=1
+ 𝜖𝑡 (6.1) 

𝜖𝑡 =  𝑦
𝑡

− 𝑦𝑡̂ (6.2) 
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Where: 

𝑦𝑡 the response variable (station vitality) at time 𝑡 (observed) 

𝑦𝑡̂ the predicted 𝑦 at time 𝑡 given by the ARIMAX model 

𝛼 a constant term, the intercept of the model, accounting for any non-zero mean in the time 

series 

∅𝑖 the autoregressive (AR) coefficients, represents the influence of past values of the response 

variable 

𝜃𝑗 the moving average (MA) coefficients, represents the influence of past error terms 

𝜖𝑡 the error term at time 𝑡, represents the random noise in the data. It is dynamically calculated 

during the model fitting and forecasting processes 

𝛽𝑘 the coefficients for the exogenous variables 𝑋𝑘,𝑡 

 

For a single exogenous variable (p = 1, d = 1, q = 2): 

 

𝑦𝑡 =  𝛼 + ∅1𝑦𝑡−1 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + 𝛽1𝑋1,𝑡 + 𝜖𝑡 (6.3) 

 

For two exogenous variables (p = 1, d = 1, q = 2): 

 

𝑦𝑡 =  𝛼 + ∅1𝑦𝑡−1 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + 𝛽1𝑋1,𝑡 + 𝛽2𝑋2,𝑡 + 𝜖𝑡 (6.4) 

 

Where: 

𝑋1,𝑡 the number of new COVID-19 cases per day (log10 transformed) or the proportion of people 

affected by COVID-19 restrictions 

𝑋2,𝑡 another exogenous variable 

 

The number of new cases per day has been shown in Fig. 6.1 and is based on the number of official 

announcements. Estimating the number of persons affected by COVID-19 is more difficult and we 

make following assumptions roughly based on previous literature: We consider that in the early weeks 

of the pandemic, despite some unease in the general population, before the declaration of the 

emergency, only a low number of people are affected in their activity patterns and we set this 

percentage at 10%. Then the state of emergency brought most of public life to a standstill and we set 

the affected value to 80%. Though not using data from Japan, we also refer to Hasselwander et al. 
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(2021) and Aloi et al. (2020), who analyzed the loss of mobility of populations in cities using mobile 

device data and found a mobility loss of -74.5% and -76%, respectively. 

 

Taking into account political lags and changing attitudes towards emerging epidemics, we assume that 

the proportion of the population affected after the first emergency depends on the length and order of 

subsequent emergency declarations. All values were set to be as nonreplicating as possible to try to 

reflect the overall trend during the epidemic. We presume that the impact of each subsequent 

emergency declaration is decreasing by 10% so that there is a level of 50% at the fourth emergency 

declaration. One can argue whether a lower or higher decreasing impact is rationale, but clearly with 

each subsequent declaration less persons were concerned and furthermore some restrictions were less 

severe. For a more detailed discussion on the impact of different states of emergency in Japan, refer to 

Sun et al. (2022), which uses Google trends data to reflect results under different policies. 

 

For the three “quasi-state of emergencies” we presume that their impact is halved, meaning that 40% 

are impacted for the first quasi-emergency declaration. During these states some restrictions of 

previous full state of emergency declarations were reduced. Unlike states of emergency, which are 

broader, more centralized measures introduced at the national level, quasi-emergencies are more 

localized and flexible, used mainly by local authorities to target parts of the region with a high number 

of new cases. The main difference is the partial lifting of restrictions on opening hours, alcohol selling 

and partying. We presume that the impact remained at 40% for the second state because of its proximity 

to the first, and adjusted it to 30% for the third. As a result of the "Go-To Travel" campaign, which 

encourages people to travel, the proportion affected during this period will be lower than the minimum 

during any state or quasi-state of emergency, so that we set it to 30% before and after the campaign. 

During the campaign, as COVID-19 was still present, the value is likely to be larger than the 10% but 

will be reduced so that we suggest a value of 20% is appropriate. 

 

Fig. 6.3 illustrates the affected proportion and timeline. We acknowledge that it can be argued whether 

the values should be smaller or larger and hence conduct a sensitivity analysis to different assumptions. 

Clearly including this information in a forecasting model is also an acknowledgement that the COVID-

19 patterns are so irregular that its impact is difficult to explain without such information. We are 

hence interested in understanding in how much better the ARIMAX model performs compared to the 

ARIMA model that only includes “internal” information. 
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Figure 6.3 Proportions of people being affected within investigation time window by different polices 

(QSoE denotes quasi-state of emergencies) 

 

To test the robustness of this assumption, we changed the first State of Emergency setting from 80% 

to 70% and 90%. Testing different settings for the affected population variable, as shown in Fig. 6.4, 

revealed minimal variation in results, indicating the robustness of our assumptions. This supports the 

reliability of our model in predicting station vitality under various scenarios. Additionally, these tests 

reinforce the flexibility of our model, demonstrating that it can accurately reflect station vitality trends 

even when key variables are adjusted. This flexibility is crucial for ensuring that our model remains 

valid across a range of potential real-world conditions, further enhancing its applicability for long-term 

forecasting. 

 

 

Figure 6.4 Cluster 5 by different affected proportion with 50% training (left) and 80% training (right) 
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6.1.2    LSTM (long short-term memory) 

As a third alternative we test LSTM approaches. This recurrent neural network (RNN) approach is 

designed to solve the “gradient vanishing problem” that prevents traditional RNNs from being trained 

on long sequences (Hochreiter et al., 1997). The LSTM introduces a memory unit and three gates (a 

forgetting gate, an input gate and an output gate) that allow the network to selectively remember or 

forget information over time. This architecture allows the LSTM to capture and learn long-range 

dependencies in sequential data. For our application, we suggest it might help us to capture the irregular 

and diminishing COVID-19 impact. In particular the population might learn that it can “forget” the 

first stage during the latter, less severe stages. The LSTM network constructed according to the 

characteristics of the data used is shown in Fig. 6.5. 

 

1) Sequence Input Layer: This layer accepts the sequential data as input. It is the first layer of the 

network that takes the time-series data, which includes historical passenger demand and 

exogenous variables 

2) LSTM Layer: The core of the network, this layer consists of memory cells and gates that manage 

the flow of information. It captures the temporal dependencies in the data, enabling the network 

to learn from long sequences 

3) Dropout Layer: This regularization layer helps prevent overfitting by randomly setting a fraction 

of the input units to zero at each update during training. This encourages the network to learn more 

robust features 

4) Fully Connected Layer: This layer connects every neuron in the previous layer to every neuron in 

the next layer, transforming the learned features into the final output 

5) Regression Layer: The final layer, which outputs continuous values, suitable for predicting the 

demand values in our time-series forecasting task 

 

In summary, the three models have different emphases: ARIMA is a classical statistical model that 

assumes a linear relationship between past observations and future forecasts. It requires the time series 

to be static, which makes it difficult to capture complex patterns. ARIMAX extends ARIMA by adding 

exogenous variables that allow it to consider other factors that affect the time series. This is useful when 

the exogenous variables have a significant impact on the patterns in the data. LSTM is a deep learning 

model that excels at capturing complex non-linear relationships in time-series data. LSTM is 

particularly useful when dealing with sequences that have long dependencies and involve complex 
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patterns. The choice between these models depends on the specific characteristics of the data, the nature 

of the problem, and the available computational resources. The ARIMA model is computationally 

efficient and explanatory, while the ARIMAX and LSTM models are more flexible in dealing with 

complex relationships and external factors. 

 

 

Figure 6.5 Flowchart of the tested LSTM network 

 

6.2    Time-series forecasting results 

 

6.2.1    ARIMA and ARIMAX parameters and sensitivity 

Table 6.1 shows the results of the ARIMAX model for the Cluster 5, training percentage 80% 

parameter setting, and Fig. 6.6 shows the results of the ARIMAX model using only the number of 

cases, only the proportion affected, and a combination of both. The results using only cases are less 

favorable, and the results combining the proportion affected with the number of cases are almost 

identical to using only the proportion affected. This suggests that the number of cases does not improve 

the model. Therefore, in subsequent methodological comparisons, we only use the proportion affected 

as an exogenous variable for ARIMAX.  
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Table 6.1 Cluster 5 with 80% training results of the ARIMAX model 

Parameters-ARIMAX Coeff. t-Statistics p-Value 

Constant 0.33 3.15 <=0.01 

AR (1) 0.62 4.72 <=0.001 

MA (1) 0.12 1.06 0.29 

MA (2) 0.23 1.16 0.25 

Beta (1) -0.22 -2.39 <=0.05 

Variance <=0.01 5.15 <=0.001 

R2 0.534   

 

 

Figure 6.6 Cluster 5 by different exogenous variables with 50% training (left) and 80% training (right) 

 

6.2.2    Comparison of different methods 

We use R-squared and RMSE (Root Mean Square Error) to assess the accuracy of the models. RMSE 

is more sensitive to large errors or outliers as a large prediction error can significantly affect the overall 

RMSE value. 

