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Abstract

Formal concept analysis (FCA) is a technique for knowledge extraction from formal contexts
consisting of binary relations of a group of objects and their attributes. The extracted
knowledge is in the form of formal concepts, which represent strongly related groups objects
and their attributes. All extracted knowledge can be organized into a concept lattice by their
conceptual hierarchical relations. FCA has found practical applications in various fields in
data mining and knowledge processing.

Besides the basic applications, FCA can also be applied to machine learning tasks by
integrating it with a machine learning method. A machine learning task is the task that
predicts the properties of the unseen part of some data based on the observed part of the data.
Various studies have shown that the integration of FCA can contribute to better performance,
thanks to the latent information within the formal concepts and the concept lattice.

The method integrating FCA and a machine learning method can be roughly divided
into two groups. One being FCA4RML, which integrates FCA with a rule-based machine
learning (RML) method, and the other one is FCA4SML, which integrates FCA with a
statistical machine learning (SML) method. Studies have proven that SML methods have
better capability to capture the information within the data and make generalizations. It has
also been proven that concept lattices contain important information which is helpful for
various machine learning tasks. Hence, we consider it is of high values to integrate FCA with
an SML method and expect the integrated method to have a very high performance. However,
in the recent five years, only two FCA4SML methods have been proposed. Although both
methods have initially shown good performance, we consider that these methods are still in
the early stage of development because these are outperformed by state-of-the-art methods
by a large margin.

In order to follow up their research and seek for new breakthroughs in FCA4SML, in this
thesis, we present three issues causing it difficult to develop such an FCA4SML method, and
propose four solutions dealing with these issues. The issues and our proposed solutions are
listed as follows.

First, the FCA process itself requires much running time. In such a long time, some fast
SML methods can already give the final output of a high performance, while an FCA4SML
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method still need to post-process these extracted formal concepts. To solve this issue, we
propose a fast algorithm for FCA and its natural three-dimensional extension, triadic concept
analysis (TCA). Experimental results have shown that the method is three times faster than
previous methods in dense contexts.

Second, the size of the concept lattice is usually too large to be processed by an SML
method. To solve this issue, we propose two solutions applying different strategies. We
first propose a generally-applicable reliable method to reduce the concept lattice without
excessively changing the content of the context and the concept lattice. We then propose a
task-specified FCA4SML framework which can utilize the information provided by FCA
without directly processing the full concept lattice with the SML method.

Third, there are two types of information in the concept lattice – the relations of ob-
jects/attributes within formal concepts and the conceptual hierarchy of concepts, making it
hard to develop a method which can efficiently capture both types of information in order
to make full use of FCA. To solve this issue, we develop an FCA4SML framework called
BERT4FCA, which uses a BERT-like Transformer encoder network to fully capture both
types of information. Experimental results have shown that our method can indeed capture
the information and capturing the information indeed contributes to a high performance.

Among the four methods we propose in the thesis, two of these are general improvement
to FCA, and the other two methods are counted as the most high-performance methods in
the machine learning tasks of link prediction and hyper-link prediction on bipartite networks.
Hence, we believe the methods we propose will not only contribute to research on FCA4SML,
but also open up new possibilities to the research on FCA itself and all related machine
learning tasks studied in this thesis.
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Chapter 1

Introduction

1.1 General information on our contribution

Formal concept analysis (FCA) is a method for extracting and analyzing closed relations
called formal concepts from a formal context consisting of a collection of objects and their
attributes. FCA was first proposed by Ganter and Wille in the 1980s [112] in order to
find a real-world application for the abstract lattice structure studied in mathematical order
theory [21, 113]. Over the years, FCA has then found its applications in various practical
fields including text mining [17, 59], software engineering [11, 14, 30, 80], and medical and
biological ontology engineering [31, 67, 82, 111]. Currently, FCA has become one of the
most important topics in the field of data mining and knowledge processing [92, 93, 95].

The input of FCA is a relational data table called a formal context, which represents
the binary relations of two groups of variables called objects and attributes. In Fig. 1.1,
we show a sample formal context in the form of a cross table 1. In the table, each row
represents an object and each column represents an attribute. In this specific example, the
objects are the diseases, and the attributes are the symptoms of the diseases. Each cross
in the table indicates that a binary relation holds between the object and the attribute. In
this specific example, it means a person affected by the corresponding disease will show
the corresponding symptom. Given such a formal context, the goal of FCA is to extract
formal concepts, defined as maximal subsets of objects and the corresponding maximal
attributes they share in common. Based on the definition, in the cross table, the formal
concepts may be represented by maximal rectangular boxes filled with crosses with the
rows and columns of the table permutable. For example, the formal concept represented by
the shaded rectangular box in the aforementioned table means that the maximal group of

1The content of this table does not assure real-world accuracy.
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diseases having the symptoms of dry cough, fatigue, and fever includes flu and Covid-19,
and the maximal group of symptoms that both flu and Covid-19 have includes dry cough,
fatigue, and fever. Such a formal concept is considered to represent a closed related group of
objects and attributes, where “closed” means the relation breaks when either a new object or
a new attribute is inserted into the group. For example, the aforementioned formal concept
represents the closed relation of two diseases, flu, Covid-19 and three symptoms, dry cough,
fatigue, and fever. If a new disease is inserted into the group, the three symptoms in the group
will not be possessed by all diseases in the group, and thus the relation breaks; similarly, if a
new symptom is added to the group, the two diseases will not have all symptoms in the group
and thus the relation no longer holds. Such closed relation is considered to be an important
form of knowledge, especially in the field of ontology and taxonomy engineering [113].

Fig. 1.1 A sample formal context of symptoms of some diseases.

In the left panel of Fig. 1.2, we show another disease-symptom formal context. In this
context, for convenience, the names of diseases are replaced with symbols g1,g2, · · · ,g8, and
the names of symptoms are replaced with symbols m1,m2, · · · ,m5. With such symbolized
names, we can conveniently represent a formal concept with a pair of sets. For example,
the shaded rectangular box in the cross table of the aforementioned sample context can be
represented by ({g2,g3}, {m1,m2,m3}). From the sample context, we can extract in total 13
concepts. If we list them out, we may find some of these concepts have a conceptual hier-
archical relation. For example, in the context, we can extract another concept ({g1,g2,g3},
{m2,m3}). Compared to the aforementioned concept ({g2,g3}, {m1,m2,m3}), this concept
has one more attribute m1, but lacks one object g1. In the specific example where objects
represent diseases and attributes represent symptoms, the relation between two concepts will
mean that “if we add Symptom m1 into the group, the maximal group of diseases having
all symptoms in the group will reduce from Diseases g1,g2 and g3 to Diseases g2 and g3”.
Such hierarchical relations of concepts are also considered important because they represent
the “levels” of the knowledge [21, 113]. To show these hierarchical relations better, we may
organize the concepts into a concept lattice, which can be figuralized into a line diagram
as is shown in the right panel of Fig. 1.2. Note that this diagram is shown in a minimally
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annotated form. A fully annotated version of the diagram where every node is annotated
with its corresponding concept is shown in Fig. 1.3. The instructions on how to read the
minimally annotated version of the diagram will be later introduced in Section 1.2. In this
thesis, we prefer to use the minimally annotated form in order to keep it concise.

Fig. 1.2 Left: A sample formal context of symptoms of some diseases in an abstract form.
Right: The concept lattice corresponding to the context in the left panel. The concept lattice
is shown in the form of a line diagram. Please refer to Section 1.2 for how to read the diagram.
The fully annotated form of the diagram is shown in Fig. 1.3.

Sometimes in our real-world life, we may deal with relations among more than two
groups of variables. In this case, we can generalize FCA to a high-dimensional version.
For example, if we add another group of variables conditions in addition to the objects
and attributes, we may extend the formal context into its three-dimensional variation called
a triadic formal context or shortly triadic context. In Fig. 1.4, we show a sample triadic
context demonstrating the symptoms of a group of diseases with different levels of severity 2.
In this example, a cross should represent that a person affected with a disease with the
corresponding level of severity has the corresponding symptom. For example, Given such
a triadic concept, we can extract the three-dimensional version of formal concepts, called
triadic concepts, which are defined as those maximal cubic rectangular boxes filled with

2The content of this table does not assure real-world accuracy.



4 Introduction

Fig. 1.3 The fully annotated diagram of the concept lattice corresponding to the context in
the left panel of Fig. 1.2.

crosses with the rows, columns, and aisles3 permutable. For example, the triadic concept
represented by the shaded cubic box in the table means that the maximal group of diseases
that have the symptoms of fatigue at both the mild level and the severe level includes cold,
flu, and Covid-19. The task of extracting triadic concepts from triadic contexts is named
triadic concept analysis (TCA), which is considered the natural generalization of FCA and
has become an important sub-topic in the general field of FCA [64]. Note that, unlike the
case in the basic two-dimensional FCA, the collection of all triadic concepts from a formal
context cannot be organized into a mathematical lattice structure, so the research on TCA
mainly focuses on extracting the triadic concepts, instead of extracting and organizing them.
Certainly, we may further generalize TCA into a higher-dimensional version called polyadic
concept analysis [8, 108].

In the early times, FCA was mainly usually used for knowledge representation and data
visualization because the formal concepts were considered to be a form of representing the
real-world knowledge [21, 37, 112, 113]. Starting from the 1990s, researchers noticed that
the formal concepts and their hierarchical orders actually contain more latent information, so
they started to apply FCA to data mining and knowledge discovery tasks [11, 46, 92, 93, 95],
aiming at extracting useful information from the data, i.e., formal contexts. Researchers
then found that the extracted information may be further processed to fulfill more complex
downstream tasks, so they started to apply FCA to more complex machine learning tasks,
aiming at inferring the unseen part of the data or predicting the unobserved knowledge

3The aisles refers to the one-dimensional section of a cubic matrix orthogonal to both rows and columns.
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Fig. 1.4 A sample triadic context of symptoms of some diseases with different levels of
severity.

from the observed part of the data [9, 34, 36, 93, 121]. Especially note that the FCA process
itself can only extract formal concepts and construct concept lattices. To generate predictive
functions, the constructed concept lattices still need to be further processed by other methods.
The method used for post-processing the concept lattices is usually a rule-based machine
learning (RML) method, which gives predictions to the unseen part or features of the data
with rules determined by human experts. For example, in [121], the authors applied the
following rule for predicting new object-attribute relations in the formal context. For two
concepts overlapping with each other, if the ratio of the overlapped part exceeds a predefined
threshold, they are considered parts of the same large formal concept, so all the missing
relations in the non-overlapped part a.k.a. the structure hole [63] are predicted as new
relations. We use the term FCA4RML methods for referring to the methods for solving
machine learning tasks by integrating FCA with an RML method.

With the rapid development of machine learning theory, newly developed statistical
machine learning (SML) methods have soon outperformed most RML methods [68, 119],
including FCA4RML methods [28, 69]. Unlike RML methods, an SML method does not
use human experts’ pre-determined rules to give predictions. Instead, it assumes that the
data follow some form of predictive function, and then uses statistical inference methods
to estimate the parameters of the function [68]. Thanks to the rapid increase of computing
power, the number of parameters used in the predictive functions of SML methods has grown
sharply in the past ten years, making these methods have far better capabilities in fitting the
observed part of the data and generalizing to the unseen part [68, 119]. Hence, generally,
SML methods have far better performance than RML methods [68, 119]. Based on the
fact that FCA4RML methods have integrated FCA to boost the performance of the RML
method, we have naturally come up with the idea to integrate FCA with better-performing
SML methods. We name these integrated methods FCA4SML method and expect them
to have better performance than the SML methods without integration of FCA because
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the concept lattice is a more well-structuralized form of data compared to the raw formal
context, and previous research has shown that SML methods can capture features from such
well-structuralized data more easily than raw data [13, 73, 101, 110].

Despite that FCA4SML methods are expected to have a good performance, till now, very
few FCA4SML methods have been worked out. To the furthest of our knowledge, except the
work of the author of this thesis, only two FCA4SML methods have been proposed in the
past five years.

• In [28], the authors proposed object2vec which aims to embed objects into vectors using
the information from the formal concepts. It has two embedding models, object2vec-
CBoW and object2vec-SG, both are derived from Word2Vec [75, 76]. Object2vec-
CBoW, based on the continuous-bag-of-words model from Word2Vec, predicts a target
object using objects around it within the same concept; object2vec-SG, based on the
skip-gram model from Word2Vec, uses an object to predict other objects in the same
concept. They conducted experiments on the task of predicting new co-authorship in
an author-publication network and demonstrated good performance.

• In [69], the authors proposed another embedding method called Bag of Attributes
(BoA). Their method trains a more complicated embedding model using Bidirectional
Long Short-Term Memory (Bi-LSTM) [39] and Variational Autoencoder (VAE) [53]
on formal contexts. They conducted experiments on the same task as the previous
research, and the results are similar to those obtained with object2vec.

We found these two methods interesting because they have shown the possibility of
working out an FCA4SML method. Moreover, their performances are already far better
than FCA4RML methods and approach some classic non-FCA-based SML methods like
node2vec, which have initially proven the great value of integrating FCA with SML. However,
these methods are still far from practically applicable because their performances in the
tasks studied in these two works are still outperformed by state-of-the-art SML methods by a
large margin [45, 72]. We have summarized three points that make it difficult to develop a
practically applicable FCA4SML method.

• The time complexity of FCA itself, i.e., the process that extracts all formal concepts,
is high. Extracting all concepts from a medium-sized context may cost several hours.
In such a long time, some fast SML methods can already give the final output of a
high performance, while an FCA4SML method still needs post-processing to these
extracted formal concepts.

• The volume of formal concepts to be post-processed is extremely large. SML methods
usually work in an iterative optimization mode, which needs to process the data for
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multiple epochs. Hence, a small increase to the input data will result in a large increase
in running time.

• The information within the concept lattice is complicated. There are two types of
information within a concept lattice – the relations between objects/attributes within
a formal concept, and the order relations between formal concepts. It is difficult to
design a mechanism that can effectively capture both types of information to make full
use of FCA.

Aiming at solving these issues and bringing new possibilities to the studies of FCA4SML
methods, in this thesis, we will propose the following four solutions, each of which will be
introduced in a separate chapter.

• To solve the first issue, we propose Z-TCA, a fast algorithm for FCA and TCA, a.k.a.,
the three-dimensional natural extension of FCA. The algorithm utilizes a special data
structure zero-suppressed decision diagrams (ZDD) to speed up the set operations. We
conducted experiments and the results have shown that our algorithm is about three
times as fast as previous methods in denser contexts.

• For the second issue, we propose the following two solutions.

– We propose a method for reducing the number of objects as well as formal
concepts by adjusting the data using integer linear programming. Compared to
previous methods, our method is more reliable thanks to its ability to prevent the
context and the concept lattice from being modified too much. Such reliability
is especially important for FCA4SML methods because the SML process relies
strongly on the input data to fit the weights in the predictive model, so unreliable
input data will have a significant negative influence on the performance.

– We propose an FCA4SML method that avoids direct post-processing extracted
formal concepts using SML methods. Instead, our method first uses a rule-based
process called negative sample selection to post-process the extracted formal
concepts to initialize the training samples for the SML process. Then, our method
applies the SML process to train a model using the samples generated with the
help of FCA. We apply this method to a practical bipartite link prediction task and
the experimental results have shown that the special process of negative sample
selection contributes to better performance, showing the possibility to utilize the
information provided by FCA without direct post-processing extracted formal
concepts using SML methods.
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• For the third issue, we propose an FCA4SML method integrating FCA and BERT [24,
29], a framework that utilizes a stacked Transformer encoder [107] network to train
large language models. We found that the input BERT takes is very similar to the
formal concepts, so we modified the network structure of BERT, making it capable
of efficiently capturing both types of information from concept lattices. We apply
this method to two practical tasks on bipartite networks, and the experimental results
have shown that our method has a high performance. We have also conducted ablation
experiments to show that our method has indeed captured both types of information in
the concept lattice, and the information has indeed contributed to the good performance
of the method. Note that this is a co-work by Siqi Peng, the author of this thesis,
and another researcher Hongyuan Yang. The contributions of two co-authors will be
presented in Section 5.1.

The rest part of this thesis is organized as follows. In the rest part of Chapter 1, we are
going to introduce the preliminary knowledge of FCA and its natural extension TCA. In
Chapters 2 to 5, we are going to introduce each of our contributions in a separate chapter. In
Chapter 6, we will draw the conclusions of our contributions and discuss our future work.
Finally in the appendix, we are to give a running example of the algorithm we are to introduce
in Chapter 3, so that the readers can understand it better.

1.2 Mathematical basics of formal concept analysis (FCA)

In this section, we introduce the mathematical preliminaries of the basic form of FCA.
FCA takes formal contexts as input. A formal context is defined as follows.

Definition 1. A formal context is a triple K := (G,M,Y ), where G is a set of objects, M is a
set of attributes, and Y ⊆ G×M is a binary relation called incidence that expresses which
object has which attribute. We write gY m or (g,m) ∈ Y to express that the object g ∈ G has
the attribute m ∈M.

Formal contexts are illustrated in cross tables, as exemplified in the left of Fig. 1.2,
where rows correspond to objects and columns to attributes, and a cell is marked with a
cross if the object in its row has the attribute in its column. In the context shown in the left
panel of Fig. 1.2, the marked cell represents that the object listed in the row possesses the
corresponding attribute in the column.

From the formal context, FCA aims to extract formal concepts. They are defined as
below.
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Definition 2. In a formal context K= (G,M,Y ), for subsets of objects and attributes A⊆ G
and B ⊆ M, (A,B) is called a formal concept if ∀(A1,B1) such that A ⊆ A1 ⊆ G and
B⊆ B1 ⊆M, A1×B1 ⊆ Y is satisfied if and only if A = A1 and B = B1.

Definition 3. In a formal concept (A,B), A is defined as the extent of the concept, and B is
defined as the intent of the concept. A and B may also be directly called an extent and an
intent, correspondingly.

In the cross-table form of a formal context, a formal concept can be represented with
a maximal rectangular box filled up with crosses. For example, the formal concept cor-
responding to the shaded rectangle in the context shown in the left panel of Fig. 1.2 is
({g2,g3},{m1,m2,m3}).

An important feature of formal concepts is that one can generate a formal concept from a
subset of attributes or objects, with derivation operators.

Definition 4. Given a formal context K= (G,M,Y ), an object set A1 and an attribute set A2,
the derivation operators A(2)

1 and A(1)
2 is defined as below:

A(2)
1 = {a2 | ∀a1 ∈ A1, (a1,a2) ∈ Y},

A(1)
2 = {a1 | ∀a2 ∈ A2, (a1,a2) ∈ Y}.

Given an attribute subset X ⊆M, one can generate a formal concept (X (1),X (1)(2)), where
X (1)(2) means the combination of two derivation operators, i.e., (X (1))(2). For example, in
the formal context shown in the left panel of Fig. 1.2, suppose we start from the attribute set
X = {m2,m3}, we may first generate X (1), that is, all diseases that have Symptoms m2 and
m3, which would be {g1,g2,g3}. Then, we are to compute X (1)(2), that is, the symptoms that
Diseases {g1,g2,g3} all have, and this would be {m2,m3}. Now we get the formal concept
({g1,g2,g3},{m2,m3}). Most algorithms for FCA use this derivation operator for generating
new concepts or checking whether a tuple is a concept [37, 112].

After all concepts are extracted, we can organize them into a mathematical lattice structure
called concept lattice. It is defined as follows.

Definition 5. Given a context K= (G,M,Y ), the concept lattice of context K, denoted by
B(K), is the structure that organizes the set of all concepts extracted from context K with the
hierarchical order ≤. For two concepts (A1,B1) and (A2,B2), we write (A1,B1)≤ (A2,B2)

if A1 ⊆ A2 (which mutually implies B2 ⊆ B1). In such a case, (A1,B1) is called an infimum
of (A2,B2) and (A2,B2) is called a supremum4 of (A1,B1).