 

We test the effectiveness of LSTM at different levels of learning by varying the training ratio in the 

settings, which are 50%, 60%, 70%, and 80%, respectively. The number of the learning epochs 

(MaxEpochs) needs to be determined through experiments and model performance monitoring, as too 

large values can lead to overfitting and less prediction power. We test 1 to 500 iterations, and observe 

that the R-squared and RMSE values of the five clusters reach a more balanced value around a 

MaxEpoch value of 150. Cluster 1 fluctuates but remains stable after 200, whereas Cluster 3 has a drop-
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off point at around 300 iterations and Clusters 4 and 5 remain stable for larger iterations. However, no 

improvements can be found for MaxEpoch values larger than 150. 

 

As can be seen in Fig. 6.7, clearly the accuracy increases as the training percentage increases. Further, 

generally, the accuracy of the three methods gradually increases from ARIMA to ARIMAX to LSTM, 

indicating that LSTM achieves a better prediction. 

 

It is important to observe, however, that LSTM performs bad if the training percentage is not 

sufficient, in our case 50%. This can be explained by referring back to Fig. 6.1. The percentage 

of decrease in the first wave is significantly higher than in the other waves. If the training period 

is too short, the forgetting gate has not had enough information to process the information from 

the first wave, resulting in a greater shift in the predicted values. In addition, the LSTM prediction 

value of Cluster 3 is only slightly better at 70% and 80% training, and all the others are worse 

than ARIMAX and ARIMA. This may be due to the fact that the original sequence of Cluster 3 

fluctuates significantly more during demand loss and recovery. Therefore, the prediction for 

station vitality in this cluster appear to perform better with ARIMAX, whereas LSTM is suitable 

for smoother sequences with more pronounced trends. 

 

We select the unique Cluster and, once more, Cluster 5 for further analysis and illustration. Cluster 5 

has the highest R-squared value among the five clusters and the final prediction effect of the three 

methods are shown in Figures 6.8 and 6.9. It can be seen that the result of the ARIMA model is almost 

a straight line for both clusters. The prediction result of the ARIMAX model has deviation and delays 

from the true data, but the trend of change is correctly predicted. This shows that the affected 

proportion is an important factor, that is, people's willingness to travel is impacted by the state's state 

of emergency policies. Instead, the LSTM model, which we remind does not have exogeneous 

variables, can perform well, but its robustness can be disputed as it depends on the training period and 

hence the assumption that the overall nature of the phenomena continues. Fig. 6.10 shows the 

prediction results of different clusters at the same training percentage (80%). The LSTM performs best, 

and the ARIMAX performs well except for Cluster 1, with a slight delay in the prediction of the 

recovery period. 
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Figure 6.7 R-squared (top, larger values preferred) and RMSE (bottom, lower values preferred) for 

the five clusters and different training percentage 

 

Table 6.2 R-squared and RMSE values for the five clusters and different training percentage (best 

model in bold) 

Cluster 

No. 

Training

% 

R-squared RMSE 

ARIMA ARIMA

X 

LSTM ARIMA ARIMA

X 

LSTM 

Cluster 1 50% 0.13 0.07 0.01 0.06 0.06 0.28 

Cluster 1 60% 0.01 0.01 0.48 0.03 0.05 0.02 

Cluster 1 70% 0.14 0.16 0.58 0.03 0.04 0.02 

Cluster 1 80% 0.01 0.11 0.54 0.03 0.03 0.02 

Cluster 2 50% 0.02 0.02 0.04 0.07 0.07 0.39 

Cluster 2 60% 0.01 0.13 0.17 0.06 0.05 0.14 

Cluster 2 70% 0.05 0.13 0.28 0.05 0.05 0.04 

Cluster 2 80% 0.00 0.44 0.38 0.04 0.04 0.04 

Cluster 3 50% 0.10 0.07 0.06 0.06 0.09 0.64 
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Cluster 3 60% 0.00 0.26 0.02 0.08 0.06 0.41 

Cluster 3 70% 0.03 0.24 0.44 0.06 0.06 0.05 

Cluster 3 80% 0.05 0.68 0.67 0.06 0.04 0.04 

Cluster 4 50% 0.00 0.11 0.01 0.10 0.11 0.78 

Cluster 4 60% 0.00 0.24 0.58 0.07 0.08 0.08 

Cluster 4 70% 0.15 0.21 0.72 0.07 0.06 0.03 

Cluster 4 80% 0.03 0.66 0.84 0.05 0.05 0.02 

Cluster 5 50% 0.08 0.11 0.03 0.10 0.12 0.80 

Cluster 5 60% 0.00 0.22 0.30 0.11 0.09 0.15 

Cluster 5 70% 0.17 0.13 0.74 0.07 0.07 0.04 

Cluster 5 80% 0.03 0.53 0.89 0.06 0.06 0.03 

 

We evaluated long-term demand forecasting methods, highlighting the effectiveness of ARIMAX and 

LSTM models in capturing complex demand dynamics in this Chapter. These insights are crucial for 

optimizing service frequencies and resource allocation. In the next chapter, we will synthesize these 

findings to develop a theoretical model for balancing service quality and operational constraints during 

the COVID-19 pandemic, guiding PT operators in making informed decisions to maintain long-term 

demand and operational stability. 

 

 

Figure 6.8 Observed and forecast of Cluster 3 with different training percent 
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Figure 6.9 Observed and forecast of Cluster 5 with different training percent 

 

 

Figure 6.10 All clusters with 80% Training 
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6.2.3    Conclusions 

In this Chapter, we evaluated different long-term forecasting methods for predicting post-pandemic 

public transportation usage, specifically focusing on the ARIMAX and LSTM models. Each method 

has its strengths and is suited to different scenarios, which is crucial for understanding station vitality 

recovery.  

 

The ARIMAX model incorporates external variables such as COVID-19 cases and policy measures to 

enhance its predictive accuracy. The results show that ARIMAX is particularly effective for stations 

where external factors like new cases and policy restrictions heavily influence demand. The model's 

ability to include exogenous variables makes it suitable for capturing the direct impact of these external 

factors on station vitality. It performed best with an 80% training set, providing a balance between 

overfitting and predictive accuracy. This method is recommended for short-term forecasting where the 

effects of external variables are pronounced and can be accurately measured. 

 

The LSTM model excels in capturing complex, non-linear demand patterns over longer periods. 

However, it requires substantial training data to achieve high predictive accuracy. The model's strength 

lies in its ability to handle long-term dependencies, making it suitable for forecasting in environments 

with highly variable and continuous demand patterns. It also performed best with an 80% training set, 

indicating its need for extensive data to accurately predict future demand. It is ideal for long-term 

forecasting where demand patterns are influenced by a variety of factors over time and require 

sophisticated modeling of these relationships. 

 

This comparative analysis underscores the need for flexible and dynamic forecasting methods to 

navigate the complexities of public transportation demand during and after pandemics. By leveraging 

the strengths of both ARIMAX and LSTM models, public transport operators can enhance their 

strategic planning and operational efficiency, ensuring resilience and sustainability in the face of 

ongoing and future disruptions. 
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Chapter 7     Service-level reduction during a pandemic: 

a theoretical trade-off model 

 

7.1    Introduction of a theoretical model 

How to financially survive during a pandemic is a crucial question posed by COVID-19 to many 

businesses that lose demand due to the restrictions. For public transportation operators, fare-increases 

and cost-cutting by providing less service are two tools, but these become double-edged swords in the 

context. Increasing fares can boost revenues, but it may cause price-sensitive passengers to reconsider 

their usage and invite criticisms of "incompetence." Conversely, reducing frequencies can lower 

expenses, but a decrease in service quality may drive passengers to switch to other modes of transport. 

Additionally, safety and cleanliness are vital factors that involve operational constraints. 

 

Building on this context, this chapter synthesizes insights from the previous chapters to develop a 

theoretical model for balancing service quality and operational constraints during a pandemic. This 

model considers financial resources, service levels, and the timing of service changes. We consider 

the service frequency as an easy target for potential cost reductions as it directly relates to variable, 

operational costs. However, we note that “frequency” in our model could also stand for other service 

quality related attributes that an operator might change. The change to cut operational cots involves 

two main decision variables: the new (reduced) frequency of the service and the timing of the 

frequency adjustments. Both are important as it affects passenger confidence in public transport. 

Premature reductions in service frequency may erode trust and cause passengers to switch to other 

modes of transport in the long term. On the contrary, timely adjustment of service frequency in 

response to improved public health conditions and recovery of demand can help retain passengers and 

restore confidence. In addition, the longer the epidemic lasts or the longer service frequency is reduced, 

the more likely it is that people will develop new habits and may permanently change their mode of 

travel. Such decisions will be partly based on knowledge of demand sensitivity to service frequency 

reduction as well as predictions as to how fast the demand will recover. An assumed rough knowledge 

of the latter we take from the findings from previous chapters. 
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By applying this theoretical model, we aim to explore how different decision-making approaches can 

lead to various outcomes under different impact scenarios. For instance, a decision to reduce service 

frequency early in the pandemic may have long-term repercussions on passenger retention and revenue. 

Conversely, maintaining high service levels incurs higher costs but could stabilize demand in the long 

term. 

 

Through case studies based on a hereafter proposed theoretical model, this chapter demonstrates the 

potential consequences of different decisions made by public transport operators during a pandemic. 

It discusses the pros and cons of various strategies, ensuring that the balance between cost-

effectiveness and demand retention is maintained. This analysis provides hence some insights for 

public transport operators to navigate the complexities of pandemic management, while also respecting 

different operational approaches and strategic thinking. Notably, many transit operators have only 

recovered around 80% of pre-pandemic demand at this point in time (Smart Cities Dive, 2024), 

highlighting the importance of strategic planning during such crises. 

 

7.2    Idea of a theoretical model 

 

Suppose following scenario: At the onset of a crisis such as the COVID-19 pandemic, public 

transportation (PT) operators face immediate and significant challenges. The fear of demand loss 

looms large as ridership plummets due to lockdowns, social distancing measures, and public fear of 

contagion. Operators must navigate short-term impacts on ridership while considering the long-term 

implications for demand and financial sustainability. We consider three core issues: 

 

1) Operational constraints: these include financial limitations, workforce availability, and health 

regulations. Reduced revenues due to decreased ridership and increased costs associated with 

enhanced cleaning and safety measures exacerbate financial strain, limiting the ability to maintain 

high service levels. 

 

2) Service level: maintaining a certain level of service is crucial to retaining passenger demand. 

Higher service quality can stabilize long-term demand but incurs higher operational costs. 
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Conversely, lowering service quality reduces costs but risks a decline in future demand. Operators 

must find the optimal balance to ensure both immediate and future sustainability. 

 

3) Passenger demand: Understanding patterns of change in station vitality, influenced by factors such 

as passenger flow, commercial activity, and overall functionality, is critical. Accurate demand 

forecasting can help operators anticipate changes and adjust services proactively. 

 

The variables are chosen below because they represent the fundamental trade-offs that public 

transportation operators must navigate during a crisis like the COVID-19 pandemic. Considering the 

multiple factors associated with operations during an epidemic, the variables and parameters included 

in this chapter are shown in Table 7.1, followed by a detailed explanation. 

 

Table 7.1: Variables and parameters 

Variables Expression Unit 

Working variables and decision variables 

𝑑 “Day” or “epoch” in the period of interest day 

𝑓(𝑑) Frequency on day d services/day 

𝑓2 
New service frequency; adjusted frequency due to 

pandemic impact 
services/day 

𝑡2 
Frequency change time; the time at which the service 

frequency is adjusted 
day 

Input data, assumptions 

𝑑0 
Starting date or “old normal”; the baseline date before 

the disruption/ pandemic  
day 

𝑑𝑒𝑛𝑑 

End date or “new normal”; the date when the system can 

be assumed to have stabilized after the pandemic/ 

disruption 

day 

𝑡𝑠 Government declared start time of “state of emergency” day 

𝑡𝑒 
End time of “state of emergency”; emergency measures 

are lifted 
day 

𝜇(𝑑) 
Passenger demand during the pandemic without any 

intervention by the operator  
passenger 
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𝜇0 Initial demand at 𝑑0; abbreviation for 𝜇(𝑑0) pas 

𝑓1 Old, initial frequency before the pandemic services/day 

𝑓𝑚𝑖𝑛 
Minimum service frequency that must be provided at 

any time 
services/day 

𝜇𝑒 

“Captive demand”, minimum demand for essential 

needs, that is passengers that will use public transport 

even if only a minimum service is provided 

passenger 

𝜇𝑝 
Demand during the peak pandemic; passengers that are 

willing to travel even at the peak at the pandemic 
passenger 

𝜇̌ 
Minimum demand for essential needs at pandemic (lower 

than both 𝜇𝑝 and 𝜇𝑒) 
passenger 

𝜉 Financial resources “savings” at beginning of crisis ￥ 

𝐹 Average fare per passenger ￥/passenger 

𝐸 Average expenses for the service per kilometer ￥/kilometer 

𝑙 Average distance per service journey kilometer 

𝑐 Passenger capacity passenger 

𝛽𝑝 Sensitivity of time in state of emergency, 𝑡𝑒 − 𝑡𝑠 / 

𝛽𝑓 Sensitivity of 𝑓2 / 

𝛽𝑟 Sensitivity of 𝑟 / 

Derived variables 

𝐾 
Final demand 𝜇̃(𝑑𝑒𝑛𝑑)  at the end of the pandemic 

period (the “new normal”)  
passenger 

𝜇̃(𝑑) 
Passenger demand during the pandemic considering the 

response of the service operator 
passenger 

𝑟(𝑑) the recovery speed of demand / 

𝐹𝐸 Ratio of Fare to Expense % 

𝑌 
Total expected profit over the analysis period from 𝑑0 

to 𝑑𝑛 in present value 
￥ 

𝑦𝑑 Profit on day 𝑑 ￥ 

 



75 

Working variables like the day 𝑑  and service frequency 𝑓(𝑑) , 𝑓2  help track and adjust the 

operational metrics over time. Input data and assumptions like initial demand 𝜇0, minimum service 

frequency 𝑓𝑚𝑖𝑛 and financial resources 𝜉 provide the baseline conditions and constraints, essential 

for realistic modeling. Derived variables such as the final demand 𝐾 and recovery speed 𝑟(𝑑) offer 

insights into the outcomes of different scenarios, helping to optimize decision-making. 

 

7.2.1    Decision variables 

In developing a theoretical model for public transportation operations during a pandemic, several 

variables can be considered. These include fare adjustments, service frequency changes, operational 

costs, safety measures, and the timing of implementing these changes. The model is focused on two 

key decision variables: Service frequency and the timing of changes to this frequency. 

 

1) New Frequency (𝑓2):  

Adjusting service frequency is a direct lever for controlling operational costs. During a pandemic, 

reducing the frequency of public transportation services can significantly cut expenses related to 

fuel, maintenance, and labor. However, a reduction in service frequency can also have a 

detrimental effect on passenger satisfaction and long-term demand. Passengers may switch to 

alternative modes of transportation if they perceive the service to be unreliable or insufficient, 

leading to a permanent loss in ridership. Hence, finding the optimal frequency that balances cost-

saving with service quality is crucial. Here we labelled the new frequency as 𝑓2  and 

correspondingly 𝑓1 denotes the old frequency. 

 

2) Timing of Change (𝑡2):  

The timing of when to implement changes in service frequency is equally important. Making 

changes too early in the pandemic might save costs immediately but could lead to a long-term 

decline in ridership as passengers adjust to alternative transportation modes. Conversely, delaying 

changes might maintain passenger trust and demand but at the expense of higher operational costs. 

Therefore, strategically timing the implementation of frequency changes can help mitigate the 

negative impacts on long-term demand while managing financial constraints. Note that the 

labelling here as 𝑡2 instead of 𝑡 is to harmonize with the new frequency 𝑓2. No 𝑡 or 𝑡1 exists 

in the model. 
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With this we obtain frequency for each day: 

 

𝑓(𝑑) = {
𝑓1 0 < 𝑑 < 𝑡2

𝑓2 𝑑 ≥ 𝑡2
 (7.1) 

 

7.2.2    Function of new maximum demand 

A critical aspect to consider in the theoretical model is the maximum demand in the new normal, 

denoted as 𝐾. This variable represents the highest level of passenger demand that can be realistically 

expected once the pandemic has stabilized and society has adjusted to new norms of behavior and 

transportation. Understanding and estimating 𝐾 is crucial for several reasons: 

 

Firstly, 𝐾  serves as a benchmark for planning service frequency and capacity. By knowing the 

potential upper limit of demand, operators can better tailor their services to meet actual needs without 

overcommitting resources. Secondly, accurate estimation of 𝐾  allows for more precise financial 

projections. It helps in anticipating revenue flows and aligning them with operational costs, ensuring 

that the service remains financially viable in the long run. Thirdly, with a clear understanding of the 

maximum demand, operators can allocate resources more efficiently. This includes not only 

scheduling and staffing but also infrastructure investments and maintenance priorities. Lastly, 

providing services that align with 𝐾 can enhance passenger confidence in the reliability and adequacy 

of public transportation. This is particularly important in the post-pandemic recovery phase, where 

rebuilding trust is essential. 