4The plural form of infimum is infima. The plural form of supremum is suprema.



10 Introduction

Concept lattices are usually figuralized with line diagrams. For example, the line diagram
shown in the right panel of Fig. 1.2 represents the concept lattice of the context represented
in the left panel of the same figure. In the diagram, nodes represent formal concepts and
lines represent hierarchical orders. Each node in the diagram can be marked with at most two
labels – the label marked above the node is called the upper label, and that marked below the
node is called the lower label. The upper label of a node should always be a set of attributes,
and the lower label of a node should always be a set of objects. If a node does not have an
upper/lower label, its upper/lower label is considered to be /0. For each node, say node X in
the diagram, suppose that the upper labels of the nodes on the path from the top-most node
to node X (including the top-most node and node X) are M1,M2,M3, · · · ,Mx, and the lower
labels of the nodes on the path from the bottom-most node to node X (including the bottom-
most node and node X) are G1,G2,G3, · · · ,Gy. Then, the formal concept corresponding to
node X is (G1∪G2∪ . . .∪Gy, M1∪M2∪ . . .∪Mx).

A special case of the order relation is the neighboring relation, which is defined as
follows.

Definition 6. In a concept lattice B(K), for two concepts (A1,B1) and (A2,B2) such that
(A1,B1) < (A2,B2), (A1,B1) is defined to be the lower neighbor of (A2,B2) if ∄(A3,B3) ∈
B(K) such that (A1,B1) < (A3,B3) < (A2,B2). In this case, (A2,B2) is dually called the
upper neighbor of (A1,B1) or we may also directly say that (A1,B1) and (A2,B2) are
neighbors or that they have the neighboring relation.

In the line diagram representation of a concept lattice, if two concepts are neighbors, they
will be shown as literally “neighbors”, that is, the node corresponding to the concepts will be
directly connected by a line.

1.3 Mathematical basics of triadic concept analysis (TCA)

As introduced in the previous subsection, FCA deals with binary relations of two groups of
elements – the objects and the attributes. In the real world, however, sometimes we may need
to deal with ternary relations of three groups of elements. In such case, we can naturally
generalize the theory of FCA into a three-dimensional version, triadic concept analysis
(TCA).

When we discuss about TCA, the terms related to the basic form of FCA may be
emphasized with “dyadic”. For example, the dyadic formal context means the basic binary
relational formal context.

TCA deals with triadic formal contexts, the three-dimensional version of formal contexts.
They are defined as follows.
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Definition 7. A triadic formal context, shortly triadic context is a quadruple (G,M,B,Y )
where G,M,B are sets and Y is a set of ternary relations between G,M,B, i.e., Y ⊆G×M×B.
Mathematically G,M, and B are homogeneous, each of them often being referred to as a
component or a dimension of the context; in practice, however, G,M, and B are often
considered as the set of objects, attributes, and conditions, and a ternary relation (g,m,b) ∈
Y means object g has attribute m under the condition b.

Triadic context should be represented by “cubic” cross tables. Since it is difficult to draw
a real cubic table, practically, the depth of the table is usually flattened. A sample cross
table representation of a triadic context with the names of objects, attributes, and conditions
represented by symbols and the depths of the table flattened is shown in 1.5.

Fig. 1.5 A sample triadic context of symptoms of some diseases at different stages.

From a triadic context, TCA aims at extracting triadic formal concepts, which are defined
as follows:

Definition 8. A triadic formal concept, shortly triadic concept of a triadic context (G,M,B,Y )
is a triple (A1,A2,A3) where A1⊆G,A2⊆M,A3⊆B and the triple is maximal with respect to
dimension-wise set inclusions. That is, A1×A2×A3 ⊆ Y and for all X1 ⊇ A1,X2 ⊇ A2,X3 ⊇
A3 such that X1×X2×X3 ⊆ Y , we should always have X1 = A1,X2 = A2 and X3 = A3

satisfied.

Definition 9. In a triadic concept (A1,A2,A3), the three sets A1, A2, and A3 are called the
components of the concept. Specifically, A1 is called the extent, A2 is called the intent, and
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A3 is called the modus5 of the concept. A1,A2 and A3 may be also directly called an extent,
an intent, and a modus, respectively.

If we represent the triadic context with a three-dimensional cross table, a triadic concept
can be represented with a maximal cube-box filled up with crosses, just as shown in Fig. 1.5.

We can use derivation operators to generate a triadic concept from a subset of a dimen-
sion.

Definition 10. Given a triadic context K = (K1,K2,K3,Y ). For X ⊆ K1 and Z ⊆ K2×K3

and i, j,k ∈ {1,2,3}, i ̸= j ̸= k and j < k, the i-derivation of X and Z, denoted as X (i), Z(i)

respectively, are defined to be:

X (i) = {(a j,ak) ∈ K j×Kk | ∀ai ∈ X , (ai,a j,ak) ∈ Y},
Z(i) = {ai ∈ Ki | ∀(a j,ak) ∈ Z, (ai,a j,ak) ∈ Y}.

These operators also yield the derivation operators of the context. For a triadic context
K = (K1,K2,K3,Y ) and i, j,k ∈ {1,2,3} satisfying i ̸= j ̸= k and j < k, the i-derivation of
context K, denoted as K(i), is defined as:

K(i) = (Ki,K j×Kk,{(ai,(a j,ak)) | (ai,a j,ak) ∈ Y}).

Especially note that neither X (i) nor Z need to be a cartesian product of a B j ⊆ K j and
Bk ⊆ Xk. For example, in the context shown in Table 1.4, let X = {g4} and we should
have X (1) = {({b1,m1},{b1,m4}),({b2,m2}),({b2,m4})}, i.e., a set of all (a2,a3) pairs
satisfying that Disease g4 has Symptom a2 in Stage a3. Clearly, this can not be represented
by a cartesian product of an attribute set B2 and a condition set B3 because the symptoms
of the disease in different stages are different. Hence, unlike the basic FCA case, these two
derivation operators are NOT enough to generate a triadic concept.

To generate a triadic concept, we still need the following two derivation operators, denoted
as X (i, j,Ak)

i and X (i, j,Ak)
j , where Xi ∈ Ki,X j ∈ K j and Ak ∈ Kk for i, j,k ∈ {1,2,3}, i ̸= j ̸= k

and j < k:
X (i, j,Ak)

i = {a j ∈ K j | ∀(ai,ak) ∈ Xi×Ak, (ai,a j,ak) ∈ Y},

X (i, j,Ak)
j = {ai ∈ Ki | ∀(a j,ak) ∈ X j×Ak, (ai,a j,ak) ∈ Y}.

These two operators also yield the derivation operators of the context:

Ki, j
Ak

= (Ki,K j,{(ai,a j) | ∀ak ∈ Ak, (ai,a j,ak) ∈ Y}).

5The plural form of modus is modi.
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With all these operators, we are finally able to generate a triadic concept from subsets of
dimensions. For example, suppose we have X1 ⊆ K1 and A3 ⊆ K3, we can generate a triadic
concept with the following Gen(·) formula:

Gen(X1,A3) = (X (1,2,A3)(1,2,A3)
1 ,X (1,2,A3)

1 ,(X (1,2,A3)(1,2,A3)
1 ×X (1,2,A3)

1 )(3)).

Note that (X (1,2,A3)(1,2,A3)
1 ,X (1,2,A3)

1 ) is a dyadic concept on the context K1,2
A3

. Hence, the

general idea of such a generation is to find a dyadic concept on K1,2
A3

with X1 in its extent
and extend it to a triadic concept using the 3-derivation operator. For example, if we start
from an object subset X1 = {g2,g3} and a condition set A3 = {b2} from the sample context
in Fig. 1.5. We first compute X (1,2,A3)

1 , that is, the symptoms that Diseases g2 and g3 both
have in Stage b2, which should be {m1,m4}. Then, we compute X (1,2,A3)(1,2,A3)

1 , that is, all
diseases having these symptoms in Stage b1, which should be {g2,g3}. Now we get a dyadic
concept ({g2,g3},{m1,m4}) on K1,2

A3
, which is the dyadic context representing the symptoms

of all diseases in Stage b2. Finally, we are to extend this dyadic concept into a triadic concept
by computing (X (1,2,A3)(1,2,A3)

1 ×X (1,2,A3)
1 )(3), that is, the stages during which both Diseases

g2 and g3 have such symptoms, which would be {b1,b2}. After all these steps, we get the
triadic concept represented with the shaded rectangular boxes in Fig. 1.4, that is, ({g2,g3},
{m1,m4}, {b1,b2}).

Unlike the basic FCA case, all triadic concepts extracted from a triadic context CANNOT
be organized into a mathematical lattice. Although there have been trials to organize them
into other structures called a tri-lattice [64], the structure is seldomly studied and discussed
in successive research on TCA [48, 57, 85]. Hence, in this thesis, we will not give further
introductions to this structure. More details on this structure can be found in [64].





Chapter 2

Fast algorithm for FCA and TCA using
zero-suppressed decision diagrams

2.1 Introduction

In this chapter, we propose a fast algorithm called Z-TCA for both FCA and its three-
dimensional extension, TCA. This algorithm is our solution to the first issue that makes it
difficult to work out an FCA4SML method, that is, the lack of a fast algorithm for FCA and
its natural extension TCA.

Usually, when we mention “to find a faster algorithm”, we mean that to find an algorithm
with a lower time complexity. However, for FCA, the time complexity of the classic algorithm,
NextClosure, is already proven to have reached the lower bound O(|C|), where |C| is the
number of all concepts. Hence, it is impossible to develop a faster algorithm in terms of time
complexity. Similarly, it is proven that the process of TCA can be reduced to two nested
FCA processes, meaning that the complexity of TCA is restricted by that of FCA and thus,
the complexity of TCA has also reached its lower bound.

Although we cannot reduce the time complexity of FCA and TCA, it is still possible for
us to reduce their running time by a constant factor. This is usually achieved by applying
special data structures to make the specific operations in the algorithms become faster. One
of the most frequently applied data structures is the binary decision diagram (BDD) [2].
For example, the ProperIm algorithm [84] applies BDD to store and manipulate the formal
concepts, which successfully speeds up the process of FCA. The ProperIm algorithm is later
modified and adapted to TCA [85], which saves about 25% of the running time compared
to the traditional TCA algorithm, TRIAS algorithm[48]. The ZBDD-Growth algorithm [78]
applies zero-suppressed decision diagram (ZDD), an improved version of BDD, to FCA. The
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algorithm was proven to be one of the fastest FCA algorithms at the time it was proposed [78].
We consider these works interesting but still have further space for improvements for the
following two reasons. First, it is proven that ZDDs, as the improved version of BDDs, are
proven to be faster in solving combinatorial problems like FCA or TCA, so all algorithms
applying BDDs may be further improved by replacing the BDDs with ZDDs; Second, we
find a more efficient and stable way to apply ZDDs to FCA or TCA that reduces the average
number of nodes of the intermediate ZDDs, making our algorithm able to speed up the TCA
process regardless of the features of the input context. We name our algorithm as Z-TCA and
implemented several other algorithms in order to compare their efficiency. The comparison
group includes the ZDD version of the aforementioned TRIAS-BDD algorithm as well as the
TCA-adaption of another ZDD-based improved FCA algorithm, ZBDD-Growth [78]. Here
we set up all experiments for TCA because as briefly mentioned above, the TCA process
can be decomposed into two nested FCA processes. Hence, the results for TCA also reflect
their performances in FCA. The experimental results have shown that when working with
a real-world context, our Z-TCA algorithm can speed up the TCA process up to 3 times
compared to the baseline TRIAS algorithm and when working with contexts having a density
of more than 5%, our algorithm outperforms all other TCA algorithms. Furthermore, our
Z-TCA algorithm is the most stable among all three ZDD-based improved algorithms: When
the input context is relatively dense, the other two algorithms may become even slower than
the baseline TRIAS algorithm, while our algorithm can still maintain its high efficiency in
such a case.

This chapter is organized as follows. First in Section 2.2, we are to introduce the
preliminaries related to this topic, including the prototype algorithms for FCA and TCA and
the basic knowledge on ZDDs. Then in Section 2.3, we are to present our Z-TCA algorithm,
and then introduce two TCA-adaptable ZDD-based improved FCA algorithms. In section
2.4, we present the experimental results. Finally in Section 2.5, we draw a conclusion and
present our further plans on this topic.

2.2 Preliminaries

2.2.1 Prototype Algorithm for FCA

As introduced in Section 1.2, by using the derivation operators, we can generate a formal
concept from any given attribute set. Hence, we can easily derive the following prototype
algorithm for FCA.
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Algorithm 1 Prototype algorithm for FCA
Input A dyadic context K= (G,M,Y ).
Output A list of dyadic concepts extracted from K.

1: L←{( /0(1), /0(1)(2))}
2: C← /0
3: while L ̸= /0 do
4: Pick up a concept (A1,A2) ∈ L
5: T ← T ∪{(A1,A2)}
6: L← L−{(A1,A2)}
7: for All attributes m ∈M do
8: (A′1,A

′
2)← ((A2∪{m})(1),(A2∪{m})(1)(2))

9: if (A′1,A
′
2) ̸∈ T then

10: T ← T ∪{(A′1,A′2)}
11: L← L∪{(A′1,A′2)}
12: end if
13: end for
14: end while
15: Output C

It can be easily derived that the process can generate all concepts in the concept lattice
K= (G,M,Y ), because for two concepts (A1,A2) and (A3,A4) satisfying (A1,A2)< (A3,A4),
there must exist an object m ∈ A2−A4 such that (A4∪{m})(1)(2) = A2. It can also be easily
derived that only formal concepts will be put into the set L, and one concept will only enter
the set once. Hence, the complexity of this algorithm should be O(|M||G|+ |M||C|), where
|M| is the number of attributes, |G| is the number of objects, and |C| is the number of all
formal concepts. Since |C| is exponential to |M| and |N|, when |M| and |N| approach infinity,
|C| should be far larger than |M| and |N|, so the complexity can also be considered to be
O(|C|), which already reaches the lower bound of such an enumeration process.

In practical, there have been different improved FCA algorithms like LCM [105] and
NextClosure [35]. These algorithms all have the same complexity with the prototype algo-
rithm, but they are expected to be faster in small data for that their complexity have a smaller
constant factor.

2.2.2 Prototype algorithm for TCA

Unlike the dyadic case, it is impossible to generate a triadic concept from a subset of a
single dimension only. Instead, as the most straightforward idea, we may consider a nested
enumeration of X1 ⊆ K1 and A3 ⊆ K3 and use the above formula for generating triadic
concepts. However, such a process can be simplified for the following two reasons.
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• First, we claim that the full enumeration of all A3 ⊆ K3 is avoidable. Suppose A3

is not an extent on K(3). Then, according to the definition of formal concepts, we
should have another B3 ⊃ A3 such that B3 is an extent on K(3). Since A3 ⊂ B3, we
must have K1,2

A3
⊇K1,2

B3
based on the basic property of formal concepts. On the other

hand, since B3 is an extent on K(3), we must also have K1,2
A3
⊆ K1,2

B3
because for any

(x1,x2,x3) ∈Y where x3 ∈ A3, we must also have x3 ∈ B3, which is the basic feature of
an extent. In summary, we must have K1,2

A3
=K1,2

B3
. This implies that for any X1 ∈ K1,

we should have Gen(A3,X1) = Gen(B3,X1) because clearly that X (1,2,A3)
1 = X (1,2,B3)

1 .
In other words, any triadic concept generable from A3 with an arbitrary X1 ∈ K1 is also
generable from B3 with the exactly same X1. Hence, to avoid repetitive generations, it
is better to conduct a dyadic FCA process to extract all extents on K3, and only use
these extracted extents for the generation.

• Similarly, given a specific A3⊆K3, we can show that it is also unnecessary to enumerate
all X1 ∈ K1. Suppose that Gen(X1,A3) = (C1,C2,C3), then, as analyzed above, no
matter what X1 ⊆ K1 is given, (C1,C2) should always be a dyadic concept on K1,2

A3
, and

C3 can be derived from (C1,C2). This implies that instead of enumerating X1 ∈ K1 and
generating a dyadic concept from X1, we may consider directly finding out all dyadic
concepts on K1,2

A3
, that is, to conduct a dyadic FCA process on K1,2

A3
.

From the above, the TCA process can be reduced to two nested FCA processes: First, we
conduct an outer dyadic FCA process on K(3). Then, for each dyadic concept (A3,A12)

extracted from K(3), we conduct an inner FCA process on K1,2
A3

and derive the corresponding
triadic concept from each dyadic concept (X1,X2) extracted by the current inner FCA process.
It can be easily derived that the time complexity of this prototype algorithm is O(|C|+
|T |), where |T | is the number of all dyadic concepts on K(3) and |C| is the number of
triadic concepts. Since |C| is exponential to |T |, when the number of attributes and objects
approaches infinity, the time complexity of the algorithm can also be considered as O(|C|),
which also reaches the lower bound of the enumeration process. This idea was first proposed
in [57] and is now still considered the most natural working flow for TCA. To the furthest
of our knowledge, all later TCA algorithms are based on this prototype algorithm [48, 85].
A sample pseudocode for this prototype algorithm is presented as Algorithm 2 for a clearer
view of the process.

Since all TCA algorithms have such a similar working flow, in the rest of the paper, the
two nested FCA processes are called the FCA components of a TCA process, or the outer
FCA component and the inner FCA component, respectively.
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Algorithm 2 Prototype Algorithm for TCA

1: Construct K(3)

2: for All dyadic concepts (A3,A12) on K(3) do
3: Construct K1,2

A3

4: for All dyadic concepts (X1,X2) on K1,2
A3

do
5: if (X1,A2)

(3) = A3 then
6: Output triadic concept (X1,X2,A3)
7: end if
8: end for
9: end for

2.2.3 ZDD

A zero-suppressed decision diagram1 (ZDD), is a modified version of binary decision
diagram (BDD), a data structure designed for a compact representation of Boolean variables
and expressions [2]. A BDD is defined as a directed acyclic graph with various nodes
representing Boolean variables. Each node has two outward edges LO and HI, where the
LO edge represents the case when the variable corresponding to the node takes the FALSE
value and the HI edge represents the case when it takes the TRUE value. Alongside these
variable nodes, there are two terminal nodes representing TRUE and FALSE, of which there
are no outward edges. It can be easily derived that any path from the root node to a terminal
node represents a Boolean expression. Also, if we regard the truth value of a variable as the
existence of an element in a set, a BDD becomes equivalent to a family of sets. For example,
given three variables a,b and c, a Boolean expression like (a∧b∧¬c) can represent all sets
that contain a and b and do not contain c, i.e., {{a,b}}; the expression b∨c represents all sets
that contain either b or c, i.e., {{b},{c},{b,c},{a,b,c}}. Moreover, the basic operations
of set families like A∪B,A∩B, and A−B also have their equivalent Boolean operations
A∨B,A∧B and A∧¬B. This means that a BDD can be used as a fully functioning and fast
implementation of set families thanks to its compact structures [2].

However, when we use BDDs for representing sparse set families, we need a lot of nodes
for negative variables, that is, the variables not included in the sets. For example, if we have 4
variables {a,b,c,d}, to represent a set family {{a},{b},{c},{d}}, we need a long Boolean
expression (a∧¬b∧¬c∧¬d)∨(¬a∧b∧¬c∧¬d)∨(¬a∧¬b∧c∧¬d)∨(¬a∧¬b∧¬c∧d)
and this results in a relatively complicated BDD, as is shown in the middle of Figure 2.1. To
deal with such problems, zero-suppressed decision diagrams (ZDD) are introduced [77]. A

1Some publications, especially those early ones, also refer to it as a zero-suppressed binary decision diagram
or a ZBDD [77–79].
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ZDD applies a modified rule for BDD that on a path from the root node to a terminal node,
any variable not explicitly assigned with a true value will be considered false. With such a
rule, The aforementioned set family can be represented in a much more compact structure, as
is shown on the right of Figure 2.1. It is proved that when applied for manipulation of set
families, ZDDs will have a much higher efficiency compared to the original BDDs, thanks to
such a “zero-suppressed” modification [77].

Fig. 2.1 An example of a set family and its equivalent Boolean expression, its BDD represen-
tation, and ZDD representation. In the BDD and ZDD representation, the label on each node
represents its corresponding variable; the edges in solid lines are the HI edges, and the edges
in dashed lines are the LO edge; the node labeled T and F represent the TRUE node, and the
FALSE node, respectively.

Both FCA and TCA have a lot of set or set family manipulations, so it is natural to
consider applying ZDDs to improve the efficiency of FCA or TCA. There have already been
several studies on this topic, which will be explicitly discussed in the next section.

2.3 ZDD-based improved TCA algorithms

In this section, we are to introduce three different ways to apply ZDD for speeding up
the TCA process, including our original Z-TCA algorithm as well as two previous TCA-
adaptable FCA algorithms – the ZBDD-Growth algorithm and the ProperIm algorithm. The
two previous algorithms are originally proposed for FCA, while they can be easily adapted to
TCA following the procedure of the prototype algorithm for TCA introduced in Algorithm 2.
Previous research has successfully adapted the ProperIm algorithm to TCA and proved it
effective in speeding up the process [85]. However, we are to theoretically analyze that
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a direct adaption of these two improved FCA algorithms to TCA must encounter some
problems which may slow down the process in some cases. Our specially-designed Z-TCA
algorithm, however, is more stable and can keep a high efficiency in any case.

2.3.1 The proposed Z-TCA algorithm

Generally Z-TCA uses a nested NextClosure [35] algorithm as the basic framework. The
NextClosure algorithm is one of the fastest algorithms for FCA that defines a specific order
of all concepts from a concept and enumerates the concepts in that specific order. The
algorithm runs in an iteration mode. Suppose the input dyadic context is K = (G,M,Y ),
in each iteration, we process a concept (A1,A2) and try to generate its next concept in that
specific order. To generate the concept, we enumerate all attributes from m|M| to m1 in
the reverse order. Each time for mk ̸∈ A2, we generate a temporal set A3 that contains all
attributes mi from A2 where i < k, as well as mk. We generate a concept (A(1)

3 ,A(1)(2)
3 ) from

this temporal set A3 by using the derivation operators. If no attribute mi where i < k and
mi ̸∈ A2 is newly introduced into A(1)(2)

3 , then the concept (A(1)
3 ,A(1)(2)

3 ) is thought to be the
successor of (A1,A2), so now we set the concept in process to (A(1)

3 ,A(1)(2)
3 ) and start the

next iteration. We repeat the process until the concept in process has no successors to be
found. More details of this algorithm can be found in the pseudocode shown in Algorithm 3.
It is proved that the NextClosure algorithm can enumerate all concepts from the context only
once [35]. Hence, its time complexity is linear to the number of all concepts, reaching the
lower bound of the complexity of an FCA algorithm. Till now, most TCA algorithms choose
to apply the NextClosure algorithm for their FCA components [48, 57, 85].

Although the time complexity of a nested NextClosure algorithm has reached the lower
bound, it is clear that we have lots of set operations in the algorithm which can still be further
speeded up by implementing them with more efficient data structures like ZDDs, and that
would be the core idea of our Z-TCA algorithm. To achieve this, we first change the way we
store the formal context by creating in total |G|+ |M| ZDDs. Each of the former |G| ZDDs,
denoted with LGk, stores the attribute set of the object gk ∈ G. Each of the latter |M| ZDDs,
denoted with LMk, stores the set including all objects having attribute mk ∈M. Note that our
method only uses a ZDD to represent a single set instead of a set family. For a set X , we
encode it into a ZDD representing the set family {{x} | x ∈ X}. For example, if an object g1

has attributes m1,m2,m3, then we should have LG1 = {{m1},{m2},{m3}}. With such a rule,
the derivation operators can be easily implemented with ZDDs just as if we are manipulating
ordinary sets. The pseudocode for building a context and computing derivation operations in
the FCA components of the Z-TCA algorithm are presented in Algorithm 4 and Algorithm 5
respectively.
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Algorithm 3 The NextClosure Algorithm
Input A dyadic context K= (G,M,Y ).
Output A list of dyadic concepts generated from K.

1: for i← 1 to |M| do
2: Define pi←∪1≤ j<i{m j}
3: end for
4: procedure CLOSURE(M)
5: Return (M(1),M(1)(2))
6: end procedure
7: procedure FIRSTCONCEPT

8: Return CLOSURE( /0)
9: end procedure

10: procedure NEXTCONCEPT((A1,A2))
11: for i← |M| downto 1 do
12: (X1,X2)← CLOSURE(A2∩ pi∪{mi})
13: if (X2∩ pi = A2∩ pi)∧ (mi ∈ (X2−A2)) then
14: Return (X1,X2)
15: end if
16: end for
17: Return ( /0, /0)
18: end procedure
19: (A1,A2)← FIRSTCONCEPT()
20: while (A1,A2) ̸= ( /0, /0) do
21: Output (A1,A2)
22: (A1,A2)← NEXTCONCEPT(A1,A2)
23: end while

Especially note that the way we apply ZDDs to the storage of the context and the
computation of the derivation operators is completely different from the traditional way.
Traditionally, a ZDD is used for storing and manipulating a collection of sets, but in our
Z-TCA algorithm, we only use them for storing and manipulating a single set. We apply
such a different strategy mainly for the following reasons. First, using ZDDs for storing and
manipulating sets is still more efficient than traditional set implementations, so our algorithm
should be faster than algorithms using a similar nested NextClosure framework but a plain
set implementation like TRIAS [48]. This is mainly because ZDDs can share nodes used
in previous sets, as is shown in Figure 2.3, which combined with the caching mechanism
of ZDDs [77] can speed up the computation of set operations to a large extent. That is, in
most cases, we can get the operation results without traversing the whole diagrams because
the caching mechanism memorizes the results of previous ZDD operations. For more details
about this mechanism, please refer to [77]. Second, our special way of storing the contexts and
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computing the derivation operators is more efficient than the traditional way, so our Z-TCA
algorithm should also be faster than algorithms using the NextClosure framework but using
the traditional way of applying ZDDs like the TCA-adaption of ProperIm algorithm [84, 85].
As is shown in Figure 2.2 and 2.4, to compute the derivation operators, our special way of
storing and manipulating sets requires exactly the same number of operations compared
to the traditional way. However, the sizes of ZDDs using our strategy for storage would
be much smaller and as a result, our Z-TCA algorithm would be far faster. More details
about the traditional way of storage and manipulation used in the ProperIm algorithm
will be introduced later. Third, for algorithms using completely different frameworks for
FCA like the ZBDD-Growth algorithm, although it is hard to give a concrete and precise
comparison of efficiency, previous studies have shown that in FCA cases, when working
with relatively dense contexts, the sizes of intermediate ZDDs used in the ZBDD-Growth
algorithm grow sharply, making the algorithm slower than the LCM algorithm [105] using
plain set implementations [78]. Since the LCM algorithm has the same complexity as the
NextClosure algorithm [35, 105], it is expected that when the density of the context exceeds
a certain threshold, the direct TCA-adaption of the ZBDD-Growth algorithm may become
extremely slow. Our Z-TCA algorithm, however, does not have such a problem because the
sizes of ZDDs used in the algorithm are not related to the number of concepts. Last but not
least, the two aforementioned TCA-adaptable ZDD-based FCA algorithms all require extra
decoding processes other than the main procedure introduced in Algorithm 2 when adapted
to TCA. Our Z-TCA algorithm, however, does not require any extra process. In the next
section, we are going to conduct empirical studies to prove that our hypotheses above are
correct and that our Z-TCA algorithm indeed has the best overall performance.

Algorithm 4 Build the Context in the FCA components of the Z-TCA algorithm
Input A dyadic context K= (G,M,Y ).
Output A series of ZDDs {LG1,LG2, . . . ,LG|G|,LM1,LM2, . . . ,LM|M|} representing the

context.
Note All set families are implemented with ZDDs.

1: Initialize all LGk,LMk to /0 (Constant False ZDDs).
2: for all (gi,m j) ∈ Y do
3: LGi← LGi∪{{m j}}
4: LM j← LM j∪{{gi}}
5: end for
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Fig. 2.2 The process for computing O(1) and O(1)(2) where O = {b,c} on a sample dyadic
context represented with a cross table on the upper-left using the Z-TCA algorithm. The
results of O(1) and O(1)(2) are O2 and A5, correspondingly.

2.3.2 Previous TCA-adaptable ZDD-based FCA algorithms

ProperIm

This algorithm was first introduced in [84]. It also uses the NextClosure algorithm as the
framework for FCA and uses BDDs for speeding up the computation of derivation operators.
Since a ZDD is an improved version of a BDD, we can easily get a ZDD-adaption of the
original ProperIm by replacing all BDDs in the algorithm with ZDDs. In this paper, for
convenience, the ZDD-version of the ProperIm algorithm is named with ZDD-ProperIm. In
this paper, we only study and discuss the performance of the TCA adaption of ZDD-ProperIm
mainly because there is already a previous study on the adaption of the original BDD-version
of ProperIm to TCA [85].

The major difference between ZDD-ProperIm and the FCA components of our proposed
Z-TCA algorithm is that ZDD-ProperIm applies ZDDs for the storage of contexts and
manipulation of sets in a traditional way. In the algorithm, the whole dyadic context K=

(G,M,Y ) is collected into one single ZDD, that is, the whole context is converted into a
set family F that collects the attribute sets of every object. Given an attribute subset X , the
derivation operators X (1)(2) can be easily computed with ZDDs in the following procedure.
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Fig. 2.3 An example of the node usage of three ZDDs: F1 = {{1},{2},{3},{4},{5}},F2 =
{{1},{2},{3},{5}},F3 = {{1},{2},{7}}.

First, we compute X (1) with the “ONSET(F,v)” function which returns the sub-family of
F in which all sets include v. By computing the intersection of all ONSET(F,m1) for all
mi ∈ X we will get a ZDD R representing the collection of attribute sets of the objects that
have all attributes from X . For more details on how the function is implemented with ZDDs,
please refer to [77]. Then, we enumerate all m ∈M to check if it should be in the intent
X (1)(2). If ONSET(R,m) = R, then surely that m is included in all sets from R, and thus m
should be a member of X (1)(2). The pseudocode for the computations of X (1)(2) is presented
in Algorithm 6 and Algorithm 7.

Note that Algorithm 6 only returns R, a ZDD representing the family of all attribute
sets of every object in X (1). Although this is enough for the computation of X (1)(2), in case
that we want a full list of intents and extents, an extra procedure that converts R into the
corresponding object set X (1) is required. The procedure enumerates all objects g ∈ G and
checks whether its attribute set is included in the set family R. The pseudocode for the
procedure is presented in Algorithm 8.

As is analyzed previously, the way the ZDD-ProperIm algorithm manipulates sets is less
efficient than that used in the FCA components of our Z-TCA algorithm. Moreover, when
we want a full list of concepts, we need to spend extra time decoding the ZDDs returned in
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Algorithm 5 Compute B(1) and A(2) in the FCA components of Z-TCA algorithm
Input An object subset A or an attribute subset B on a dyadic context K= (G,M,Y ).
Output The results for derivation operators, Y (1) and X (2).
Note All set families are implemented with ZDDs.

1: procedure EXTENT((B))
2: ret←{{g}| g ∈ G}
3: for mi ∈ B do
4: ret← ret ∩LGi
5: end for
6: Return ret
7: end procedure
8: procedure INTENT((A))
9: ret←{{m}| m ∈M}

10: for gi ∈ A do
11: ret← ret ∩LMi
12: end for
13: Return ret
14: end procedure

Algorithm 6. Our Z-TCA algorithm, however, does not require such an extra process and
thus should have better performance.

ZBDD-Growth

The ZBDD-Growth algorithm was first proposed in [78]. This algorithm is initially designed
for the task closed item set mining [90], while it can also be used for FCA since the two tasks
are equivalent. To make it consistent with the content of this paper, here we only introduce
the algorithm in terms of FCA but not those used in the original publications.

The ZBDD-Growth algorithm uses a different framework compared to the FCA com-
ponents of our Z-TCA algorithm and the ZDD-ProperIm algorithm. It uses the FP-Growth
algorithm [42] as the framework for FCA. In the FP-Growth algorithm, we are to generate all
subsets of the attribute set satisfied by at least one object and check whether each is an intent
of a concept. The algorithm runs in a recursive depth-first search procedure. Each recursive
call is denoted as GROWTH(F), where the parameter F is a set family. The algorithm starts
from calling GROWTH(A) where A = {Si} for i = {1,2, . . . , |G|} and Si = {m | (gi,m) ∈ Y}
for gi ∈ G. That is, we start by processing the collection of attribute sets of every object.
In each recursive call GROWTH(F), we first choose an attribute k to divide F into two
groups – the group that all sets contain attribute k, denoted as F1 and the group that no set
contains k, denoted as F0. Then, we generate a set F ′1 = {S−{k} | S ∈ F1} and recursively
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Fig. 2.4 The process for computing X (1)(2) where X = {b,c} on a sample dyadic context
represented with a cross table on the upper-left using the ZDD-ProperIm algorithm.

call GROWTH(F ′1) and GROWTH(F ′1∪F0) and collect the results as R1 and R0. Clearly, for
all S ∈ R1, S∪{k} is an intent of a concept under the current status, i.e., in the context
represented by the current set family F . For a set S ∈ R0, when it also satisfies S ∈ R1

and S ̸∈ S0 for all S0 ∈ F0, that is, the set S is the subset of some sets including k but is
never a subset of any set excluding k, it should never be an intent of concepts as it im-
plies that any object having all attributes from S should also have the attribute k. Hence, it
should be pruned out from the collection of intents of concepts, and we should only return
{S∪{k} | S ∈ R1}∪ (R0−{S | S ∈ R1 and ∀S0 ∈ F0 S ̸∈ S0}) as the result for the current
call.

It can be easily discovered that the FP-Growth algorithm also has a lot of set family pa-
rameters and operations. By implementing them with ZDDs, we will get the ZBDD-Growth
algorithm. The pseudocode of the recursive procedure of the ZBDD-Growth algorithm
is presented in Algorithm 9. Note that in the pseudocode, “TOP(F)” returns the vari-
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Algorithm 6 The computation of X (1) in ZDD-ProperIm
Input X , an attribute subset of a dyadic context K= (G,M,Y ).
Output R, the collection of attribute sets of every object in X (1).
Note All set families are implemented with ZDDs.

1: procedure EXTENT(F,X)
2: R← F
3: for all m ∈ X do
4: R← ONSET(R,m)
5: end for
6: Return R
7: end procedure

Algorithm 7 The computation of X (2) in ZDD-ProperIm
Input R, the collection of attribute sets of every object in an object set X .
Output The attribute set X (2).
Note All set families are implemented with ZDDs.

1: procedure INTENT(R)
2: ret← /0
3: for all m ∈M do
4: if ONSET(R,m) = R then
5: ret← ret ∪{m}
6: end if
7: end for
8: Return ret
9: end procedure

able corresponding to the root node of F . “FACTOR0(F,v)” and “FACTOR1(F,v)” return
{S0 | S0 ∈ F and v ̸∈ S0} and {S1−{v} | S1 ∈ F and v ∈ S1} respectively. In other words,
the former function returns a ZDD representing the collection of all sets from F that exclude
v, and the latter one returns a ZDD representing the collection of all sets from F that includes
v but with the v removed. “P.PERMIT(Q)” returns a sub-family of P such that for all S ∈ P
there exists an S1 ∈ Q such that S0 ⊆ S1. For more details on how these operations are
implemented with ZDDs, please refer to [77]. Also note that since we may encounter the
same F multiple times during the recursive search procedure, a cache is used for storing
the results for past calls so that we can obtain the results immediately when a set family is
processed the second time. The cache can be easily implemented with a hash table [78].
Note that in the hash table, we only need to memorize the pointers of the root nodes of
ZDDs instead of the whole diagrams because a reduced and ordered ZDD is canonical for a
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Algorithm 8 Expand the Object Set in ZDD-ProperIm
Input R, the collection of attribute sets of every object in an object set X on a dyadic

context K= (G,M,Y ).
Output The object set X .
Note All set families are implemented with ZDDs.

1: procedure RTOOBJ(R)
2: ret← /0
3: for all g ∈ G do
4: if R∩{{m | (g,m) ∈ Y}} ̸= /0 then
5: ret← ret ∪{g}
6: end if
7: end for
8: Return ret
9: end procedure

particular set family and variable order. That is, two ZDDs sharing the exactly same root
node must be equivalent [77].

Note that after processing, all intents of the concepts are stored within a ZDD. In case we
want a list of all concepts, we still need to expand all intents stored in the ZDD and compute
their extents. The pseudocode for such a post-process is listed in Algorithm 10. When
we use the ZBDD-Growth algorithm as the FCA components for TCA, this post-process
is always required simply because the input context of the inner FCA component is built
from the intents of dyadic concepts extracted in the outer FCA, which surely costs extra
time. Furthermore, the ZBDD-Growth algorithm removes only one attribute from the context
at each recursive call, implying that when the context is relatively dense, the algorithm’s
efficiency will drop sharply. Our Z-TCA algorithm, however, does not have such problems
and thus is supposed to have a better overall performance than the direct TCA-adaption of
the ZBDD-growth algorithm.

2.4 The experiments

In this section, we are to present the experimental results of our empirical studies on the
efficiency of different TCA algorithms. The algorithms we study include the baseline TRIAS
algorithm [48], the TCA-adaption of ProperIm algorithm [84] a.k.a. the ZDD version of
TRIAS-BDD algorithm [85], the TCA-adaption of ZBDD-Growth algorithm [78] and our
proposed Z-TCA algorithm. All algorithms are implemented in C++ language. For the
algorithms using traditional sets, the sets are implemented with the set container provided
by C++ Standard Template Library (STL). For the three ZDD-based algorithms, the ZDDs
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Algorithm 9 The ZBDD-Growth Algorithm
Input A, a ZDD representing the collection of attribute sets of every object from a dyadic

context K= (G,M,Y ).
Output R, the result ZDD that collects all intents of concepts from K.
Note All set families are implemented with ZDDs.

1: procedure GROWTH(F)
2: if F = /0 or F = { /0} then
3: Return F
4: end if
5: if there is only one attribute v in F then
6: Return {v}
7: end if
8: if an entry (F,R) is found in the cache then
9: Return R

10: end if
11: v← TOP(F)
12: F0 = FACTOR0(F,v)
13: F1 = FACTOR1(F,v)
14: R1 = GROWTH(F0)
15: R0 = GROWTH(F0∪F1)
16: R←{S1∪{k} | S1 ∈ R1}∪ (R0− (R1−R1.PERMIT(F0)))
17: Push (F,R) into the cache
18: Return R
19: end procedure
20: GROWTH(A)

are implemented with SAPPOROBDD, the library developed by the author of [77]. The
algorithms are executed on an Ubuntu 18.04 system with a 2.10GHz CPU and 93GB RAM. In
the experiments, all algorithms are required to output a full list of triadic concepts, including
their extents, intents, and modi. In the rest of this section, when we mention “ZDD-ProperIm”
or “ZDD-Growth”, we always refer to their TCA-adapted versions.