 

Two main factors influencing 𝐾  are assumed to be the new frequency and the duration of the 

emergency state. The new frequency affects passengers' willingness to continue using the service. 

Higher frequency generally leads to greater satisfaction and retention of passengers. Furthermore, the 

duration of the emergency state (𝑡𝑒 − 𝑡𝑠) impacts passengers' confidence in the stability and reliability 

of the service. We do not consider 𝑡2 in 𝐾 as it has a more significant impact on operators rather 

than passengers. Passengers are less concerned with the exact timing of service changes and more with 

the extent of those changes. Incorporating 𝐾 into the model helps to obtain realistic projections of 

future demand, ensuring that strategies are both effective and sustainable. 
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We need to ensure that 𝐾 satisfies the following constraints: 

⚫ Condition 1: When the frequency remains the same and there is no pandemic, 𝐾 equals the 

original demand 𝜇0 

 

𝑙𝑖𝑚
𝑓2→𝑓1

𝑡𝑒−𝑡𝑠→0

𝐾 = 𝜇0 
(7.2) 

 

⚫ Condition 2: When the frequency remains the same during a prolonged pandemic, 𝐾 equals to 

the demand during the pandemic denoted as 𝜇𝑝 

 

𝑙𝑖𝑚
𝑓2→𝑓1

𝑡𝑒−𝑡𝑠→∞

𝐾 = 𝜇𝑝 
(7.3) 

 

⚫ Condition 3: When the frequency 𝑓2 decreases but there is no pandemic, 𝐾 is determined by a 

smoothed function of the ratio between 𝑓1 and 𝑓2. The lower 𝑓2, the lower the new demand and 

Eq. 7.3 is one equation fulfilling this. We note that we presume some low level of service must 

be maintained and we refer to this as 𝑓𝑚𝑖𝑛. If only this level of service is operated, then also only 

the “essential demand” that is captive to this service will remain and it is called 𝜇𝑒.  

 

𝑙𝑖𝑚
𝑓2→𝑓𝑚𝑖𝑛
𝑡𝑒−𝑡𝑠→0

𝐾 = 𝜇0 [1 − (
𝑓1 − 𝑓2

𝑓1
)

𝛽𝑓

] →  𝜇𝑒 (7.4) 

 

⚫ Condition 4: When the frequency is at its minimum during a prolonged pandemic, 𝐾 should not 

be lower than the demand that is captive and is still travelling during the pandemic. We refer to 

this minimum level of demand as 𝜇̌. 

 

𝐾 ≥ 𝜇̌ (7.5) 

 

A function that fulfills these constraints is Eq. (7.6) as explained below. 

 

𝐾 = max {𝜇̌, 𝜇0 − (𝜇0 − 𝜇𝑝)(1 − 𝑒−𝛽𝑝(𝑡𝑒−𝑡𝑠)) − 𝜇0 (
𝑓1 − 𝑓2

𝑓1
)

𝛽𝑓

} (7.6) 
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Explanations: 

1) If 𝑡𝑒 → 𝑡𝑠 and 𝑓2 → 𝑓1: 

When 𝑒−𝛽𝑝(𝑡𝑒−𝑡𝑠) approaches 1, the second term goes to zero. As 𝑓1 − 𝑓2 approaches 0, the third 

term also goes to zero. Therefore, 𝐾 approximates 𝜇0, indicating no reduction in demand due to time 

and frequency change, resembling the conditions of the old normal. This confirms that Condition 1 is 

fulfilled. 

 

2) If 𝑓2 → 𝑓1 and 𝑡𝑒 → ∞ 

When 𝑒−𝛽𝑝(𝑡𝑒−𝑡𝑠) approaches 0, the second term simplifies to 𝜇0 − 𝜇𝑝. As 𝑓1 − 𝑓2 approaches 0, 

the third term also approaches zero. Therefore, 𝐾  approximates 𝜇𝑝 , indicating that demand is 

reduced to the minimum level due to the prolonged pandemic, reflecting only essential demand. This 

confirms that Condition 2 is fulfilled. 

 

3) If 𝑡𝑒 → 𝑡𝑠 

When 𝑒−𝛽𝑝(𝑡𝑒−𝑡𝑠)  approaches 1, the second term goes to zero. Therefore, 𝐾  approximates 

𝜇0 [1 − (
𝑓1−𝑓2

𝑓1
)

𝛽𝑓

], indicating no reduction in demand due to time, only determined by 𝑓2. Condition 

3 is fulfilled. 

 

4) If 𝑓2 → 𝑓𝑚𝑖𝑛 and 𝑡𝑒 → ∞ 

The term 𝑒−𝛽𝑝(𝑡𝑒−𝑡𝑠) approaches 0, the second term goes to zero. Therefore, 𝐾 approximates 𝜇𝑝 −

𝜇0 (
𝑓1−𝑓2

𝑓1
)

𝛽𝑓

. The function needs to ensure that 𝐾 is non-negative, thus max {𝜇̌, 𝜇0 − (𝜇0 − 𝜇𝑝)(1 −

𝑒−𝛽𝑝(𝑡𝑒−𝑡𝑠)) − 𝜇0 (
𝑓1−𝑓2

𝑓1
)

𝛽𝑓

} ensures demand does not drop below zero, maintaining non-negativity. 

Condition 4 is also fulfilled. 

 

5) 𝛽𝑝 

When 𝑓2 remains the same, 𝛽𝑝 determines the speed at which demand drops as 𝑡𝑒 − 𝑡𝑠 increases. 

A large 𝛽𝑝 means demand drops more quickly from 𝜇0 to 𝜇𝑝. The value of 𝛽𝑝 depends on the 

fact that when 𝑡𝑒 − 𝑡𝑠 is 49 days (the actual control period), the 𝐾 value of the group 
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just happens to hit the lowest value 𝜇𝑝 in the pandemic. We found that when 𝛽𝑝 is 0.09, 

it is more suitable for all clusters. 

 

6) 𝛽𝑓 

Conversely, when 𝑡𝑒 → 𝑡𝑠 remains the same, 𝛽𝑓 determines the rate at which demand grows as 𝑓2 

increases. A large 𝛽𝑓 means demand grows more quickly from the demand at lowest 𝑓2 to reach 𝜇0. 

The value of 𝛽𝑓 depends on the maximum capacity when the frequency is increased, i.e. the increase 

in the case of overload. On the basis of the currently generally accepted overload ratio of 20%, we 

have calculated that at a 𝛽𝑓  of 1.2, the demand will not exceed the maximum capacity at all 

frequencies. 

 

 

Figure 7.1(a) An example of 𝐾 of Cluster 5 (parameter settings are the same as in Table 7.2) 

 

It can be seen that 𝐾 in Fig. 7.1(a) conforms better to the above four limits. Next, we will use the 

obtained new demand values for a case study. 

 

Once we have determined 𝐾 under the specified conditions, it is equally important to understand the 

rate at which this demand recovers, represented by 𝑟. 𝑟 calculates the immediate demand when the 

new frequency 𝑓2 is introduced. This rate of recovery is crucial because it indicates how quickly the 

demand approaches its maximum potential after service adjustments. It helps to quantify the demand 
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response to the new service frequency, guiding operators in optimizing their strategies during the 

recovery phase. 

 

Furthermore, if 𝐾 exceeds the upper capacity limit that 𝑓 can provide, the actual recovered demand 

will be constrained by this upper capacity limit. In other words, even if there is a higher potential 

demand, the service can only accommodate up to its maximum capacity. This limitation must be 

accounted for in planning and forecasting to avoid overestimating the system's ability to recover and 

meet passenger needs. 

 

From 𝑟(𝑑), we know 𝜇(𝑑) would finally reach 𝑐𝑓2 or 𝐾, the smaller one 

 

𝑟(𝑑) = 𝛽
𝑟

(1 −
𝜇̃(𝑑 − 1)

max(𝑐𝑓2, 𝐾)
) (1 −

𝑓1 − 𝑓2

𝑓1
)

𝛽𝑓

 (7.7) 

 

The value of 𝛽𝑟 is determined by both the observed and calculated values of the recovery period. 

When 𝑓2 is equal to 𝑓1 and 𝑡𝑒 − 𝑡𝑠 is equal to the actual control duration, the calculated value 𝜇̃(𝑑) 

should be as close as possible to the observed value 𝜇(𝑑). Since all 𝑓2 values are less than or equal 

to 𝑓1, the calculated value should be slightly smaller than the observed value, as shown in Fig 7.1(b). 