2.4.1 The experiment on real-world contexts

We first conduct an experiment on a real-world context. The context is built from the Internet
Movie Database (IMDb) 2. IMDb is an online database of information related to movies,
dramas, video games, etc. From the database, we extract three groups of variables – the movie
staffs, the genres, and the decades as the object set G, the attribute set M, and the condition
set B, respectively. Then, if we find a staff g starred in or participated in the production

2Official site: https://www.imdb.com/
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Algorithm 10 Expand And Output All Concepts From the Result ZDD.
Input R, the result ZDD that collects all intents of concepts from K= (G,M,Y ).
Output The expanded list of dyadic concepts collected in R.
Note All set families are implemented with ZDDs. A(o) represents the attribute set of

object o.
1: procedure PRINT(F,T,S)
2: if F = /0 then
3: Return
4: end if
5: if F = { /0} then
6: E← /0
7: for each object o ∈M do
8: if T ∩A(o) = A(o) then
9: E← E ∪{o}

10: end if
11: end for
12: Output (E,S)
13: end if
14: v← TOP(F)
15: F0 = FACTOR0(F,v)
16: F1 = FACTOR1(F,v)
17: PRINT(F1,{S | S ∈ T and v ∈ S},S∪{v})
18: PRINT(F0,T,S)
19: end procedure
20: PRINT(R,R, /0)

of a movie categorized with genre m in the decade b, we add a ternary relation (g,m,b)
to the collection Y . For example, (WilliamK.L.Dickson,Documentary,1890) means that
William K.L. Dickson participated in the production of a documentary released in the 1890s.
Note that all staff is identified with unique IDs in the database, so there is no need to be
concerned about distinguishing staff with the same names. After such a process, we get a
triadic context with the size 4,153,510×29×17, of which there are 11,057,177 incidences.
The context has a very similar feature to the previously studied ones – it is sparse, and the
object set is much larger than the attribute and condition set. According to previous studies,
it may take longer than two weeks to conduct TCA on such a large context using the TRIAS
algorithm [48, 85]. Hence, in this experiment, we take five small sections to build five small
contexts as five test cases. The features of these test cases as well as the experimental results
for running the four algorithms are listed in Table 2.1.

From the results, we can see that in this experiment, the ZBDD-Growth algorithm
performs the best, which can run up to 8 times as fast as the TRIAS algorithm in the 5th
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Context Size Density # of concepts TRIAS Z-ProperIm Z-Growth Z-TCA
71×29×17 0.3% 69 1.0 1.0 0.1 0.3

188×29×17 0.5% 325 4.6 4.7 0.6 1.6
331×29×17 0.5% 577 9.0 9.0 1.2 3.2
646×29×17 0.5% 961 18.8 17.4 2.6 6.7

1323×29×17 0.5% 2084 71.0 63.8 9.4 26.6
Table 2.1 Running time of the algorithms on real-world contexts. All times are shown in
seconds. Z-ProperIm is for ZDD-ProperIm, Z-Growth is for ZBDD-Growth.

Density/% 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 . . . 17.5
TRIAS 3.8 9.2 14.8 24.6 42.5 63.0 95.7 136.6 . . . 2451.7

ZDD-ProperIm 4.2 9.8 15.9 27.3 50.8 77.2 127.0 198.3 . . . 13653.2
ZBDD-Growth 0.9 3.1 5.5 9.1 16.8 26.1 46.7 76.3 . . . 3262.0

Z-TCA 1.2 3.3 5.5 9.3 17.0 25.8 40.0 57.6 . . . 1180.1
Table 2.2 Running time of the algorithms on randomly-generated contexts with the same size
100×30×20 but different densities. All times are shown in seconds. Data shown in bold
fonts represent the best result for each test case.

case. Our Z-TCA algorithm can also save more than half of the running time compared to
the TRIAS algorithm. ZDD-ProperIm can speed up the process, but can only save about 10%
of the running time. Since the density of the whole context is almost the same as all five
sections, we infer that when we conduct TCA on the full context, the results will be similar
to those of these five sections.

Although our Z-TCA algorithm is not the fastest choice in this experiment, its effect of
saving the running time is still significant. Also, we analyze that it is the extreme sparsity of
this data set that contributes to such a good performance of the ZBDD-Growth algorithm. As
the density of the database increases, the sizes of the ZDDs in the ZBDD-Growth algorithm
as well as the ZDD-ProperIm algorithm will rise sharply, which may cause a sharp increase
in the running time. Our Z-TCA algorithm, however, can suppress the over-growth of the
size of the ZDDs because we only use a ZDD for storing a single set instead of a set family.
In the next subsection, we will conduct additional experiments to show that our hypothesis is
correct.

2.4.2 The experiment on contexts of different sizes and densities

Although real-world triadic contexts are often very sparse [85], we should never assume all
contexts to have a density of only 0.5% like the one we used in the previous experiment. To
give a more comprehensive study on the performance of these algorithms, it is still necessary
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to conduct experiments on contexts of different sizes and/or densities. Since it is hard to
find a group of real-world contexts with arbitrary size and density, we are to generate the
contexts randomly in this experiment. For relatively dense contexts, we use the SCGaz [94]
tool for the generation. For contexts with a density below the minimum required density3

of the SCGaz tool, we are using the following procedure for the generation. Suppose the
context to be generated is K = (K1,K2,K3,Y ), first, we determine the size of the context,
i.e., the size of K1,K2 and K3 respectively. Then, for each k1 ∈ K1, k2 ∈ K2, and k3 ∈ K3, we
generate a random real number between 0 and 1. If the random number is smaller than the
pre-determined density ρ , we add (k1,k2,k3) to Y . In other words, every ternary relation on
K1×K2×K3 is generated independently with the probability ρ .

We first study the performance of our algorithms on contexts of different densities. We
generate eight contexts with the same size but different levels of densities as the test cases.
The size of the contexts is set to 100×30×20, which is about the same as the size of test
case #1 in the last experiment. A part of the results is collected in Table 2.2. From the results,
we can see that when the density of the context reaches about 5%, our Z-TCA algorithm
becomes faster than the ZBDD-Growth algorithm. Moreover, as the context becomes denser,
the running time of both ZDD-ProperIm and ZBDD-Growth becomes closer to the baseline
TRIAS algorithm; when the density reaches 17.5%, both algorithms fail to speed up the
process and take more time than the baseline. This perfectly matches our hypothesis. Hence,
we can conclude that if the input context is not extremely sparse, our Z-TCA algorithm
should be the best choice for TCA among all these four algorithms. Also, our algorithm is
the most stable among all three ZDD-based improved algorithms, as it can always reduce the
running time regardless of the features of the input context.

To further study the density threshold above which our Z-TCA algorithm can outperform
the ZBDD-Growth algorithm, we generated several other contexts of different sizes to test the
two algorithms. Part of the results is shown in Table 2.3. It is clear from the results that the
density threshold is around 4.5% to 5.5%, which is almost independent of the context size.
That is, no matter what size the input context has, in most cases, as long as the density of the
context exceeds around 5%, our Z-TCA algorithm will run faster than the ZBDD-Growth
algorithm and become the best choice for TCA.

Finally, as analyzed in Section 3.1, the caching mechanism for ZDDs contributes to the
high efficiency of our algorithm. Hence, to further study how much it influences efficiency,
we implemented another version of the Z-TCA algorithm with the caching mechanism for
ZDDs disabled. We compare the efficiency of this modified Z-TCA algorithm to the original

3The SCGaz tool is used for generating dyadic contexts without redundant objects, i.e., objects having the
same attributes. Clearly, if a context is too sparse, there should always be some redundancy.
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Context Size Density ZBDD-Growth Z-TCA
30×30×30 4.5% 5.5 6.7
30×30×30 5.5% 10.4 10.0

100×30×30 4.5% 54.1 57.6
100×30×30 5.5% 96.1 90.3
200×30×10 4.5% 6.1 5.1
200×30×10 5.5% 10.3 8.9
200×30×20 4.5% 52.9 53.8
200×30×20 5.5% 94.4 90.4
200×40×20 4.5% 128.1 130.0
200×40×20 5.5% 225.3 222.2

Table 2.3 Running time of the algorithms on random contexts with different sizes and the
density around the borderline. All times are shown in seconds. Data shown in bold fonts
represent the better result for each test case.

Context Size Z-TCA Z-TCA (No Caching) TRIAS
30×30×30 7.3 25.1 20.9
200×30×10 5.0 14.5 11.2
100×30×30 58.3 182.5 168.1
200×30×20 50.9 152.9 127.6
200×40×20 131.7 406.8 350.9
300×40×20 286.9 892.9 767.2

Table 2.4 Comparison of the running time of our Z-TCA algorithm with or without the
caching mechanism for ZDDs.

version and the baseline TRIAS algorithm by testing them on another group of randomly
generated contexts with different sizes and a density of 4.5%. The results are collected
in Table 2.4. From the results, it is clear that with the mechanism removed, our Z-TCA
algorithm becomes slower than the baseline TRIAS algorithm. Our analysis is that without
the caching mechanism, one will have to traverse from the root node to a terminal node when
conducting ZDD operations. In such a case, the ZDDs used in the algorithm degenerate into
linked lists. Since our Z-TCA algorithm has the same overall flow as the TRIAS algorithm
and the only difference between the two algorithms is the set implementation, it is clear
that the Z-TCA algorithm without the caching mechanism should be slower than the TRIAS
algorithm because linked lists are less efficient than red-black trees used in the C++ standard
template library. This matches our assumption and proves that the caching mechanism for
ZDDs indeed has a great effect in speeding up the set operations.
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2.5 Conclusion of the chapter

We studied three ways of applying ZDDs to speed up the process of TCA – our proposed
Z-TCA algorithm, the TCA-adapted ZDD-ProperIm algorithm, and the TCA-adapted ZBDD-
Growth algorithm. Unlike the other two algorithms, our Z-TCA algorithm does not use a
ZDD for storing a set family but only uses it for representing a single set. Experimental
results have shown that in an extremely sparse real-world context, our Z-TCA algorithm can
save about 66% of the running time compared to the baseline TRIAS algorithm. Although it
is slightly slower than the TCA-adapted ZBDD-Growth algorithm, experimental results of
another empirical study have proved that when the density of the context exceeds a threshold,
which is about 5%, our Z-TCA algorithm will outperform the TCA-adapted ZBDD-Growth
algorithm and become the fastest one among all four algorithms. Moreover, when the density
continues to grow, the other two ZDD-based improved algorithms eventually become slower
than the baseline TRIAS algorithm. Our Z-TCA algorithm, however, can still save about
50% of the running time, showing high stability and good overall performance. Since TCA
is equivalent to two nested FCA processes, our algorithm can also be applied to dyadic FCA
tasks. When our method is applied to an FCA4SML method, we will spend less time in the
FCA or TCA process and thus have more time in optimizing the predictive model, which
enables the method to get better prediction results.

Although our Z-TCA algorithm has improved the efficiency of TCA to a great extent, it is
still very difficult to conduct TCA on a full real-world context. Hence, as our future work, we
plan to propose a data structure for a more efficient memoization of the intermediate results
of set operations, which will hopefully further reduce execution time. Moreover, since the
number of triadic concepts extracted from a full-size real-world context may be very large
and thus hard for human analysis, we plan to propose a method for abstracting the differences
of the objects to reduce the number of concepts and speed up the extraction process for TCA.
There has already been related work on concept reduction of the basic FCA [17, 26] (which
will be explicitly discussed in the next chapter), while for our future work, we plan to study
the adaption of these methods to TCA. By combining these methods with our fast Z-TCA
algorithm, we may further improve the practicability of TCA and unleash the full potential
of this task.





Chapter 3

Reducing the concept lattice using integer
programming

3.1 Introduction

In this chapter, we propose a method for reducing the number of objects and formal concepts
using integer programming [19]. This is our first solution to the second issue that makes it
hard to work out an FCA4SML method, i.e., the number of formal concepts is so large that
they are difficult to be further processed by an SML method.

If we want to work out an SML method, this issue becomes more urgent, as an SML
method usually need to access the data for multiple epochs in order to fit the optimization
problem better, and any little increase to the data will cause a great increase in the running
time. The reason why the concept lattice may easily become excessively large is that FCA
is too “precise”. For example, in the context shown in the left panel of Fig. 1.2 in chapter
1, we can see that Disease g1 has very similar symptoms to Diseases g2 and g3, except that
it does not have Symptom m1. In practical cases, it is sometimes possible to categorize
Diseases g1, g2 and g3 into a class, and the symptoms of the class of diseases broadly include
Symptoms m1, m2 and m3. However, for FCA, there is no such option because when we
apply FCA on the context, we will always get two different concepts ({g1,g2,g3},{m2,m3})
and ({g2,g3},{m1,m2,m3}) which clearly differentiate Disease g1 from Diseases g2 and
g3. Such cases are extremely common in real-world formal contexts. As a result, FCA
might then extract a vast number of complicated concepts representing minor features of the
data, causing great difficulty in human analysis and further processing by an RML or SML
method [26].
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Methods for attacking this problem are categorized as concept lattice reduction [26],
which aims to approximate the original context into a reduced context with fewer or simpler
objects and attributes and corresponds to a concept lattice with fewer concepts. The reduction
process, i.e., the generation of the reduced context, should follow the basic principle that it
should only “remove excessively detailed difference” but not cause a significant change in
the context and the knowledge in the concept lattice [26].

There are many different categories of concept lattice reduction methods [26, 44, 47,
101, 102]. In this research, however, we focus on a specific group of methods based on the
object reduction ideology, which generates the reduced context by identifying and merging
similar objects in the original context. For example, in the context shown in the left panel of
Fig. 1.2, since Diseases g1,g2 and g3 all have similar symptoms, we may choose to abstract
their minor differences by merging them, or namely, to modify the context and make them
have exactly the same attributes1. After merging, the reduced context and its corresponding
concept lattice are shown in Fig. 3.1. As can be seen in the figure, the concepts representing
the minor features of Diseases g1,g2 and g3 in the original concept lattice also merge into a
generalized concept, which reduces the concept lattice.

While object reduction methods are widely preferred thanks to their simplicity and
effectiveness [17, 25, 44, 59], we point out that these may have two problems violating the
basic principle of concept lattice reduction. First, most previous methods lack a mechanism
for monitoring the overall similarity between the generated approximate context and the
original one. As a result, their generated “approximate” context may introduce many
modifications to the original context that is hard to be considered a valid “approximation”.
Second, merging similar objects will not always reduce the concepts representing minor
features as expected. It may instead cause other changes to the concept lattice. For example,
in the aforementioned sample context in the left panel of Fig. 1.2, if we merge Diseases g4

and g5 to make both of them have all symptoms that either Disease g4 or Disease g5 has, we
will find that no concepts merge. Even worse, a new concept ({g4,g5},{m1,m2,m3,m4})
which is not a generalization of any concept in the original concept lattice is inserted into the
“reduced” concept lattice, making it a failed reduction. The “reduced” context and its concept
lattice resulting from this failed reduction are shown in Fig. 3.2.

This example might appear contrived since the symptoms of Diseases g4 and g5 are not
similar enough, in Section 3.3, we will give a more detailed example showing that merging
the most similar objects will also cause the same problem. Similarly, in some other cases,
we may find some concepts in the original lattice eliminated after reduction, which will

1In a formal context, the only information that differentiate objects is the attributes. If two objects have
exactly the same attributes, they will become completely equivalent.
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Fig. 3.1 Left: The reduced formal context after merging Diseases g1,g2 and g3 in the context
shown in left panel of Fig. 1.2. Right: the corresponding concept lattice of the reduced
context.
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Fig. 3.2 Left: The reduced formal context after merging Diseases g4 and g5 in the context
shown in left panel of Fig. 1.2. Right: the corresponding concept lattice of the reduced
context.
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also be explicitly discussed in Section 3.3. We claim that these insertions and eliminations
will cause changes to the knowledge in the concept lattices and should be considered as
a cost of the reduction. However, no previous method has any mechanism for controlling
their volumes or even monitoring their occurrences. As a result, these methods may risk
significantly changing the knowledge of the concept lattice.

Aiming to solve both problems, we propose a new concept lattice reduction method using
integer linear programming (ILP). With ILP, we can determine the optimal values of integer
variables maximizing a target function under a group of linear constraints [19]. We use ILP
because, first, by regarding the formal context as a collection of Boolean variables, the aim
of object reduction can be naturally translated into a linear optimization problem that ILP
can solve. With such a translation, the overall similarity of the approximate context and the
original one as well as the number of inserted/eliminated concepts can all be computed with
linear operators, as we prove in Section 3.4. Hence, our method can limit the maximum
changes caused to the input context and the output concept lattice simply by adding more
linear constraints, which solves the two problems pointed out above. We conduct experiments
on different randomly-generated contexts and sections of real-world contexts to show that
our method can solve the above problems and produce reduction plans that more closely
conform to the principle of concept lattice reduction.

Note that in this chapter, we will frequently discuss and compare the formal contexts
before and after reduction. To improve the readability, we will use italic letters like T,T ′

to represent formal contexts instead of the standardized outlined letter K. Similarly, we
will use L(T ) for representing the concept lattice of context T instead of the standardized
denotation B(·). Furthermore, since we will frequently discuss the derivation operation of
some sets on different contexts, to make it more concise, in this chapter we will use AT (X)

for representing X (2) on context T , and OT (Y ) for representing Y (1) on context T .

3.2 Preliminaries

Given a formal context T , concept lattice reduction can be roughly defined as the process
that generates a reduced context T ′ such that L(T ′) is considered simpler than L(T ) without
significantly changing the information in T . Currently, there are many different standards for
what should be called a reduced context and which changes should be considered significant,
so it is hard to give a formal definition for this task [18, 26, 66, 74, 91, 104, 118]. However,
there is a specific sub-task of concept lattice reduction, called object reduction [26], which
has a relatively fixed flow and an objective goal.
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Given a formal context T = (G,M,Y ), an object reduction is a two-step process that
generates a reduced context T ′ = (G,M,Y ′) from the original context T . The two steps are
as follows.

1. First, the object set G is divided into k disjoint subsets C = {C1,C2, . . . , Ck} such that
C1∪C2∪ . . .∪Ck = G. Each subset is also called a similar group, since objects in the
same group should be similar to each other.

2. Then, objects classified into the same similar group are merged. Namely, these objects
are modified to have exactly the same attributes in the reduced context T ′, following a
pre-determined merging rule. The merging rule should either be OR or AND. For any
object gi ∈ G classified into subset C j ∈C, we should have:

• If the OR rule is applied, it will be modified to have all attributes that at least one
object in C j has in the original context T . That is, in this case we should have:

AT ′(gi) =
⋃

ga∈C j

AT (ga).

• If the AND rule is applied, it will be modified to have only the attributes that all
objects in C j have in the original context T . That is, in this case we should have:

AT ′(gi) =
⋂

ga∈C j

AT (ga).

In other words, the core idea of object reduction is to merge groups of similar objects,
and the way it merges a group of similar objects is to modify the context to make all of these
have exactly the same attributes.

There are two points needed to be noted about the definition. In the first step, the measure
for the similarity of objects varies among different methods, and the choice for similarity
measure is usually the featured part of an object reduction method. For example, in [25], the
authors assigned weights for attributes and thus the similarity of objects can be measured
by the difference of their attribute weight sums; in the second step, to the furthest of our
knowledge, all previous object reduction methods assume that the merging rule should be
applied globally [17, 25, 59, 100]. That is, all similar groups must be merged with the same
rule in a single object reduction process.

After generating the reduced context T ′ from T , we need to evaluate the quality of the
reduction. In previous research, a reduction is thought to have high quality if both of the
subsequent metrics are high [17, 25, 59].
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• The number of objects reduced, which is defined to be |G|− l, where l is the number
of “unique” objects in the reduced context T ′. If two or more objects have exactly
the same attributes, these are only counted as one unique object because these are
equivalent.

• The number of concepts reduced, which is defined to be |L(T )|− |L(T ′)|, where
|L(T )| means the number of concepts in the concept lattice corresponding to context
T .

We think these metrics are not enough to give a thorough evaluation of the quality of a
reduction because these only reflect the effectiveness, but not the cost of the reduction. That
is, even if some reduction has achieved reducing a lot of objects and concepts, it is still of low
quality if the reduction has modified a lot of incidences in T , or the knowledge represented
by the concepts in L(T ′) is significantly inconsistent with that in L(T ). If we take such costs
of reductions into consideration, we will find that most previous methods carry the risk of
modifying too many incidences or changing too much information in the concept lattice,
as mentioned in the previous section. We will explicitly discuss these problems in the next
section.

3.3 Problems of previous object reduction methods

3.3.1 Excessive modification of the context

It can be easily derived from the definition that an object reduction does not add or remove
objects or attributes, but only modifies incidences in the context. Hence, suppose an object
reduction reduces context T = (G,M,Y ) to T ′ = (G,M,Y ′), the number of incidences modi-
fied in the reduction, which equals |(Y −Y ′)∪ (Y ′−Y )|, should be a reasonable metric for
measuring what extent changes have been caused to the context by the reduction.

With such a definition, we can find a typical problem in previous methods. That is,
to reduce a certain number of objects and concepts, the reductions generated by previous
methods usually modify many more incidences than the optimal reduction. For example,
suppose that now we are to reduce a sample context shown in the left panel of Fig. 3.3, whose
corresponding concept lattice is shown in the right panel of the figure. The method proposed
in [17] will choose to merge the object group {g1,g2,g3,g4}, which modifies 15 incidences
but only reduces 3 objects and 4 concepts2. However, by merging object group {g2,g3} and
{g5,g6,g7}, we can reduce 3 objects and 6 concepts at a far lower cost by modifying only 5

2The example and reduction plan are retrieved from [17].



44 Reducing the concept lattice using integer programming

incidences. The two reduced contexts and their corresponding concept lattices are shown in
Fig. 3.4.

Fig. 3.3 Left: A sample context. Right: The concept lattice corresponding to the context in
the left panel.

The cause of this problem is simple. For most previous object reduction methods, any
two objects will be merged as long as their similarity exceeds a certain threshold [17, 59],
which carries a high risk of merging dissimilar objects since “similarity” has no transitive
property.

3.3.2 Unexpected insertion and elimination of concepts

As originally mentioned in [17], merging similar objects with the OR rule will generalize
them and remove their minor differences, which will also cause the concepts representing
their minor differences to merge (described as “collapse” in the original publication) into
a large and generalized concept [17, 26]. However, this might not always be the case. For
example, in the context in the upper left of Fig. 3.5 clearly shows that g1 and g2 are of
the most similar object pairs, but if we merge them with the OR rule, we will find that
although some concepts are generalized, none of them merge after reduction. Even worse,
two extra concepts that are not a generalization of any concept in the original concept lattice
are inserted into the “reduced” lattice, making it a completely failed reduction. The “reduced”
context and its corresponding lattice are shown in the lower row of Fig. 3.5. This problem
was also mentioned and discussed in [58]. Similar problems might also happen if we apply
the AND rule. For example, in the context shown in the upper left of Fig. 3.6 clearly shows
that g3 is very similar to g1 and g2, while g4 is very similar to g5. If we merge g3 together
with g1 and g2 and merge g4 together with g5 applying the AND rule, as shown in the lower
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Fig. 3.4 Upper row: a sample reduction plan for the context shown in the left panel of Fig. 3.3.
Lower row: the reduction plan given by the method proposed in [17]. Shaded cells represent
the modified incidences.
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Fig. 3.5 Upper row: a sample context and its corresponding concept lattice. Lower row: the
reduced context after merging object g1 and g2 with the OR rule, with its corresponding
concept lattice shown on the right.

row of Fig. 3.6, we will find that among all seven concepts in the original concept lattice, four
of them are specialized but do not merge with each other, while the three concepts completely
disappear.

When an object reduction method is applied to a real-world knowledge discovery task,
we assert that such insertions and eliminations of concepts may cause unacceptable changes
to the knowledge in the concept lattice. For example, if we regard the objects and attributes in
the aforementioned contexts as diseases and symptoms, correspondingly. Then, by applying
object reductions with either the OR rule or the AND rule, we may expect to get generalized
or specialized classes of diseases, correspondingly. However, the insertion of two extra
concepts in the example shown in Fig. 3.5 would mean that the reduction process has created
a new class of diseases, and the elimination of the concept in the example shown in Fig. 3.6
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Fig. 3.6 Upper row: a sample context and its corresponding concept lattice. Lower row: the
reduced context after merging g3 with g1 and g2, and merging g4 with g5 applying the AND
rule, with its corresponding concept lattice shown on the right.
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would mean that the reduction process has removed the information of some classes of
diseases. Clearly, if such cases frequently occur, it will violate the concept lattice reduction
principle that aims to minimize the changes to the knowledge of the original concept lattice.

There have been studies on quantifying such changes to the concept lattice [27, 65]. To the
furthest of our knowledge, most previous methods quantify the changes at the object/attribute
level. That is, these method study the degree of changes by analyzing how many implication
rules of objects/attributes are inserted or eliminated after reduction [27]. In this research,
however, we assert that quantifying the degree of inconsistency at the concept level is more
natural and clear. That is, we can directly measure the degree of change by analyzing how
many concepts are inserted or eliminated after reduction. To achieve this, we need to give a
formal definition to the intuitive examples of “inserted concepts” and “eliminated concepts”.
Hence, we are hereby to give our formal definitions of inserted and eliminated concepts,
explain why these are considered “unexpected”, and discuss the possibilities of controlling
their quantities.

Our definitions for the inserted concepts and eliminated concepts are as follows.

Definition 11. Suppose that T = (G,M,Y ) is a formal context and T ′ = (G,M,Y ′) is the
reduced context generated from T by an object reduction. Then, each concept (A,B) ∈ L(T ′)
is defined to be an inserted concept if there is no (A′,B′) in L(T ) such that either of the
following two conditions holds:

• (A,B) is a specialization of (A′,B′). That is, A⊆ A′ and B⊆ B′, or

• (A,B) is a generalization of (A′,B′). That is, A⊇ A′ and B⊇ B′.

Similarly, for each concept (A,B) ∈ L(T ), it is defined to be an eliminated concept if
there is no (A′,B′) in L(T ′) such that either of the above two holds.

This definition is naturally deduced from the basic ideology of FCA – in FCA, if we
find an objects-attributes pair (G1,M1) completely included in another pair (G2,M2), i.e.,
G1⊆G2 and M1⊆M2, we should consider the information contained in (G1,M1) compatible
with that of (G2,M2), so we only extract the maximal (G2,M2) which cannot be included in
another pair as the representative knowledge, i.e., the formal concepts. Based on the same
ideology, in concept lattice reduction, if we find a concept (G3,M3) in the reduced lattice is a
generalization or specialization of a concept (G4,M4) in the original lattice, this should mean
that the knowledge they represent is consistent, but only generalized or specialized. Instead,
if (G3,M3) just overlaps with (G4,M4) but does not include or is included by (G4,M4), these
should be considered representing different knowledge.
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The properties of inserted concepts

We have found two properties of inserted concepts. First, it is clear that inserted concepts
only occur when we apply the OR rule because when applying the AND rule, we will not
introduce new relations into the context, so any concept in the reduced lattice will always be
a specialization of some concept in the original lattice.

The second property is described in the following proposition.

Proposition 1. Suppose an object reduction reduces the original context T = (G,M,Y ) into
the reduced context T ′ = (G,M,Y ′) applying the OR rule. Then, a concept (G1,M1) ∈ L(T ′)
is an inserted concept only if there does not exist a concept (G2,M2) ∈ L(T ) such that
M1 = M2.

Proof. Now assume (G1,M1)∈L(T ′) is an inserted concept and we have an (G2,M1)∈L(T ).
Since we only add new incidences but not remove any when we apply the OR rule, we
should have OT ′(M1)⊇ OT (M1) = G2. Since we also have OT ′(M1) = G1, we should have
G1 ⊇ G2, which implies that (G1,M1) is the generalization of (G2,M1) and contradicts the
assumption.

This property is important since it allows us to compute the number of inserted concepts.
In the next section, we will show how to achieve this in our method.

The properties of eliminated concepts

We have also found two properties of eliminated concepts. First, it is clear that eliminated
concepts only occur when we apply the AND rule because when applying the OR rule, we
will not remove relations from the context, so any concept in the original lattice will always
be generalized into another concept in the reduced lattice.

The second property is described in the following proposition.

Proposition 2. Suppose an object reduction reduces the original context T = (G,M,Y )
to the reduced context T ′ = (G,M,Y ′) applying the AND rule. Then, for any concept
(G1,M1) ∈ L(T ′), there exists exactly one concept (G2,M2) ∈ L(T ) such that G1 ⊆ G2 and
M1 ⊆M2. Moreever, we must have M1 = M2.

Proof. Clearly, we must have a (G2,M2) ∈ L(T ) such that G1 ⊆ G2 and M1 ⊆M2 because
when applying the AND rule, we only remove incidences. Now assume we have M1 ⊂M2.
Then, we must have an object subset G3 ⊆ G such that G3∩G1 = /0 and AT ′(G1∪G3) = M1

since when we apply the AND rule, we always modify the attributes of a group of objects
into their intersection. We should then have OT ′(M1) ⊇ G1 ∪G3, which contradicts the
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assumption that (G1,M1) ∈ L(T ′) because it requires OT ′(M1) = G1. Hence, we must have
M1 = M2.

Note that in the proposition, we only have M1 = M2 hold, but not G1 = G2. In the
argument of the proof, if we assume G1 ⊂ G2, we cannot reach the dual relation AT ′(G1)⊇
M1∪M3 which leads to contradicting the assumption. The reason why objects and attributes
are not dual here is simply because the merging operation is not symmetric, that is, we only
merge objects to make them have the same attributes, but do not merge attributes to make
them be shared by the same objects.

This proposition suggests that when applying the AND rule, it is impossible for two
concepts to be specialized into the same concept. In other words, the number of concepts
reduced by an object reduction will equal the number of eliminated concepts. Hence, as
long as we want to reduce the concept lattice, it is impossible to prevent the elimination of
concepts completely. However, note that, unlike inserted concepts, eliminated concepts are
not always unexpected. For example, among all three concepts eliminated in the example
shown in Fig. 3.6, two of them – ({g3}, {m1,m2,m6}) and ({g4}, {m3,m4,m5,m6}) may be
considered as those representing the minor differences between objects, so it is proper to
remove them. Hence, instead of completely preventing the occurrence of eliminated concepts,
a better solution would be controlling the number of eliminated concepts, which makes for a
trade-off between the effectiveness and the cost of the reduction. In the next section, we will
show how to achieve this trade-off by using linear constraints to compute and control the
number of eliminated concepts.

3.4 The Proposed ILP-based Method

In this section, we propose our new object reduction method. To explain our method precisely,
we will use many mathematical expressions in this section. If readers find it difficult to
understand, please refer to Section A.1 in the appendix, where we demonstrated two running
examples to help better show the whole working flow of our method.

Our method uses the technique of integer linear programming (ILP). ILP is the technique
that determines the optimal values of integer variables maximizing a target function under
a group of linear constraints [19]. The canonical form of an ILP problem is shown below.
Here x, called the variables, is the vector to be decided, and A,b,c are coefficient matrices or
vectors that form the constraints:

maximize cT x

subject to Ax≤ b,x≥ 0 and x ∈ Zn.
(3.1)
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Besides numerical problems, ILP can also be used to solve logical problems, i.e., to
determine the optimal values of Boolean variables under a group of logical constraints. This
is because if we represent TRUE with 1 and FALSE with 0, then a Boolean variable a would
be equivalent to an integer variable satisfying that 0≤ a≤ 1, and all logical constraints can
be translated into an equivalent group of numerical linear constraints. For example, assume
that x1 and x2 are Boolean variables and B is a Boolean constant. The logical constraint
x1∧ x2 = B is equivalent to the following group of numerical linear constraints:

x1 + x2 ≤ 1+B,

x1 ≥ B,

x2 ≥ B,

0≤ x1,x2 ≤ 1.

(3.2)

It has been proven that all types of Boolean operators can be translated into numerical
linear operators. For more details, please refer to [19]. Hence, in the latter part of the paper,
all constraints are directly written in the logical form instead of their equivalent numerical
form for convenience.

We chose ILP for solving the object reduction problem mainly because FCA has a strong
connection with formal logic. That is, we can regard the formal context T = (G,M,Y ) as a
Boolean matrix X = {xi j}, where xi j = TRUE if (gi,m j)∈Y and xi j = FALSE if (gi,m j) ̸∈Y .
In this case, most properties of formal concepts can be translated into logical rules. For
example, the most basic closure property of a formal concept (Go,Mo), that is, OT (Mo) = Go

and AT (Go) = Mo, can be translated into the following Boolean equations:

∧
gi∈Go

 ∧
m j∈Mo

xi j

∧ ∧
gi /∈Go

¬ ∧
m j∈Mo

xi j

= TRUE,

∧
m j∈Mo

( ∧
gi∈Go

xi j

)
∧

∧
m j /∈Mo

(
¬
∧

gi∈Go

xi j

)
= TRUE.

(3.3)

Note that although there are other methods for working out the values of a group of Boolean
equations, we still choose ILP because we consider the Boolean equations for each object
reduction task too complicated to give analytical solutions. Now it should be clear that we
can solve the task of object reduction with ILP by transforming it into a logical optimization
problem – the problem of finding the optimized value of the Boolean matrix X such that
as many objects as needed can be reduced under a group of logical constraints that prevent
the original content of the context, as well as the concept lattice, from being significantly
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changed. The advantage of using ILP is also clear – we can not only know how many
incidences we will modify directly from the Boolean matrix X, but also use the logical rules
above to check whether a concept will be changed after reduction. Furthermore, we found
that the number of inserted and eliminated concepts may also be derived from a group of
logical rules, which will be explained later in this section. Previous methods using numerical
approaches can never achieve this because it is hard to link the features of formal concepts
directly with non-logical approaches like SVD or Fuzzy-k-means. In other words, by using
ILP, we can get complete control of what changes may be made to the context as well as the
lattice, which solves the two problems of previous methods and will produce reduction plans
with better quality.

In the latter of this section, we will present the detailed steps for translating the problem
of object reduction into the canonical form of an ILP problem so that we can solve it with an
ILP solver.

3.4.1 Target function

The primary target of object reduction is to reduce as many objects as possible [17, 26, 59].
Such a target can be expressed with the global target function

R =
|G|−1

∑
i=1

1∨|G|
j=i+1 Ii j

, (3.4)

where Ii j is the variable indicating whether objects gi and g j are identical after reduction, |G|
is the size of the original object set G, and 1B is the indicative function of Boolean expression
B which equals 1 when B = TRUE and 0 when B = FALSE.

This function counts the number of objects gi having at least one identical opponent g j

where j > i, which equals the number of objects reduced. Thus, the global target of the
model is to maximize R.

3.4.2 Variables

Theoretically, we may merge any groups of objects in the context. In that case, we would
need to assign |Y | variables when applying the AND rule or |G|× |M|− |Y | variables when
applying the OR rule in total. However, we consider it better only to allow modifying part
of them because assigning too many variables will increase the computational complexity
of the logical optimization problem and slow down the solving process. To achieve this,
we introduce a hyper-parameter εr for controlling the number of variables to be assigned.
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Suppose that X = {xi j} and C = {ci j} are two |G|× |M| Boolean matrices, where xi j is the
Boolean variable representing whether the incidence (gi,m j) is TRUE in the original context;
and ci j is the Boolean variable representing whether we should assign a variable to allow
incidence (gi,m j) to be modified. Then, ci j is determined to be TRUE if there exists another
object gk ∈ G such that all the following conditions are satisfied:

|(AT (gi)−AT (gk))∪ (AT (gk)−AT (gi))| ≤ εr,

xi j = ¬B,

xk j = B,

(3.5)

where B is a Boolean constant set to TRUE if we apply the OR rule and FALSE if we apply
the AND rule. In other words, if modifying a certain incidence xi j cannot contribute to
making gi merge with another object gk such that the “distance” of gi and gk in the original
context is smaller than εr, we would consider it valueless to modify xi j and thus should set
xi j to be unmodifiable.

Note that in some extreme cases, this strategy may still fail to control the number of
variables. For example, in the formal context shown in Table 3.1, when we apply the
OR rule, even if we set εr = 2, we will still find all incidences xi j such that xi j = FALSE
are modifiable, as if we have set εr = ∞. Despite this limitation, we still consider this
strategy useful because as we will introduce later in Section 3.5.3, in both real contexts and
randomly-generated contexts, setting εr to a small value will effectively decrease the number
of variables. Furthermore, even if such extreme cases occurs and we have assigned many
variables, we can still ensure the context and the concept lattice are not modified too much
by introducing more constraints which will be introduced later in this section. Hence, in such
an extreme case, although the execution time of our method may become longer, the quality
of the output that generated by our method will not be affected.

Table 3.1 A sample context for explaining the procedure of setting variables.

m1 m2 m3 m4 m5
g1 × ×
g2 × ×
g3 × ×
g4 × ×

For each incidence xi j such that ci j = TRUE, we assign a variable vi j representing that
whether the incidence should be modified or not.
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3.4.3 Basic constraints

In the target function, we have defined a group of variables Ii j as indicators for whether
object gi and g j will become identical after reduction. The values of these variables for the
task can be obtained with the XOR ⊕ and the XNOR ⊙ operators, which are represented as
a group of constraints:

t(k)i j =


xik⊙ x jk if ¬cik∧¬c jk = TRUE,

(xik⊙ x jk)⊕ vik if cik∧¬c jk = TRUE,

(xik⊙ x jk)⊕ v jk if c jk∧¬cik = TRUE,

(xik⊙ x jk)⊙ (vik⊙ v jk) if cik∧ c jk = TRUE,

Ii j =

|M|∧
k=1

t(k)i j .

(3.6)

3.4.4 Constraints for preventing too much modification

We will get the total number of incidences modified by summing up the values for all vi j.
Hence, to prevent the context from being modified too much, we can add the following
constraint:

∑
ci j=TRUE

1vi j ≤ εm. (3.7)

3.4.5 Constraints for controlling the number of inserted and eliminated
concepts

As analyzed above, the eliminated concepts only occur when we apply the AND rule, and
the inserted concepts only occur when we apply the OR rule. Hence, here we also discuss
the two cases individually.

The AND rule

As suggested by Proposition 2, for every concept (Go,Mo) ∈ L(T ) from the original lattice,
to check if it will be eliminated, we only need to check if Mo is still the intent of a concept in
the reduced concept lattice, and this can be computed with a series of equations. First, for all
gi ∈ Go, we are to compute SMo,gi , which represents whether the object gi will still have all
attributes in Mo after reduction. Note that here we only need to compute the values of SMo,gi
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for objects gi in Go but not the whole object set G. This is because (Go,Mo) is a concept in
T , so for an object gi /∈ Go, it cannot have all attributes in Mo even before reduction:

SMo,gi =
∧

m j∈Mo

(
xi j∧¬

(
ci j∧ vi j

))
. (3.8)

Then, we are to compute E(Go,Mo), representing whether none of the objects in Go will have
all attributes in Mo after reduction. This is one of the two cases in that Mo will not be an
intent after reduction:

E(Go,Mo) =
∧

gi∈Go

¬SMo,gi. (3.9)

Next, we are to compute F(Go,Mo), representing whether the “featured” part that makes
(Go,Mo) a formal concept will be removed after reduction. That is, whether we will have
Mo ⊂ AT ({gi}) for all gi ∈ OT ′(Mo). This is the other case in that Mo will not be an intent
after reduction:

F(Go,Mo) =
∨

m j /∈Mo

∧
gi∈Go

¬SMo,gi ∨
(
xi j∧¬

(
ci j∧ vi j

))
. (3.10)

Now we can compute D(Go,Mo), representing whether concept (Go,Mo) will be an eliminated
concept:

D(Go,Mo) = E(Go,Mo)∨F(Go,Mo). (3.11)

Finally, by summing up the value of 1D(Go,Mo)
, we will get the total number of eliminated

concepts. As previously analyzed, not all eliminated concepts are considered unexpected.
Hence, we can add the following constraint, which sets the maximum allowable number of
eliminated concepts to εI to keep a certain degree of reduction rate and prevent the concept
lattice from being changed too much:

∑
(Go,Mo)∈L(T )

1D(Go,Mo)
≤ εI. (3.12)

The OR rule

Inserted concepts are in the lattice of the reduced context, which is unknown before we
generate the full reduction. Hence, theoretically, we need to enumerate all attribute sets
Ma ∈ P(M) and check if each set will be the extent of an inserted concept with the closure
property. Here P(M) is the power set of M. However, this is unnecessary because only a
part of the incidences in the context are modifiable. For an attribute set M1, if all modifiable
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incidences are modified and there is still no object g ∈ G that satisfies AT ′(g) ⊇M1, then
M1 should never be an extent of a concept in L(T ′). Furthermore, as analyzed in Section
3.3.2, if an attribute set M2 is an extent of a concept in L(T ), the attribute set should also be
impossible to be an extent of a concept in L(T ′). From the above, it is better for us to first
determine the candidate space of attribute sets which are possibly an extents of concepts in
L(T ′).