Additionally, the value of 𝑓2 also affects the recovery speed - the smaller the 𝑓2 value, the slower 

the recovery speed. Furthermore, the value of 𝛽𝑟 is also carefully fine-tuned to ensure consistency 

with the long-term forecasts developed in Chapter 6. This calibration helps to integrate the observed 

recovery trends with the model's predictions, validating the overall approach by aligning it with the 

broader forecasting framework. 

 

With this we recursively obtain demand for each day 

 

𝜇̃(𝑑) = {
𝜇(𝑑) 0 < 𝑑 < 𝑡2

min(𝜇(𝑑), 𝜇̃(𝑑 − 1)(1 + 𝑟(𝑑)), 𝑐𝑓
2
) 𝑑 ≥ 𝑡2

 (7.8) 
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Figure 7.1(b) An example of 𝜇̃(𝑑) fitting 𝜇(𝑑) of Cluster 5 (𝛽𝑟 = 0.042) 

 

7.2.3    Objective function 

The theoretical model aims to balance these considerations by optimizing service frequency and timing 

to maximize long-term demand while minimizing operational costs. The model must adhere to 

constraints such as limited financial resources and the necessity of providing a minimum level of 

service at all times. 

 

The goals of the operator is to maximize outcome 𝑌, which is the total profit during the pandemic 

period from the start day 𝑑0  until the day of a new normal 𝑑𝑒𝑛𝑑  while applying a potentially 

different 𝑓2 (new frequency) and 𝑡2 (frequency change time). 

 

max
𝑓2𝑡2

 𝑌 = ∑ 𝜇(𝑑)𝐹 − 𝑓(𝑑)𝐸𝑙

𝑑𝑒𝑛𝑑

𝑑0

 (7.9) 

 

The timing of the frequency change 𝑡2 can be earlier or later than the state of emergency start time 

𝑡𝑠, depending on the operator's decision. 𝑡2 < 𝑡𝑠 would indicate that the operator anticipates a large 

impact from the first signs of the onset of the pandemic and wants to react earlier. In contrast, 𝑡2 > 𝑡𝑒 

likely indicates that the operator is forced to react. The demand is already recovering, however, 

financial constraints mean keeping the service at its old level is not any more sustainable.  

 

𝑑0 < 𝑡2 < 𝑑𝑒𝑛𝑑 (7.10) 

𝑑0 < 𝑡𝑠 < 𝑡𝑒 < 𝑑𝑒𝑛𝑑 (7.11) 
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The new frequency 𝑓2 could be larger or smaller than 𝑓1, however, in general we expect a reduction 

in frequency. It should further be larger than 𝑓𝑚𝑖𝑛, a minimum frequency that the operator might be 

obliged to provide due to regulations from the regulator.  

 

𝑓𝑚𝑖𝑛 ≤ 𝑓2 (7.12) 

 

Clearly, a lower frequency means that also the capacity is reduced, which might hence lead to not all 

demand being served which is expressed with (7.13).  

 

𝜇̃(𝑑) ← min(𝜇̃(𝑑), 𝑓(𝑑)𝑐) (7.13) 

 

A company must have sufficient financial resources to keep the service running any following day. 

This is described in (7.14) where 𝜉 are the savings (or government subsidy), the sum term describes 

the profits minus expenses for all previous days, and the last term denotes the expenses for the next 

day. 

 

0 < 𝜉 + ∑ 𝑦𝑑

𝑑𝑒𝑛𝑑−1

𝑑=𝑑0

+ 𝑓(𝑑)𝐸𝑙   ∀ 𝑑 (7.14) 

 

7.3    Case study 

This section presents a case study applying the theoretical model to a major Japanese railway station, 

exploring the trade-offs between service quality, operational constraints, and long-term demand during 

the COVID-19 pandemic. The vitality of a railway station is directly linked to the rail demand for a 

line because higher demand ensures consistent usage and activity at the station, which in turn supports 

its economic and operational viability. Since it is difficult to calculate the cost per kilometer for 

railways due to the complexity and variability of rail operations, we use data from the Ministry of 

Land, Infrastructure, Transport and Tourism (MLIT) for buses as a proxy. Specifically, the line 

frequency and length are based on data from the Kyoto city bus system. This approach allows us to 

approximate operational costs and assess the trade-offs in a more manageable way, while 

acknowledging the limitations of this substitution. Although bus operations differ from rail, this 

method provides a practical solution to estimate costs and informs our analysis of service adjustments.  
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7.3.1    Input variables 

The case study is based on the data and scenarios provided in Table 7.1, which outlines various service 

adjustment scenarios and their expected impacts. Additionally, Table 7.2 details the input variables 

used in this case study, providing a comprehensive overview of the parameters influencing the analysis. 

 

Table 7.2: Input variables 

Operation input 

Pandemic related and according to assumptions Operational scenario 

Variables Value Variables Value 

𝜇(𝑑) MSS data in first wave 𝑓1 120 

𝜇𝑝 Minimum of 𝜇(𝑑) 𝑓𝑚𝑖𝑛 30 

𝜇̌ 50% of 𝜇𝑝 𝑐 per service 80 

𝑡𝑠 30 𝑙 8 

𝑡𝑒 60 𝐹 30 to 570 in steps of 10 

𝑑𝑒𝑛𝑑 99 𝐸 600 

𝛽𝑝 0.09 𝜉 Scenario specific 

𝛽𝑓 1.2 

 

𝛽𝑟 0.042 

 

Explanations: 

𝛽𝑝, Sensitivity of demand to the duration of the pandemic, a larger 𝛽1 indicates a faster decline 

in demand when duration is getting longer.  

𝛽𝑓 Sensitivity of demand to changes in service frequency, A larger 𝛽2  implies a quicker 

recovery in demand when new frequency is getting larger 

𝛽𝑟 Sensitivity of recovery speed, A larger 𝛽𝑟 implies a quicker recovery in demand  

𝐸 Cost per kilometer per service (data from the MLIT for buses) 

𝐹 We go from 5% to 95% of the kilometer cost in steps of 10 (10 is a common step for fares) 

𝑓1 Assuming 15 hours of operation per day and 4 services per hour in each direction, the total 

number of services per day in both directions is 120 

𝑐 The maximum capacity of a large vehicle is about 75 per service, rounded to 80 (this data is 

also from buses) 
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𝑙 Assuming an average distance of 8 kilometers for each service 

𝜇𝑝 From the MSS data in Chapter 4, we reached 𝜇𝑝 (demand in pandemic) at day 42 

𝜇̌ We set 𝜇̌ 50% of 𝜇𝑝 as the essential demand 

𝑑𝑒𝑛𝑑 From the MSS data in Chapter 4, it can be seen that it took about 14 weeks from the start of 

the significant reduction in demand to recover to the first steady state 

𝑡𝑒 − 𝑡𝑠 From Table 6.3, we can see that the average duration of the first lockdown is between 1 and 

1.5 months (all of Japan), and we set it at 30 days for ease of understanding. 

𝑓𝑚𝑖𝑛 Reduction to 1 quarter of the original service frequency, i.e., one service per hour in one 

direction 

 

7.3.2    Result of 𝑓2 and 𝑡2 for each cluster 

 

Cluster 5: 

We perform this calculation starting with Cluster 5 and get the result shown in Figures 7.2 and 7.3. In 

Fig. 7.2, the blue solid line represents the operator's maximum profit 𝑌 at different fares (FE), which 

corresponds to the y-axis on the left side; the red solid line represents the frequency of the new service 

at the time when the maximum profit is achieved, and the yellow dotted line represents the point in 

time when the frequency of the change is made at this time, and both of them correspond to the y-axis 

on the right side.  

 

 

Figure 7.2 Maximum profit, 𝑓2 and 𝑡2 of every FE of Cluster 5 (sufficient savings, i.e. large 𝜉)  
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It can be seen that the maximum profit increases with the increase in ticket price, and the corresponding 

service frequency does not continue to increase after reaching about 100 (about 83% of the original 

frequency), which shows that due to the decrease in demand caused by the pandemic, maintaining the 

original service frequency will result in losses. The optimal time to change frequency is the first day 

when the FE is below 10 percent, gradually postponing from the first day to about the 20th day when 

the FE is between 10-30 percent, and stabilizing around the 70th day after 30 percent. This suggests 

that in the event of a pandemic, it is necessary for operators with lower fare revenues to adjust 

frequencies as soon as possible to avoid excessive losses during a period of declining demand, while 

30% can be seen as a " base point " beyond which adjustments can continue to be delayed. New 

frequencies are not as low as possible, but need to be accurately matched to the growth in passenger 

demand at a later stage. 