Let us denote the candidate space as Can(M). As analyzed above, to determine Can(M),
we need to find all attribute sets that are supported by at least one object, which is equivalent
to the task frequent item set mining and can be accomplished with algorithms like Apriori [10].
After determining Can(M), we can enumerate each Ma ∈ Can(M) and check whether the
attribute set Ma will be the intent of an inserted concept after reduction.

Let UMa represent whether the attribute set Ma will be the intent of an inserted concept
after reduction. We can also compute the value of UMa with a series of equations. First, we
are to derive SMa,gi for every object gi ∈ G, which represents whether the object gi will have
all attributes in Ma after reduction as follows:

SMa,gi =
∧

m j∈Ma

(
xi j∨

(
ci j∧ vi j

))
. (3.13)

Then, we are to compute EMa , representing whether Ma will become an intent of a concept
after reduction. This is accomplished by checking the closure property of a formal concept.
That is, to check whether AT ′(OT ′(Ma)) = Ma:

EMa =
∧

m j /∈Ma

( ∨
gi∈G

SMa,gi ∧
(
¬xi j∧¬

(
ci j∧ vi j

)))
. (3.14)

Next, we are to compute FMa,(Go,Mo), representing whether a concept (Go,Mo) in the
original concept lattice will be generalized to have the intent Ma after reduction. According
to the definition of a generalized concept, this is accomplished by checking whether Go ⊆
OT ′(Ma) and Mo ⊆Ma are both satisfied:

FMa,(Go,Mo) =

FALSE if Mo ̸⊆Ma,∧
gi∈Go

SMa,gi if Mo ⊆Ma.
(3.15)
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Finally, according to the definition, Ma will become the intent of an inserted concept if it
is not a generalization of any existing concepts. Hence, we can now compute UMa as follows:

UMa = EMa ∨¬

 ∨
(Go,Mo)∈L(T )

FMa,(Go,Mo)

 . (3.16)

We can now add the following constraint to set the maximum allowed number of inserted
concepts to εI:

∑
Ma∈Can(M)

1UMa
≤ εI, (3.17)

Note that although, as analyzed in Section 3.3.2, the inserted concepts are always unexpected,
sometimes we may still need to make a trade-off between the effectiveness of the reduction
and the cost of the reduction. For example, if a reduction plan can reduce a large number of
concepts at the cost of introducing only one inserted concept, it may still be considered an
acceptable reduction plan. Hence, instead of completely preventing any introduced concepts
from occurring, setting the maximum allowed number of inserted concepts would be a better
option.

3.5 The experiments

We conducted two experiments to verify the theoretical proofs above that our methods can
really control the number of modified incidences and inserted/eliminated concepts. The
data used by the experiments are either randomly generated or taken from the “soybean”
data provided by OpenML [106]. To the furthest of our knowledge, the numbers of objects
and attributes of real contexts used in previous object reduction tasks usually range from
20 to 100 [17, 26, 59, 100]. Hence, in our experiments, the size of the smallest random
context is set to 20×20 and that of the largest is set to 100×100. For the real soybean data,
the nominal attributes are expanded into Boolean attributes3 and the repeated objects are
removed from the data4. After processing, the soybean data has 53 objects and 107 features
with a density of 34%.

All scripts are written in Python. The previously proposed methods are implemented
based on our own comprehension of the descriptions from the literature. Our method is
implemented with CVXOPT [3]. The solvers we use for the ILP problem include CBC [33]

3For example, for an attribute A taking the values (a,b,c), we create 3 attributes Aa,Ab,Ac for representing
whether the attribute A of an object is a,b or c, respectively.

4For that removing these objects will not change the concept lattice.



58 Reducing the concept lattice using integer programming

and Gurobi [41]. We run all the scripts on a Ubuntu 18.04 system with 93.00GB RAM and a
2.4GHz CPU.

3.5.1 Experiment 1: controlling the number of incidences modified

In this experiment, we will test whether our method can generate better reduction plans
which reduces the same number of objects and concepts as previous methods but modifying
fewer incidences. The test data for this experiment include the full soybean dataset and a
randomly generated context with 50 attributes and 50 objects. Previous methods we study
include the well-preferred SVD method [17] and the fuzzy k-means method [59]. For our
method, the constraints for controlling inserted/eliminated concepts are not added in this
experiment. We set different parameters for these methods and evaluate their performances
using the following three metrics. To find the meanings of previous methods’ parameters,
please refer to the corresponding publications.

• The object reduction rate. That is, the percentage of reduced objects. Suppose we
have n “unique” objects before reduction and n′ objects after reduction, the object
reduction rate would be n−n′

n .

• The concept reduction rate. That is, the percentage of reduced concepts. Suppose we
have x concepts in the concept lattice before reduction and y concepts after reduction,
the concept reduction rate would be x−y

x .

• The context fidelity. That is, the percentage of unmodified incidences. Suppose we
modified k incidences in an n×m context after reduction, the context fidelity would be
1− k

nm .

The results are plotted in Fig. 3.7. From the figure, we find that clearly, our method can
generate reduction plans with fewer modified incidences. Furthermore, previous methods’
object and lattice reduction rates increase sharply and the context fidelity drops sharply when
the similar rate threshold (or the thres value in the fuzzy k-means method) exceeds a tipping
point. Those factors of our method, however, vary at a slower pace as we tune the parameter
εr and a much slower pace as we adjust εm, showing that our model is more “controllable”
than the previous methods. That is, compared to previous methods, we can fine-adjust the
parameters in smaller steps to get the proper reduction rates we want to make a good trade-off
between the effectiveness and the cost of the reduction plan.
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Fig. 3.7 Left: Statistics of the three methods on two datasets applying the OR rule. Right:
Statistics of these methods on the same datasets applying the AND rule. For the SVD method,
the rank of the reconstructed matrix is set to 3/4. For the FKM method, the m value is set to
1.05. lg(·) in the captions of the second row means log10(·). For our model, εr is set to 6 for
the test cases shown in the fourth row, and the εm is set to infinite for the cases shown in the
third row.
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3.5.2 Experiment 2: controlling the number of eliminated/inserted
concepts

In this experiment, we will test whether our method can control the number of elimi-
nated/inserted concepts, with the special constraints added. Before the experiment, we first
verify whether inserted/eliminated concepts will occur in a real object reduction task. In case
we apply the AND rule, we have proven that all reduced concepts are eliminated concepts, so
these will definitely occur. In case we apply the OR rule, the percentages of inserted concepts
of the reduction plans generated by our method and the previous methods in Experiment 1
are plotted in Fig. 3.8. From the figure, it is clear that inserted concepts also commonly occur
in real object reduction tasks.

Fig. 3.8 The percentage of inserted concepts in the reduced concept lattice of different
methods applying the OR rule in Experiment 1.

Controlling the number of inserted concepts

We generate four small 28× 20 contexts and two large 100× 100 contexts with a density
of 15% as six test cases and run our method applying the OR rule. The small test cases are
numbered from #1 to #4, and the large test cases are numbered #L1 and #L2. For all small test
cases, εr is set to 6, and εm is set to infinite; for both large test cases, εr is set to 12, and εm is
also set to infinite. The metrics we used in this experiment include the previously-introduced
object reduction rate and concept reduction rate as well as the number of inserted concepts
in the reduced concept lattice, which measures the reliability of the reduction in another
aspect – the fewer number of inserted concepts we have, the more reliable the reduction is.
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Fig. 3.9 The run time and the number of variables of our method in Experiment 1.

The experimental results for the four small contexts are plotted in Fig. 3.10 and those for
the large contexts are plotted in Fig. 3.11.

From the figures, we find that our method can clearly control the number of inserted
concepts to any level as expected. Furthermore, we find that generally, in the four small test
cases, the reduction rates will increase as we tune εI to a higher value. However, in the two
large data cases, when εI exceeds a specific value, the concept reduction rate begins to drop,
eventually to a negative value. That is, the case that the number of concepts does not decrease
but instead increases after reduction, which we discussed in Section 3.3, might actually occur
in a practical object reduction task. Our analysis is that this occurs because as we start tuning
the εI from a small value, the number of inserted concepts is still limited. In this case, a
higher εI may give us more choices for merging objects, which will increase the reduction
rate at first. However, as εI continues to grow, the number of inserted concepts increases
sharply, causing the number of concepts in the reduced lattice to grow sharply as well. As
a result, the “reduced” lattice may eventually contain more concepts than the original one.
This shows the importance of controlling the number of inserted concepts. As analyzed in
Section 3.3, to the furthest of our knowledge, none of the previous methods has the ability to
control this number, which shows the advantage of our method.

Controlling the number of eliminated concepts

We generate four small 20×20 contexts and two large 100×100 contexts with a density of
15% as six test cases and run our method applying the AND rule. The small test cases are
numbered from #5 to #8, and the large test cases are numbered #L3 and #L4. For all small
test cases, εr is set to 3; for both large test cases, εr is set to 10. The metrics we used in this
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experiment include the previously-introduced object reduction rate and concept reduction
rate as well as the number of eliminated concepts in the original concept lattice, which
measures the reliability of the reduction in another aspect – the fewer number of eliminated
concepts we have, the more reliable the reduction is.

The results for the small contexts are plotted in Fig. 3.12 and those for the large contexts
are plotted in Fig. 3.13. In the figures, the left column shows the statistics for our method
without adding the constraints for controlling the number of eliminated concepts – we must
control them only by tuning the parameter εm. The right column shows the statistics for our
method with those constraints added, with εm set to infinite.

From the results, we can find that the number of eliminated concepts, i.e., reduced
concepts generally decreases as we tune εm to prevent less-similar object pairs from being
merged. By adding the constraints for setting the maximum allowed number of eliminated
concepts, we may find many more reduction plans at different levels of concept reduction
rates. This is because our basic model, as well as all previous methods, can only output the
optimal reduction, i.e., the reduction plan that achieves the maximum object reduction rate.
By adding the constraints for limiting the number of eliminated concepts, however, we can
get alternate reduction plans having equal or lower object reduction rates but with the concept
reduction rate at any level. We conclude that our method can better control the number of
eliminated concepts to any level as expected.

3.5.3 Studies on the efficiency

We plot the number of variables and constraints, and the run time statistics of our method
in the test cases of Experiment 1 in Fig. 3.9 and those of the test cases of Experiment 2 in
Table 3.2. Note that in Table 3.2, “Size” means the size of the input context, and “Rule”
means the merging rule for this test case. For each test case, the longest, shortest, and average
run time among all different εI settings are reported. The run time statistics are all shown in
seconds.

From these results, we find that generally, the run time of our method increases as the size
of the context and the number of constraints grow. However, there are also some exceptions.
For example, the number of constraints in test case #6 is smaller than that of test case #5,
but the average run time of the former test case is longer than the latter one. Also, in some
test cases like case #2, the run time varies greatly with different εI settings. Our analysis is
that besides the number of variables and constraints, some other factors may also affect the
difficulty of a linear optimization problem, such as the distances from the initial values of
the variables to their optimal values [19]. Nevertheless, the size of the input context, which
is directly tied to the number of constraints, is still the dominant factor, as the run times of
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Fig. 3.10 The reduction rates and number of inserted concepts of our method on the four
small test cases applying the OR rule, with different settings for the maximum allowed
inserted concepts.
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Fig. 3.11 The reduction rates and number of inserted concepts of our method on the two large
test cases applying the OR rule, with different settings for the maximum allowed inserted
concepts.
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Fig. 3.12 The reduction rates of our method on the four small test cases applying the AND
rule, with different settings for the maximum allowable modifications and maximum allowed
eliminated concepts. Note that the concept reduction rate equals the percentage of eliminated
concepts.
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Fig. 3.13 The reduction rates of our method on the two large test cases applying the AND
rule, with different settings for the maximum allowable modifications and maximum allowed
eliminated concepts. Note that the concept reduction rate equals the percentage of eliminated
concepts.
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Table 3.2 The run time of our method in Experiment 2.

Case Rule Size Constraints
Run time (s)

MAX MIN AVG
#1 OR 28×20 100,232 571 272 301.2
#2 OR 28×20 130,792 509 4 173.6
#3 OR 28×20 139,487 605 235 420.0
#4 OR 28×20 142,188 123 2 51.6

#L1 OR 100×100 2,098,356 7561 4548 6233.7
#L2 OR 100×100 2,810,899 7882 5253 6683.1
#5 AND 20×20 19,292 45 30 38.3
#6 AND 20×20 17,716 622 232 370.0
#7 AND 20×20 14,865 113 16 66.6
#8 AND 20×20 12,698 5 4 4.6

#L3 AND 100×100 983,530 5280 4476 5080.1
#L4 AND 100×100 1,023,350 5650 5056 5140.3

all four large test cases are much longer than those of the eight small cases. Generally, the
maximum size that our method can finish running in a reasonable time is estimated to be
around 100×100, because the running time of our method on contexts with such a size in
Experiment 2 already has several hours. However, we consider it worth the extra time to
prevent the context and the concepts from being excessively modified because otherwise, we
may generate low-quality reduction plans that have no practical value at all.

3.6 Conclusion of the chapter

We propose a new object reduction method using integer linear programming. Our method
can control the number of modified incidences and inserted/eliminated concepts which is
not accomplishable by previous methods. These advantages enable our method to generate
reduction plans that comply more closely to the basic principle of concept lattice reduction
or namely that the reduction process should not cause significant changes in the original
context and the knowledge in the concept lattice. For FCA4SML methods, such advantages
of our method are of vital important because the results of the post-processing SML method
relies heavily to the quality of the input. Hence, we believe our method can fit well into an
FCA4SML method.

To further exploit this topic, we plan to combine our method with the technique of iceberg
concept lattice [103] in order that our method can work with larger contexts. We also plan to
study the cases when applying more complicated merging rules other than the global AND
rule and OR rule. Finally, as our long-term goal, we plan to study the possibility of finding
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an alternate method other than ILP that can control the number of modified incidences and
the inserted/eliminated concepts during generation of reduction plans.



Chapter 4

An FCA4SML method which avoids the
direct processing of formal concepts

4.1 Introduction

In this chapter, we propose an FCA4SML method which can achieve a good performance
without directly processing the extracted formal concepts with an SML method. This is our
second solution for the second issue that makes it hard to work out an FCA4SML method,
i.e., the number of formal concepts is so large that the concepts are difficult to be further
processed by an SML method.

In the previous chapter, we have shown the possibility of using our ILP-based method to
reduce the number of objects and formal concepts in the concept lattice. The method is useful
in case the post-processing SML method directly takes the entire concept lattice as input.
However, we may also consider utilizing an extra process first to generate an intermediate
set from the formal concepts. Then, the intermediate set is processed by an SML method to
get the final output. Since the size of the intermediate set is adjustable, by applying such a
strategy, we may also prevent the input size of the SML process from being excessively large,
and thus solve the issue. The content of the intermediate set is task-specified – the elements
of the set do not need to be formal concepts and form into a concept lattice, but only need to
fit the input format of the SML process, which means that this solution can save much time
cost in maintaining the information within the concept lattice (e.g., to control the number
of inserted concepts and eliminated concepts). Accordingly, this solution is not generally
applicable like the solution in the previous chapter as we have to develop a new method to
generate the intermediate set for every different task. Hence, both solutions have their merits
and demerits, and we should choose and apply either of them based on our actual needs.
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Since the generation for the intermediate set has to be task-specified, in this chapter, we
focus on the task bipartite link prediction. Bipartite link prediction is the task of predicting
the absence or presence of unobserved links in a bipartite network [38, 70, 115]. A bipartite
network is a structure consisting of two disjoint sets of nodes and a set of edges where every
edge only connects two nodes from different sets. Many real-world relational data can be
naturally modeled as bipartite networks where the two sets of nodes represent two groups
of entities and the edges represent their links or relations [4, 97]. In real-world bipartite
networks, some links may be missing or have not been observed yet [38, 115]. This leads to
the need to predict whether an unobserved link should be a potential new one and gives rise
to the task of bipartite link prediction. Making such a prediction based on the observed data
of the network is proven possible thanks to the conclusion that any two nodes connected with
a link should be similar to each other in terms of the connectivity features[62, 71, 109]. For
example, given a protein-protein interaction network, we can predict potential unrecorded
new interactions based on the topological structure of the network because two proteins
interact with the same group of proteins, they should also have a high possibility of interacting
with each other[5]. Based on this idea, various methods have been developed, and the task
of predicting unobserved links is named the link prediction problem [71, 109]. Recently,
the link prediction problem has become an extensively researched topic due to its high
practical value. It has found various applications to different scenarios like recommending
potential friends from a social network service [109], completing a knowledge graph [87],
discovering possibly related research papers from a research network [13], or forecasting
possible interactions between chemicals, genes, and diseases [32, 73].

As a typical machine learning task, the methods for bipartite link prediction can be cate-
gorized into two groups – the RML methods[51, 60, 121] and the SML methods. The RML
methods for bipartite link prediction usually apply a similarity-based scoring strategy [120].
These first give a similarity score for all node pairs based on the information of the observed
part of the network. Then, a new link is predicted between each node pair where their
similarity score exceeds a certain threshold[62, 121]. Some similarity measures are based on
only the local features of the network, such as common neighbors (CN) [110], the Jaccard
coefficient (JC) [56, 121], the Adamic-Adar coefficient (AA) [115, 121], and the preferential
attachment (AA) [7, 121]; others are based on the global features of the whole network, such
as random walk with restart (RWR) [6] and PageRank [83].

The SML methods, on the other hand, treat the observed part of the network as training
samples and use algorithmic approaches to train a model, and use the model for predicting
unobserved links [15, 54, 96, 99, 120]. One of the most influential SML bipartite link
prediction methods is matrix factorization (MF) [88, 110, 114, 123], which is also called
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collaborative filtering The basic idea of MF is to extract latent factors from the bi-adjacent
matrix of the observed part of the network and try to reconstruct the whole network with
these latent factors. Here, the bi-adjacent matrix A of a bipartite network G = (V1,V2,E) is
a |V1|× |V2| matrix, where ai j, the element on the i-th row and j-th column of the matrix
represents the link status between node v1 and v j. Given such an N×M matrix A, an MF-
based link prediction method aims at decomposing it into the product of a N× k matrix P
and a k×M matrix Q, where k is far smaller than M. Since the ranks of both P and Q are
far smaller than that of A, the product of P and Q is considered to be a low-dimensional
approximation of the original matrix, which hopefully will abstract the unnecessarily detailed
information and keep the essential information of the original matrix A. Hence, for each node
pair (vi,v j) where the link is unobserved, the corresponding value of (PQ)i j is considered to
be the confidence score or possibility of whether there should be a potential link. That is, a
link is predicted between the node pair if the score exceeds a certain threshold. See Fig 4.1
for a clearer depiction of the working flow of an MF-based bipartite link prediction.

Fig. 4.1 An example of the working flow of the MF-based bipartite link prediction. In the
bi-adjacent matrices, present links, absent links, and unobserved links are represented with
crosses, empty cells, and question marks, correspondingly. The bi-adjacent matrix of the
original network is converted into a numerical matrix A, which is then decomposed into
the product of P and Q. In the reconstructed matrix PQ, the confidence values of two node
pairs with unobserved links (v1,v4) and (v1,v7) are 0.1 and 0.9 separately, so finally, we only
predict a new link between (v1,v7).



72 An FCA4SML method which avoids the direct processing of formal concepts

Recently with the rapid growth of computing power, SML methods have taken up the
majority of bipartite link prediction methods [62, 71, 88, 109]. However, compared to RML
methods, they rely heavily on the ground truth of the link status in the observed part of the
network to create supervised data [88]. In real-world bipartite networks, there is often no
ground truth of an absent link. For example, in a chemical-disease interaction network, a
chemical not linked to a disease does not mean that they do not interact with each other but
only implies that their interaction is not yet observed. If a large number of these non-concrete
absent links are treated as reliable negative training samples, it is highly likely to result in
a “modest” model which tends not to predict new links at all. Such a problem has already
been frequently spotted in previous research and was proved to influence prediction accuracy
significantly [16, 81]. Till now, there have been three different strategies for solving this issue.
The first strategy is to utilize some side information from other data sources to counterbalance
the unreliable prediction score. The NMF-LP method applies this strategy [13]. The second
strategy is to make a minor perturbation to the data, which is applied in [16]. The third
strategy is to use an RML method first to make a preliminary prediction. Then, the prediction
scores of the RML methods are used to initialize training samples used in the SML method or
regularize the weights of the SML model. This solution is most widely applied because it does
not require external information and is easy to implement SRNMF,matrix,mcimpute. Typical
methods applying this strategy include SRNMF [110], which uses the common neighbors
prediction scores to regularize the matrix factorization process and the methods introduced
in [73], which apply various RML methods to initialize the matrix to be factorized.

In this chapter, based on the idea of the third strategy, we propose a new FCA4SML
method utilizing a special pre-processing step called negative sample selection (NSS). The
technique first uses a preliminary link prediction method utilizing FCA to mark out node pairs
that are least likely to be potential links. Then, it randomly selects a certain percentage of
negative samples from the unmarked node pairs. For the preliminary link prediction method,
instead of applying a traditional node-similarity-based scoring strategy, our method first
utilizes the structure hole theory [115] which gives preliminary predictions by extracting and
analyzing the overlapping bi-cliques from the network. A similar method was proposed and
studied in [121], while our method makes use of the theories and conclusions from the related
field of FCA to reduce the time complexity from O(|C|2) to O(|C|) where |C| represents
the number of all bi-cliques and that of overlapping bi-cliques, separately. Compared to
those traditional scoring methods, which give scores based on local statistic features for
every single node pair, our method focuses more on extracting and comparing the overall
connectivity features of node clusters, which suggests that our method is robust against
the bias caused by local features and is expected to have better performance. After this
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well-designed negative sample selection procedure, we can get a more reliable intermediate
set as the input of the preceding MF process and finally get our highly accurate prediction
results. We conduct experiments on three real-world datasets to simulate two hypothetical
application scenarios and found that our FCA4SML method can not only work but also
outperform the raw MF method as well as all other previous unsupervised bipartite link
prediction methods.

4.2 Preliminaries

4.2.1 Problem formulation and evaluation

This research studies the problem of bipartite link prediction on an input network Gi =

(Vi1,Vi2,Ei) and a target network Gt =(Vt1,Vt2,Et =E+
t ∪E−t ), satisfying that Vi1 =Vt1,Vi2 =

Vt2 and Ei ⊂ E+
t where E+

t and E−t represent the present links and absent links, separately.
That is, the input network has the same nodes as the target network, while it only contains
part of the present links and no ground truth information about absent links. The goal of
link prediction is to use the information of Gi to build a predict network Gp. The more Gp

appears similar to Gt , the more successful the system is.
To give a concise numerical evaluation, we use the following two measures: AUC score

and AUPR score, which were applied in most previous research [13, 73, 114, 121, 123]. Both
scores are estimated with the four basic values: TP, TN, FP, and FN. Here TP represents the
number of samples that are actually positive (present) and is predicted positive; FP represents
the number of samples that are negative (absent) but are falsely predicted to be positive;
TN represents the number of samples that are actually negative and predicted negative; FN
represents the number of samples that are actually positive but falsely predicted negative.

The AUC (Area Under the Curve) score is estimated by computing the area under the
ROC (Receiver Operating Characteristic) curve. The ROC curve is created by plotting the
true positive rate (TPR) against the false positive rate (FPR) at various threshold settings.
Here TPR and FPR are estimated as follows:

T PR def
=

T P
T P+FN

,

FPR def
=

FP
T N +FP

.

The AUPR (Area Under the Precision-Recall curve) score is estimated by computing
the area under the Precision-Recall curve, which is created by plotting the precision rate
against the recall rate at various threshold settings. Here precision and recall are estimated as
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follows:

Precision def
=

T P
T P+FP

,

Recall def
=

T P
T P+FN

.

4.3 The proposed method

4.3.1 An overview of the working flow of our method

Fig. 4.2 The comparison of the working flow of the raw MF method and our joint method.
The upper row depicts the working flow of the raw MF method, while the lower row depicts
that of our method.

Our method is named Matrix Factorization with Negative Sample Selection (MF-NSS).
It contains two parts – the negative sample selection and the MF-based link prediction. In
the first part, it processes the network and extracts maximal bi-cliques using formal concept
analysis (FCA), a technique originally proposed for ontology extraction but also strongly
connected with network theory. Then, it picks out the node pairs which are least likely to be
linked together. Next, it passes the bi-adjacent matrix of the input network, with all present
links marked as positive samples and the aforementioned node pairs as negative examples,
to the second part. In the second part, the matrix is factorized and approximated with a
collaborative filtering process, and the node pairs where their corresponding score in the
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reconstructed approximated matrix exceeds a threshold are outputted as our final predicted
links. The comparison of the working flow of our method and the raw MF method is depicted
in Fig 4.2.

4.3.2 Overlapping maximal bi-cliques and structural hole

In this research, we use a preliminary link prediction method utilizing the features of bi-
cliques. A bi-clique C = {Vc1,Vc2,Ec} of a bipartite network G = (V1,V2,E) is a sub-network
where there is a link between every node pair from different parts, that is, Vc1 ⊆V1,Vc2 ⊆
V2,Ec ⊆ E and for all v1 ∈Vc1,v2 ∈Vc2 we have (v1,v2) ∈ Ec. For such a bi-clique C, if no
other bi-clique D is a super-network of C, then C is called a maximal bi-clique. See Fig 4.3
for an example of bi-cliques and maximal bi-cliques.

Fig. 4.3 An example of a bi-clique and a maximal bi-clique. The sub-network framed out in
red from the bipartite network on the left is a bi-clique, which corresponds to the rectangle
framed with red dash lines in the bi-adjacent matrix shown on the right. However, it is not
a maximal bi-clique because it is a sub-network of another bi-clique framed in blue. The
latter bi-clique is a maximal bi-clique, for it corresponds to the rectangle framed with solid
blue lines on the right, which is a maximal rectangle box filled with crosses with rows and
columns permutable.

Bi-cliques are considered clusters of strongly-related entities. For example, in an au-
thorship network, a bi-clique may represent a group of co-researchers and their research; in
a chemical-disease network, a bi-clique represents a group of similar chemicals and their
affected diseases. Intuitively, if two clusters have a lot of nodes in common, it may imply
that they are both parts of a larger cluster; that is, the unlinked node pairs from two clus-
ters should have a high possibility of being linked together. This is the famous structural
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hole theory [115, 121], which can be formalized into the following strategy for preliminary
link prediction. Given a bipartite network G, two maximal bi-cliques A = {VA1,VA2,EA}
and B = {VB1,VB2,EB} are overlapping bi-cliques if they satisfy VA2 ⊂VB2 which mutually
implies VB1 ⊂VA1. To avoid biases, we add two extra coefficients – the component sizes of a
bi-clique A, denoted as s1(A) and s2(A), separately; the overlapping rates of two bi-cliques
A and B, denoted σ1(A,B) and σ2(A,B), separately, for measuring whether the overlapping
bi-cliques are too trivial to represent a cluster of the nodes in a network:

s1(A)
def
= |VA1|,

s2(A)
def
= |VA2|,

σ1(A,B)
def
=

min{|VB1|, |VA1|}
max{|VB1|, |VA1|}

,

σ2(A,B)
def
=

min{|VB2|, |VA2|}
max{|VB2|, |VA2|}

.

An overlapping maximal bi-clique pair A and B is considered non-trivial if the two bi-cliques
have enough sizes and overlapping rates. That is, they should satisfy the following conditions:

min{s1(A),s1(B),s2(A),s2(B)}> α.

min{σ1(A,B),σ2(A,B)}> ρ.

where α and ρ are threshold parameters. Based on the structure hole theory, for a non-
trivial overlapping maximal bi-clique pair, all node pairs in their structure hole, denoted
as H(A,B) are expected to have possible new links. That is, for all v1 ∈ VA1−VB1 and
v2 ∈VB2−VA2, a new link is predicted over each (v1,v2). See Fig 4.4 for a clearer view of
this overlapping-based preliminary link prediction method.

Certainly, such an overlapping-based method can only weigh out some node pairs from
others, which is not enough for a high-accurate link prediction method. However, it is already
enough for our process of negative sample selection since we only need those node pairs that
are least likely to be linked. That is, we simply apply this preliminary link prediction method
to find out the node pairs that are not considered as possible links. These node pairs are
marked as negative samples for the next part of our method, the MF-based link prediction,
which will then extract the latent factors with these training samples and give a more accurate
prediction.
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Fig. 4.4 An sample pair of overlapping bi-cliques and their structure hole. Left: A bipartite
network with two overlapping maximal bi-cliques framed out in red and blue, separately.
Middle: The bi-adjacent matrix of the network on the left. The aforementioned maximal
bi-cliques correspond to the red and blue rectangles, separately. The gray cells filled with dots
represent their structure hole. Right: the concept lattice representing all maximal bi-cliques
from the network. The aforementioned bi-cliques correspond to the concepts marked out in
blue and red, separately.

4.3.3 Maximal bi-cliques and FCA

Clearly that if we consider the two parts of a bipartite network as the object set and the
attribute set, the bi-adjacent matrix will become a formal context, and a formal concept
extracted from such a formal context should represent two maximal subsets of nodes from
each part of the original network where every node pairs from two different part are linked
together, which completely matches the definition of a maximal bi-clique. Furthermore, a
pair of overlapping maximal bi-cliques can also correspond to two concepts (A1,B1) and
(A2,B2) satisfying (A1,B2) < (A2,B2), i.e., a pair of concepts on the same path from the
minimum concept to the maximum concept of the concept lattice, as is shown on the right of
Fig 4.4. Furthermore, for three concepts (A1,B1), (A2,B2), and (A3,B3) satisfying (A1,B1)<

(A2,B2)< (A3,B3), we have the following deductions:

• |A1|> |A2|> |A3|, |B1|< |B2|< |B3|,

• σ1((A1,B1),(A3,B3)) = σ1((A1,B1),(A2,B2)) ·σ1((A2,B2),(A3,B3)),

• σ2((A3,B3),(A1,B1)) = σ2((A3,B3),(A2,B2)) ·σ2((A2,B2),(A1,B1)),

• H((A1,B1),(A3,B3)) = H((A1,B1),(A2,B2))∪H((A2,B2),(A3,B3)).

These deductions show that the component sizes and the overlapping rate of a pair of
bi-cliques also correspond to the hierarchical features of the concept lattice. That is, all
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bi-cliques with component sizes beyond the threshold correspond to the intersection part of
an upward and a downward iceberg-shaped section of the lattice. All over-lapping bi-cliques
with an overlapping rate beyond the threshold correspond to several chain-shaped sections
of the lattice, where the structure wholes of each pair of concepts from the section are all
included in that of the minimum and maximum concept of the section. See Figs 4.5 and 4.6
for a clearer depiction of such connections. All these connections above show that to extract
all non-trivial overlapping bi-cliques, all we need is to enumerate all formal concepts and
construct a concept lattice from the formal context corresponding to the bi-adjacent matrix.

Fig. 4.5 An example of the iceberg-shaped sections of the concept lattice corresponding to
the bi-cliques with component sizes exceeds a threshold 3.

Extracting overlapping bi-cliques with FCA algorithms

We extract maximal bi-cliques with a modified LCM algorithm [105]. LCM algorithm is
an improved version of the prototype algorithm for FCA introduced in Section 2.2. Sim-
ilar to the prototype algorithm, the LCM algorithm also uses the augmentation operator
Aug((A1,B1),b) which generates a concept directly from a given concept (A1,B1) and an
augmentation attribute mb:

AUG((A1,B1),b)
def
= ((B1∪{mb})(1),(B1∪{mb})(1)(2))

Especially note that in the above equation, b is an integer ranges from 1 to |M| representing
the serial number of an attribute. As proven in Section 2.2, for any concept (A1,B1), all
(A2,B2) satisfying that (A2,B2)> (A1,B1) can generate with AUG((A1,B1),b) by choosing
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Fig. 4.6 An example of a chain-shaped cluster corresponding to a group of non-trivial
overlapping bi-cliques. The structure hole of each pair of concepts is marked with cells in
different colors. It is clear that the structure hole of the maximum and minimum concept, i.e.,
concept a and d contains that of any other pair of concepts from the group.

a proper b. With such a derivation, we can simply enumerate all formal concepts in a depth-
first-search mode starting from the minimum concept ( /0(1), /0(1)(2)), just like the prototype
algorithm. However, with such a procedure, we may still enumerate repeated concepts
simply because one concept may have multiple infima. To avoid repetitions, we need to
define a topological order for all these concepts. Here we follow the idea of the LCM
algorithm to define the predecessor of concept (A,B) as the concept (A1,B1) satisfying
that AUG((A,B),b) = (A1,B1) and that (B1−B)∩ s(b− 1) = /0 where s(t) is defined as⋃

1≤i≤t{mi}. In each recursive call of the depth-first-search enumeration process, only when
the current concept is found to be the predecessor of the newly generated concept should
we call the next recursion. More details of the algorithm can be founded in the pseudocode
presented in Algorithm 11.

After enumeration, we are to extract the non-trivial overlapping concepts, a.k.a., non-
trivial overlapping maximal bi-clique pairs with the help of the concept lattice. As previously
analyzed, these bi-clique pairs are clustered into iceberg-shaped and chain-shaped sections in
the concept lattice. Since the recursive procedure we introduce before strictly follows the
hierarchical order < to traverse the lattice, recording some intermediate parameters during
the recursive enumeration procedure allows us to find these clusters after the enumeration
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Algorithm 11 The basic DFS procedure for enumerating all concepts.

1: procedure ENUMERATE((A,B))
2: Output (A,B)
3: for b← |M| downto 1 do
4: (A1,B1)← AUG((A,B),b)
5: if (B1−B)∩ s(b−1) = /0 then
6: Call ENUMERATE((A1,B1))
7: end if
8: end for
9: end procedure

easily. Details can be found in the pseudocode presented in Algorithms 12 and 13. Note
that in the pseudocodes, we use some queue-like structures, which are first-in-first-out lists
supporting the following operations:

• Q.push(A) adds an element A to the back end of the list.

• Q.pop() removes the element at the front end of the list.

• Q. f ront() returns the element at the front end of the list.

It can be derived from the code that the recursive ENUMERATE function presented in
Algorithm 11 will be called exactly |C| times, where |C| is the number of maximal bi-cliques
in the network. After enumeration, we generate C non-trivial overlapping maximal bi-cliques
and traverse them in Algorithm 4.3. Hence, the overall complexity of FCA-based negative
sample selection is O(|C|), i.e., linear to the number of bi-cliques from the network.

4.3.4 Matrix factorization

In this research, we are mainly to study the effect of our original technique of negative sample
selection, so for this step, we only use the most basic form of an MF-based link prediction.
That is, the adjacent matrix A of the network is approximated to a product of a N× k matrix
P and a k×M matrix Q, where K is far smaller than N and M:

A = PQ

Since the ranks of P and Q are far smaller than that of A, the values of P and Q are not
unique. Hence, to compute P and Q, we need to optimize the object function below:

min
P,Q
|A−PQ|2
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Algorithm 12 The recursive procedure for enumerating non-trivial overlapping concepts.
Note The parameter (A,B) represents the concept in process. U is a queue memorizing

the current chain-shaped cluster of non-trivial overlapping concepts. Sim is a global map-like
structure for recording the bounds of clusters. K= (G,M,Y ) is the formal concept. T List is
a global list of formal concepts.

1: procedure PREF(b)
2: Return

⋃
1≤i≤b mb

3: end procedure
4: procedure ENUMERATE((A,B),U,Sim,K,T List)
5: while |U |> 0 and σ1(U.top(),(A,B))< ρ do
6: U.pop()
7: end while
8: if |A| ≥ α and |B| ≥ α then
9: U.push((A,B))

10: T List← T List ∪ (A,B)
11: if |U |> 0 then
12: Sim((A,B))←U. f ront()
13: else
14: Sim((A,B))← (A,B)
15: end if
16: end if
17: for b← |M| downto 1 do
18: (A1,B1)← AUG((A,B),b)
19: if (B1−B)∩PREF(b−1) = /0 and |A1| ≥ α then
20: Call ENUMERATE((A1,B1),U,Sim,K,T List)
21: end if
22: end for
23: end procedure
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Algorithm 13 The main procedure for enumerating non-trivial overlapping concepts.
Input K= (G,M,Y ), the formal context corresponding to the bi-adjacent matrix; α , the

size threshold; ρ , the overlapping rate threshold.
Output List, the list of preliminary predicted links.

1: UList,DList,List,Y1← /0, /0, /0, /0
2: Initialize Q as an empty queue.
3: Initialize UpSim,DownSim as empty maps.
4: Call ENUMERATE(( /0(1), /0(1)(2)),Q,UpSim,(G,M,Y ),UList)
5: for each (g,m) ∈ Y do
6: Y1← Y1∪ (m,g)
7: end for
8: Call ENUMERATE(( /0(1), /0(1)(2)),Q,DownSim,(M,G,Y1),DList)
9: for each (A,B) ∈UList do

10: for each (v1,v2) in the structure hole of (A,B) and UpSim((A,B)) do
11: List← List ∪ (v1,v2)
12: end for
13: for each (v1,v2) in the structure hole of (A,B) and DownSim((A,B)) do
14: List← List ∪ (v1,v2)
15: end for
16: end for

The object function is expanded into the following form:

min
P,Q

∑
(vi,v j )̸=Ex

(ai j− p⃗i
T q⃗· j)2

where p⃗i and q⃗· j represents the row vector of the i-th row of matrix P and the column vector
of the j-th column of matrix Q, correspondingly. It is clear from this form that ai j is the
status of a link (vi,v j) in the network, and p⃗i

T q⃗· j is our confidence score of whether it should
be a new link. While this object function is enough to derive and compute the factor matrices,
to improve the accuracy, the confidence score is usually added with a bias term:

bi j = µ +bi +b j

where µ is the overall average confidence score of all links, with bi and b j being the bias
for node vi and v j. The bias term is used to force the model to retrieve interactive features
between all nodes, instead of the local features of a single node. Besides the bias, the object
function is also usually added with a regularization term to prevent over-fitting:

λi j = λ (b2
i +b2

j +∥p⃗i|2 + |q⃗· j∥2)
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where λ is a hyper-parameter. With these two terms added, the final object function is derived
to be:

min
P,Q

∑
(vi,v j )̸=Ex

(ai j− p⃗i
T q⃗· j−bi j)

2 +λi j

The function is not convex. However, if we regard either P or Q as constant, it will
become a quadratic function and can be optimized using stochastic gradient descending.
Hence, to solve this optimization problem, we use a collaborative filtering strategy [55]. That
is, the parameter matrix P and Q are updated alternatively in an iterative mode. In each
iteration for a training sample ai j, we are to conduct the following four updates:

bi← bi + γ(ei j−λb j)

bi← b j + γ(ei j−λbi)

p⃗i← p⃗i + γ(ei jq⃗· j−λ p⃗i)

q⃗· j← q⃗· j + γ(ei j p⃗i−λ q⃗· j)

where ei j = ai j− p⃗i
T q⃗· j− bi j is the predicting score for the sample, and γ is the learning

rate, a hyper-parameter controlling the step size of each gradient descent. We repeat the
iterations until every training sample is updated at least i times, where i is the pre-determined
parameter for the maximum number of iterations.