 

 

Figure 7.3 Profit of different combinations of 𝑓2 and 𝑡2 of Cluster 5 (FE 95%) 

 

We take 95% FE as an example to explore the impact of different 𝑓2 and 𝑡2 on profit under the same 

FE. Under this FE, the maximum profit occurs when 𝑓2 is 100 and 𝑡2 is 72. However, as we can see 

from Fig. 7.3, there is a "plateau" with higher profit in the range of 𝑓2 from 80 to 120 and 𝑡2 from 72 

to 99. This shows that as long as the new frequency is guaranteed to be above a certain point and the 

adjustment point is after a certain day, then the profit will not be very low. This also reflects the large 

impact on Cluster 5 demand, and increasing capacity by 1/2 (from 80 to 120) is still relatively not a 

big loss. For areas that are greatly affected, it is necessary to carefully assess the subsequent demand 

situation. In this case, it is not recommended to reduce the frequency by more than 1/3, and the 

adjustment frequency should be as early as possible. 
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We compare the demand before and after the adjustment. As shown in Fig. 7.4, the demand after the 

adjustment 𝜇̃ increases the same as before and finally reaches the previous demand level and remains 

there. As can be seen in Figure 7.2 (b), the recovery speed we preset is slower than the actual observed 

value, but the speed here is the same. This is because we preset the entire recovery process, and the 

actual recovery speed is less than the preset speed when it is more than 70 days. At this time, the 

optimal frequency of 100 is less than the original frequency and cannot be greater than the observed 

value, so it is taken as equal to the observed value. This phenomenon can be further optimized by 

taking different 𝛽𝑟 values according to different recovery intervals. From this result, we can also 

judge that when the majority of the demand in the recovery period is met, appropriately reducing the 

frequency means that costs can be reduced and the impact of frequency adjustment minimized. In 

addition, as discussed earlier, we should choose a larger 𝑓2 value within the scope of affordability, 

which will give us more flexibility in post-pandemic operations: we can meet the reduced demand 

while also having sufficient resources to attract new demand. 

 

We apply the same method to other clusters to obtain the following results: 

 

Cluster 4: 

As can be seen in Fig. 7.5, compared to Cluster 5, the 𝑓2 corresponding to the maximum profit of 

Cluster 4 rises to 106, while the "base point" shifts to the left from 30 to about 25 percent. This means 

that the "plateau" of high profits is smaller, but at the same time the gap between different combinations 

of 𝑓2 and 𝑡2 increases slightly, as shown in Fig. 7.6. Since the minimum demand for Cluster 4 is 

higher compared to Cluster 5, the frequency that can be guaranteed for the same fare is also higher, 

and there is also a brief stop at around 90 before it is raised to 106. In Fig. 7.7, the adjusted 𝜇̃ reaches 

a lower maximum demand after the pandemic.  
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Figure 7.4 𝜇 and 𝜇̃ of Cluster 5 when reaching maximum profit (FE 95%) 

 

 

Figure 7.5 Maximum profit, 𝑓2 and 𝑡2 of every FE of Cluster 4 (sufficient savings, i.e. large 𝜉)  

 

 

Figure 7.6 Profit of different combinations of 𝑓2 and 𝑡2 of Cluster 4 (FE 95%) 
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Figure 7.7 𝜇 and 𝜇̃ fitting of Cluster 4 (𝛽𝑟 = 0.042) 

 

Cluster 3: 

As can be seen in Fig. 7.8, 𝑓2 at the maximum profit point of Cluster 3 continues to rise to 116, while 

𝑡2 remains unchanged at one. The "plateau" in Fig. 7.9 is also narrowing further, and the gap between 

the profits of different 𝑡2 at high 𝑓2 is also decreasing. For Cluster 3, a FE of 30% is sufficient to 

support operation at the maximum frequency, while several fixed frequencies are raised before the 

maximum frequency is raised. The period of decline in Fig. 7.10 is almost a straight line, with a small 

increase in the rate of increase.  

 

 

Figure 7.8 Maximum profit, 𝑓2 and 𝑡2 of every FE of Cluster 3 (sufficient savings, i.e. large 𝜉)  
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Figure 7.9 Profit of different combinations of 𝑓2 and 𝑡2 of Cluster 3 (FE 95%) 

 

 

Figure 7.10 𝜇 and 𝜇̃ fitting of Cluster 3 (𝛽𝑟 = 0.042) 

 

Cluster 2: 

As can be seen in Fig. 7.11, 𝑓2 at the maximum profit point of Cluster 2 rises to 119, which is almost 

the same as the original frequency 𝑓1. The timing of the frequency change is more complex: the 

optimum in the FE 20-25% interval is the same as the previous cluster, at around 70, while after 25% 

it drops to around 55. We can see in Fig. 7.13 that the observed values rise rapidly at days 42-52, with 

a gradual slowing of the subsequent rise. This suggests that meeting the needs of the “first wave of 

recovery” is more important compared to the later stages. The size of the "plateau" in Fig. 7.12 

continues to decrease, but a larger plateau is forming. In Fig. 7.13, the demand minimum rises to 5000, 

with a slight decrease in the rate of increase.  
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Figure 7.11 Maximum profit, 𝑓2 and 𝑡2 of every FE of Cluster 2 (sufficient savings, i.e. large 𝜉)  

 

 

Figure 7.12 Profit of different combinations of 𝑓2 and 𝑡2 of Cluster 2 (FE 95%) 

 

 

Figure 7.13 𝜇 and 𝜇̃ fitting of Cluster 2 (𝛽𝑟 = 0.042) 
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Cluster 1: 

As can be seen in Fig. 7.14, 𝑓2 at the point of maximum profit for Cluster 1 is the same as the original 

frequency, 𝑓1 , and 𝑡2  can take on any value in this case. The "plateau" in Fig. 7.15 essentially 

disappears and becomes a large "slope". In Fig. 7.16, the lowest point of the demand has been very 

close to the original demand, because the value of mu in the late period has been larger than the value 

before the epidemic, so 𝜇̃ has been smaller than 𝜇.  

 

 

 

Figure 7.14 Maximum profit, 𝑓2 and 𝑡2 of every FE of Cluster 1 (sufficient savings, i.e. large 𝜉)  

 

 

Figure 7.15 Profit of different combinations of 𝑓2 and 𝑡2 of Cluster 1 (FE 95%) 
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Figure 7.16 𝜇 and 𝜇̃ fitting of Cluster 1 (𝛽𝑟 = 0.042) 

 

7.3.3    Result of 𝜉 for each cluster 

Having sufficient savings at the onset of a pandemic is crucial. These financial reserves serve as a 

buffer to absorb initial losses and maintain operations during periods of reduced demand. By 

monitoring cumulative profit, operators can adjust strategies to optimize service levels and operational 

costs, balancing short-term and long-term demand while maintaining financial stability.  

 

In the case study in Section 7.3.2, we assume that the public transport operator has sufficient savings 

to continue operating even if it incurs a loss. However, we also need to consider the actual situation, 

and when the loss reaches a certain level, or when the savings are exhausted, the operation will be 

suspended. So far, we have set the Eq. 7.14 as a constraint to ensure that the operator has sufficient 

funds to continue operating the next day. Since a direct solution is complicated, we calculate the lowest 

amount (which can be negative) on the balance for the entire process from the first day when the capital 

is assumed to be 0 to the last day, for any arbitrary set of 𝑓2 and 𝑡2. Since the operator does not 

necessarily choose the optimal 𝑓2  and 𝑡2  in previous section, the worst scenario needs to be 

considered. We take the absolute value of the lowest point in each financial scenario as the maximum 

initial savings required. 

 

We record the minimum profit with its point in time. As can be seen from Table 7.3 and Fig. 7.17 for 

Cluster 5, where the minimum profit increases as the FE value increases, the lowest point is when the 

ticket price is only 30 yen, which is about minus 43 million yen. This also means that for such a line, 

at least the same amount of money would be needed to ensure that the operation is not in deficit. The 
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“zero point” of the minimum profit appears around 25%, which is the date of the first day. This also 

means that for stations in Cluster 5, FE greater than 25% can guarantee that the operator can continue 

to operate without saving. 

 

For Clusters 4 to 1, similar trends can be observed with varying financial reserve requirements and 

"zero points." In Cluster 4 (Fig. 7.18), the financial reserve requirement decreases to about 40 million 

yen, while the "zero point" shifts to approximately 20%. In Cluster 3 (Fig. 7.19), the decline in the 

financial reserve requirement slows, and the "zero point" moves to around 15%. For Cluster 2 (Fig. 

7.20), the financial reserve requirement reduces to within 35 million yen, with the "zero point" slightly 

shifting to about 13%. Lastly, in Cluster 1 (Fig. 7.21), the financial reserve requirement decreases to 

less than 30 million yen, and the "zero point" shifts slightly to the left, remaining above 10%. 

 

The requirement for financial savings by different clusters can be seen that the cluster with less demand 

loss can reach "zero point" faster when the FE value gradually increases. This also fully reflects the 

importance of reducing losses to maintain operations, and of course the price of tickets also plays a 

key role. 

 

Table 7.3: Lowest cumulative profit and date 

𝑭𝑬 - fare 5% 10% 15% 20% 25% 

𝒅 - date 𝑑𝑒𝑛𝑑 𝑑𝑒𝑛𝑑 81th 65th 60th 

−𝝃 - saving -43,170,000 -29,318,000 -16,139,000 -8,121,500 -1,116,200 

𝑭𝑬 30% 35% 40% 45% 50% 

𝒅 𝑑0 𝑑0 𝑑0 𝑑0 𝑑0 

−𝝃 870,430 1,111,500 1,352,600 1,593,600 1,834,700 

𝑭𝑬 55% 60% 65% 70% 75% 

𝒅 𝑑0 𝑑0 𝑑0 𝑑0 𝑑0 

−𝝃 2,075,800 2,316,900 2,557,900 2,799,000 3,040,100  

𝑭𝑬 80% 85% 90% 95% 

 𝒅 𝑑0 𝑑0 𝑑0 𝑑0 

−𝝃 3,281,100  3,522,200  3,763,300  4,004,400  
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Figure 7.17 Lowest cumulative profit and date of Cluster 5 

 

 

Figure 7.18 Lowest cumulative profit and date of Cluster 4 

 

 

Figure 7.19 Lowest cumulative profit and date of Cluster 3 
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Figure 7.20 Lowest cumulative profit and date of Cluster 2 

 

Figure 7.21 Lowest cumulative profit and date of Cluster 1 

 

7.3.4    Conclusions 

The trade-off analysis revealed that maintaining higher service levels was financially viable only when 

the revenue-to-expenditure ratio exceeded 30%. When the ratio was lower, immediate service 

reductions were necessary to mitigate financial losses. The analysis provides a clear framework for 

evaluating financial implications of different service levels. 

 

Early implementation of service changes provided immediate financial relief but had varying impacts 

on long-term demand. Delayed adjustments allowed for better demand retention but incurred higher 

short-term costs. The findings emphasize the need for strategic timing in implementing service 

adjustments to maximize their effectiveness. 
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The case study demonstrates that public transport operators must carefully balance service quality and 

operational constraints to maintain long-term demand. High service quality, while costlier, can 

stabilize ridership and support recovery post-pandemic. However, financial viability must be assessed 

continuously, and adjustments should be made based on real-time data and evolving conditions. 

 

By analyzing different scenarios for low- and high-quality services, this chapter illustrates how 

operating costs and future demand stability are affected. It provides practical insights for public 

transport operators to make informed decisions that balance cost-effectiveness and demand retention. 

Ensuring a resilient and sustainable public transportation system requires flexibility, continuous 

monitoring, and a strategic approach to balancing service quality and operational constraints. 
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Chapter 8     Conclusions 

 

As discussed in the previous chapters, the COVID-19 pandemic has posed critical challenges to public 

transportation systems, particularly in Japan. The significant shifts in demand, coupled with 

operational and financial constraints, underscore the urgent need for effective strategies to ensure 

resilience and sustainability. This chapter synthesizes our key findings, explores their broader 

implications, and offers policy recommendations to strengthen public transportation systems against 

future crises. 

 

8.1    Summary and implications 

The main objective of this research has been to explore the challenges faced by public transportation 

systems during and after the COVID-19 pandemic, with a focus on understanding the patterns of 

changes in demand at stations and the factors influencing them, as well as how operators make trade-

offs between operational constraints, maintenance of service levels, and long-term passenger flows. 

Major railway stations in Japan are selected for this research, spanning two years before and after the 

outbreak. Significant reductions in passenger numbers, financial pressures on public transport 

operators, and stringent health and safety measures pose significant operational challenges. Due to the 

unique nature of the outbreak's impact on passengers, we also emphasize the importance of 

understanding station vitality - a composite measure of ridership and station usage for other purposes 

- in order to develop countermeasures to mitigate the impact of future crises and improve the resilience 

of public transport systems. 

 

Chapter 2 provides a comprehensive review of the existing literature on the impacts of the COVID-19 

pandemic on public transport, the data sources used to quantify these impacts, and the methodologies 

used for long-term demand forecasting and frequency planning. Despite the extensive body of work, 

there are gaps in the current research, particularly in understanding the composite nature of station 

vitality and the specific factors influencing it, such as passenger flow, commercial activity, and 

accessibility. Additionally, existing demand forecasting methods often lack the integration of real-time 

data and dynamic variables, highlighting the need for more robust and adaptive forecasting approaches. 
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Chapter 3 draws on existing urban resilience theories to propose a comprehensive Governance-

Transportation-Mobility-Resilience (GTMR) framework for assessing and improving the resilience of 

public transportation systems during a pandemic. It provides a summary of commonly adopted 

transportation-related strategies aimed at controlling the pandemic. The chapter also assesses the 

effectiveness of transportation-related containment policies during the COVID-19 pandemic and 

analyzes their impact on system resilience using the GTMR framework. The GTMR framework helps 

in systematically evaluating the interplay between governance structures, transportation policies, and 

mobility patterns in enhancing resilience. However, it is not a one-size-fits-all solution and requires 

adaptation to specific local contexts and conditions to be fully effective. 

 

Chapter 4 focuses on the changes in station dynamics in the short and medium term. Through clustering 

and regression analysis of data from the regional grids in which the stations are located, it identifies 

changes in travel behavior in different regions of Japan and explores the reasons behind these changes 

and their interactions. The research categorizes stations into five distinct groups based on their response 

to the pandemic. Notably, the analysis highlights that some stations maintained relatively stable demand, 

while others experienced significant drops that either recovered quickly or remained low in the long 

term. Specifically, stations functioning as major transportation hubs, accommodating more routes, and 

with higher absolute passenger volumes like Tokyo, Osaka and Fukuoka were more adversely affected, 

which may seem intuitive but the nuanced categorization reveals patterns beyond general perceptions. 

For example, some peripheral stations with mixed land use like Moriya and Meinohama demonstrated 

greater resilience, providing new insights into the factors that contribute to station vitality during crises: 

the vitality of the suburban interchange will not be affected much. This can lead to a deeper 

understanding of the concept of interchange versus hub stations, where hubs usually have a collector 

function on top of the interchange, i.e. whether the inflow and outflow of vitality is associated with the 

station. 

 

Chapter 5 uses multiple regression models based on cluster analysis to understand the impact of various 

factors on station dynamics. For each station, data obtained included land use, point of interest (POI) 

density, geographic factors, and demographic characteristics. In terms of demographic characteristics, 

our analyses of population affiliations in station areas indicate that urban stations with dominant local 

populations are more dynamic and less likely to lose demand during a pandemic. For example, stations 

such as Akita and Miyazaki have a local population percentage that is above 95% most of the time, and 
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even above 99.5% during a severe pandemic. These stations are often located in remote areas of Japan, 

suggesting a link between location and travel stickiness and station attractiveness. 

 

Surprisingly, roads and railways were significant negative factors affecting station vitality. This 

unexpected finding suggests that extensive infrastructure that supports high traffic volumes may limit 

other land uses that contribute to station vitality, such as commercial and residential areas. The conflict 

between station accessibility, scale and vitality provides valuable insights for public transport operators 

to develop targeted interventions. For example, operators can focus on improving business and 

residential amenities around major transport hubs to balance the negative impacts of large-scale 

infrastructure, thereby improving the overall vitality and resilience of stations. 

 

In addition to understanding station dynamics, Chapter 6 focuses on predicting station vitality. It 

evaluates various forecasting techniques, including ARIMAX and LSTM methods, based on their 

ability to capture complex demand dynamics. The improvements in the ARIMAX model over the 

ARIMA model suggest that exogenous variables describing policy impacts are crucial. Trends in station 

activity are better captured based on the percentage of the population affected by the policy rather than 

the percentage affected by COVID-19. Estimating the affected population involves gathering data on 

policy measures, such as lockdowns, travel restrictions, and vaccination rates. This data can be sourced 

from government reports, health department updates, and mobile network data, which provide insights 

into population movements and behaviors. Combining these data points with demographic information 

helps to create a comprehensive picture of the affected population. 

 

The LSTM model, while relevant, requires sufficient training data—approximately three waves of 

data—to achieve accurate predictive power. LSTM can effectively model long-term dependencies and 

non-linear relationships in time series data, making it suitable for capturing the complex demand 

dynamics during pandemics. Integrating real-time data into LSTM models can enhance their 

responsiveness and accuracy. For future pandemics, the ability to estimate the affected population 

accurately is critical. It implies that real-time data collection and analysis will be vital for developing 

responsive public transportation strategies. The integration of exogenous variables, such as policy 

impacts, into forecasting models will enhance predictive accuracy. Public transportation operators 

should invest in advanced data analytics and establish robust data-sharing agreements with health and 
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government agencies. This proactive approach will enable quicker adaptations to changing conditions, 

ensuring resilience and sustainability in public transportation systems. 

 

Chapter 7 synthesizes insights from the previous chapters to develop a theoretical model for balancing 

service quality with operational constraints during a COVID-19 pandemic. This chapter discusses the 

critical trade-off between maintaining a high level of service, which requires higher operating costs but 

helps stabilize demand in the long term, and lowering the quality of service to reduce costs, which may 

lead to a future decline in demand. The analysis emphasizes the need for flexibility in frequency 

planning to ensure resilience and sustainability. By analyzing different scenarios for low- and high-

quality services, the chapter illustrates how operating costs and future demand stability are affected, 

providing practical insights for public transport operators to make informed decisions that balance cost-

effectiveness and demand retention. The government also plays a crucial role in this context. Financial 

support from governments can ensure service continuity during pandemics through subsidies, grants, or 

low-interest loans aimed at covering operational costs and maintaining service quality. Establishing 

policy frameworks to facilitate data sharing between public health authorities and PT operators can 

enable more accurate demand forecasting and responsive planning. Additionally, government 

intervention in regulating fare policies and providing guidelines for safe operations can further stabilize 

the system, ensuring that essential services remain available to the public while safeguarding the long-

term sustainability of public transport systems. 

 

Generally, when the revenue-to-expenditure ratio is greater than 30%, there is an option to either 

maintain the current level of service or reduce it to the expected level after a disaster, but not by more 

than 20%. If the revenue-to-expenditure ratio is relatively low, then action should be taken promptly to 

mitigate damage by reducing the level of service. By combining practical insights with policy 

recommendations, this chapter underscores the importance of a coordinated approach to managing 

public transportation during crises, ensuring both resilience and sustainability. 

 

8.2    Contribution to existing knowledge 

Firstly, we demonstrate the potential of using mobile spatial statistics to study station demand 

dynamics during events such as the COVID-19 pandemic. Mobile spatial statistics provide a broader 

source of information for analyzing dynamic demand for various activities, especially during disasters. 
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We propose the concept of “station vitality” as a comprehensive indicator for measuring and analyzing 

changes in station dynamics during COVID-19 outbreaks. Unlike previous analyses using other 

datasets (e.g., smart card data), “station vitality” encompasses a wide range of factors such as passenger 

flow, commercial activity, accessibility, and overall functionality. This new metric helps provide a 

more complete picture of station usage and its fluctuations during a crisis, offering a valuable tool for 

future transportation research and planning. 

 

Secondly, recognizing the far-reaching and potentially long-lasting impacts of pandemics, we address 

the lack of a framework for assessing the effectiveness of transportation policies in increasing urban 

resilience during pandemics. To fill this gap, we conducted a comprehensive literature review and 

developed the Governance-Transportation-Mobility-Resilience (GTMR) framework. This framework 

offers a structured methodology for assessing and enhancing the resilience of PT systems, guiding 

policymakers and operators in developing effective strategies to withstand and recover from future 

crises. By providing a systematic approach to evaluating policy impacts, the GTMR framework can 

help in making informed decisions that improve both immediate responses and long-term resilience. 

 

Thirdly, we apply methods including clustering algorithms, multiple regression analysis, and deep 

learning models (e.g., LSTM) to study the impact of COVID-19 on public transportation. By utilizing 

these methods, this research provides nuanced insights into short-, medium-, and long-term changes 

in public transportation demand, enriching the existing literature with reliable data-driven findings. 

We categorize Japan's major train stations into five different clusters based on the proportion of vitality 

lost during the COVID-19 pandemic, identifying key factors that influence the classification of stations 

into different clusters. Trade-offs between station positioning and function can affect their resilience 

during a disaster: stations with high traffic volumes require more road and rail space, which can 

compress other types of land use in the station area, reducing station vitality significantly once trips 

are canceled. Conversely, stations with lower overall traffic volumes tend to have more residential and 

commercial land uses, factors that increase station robustness. This categorization provides valuable 

insights into the variability of station responses and helps tailor specific interventions to different 

station types. Although infrastructure changes cannot be made quickly, the study highlights that 

diverse land-use around stations appears to increase resilience, emphasizing the importance of strategic 

urban planning. 

 



102 

Fourthly, we provide empirical evidence on the trade-offs between service quality and operational 

constraints in the context of the COVID-19 pandemic. We highlight the delicate balance that public 

transport operators must maintain between reducing operating costs and ensuring service quality to 

maintain passenger demand. By synthesizing findings from various analytical approaches, we offer 

practical insights and recommendations for public transport operators and policymakers. These 

insights are essential for shaping future public transportation policies, ensuring resilience, and 

maintaining the sustainability of public transportation systems in the face of ongoing and future 

disruptions. The evidence presented underscores the importance of strategic flexibility and the need 

for robust planning to navigate the uncertainties of future crises. 

 

8.3    Future research directions 

While this dissertation comprehensively analyzes the impact of the COVID-19 pandemic on the public 

transportation system, there are still several areas for further research. Future studies can expand in the 

following directions to deepen our understanding of public transportation and improve its resilience: 

 

1) Strengthening the concept of station vitality and expanding the scope of the research with data 

 

In this research, the vitality data we applied contain both demographic and origin information. 

However, these vitality data also include socio-demographic information, such as age and gender, 

which were not fully utilized. This can be used for profiling to reflect the characteristics of station 

users. Combining vitality data with survey data from operators, stores, and other businesses, as well 

as economic loss reports (since these are also based on station vitality), allows us to make a more 

detailed distinction between travelers and general station vitality. This helps us explore the impact of 

the COVID-19 pandemic on the station's own businesses, such as restaurants and shopping. 

 

At the micro level, our current data collection uses a 500 x 500 meter grid to ensure uniformity of scale. 

If data is available for smaller grid areas, it would help to better capture the actual presence at the 

station. We also regret that the data usually don't have the same scope; for example, population and 

residence data are collected by ward, while vitality is collected by grid and cannot be smaller due to 

data collection limitations. Comparing the vitality of stations in different cities from other countries 

can provide a more complete picture of the resilience and adaptability of public transportation systems. 
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2) Optimizing data analysis methods 

 

As we learn from Chapter 6, predicting station vitality resilience at an early stage shows ARIMAX to 

be preferable despite its limitations. An LSTM with a shorter learning period is more suitable for 

stations in Clusters 4 and 5, which have repetitive patterns during loss and recovery periods. 

Combining traditional statistical models with machine learning methods, such as the LSTM-X method 

that integrates exogenous variables with the LSTM model, could improve the accuracy and robustness 

of demand forecasts. Additionally, more factors that vary over time and are highly correlated with the 

epidemic need to be collected. 

 

3) Wider application of the resilience framework 

 

The application of the resilience framework presented in Chapter 3 is critical to deepening our 

understanding of urban resilience in the context of pandemics. This framework provides a global 

perspective that guides the work of this dissertation in terms of data analysis, forecasting, and 

operational strategies. 

 

Using the scenario of major railway stations in Japan during the COVID-19 pandemic as an example, 

the research highlights the importance of both policy-level interventions and operational responses. 

Short-term policies such as border closures, remote work, and school closures are effective in cutting 

off virus transmission. However, the sensitivity and responsiveness of public transportation operations 

need to be improved, rather than passively waiting for negative feedback from mobility (M) data. 

Strengthening the synergy between governance (G) and operational (T) layers is crucial, as these 

directly impact resilience (R) in the transportation sector. Reactive approaches, as noted in the case 

studies in Chapter 7, are less efficient compared to proactive adjustments. 

 

The framework can be adapted and tested in other transportation contexts, such as bus networks, ferry 

services, and air travel. Each mode of transportation has unique characteristics and operational 

challenges, and applying the resilience framework across these contexts will provide valuable guidance 

in enhancing their robustness against future disruptions. Developing disaster-specific resilience key 
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performance indicators (KPIs) and using the framework for scenario planning will help public 

transportation operators and decision-makers prepare for a range of possible future disruptions. 

 

By pursuing these research directions, future studies can build on this dissertation and contribute to 

the development of more resilient, efficient, and sustainable public transportation systems worldwide. 
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