After the training process is finished, we compute the confidence score for each node pair
(vi,v j) ∈ Ex with the aforementioned equation ei j = ai j− p⃗i

T q⃗· j−bi j. We predict a new link
between this node pair if the score exceeds a threshold.

From above, it can be derived that the MF process requires i rounds of updates and each
round has about NM update operations. Hence, the time complexity of the MF process is
O(iNM), and the overall time complexity of our MF-NSS algorithm is O(|C|)+O(iNM).
For comparison, we also list the time complexity of several previous link prediction methods
in Table 4.1. Here in the table, De refers to the average degree of a node, |E| refers to the
number of edges. From the table, we can see that, unlike the previous methods, the time
complexity of our method is strongly associated with |C|, the number of maximal bi-cliques
with enough sizes in the network. Since |C| may grow exponentially as N and M increase,
generally, our method is considered slower than the other methods in the list. Nevertheless,
in practical cases, we can still make our method finish execution in a reasonable time since
we can prevent the value of |C| from overgrowing by tuning the parameter α . In practical, the
maximum number of |C| that can make the whole algorithm finish running in a reasonable
time (i.e., fewer than 6 hours) is estimated to be 105.
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Table 4.1 The comparison of the time complexity of different bipartite link prediction
methods.

Algorithm Global or Local RML or SML Time Complexity
AA Local RML O(NMDe)
JC Local RML O(NMDe)
PA Local RML O(NMDe)
CN Local RML O(NMDe)

RWR Global RML O(i|E|)
MF Global SML O(iNM)

SRNMF Global SML O(NMDe)+O(iNM)
MF-NSS Global SML O(|C|)+O(iNM)

4.4 The experiments

In this section, we examine our algorithm’s effectiveness and performance using two different
scenarios of applications. We compare our algorithm with two supervised link prediction
methods – raw MF and SRNMF as well as five unsupervised link prediction methods
– AA, JC, CN, PA and RWR. All algorithms are written in Python and executed on a
Ubuntu 18.04 System with a 2.4GHz CPU and 93.00GB RAM. The codes are available at
https://github.com/MF-NSS/MF-NSS.

4.4.1 Link prediction on networks without ground truth for absent
links

In this experiment, we study the basic application scenario of link prediction on a network
where there is no ground truth for absent links, a.k.a, negative samples. Such a scenario is
frequently encountered in practical cases, as introduced at this paper’s beginning. However,
since it is impossible to estimate the performance of the algorithms without ground truth
negative samples, in this experiment, we still need to build the input and target networks
from datasets with ground truth absent links available and then hide the information from the
algorithms to simulate such a scenario. Hence, we choose the MovieLens 25M dataset [43]
and HetRec 2011 user-rating dataset [12] to build the networks for this experiment. Both
datasets have records of users’ ratings of movies from different websites, including IMDb,
Rotten Tomatoes, and MovieLens. We process and build bipartite networks from these
datasets with the following steps:

• First, we remove the users who rated fewer than t movies and the movies which are
rated by fewer than t users from the datasets. Here t is set to 1000 for the MovieLens
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dataset and 50 for the HetRec dataset. The remaining users and movies are converted
to the two components of the bipartite network, i.e., Vt1 and Vt2.

• Then, we are to build the target network Gt = (Vt1,Vt2,Et = E+
t ∪E−t ). For a user u

and a movie v, if the user rates 4.5 or higher for the movie, we add (u,v) to E+
t ; if the

user rates lower than 4.5 for the movie, we add (u,v) to E−t .

• Next, we randomly remove 20% of links from E+
t to create Ei, i.e., the link set for the

input network. Especially note that in order to simulate the scenario without ground
truth for negative samples, here all links in the input network are present links.

After the preprocessing, we feed the input network Gi = (Vt1,Vt2,Ei) to the algorithms and
test if they can predict the target network Gt . For the MovieLens data, we have Vt1 =

2675,Vt2 = 3794 and E+
t = 398,911. For the HetRec data, we have Vt1 = 1872,Vt2 = 3261

and E+
t = 128,657. Since the input network generation has randomity, we conduct such a

network generation five times, run the six algorithms, and collect the average results into
Table 4.2. The standard deviations for all scores in the table are below ±0.001.

Table 4.2 The statistics of the experiment on the MovieLens and HetRec datasets.

MovieLens HetRec
Algorithm AUC Score AUPR Score AUC Score AUPR Score

AA 0.619 0.142 0.546 0.160
JC 0.613 0.137 0.536 0.152
PA 0.551 0.107 0.492 0.124
CN 0.620 0.142 0.548 0.161

RWR 0.627 0.132 0.616 0.161
MF 0.779 0.358 0.703 0.291

SRNMF 0.620 0.233 0.621 0.277
MF-NSS 0.822 0.396 0.740 0.324

Bold-font numbers represent the highest performance in terms of the corresponding
measurement of the corresponding dataset.

From the results, we can see that while the two supervised methods – MF and SRNMF
perform better than the other five unsupervised methods on both datasets, our MF-NSS
method can still further improve their performance. This suggests that the lack of information
on absent links does influence the performance of supervised link prediction, while our
technique of negative sample selection can lessen such a negative influence and make it
possible to give more accurate predictions with limited information.
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4.4.2 Aggressive link prediction on networks where most links are un-
observed

In this experiment, we simulate the scenario of making aggressive but reasonable hypotheses
based on a small group of observed data. Such a scenario is frequently encountered in many
fields like drug development – researchers may start their experiments on those chemicals
predicted to be most likely to react with the interested diseases. Motivated by this, we
chose the CTD chemical-disease interaction database as the dataset for this experiment. The
dataset has records of two types of interactions – the curated ones and the inferred ones.
The curated interactions refer to those with direct evidence published in literature curated
by the CTD organization, and the inferred ones are those without direct evidence but can be
inferred from external curated sources. These inferred interactions are considered important
references for other research in related fields. Hence, if our algorithm can predict these
inferred interactions based on the network structural features of the curated interactions only,
it suggests that our algorithm may have a great ability to dig deep into the features of these
networked interactions and can be used as an alternative method of inference when external
curated sources are unavailable. Based on this idea, we make an input network Gi where
only the curated interactions are collected into E+

i and make a target network Gt where both
curated and inferred are collected into E+

t and the remaining chemical-disease pairs are
collected into E−t . After processing, we have Vt1 = 10225,Vt2 = 3283,E+

i = 103,845 and
E+

t = 1,965,562. We run the six algorithms five times and collect the average AUC scores
and AUPR scores into Table 4.3. The standard deviations of all scores in the table are around
±0.001 to ±0.002.

Table 4.3 The statistics of the experiment on CTD chemical-disease database.

Algorithm AUC Score AUPR Score
AA 0.373 0.046
JC 0.382 0.049
PA 0.503 0.029
CN 0.388 0.052

RWR 0.500 0.021
MF 0.688 0.076

SRNMF 0.731 0.118
MF-NSS 0.846 0.276

Bold-font numbers represent the highest performance in terms of the corresponding
measurement.
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As can be seen in Table 4.3, Our MF-NSS method significantly improves both the AUC
score and the AUPR score compared to all other methods. Although both the raw MF method
and the SRNMF method have improved the AUC score compared to all four unsupervised
methods, their AUPR scores are close to the baseline. According to previous studies [22],
the AUPR score gives a more focused estimation of a model’s ability to recognize positive
samples, so the low AUPR scores imply that these two methods are insensitive to present
links. We analyze this because the input network in this experiment is only about 10% as
dense as the networks used in the last experiment and thus has many more non-concrete
absent links. Without a specially designed pre-processing procedure, these two methods will
treat all these non-concrete absent links as reliable negative samples and as a result, they
should have a high tendency to predict an absent link between most node pairs. On the other
hand, our MF-NSS method can still make accurate predictions, thanks to the technique of
negative sample selection. This perfectly shows the effectiveness of our NSS procedure
and that our algorithm is suitable for such an application scenario. Also, we found that in
this experiment, RWR has the lowest AUPR score among all methods that we tested, even
compared to the four local methods. A similar conclusion was also mentioned in [120]
that unsupervised methods may not work well in protein-protein networks since they have
different link formation mechanisms than the more-common social networks or user-movie
rating networks. This indicated that global methods do not always outperform local methods,
but that supervised methods generally perform better than unsupervised methods.

4.4.3 Studies on the performance of negative sample selection

In this subsection, we discuss the factors that affect the performance of the negative sample
selection step. As mentioned above, in this step, we first use an FCA-based preliminary link
prediction method to mark out some node pairs that are least likely to be negative samples
and then randomly select a certain percentage of node pairs as negative samples from the
rest of the unobserved part of the network. It can be easily derived that the parameters which
control the output of the FCA-based link prediction method and the sample rate, i.e., the
determined percentage of the selected negative samples, should influence the final results
most significantly. Hence, we design the following experiment to study how it will influence
the results: First, besides the FCA-based negative sample selection procedure, we implement
another procedure that completely randomly selects negative samples. Then, we run both
procedures with different sample rates, feed their selected training samples into the MF
procedure, and plot the final results into Fig 4.7. From the results, it is clear that we may find
some best sample rates contributing to the best AUC and AUPR scores – either higher or
lower sample rates will result in lower scores. Also, we discover that when the sample rate
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Fig. 4.7 The AUC and AUPR scores with different sample rates.
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is set to be these best values, both the random negative sample selection procedure and our
FCA-based selection procedure can contribute to their highest AUC and AUPR scores, while
the peak scores achieved by our FCA-based procedure are higher than a random selection
procedure over all three datasets. This shows that our FCA-based negative sample selection
procedure is effective and gives us the idea of using a random selection procedure to estimate
the best sample rates before running the joint system. Furthermore, we have also found that
the AUC and AUPR scores of our FCA-based negative sample selection have the largest
margin over that of the random selection procedure in the task of aggressive link prediction.
We analyze that it is because, in this task, there are many more positive samples in the test
set, which means that a random negative sample selection will have a high probability of
selecting a potential new link as a negative sample. Our FCA-based link prediction method,
however, can prevent such a case from happening and thus can keep good performance in
this scenario. On the other hand, in the other application scenario of link prediction without
ground truth for negative samples, if there is no urgent need for high performance, it is
also recommended to apply a random negative sample selection, which will slightly reduce
the AUC and AUPR scores but still has a very good performance compared to a raw MF
procedure or other unsupervised methods.

4.5 Conclusion of the chapter

We proposed an FCA4SML method called MF-NSS for the task of link prediction on
bipartite networks. The method combines the traditional MF-based link prediction procedure
with a unique FCA-based preliminary negative sample selection technique. We studied the
application of this method to two typical scenarios – making aggressive predictions when
most of the network is unobserved and making link predictions on a network where no
ground truth for absent links is available. In the former scenario, the technique significantly
improves the AUC and AUPR scores, showing the possibility of MF-NSS being used as
an alternate chemical-disease or gene-disease inference method. In the latter scenario, our
method can lessen the affection of excessive negative samples to reach the best performance
compared to all other methods. The good performance of our method in both scenarios
shows that even if we do not directly process the concept lattice with and SML method, we
can still apply other strategies like our proposed negative sample selection technique to make
the SML method fully utilize the information provided by FCA.

As our future work, we consider extending our method so that it can be further applied to
heterogeneous networks, that is, networks where the links have different types. Fortunately,
there has already been research on the three-dimensional extensions of formal concept
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analysis and matrix factorization, which will provide us with crucial theoretical basis and
show us the possibility of our planned extended method. Also, we plan to develop more ways
for negative sample selection and combine this technique with other SML methods, to see if
it can boost the performance of these methods as well.



Chapter 5

An FCA4SML method which effectively
captures both types of information in
concept lattices

5.1 Introduction

In this chapter, we propose BERT4FCA, an FCA4SML method which utilizes a BERT-like
Transformer encoder framework to efficiently capture both types of the information from the
concept lattice and utilize them for downstream machine learning tasks. We propose this as
our solution for the third issue that makes it hard to develop a working FCA4SML method,
that is, the information within the concept lattice is complicated and thus hard to be learned
by SML methods.

As introduced in Chapter 1, there are two types of information in the concept lattice –
one is the relations between objects/attributes within the formal concept, and the other one
is the order relation between different formal concepts. To the furthest of our knowledge,
all previous FCA4SML methods, can only capture and utilize the first type of information,
while we consider the two types of information equally important and neither one should
be left out. For example, in the context shown in the left panel of Fig. 5.1, let us use
(A1,B1) to denote the concept ({g1,g2},{m1,m2,m3}) and (A2,B2) to denote the concept
({g1},{m1,m2,m3,m4,m5}). If we only consider the information within the concept (A1,B1)

and (A2,B2), we may only derive conclusions like that “the objects in A1 are strongly related
to the attributes in B1”. However, from their order relation in the concept lattice, we can know
that (A1,B1) is the direct neighbor of (A2,B2). This implies that there does not exist an object
g ∈ A2−A1 such that AK({g}), i.e., the attribute set of g, satisfies that B1 ⊆ AK({g})⊆ B2.
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In other words, for objects g that already has attributes m1,m2 and m3, attributes m4 and
m5 will be equivalent because all these objects should have both attributes. Such derived
information can provide important hints on machine learning tasks like link prediction or
node classification, so we consider it necessary to develop an SML method that can effectively
capture both types of information.

Fig. 5.1 Left: A sample context. Right: The concept lattice corresponding to the context to
the left.

To achieve the goal, we propose a novel FCA4FML method named BERT4FCA, which
processes the concept lattice with a popular method in natural language processing method
called BERT or Bidirectional Encoder Representations from Transformers [107]. BERT is a
method for training language models utilizing the Transformer encoder architecture [107].
BERT first pre-trains a large model on unlabeled free text to learn the co-relations between
words and sentences; then, it fine-tunes the model on a small labeled dataset to fit a target
downstream task. We chose BERT because we found that the both types of information
provided by FCA, that is, the formal concepts and their hierarchical relations, share similari-
ties with the input data that BERT takes. Furthermore, after we pre-training a model which
captures these two types of information, by fine-tuning the pre-trained model, we many be
able to make them fit any types of downstream tasks. In other words, unlike the method
introduced in the last chapter which is task-specified, the method introduced in this chapter
is generally applicable to different downstream tasks.

To verify the practical applicability and the versatility of our method, in this chapter, we
focus on the application of our method on two different tasks. The first task is link prediction
on bipartite network, which has been explicitly introduced and discussed in the last chapter.
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The second task is hyper-link prediction on bipartite network, which focuses on predicting
the relations between nodes from the same node sets of a bipartite network. For two nodes
from the same set that are not connected to the same node in the other set, it predicts whether
there should be an unobserved node in the other set that is connected to both nodes. For
example, in an author-paper network, for two authors that do not have a co-authorship, it
predicts if they will have a new co-authorship in the future [13, 28]. Like the task of bipartite
link prediction studied in the last chapter, this task have also attracted increasing attention for
its high practical values [32, 73, 115].

The rest part of this chapter is organized as follows. In Section 5.2, we start with some
preliminaries, including BERT and its relation with FCA. In Section 5.3, we present the
problem formulation of this study and the related work on the two tasks studied in this
chapter. In Section 5.4, we introduce and analyze our method BERT4FCA. In Section 5.5,
we describe our experiments on five real-world datasets and discuss the results. Finally,
in Section 5.6, we draw a conclusion and discuss our plans for future work related to this
sub-topic.

5.2 Preliminaries

5.2.1 BERT

BERT, short for Bidirectional Encoder Representations from Transformers [24], is a method
for training a language model via the Transformer architecture [107]. It works in a “pre-train
first and fine-tune next” mode. First, it pre-trains a large language model with two general
tasks on a large amount of unlabeled free text. Then, it fine-tunes the pre-trained model with
a specific downstream task on a small labeled dataset.

The two general tasks used in the pre-training phase are mask language model (MLM)
and next sentence prediction (NSP), which are defined as follows.

MLM: MLM is the task that predicts the full sentence from a sentence where some words
are randomly masked with a special token “[MASK]”. For example, if we have a sentence
like “the quick brown fox jumps over the lazy dog”, the model will take a masked version
of the sentence like “the [MASK] brown fox jumps [MASK] the lazy dog” as input and
the original sentence as target for output. The task helps the model learn the co-occurrence
relationship between words in the same sentence [24].

NSP: NSP is the task that predicts whether two sentences are the subsequent sentences or
not. The model takes a sentence pair (A,B) as input and is expected to output TRUE if B
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is the sentence directly following A in the corpus, or FALSE otherwise. The task helps the
model to understand the relationships between sentences.

After pre-training, the values of the weight matrices of the pre-trained model are used
as initial values for that of the fine-tune model and updated in the fine-tuning phase [29].
This is possible because pre-training and fine-tuning should use exactly the same network
architecture except for the output layer. The downstream task in the fine-tuning phase should
be the final target task. Hence, after fine-tuning, we get the final model which can be directly
used for our target task.

5.2.2 BERT and FCA

As mentioned above, BERT is a method for training language models, which takes sentences
in natural languages as inputs. Although formal concepts are not sentences in natural
languages, they do share some similarities – If we regard objects and attributes as words, then
the extents and intents of a concept can be regarded as sentences in a language that has an
order-free syntax. With such similarities, we may expect that the pre-training phase of BERT,
which was originally designed for learning the features of words and sentences, can also
be used for learning the features of objects, attributes, and formal concepts from a formal
context and its corresponding concept lattice. We may also expect that link prediction and
hyper-link predictions can be suitable downstream tasks after such a pre-training because the
information of nodes (a.k.a. objects and attributes), and maximal bi-cliques (a.k.a. formal
concepts) learned in the pre-training phase is helpful in increasing the accuracy of predictions.

Note that in most natural languages, the syntax is not order-free, indicating that different
word orderings usually have completely different meanings. Hence, BERT has a special
mechanism called position embedding for capturing the order of words in the input sentence.
However, since the extents and intents of formal concepts are unordered, there is no need to
keep track of the order. Hence, in our method, this mechanism is removed from BERT.

5.3 Problem formulation and related work

The chapter studies two different tasks on bipartite networks – the first task is hyper-link
prediction on bipartite networks, which predicts the missing or unknown relation between
two nodes from the same node set of a bipartite network, and the second task is bipartite
link prediction, which predicts the missing or unknown relation between two nodes from
different node sets. As analyzed above, a bipartite network is equivalent to a formal context,
and the two node sets are equivalent to the object set and the attribute set. Hence, for ease of
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understanding, we hereby name the two tasks as the object-object task or the O-O task and
the object-attribute task or the O-A task. The two node sets of a bipartite network are also
directly called the objects and attributes in the rest part of the paper.

The formal definitions of the two tasks are defined as follows.
O-O task: Given an original network C = (U,V,E) and a target network C′ = (U,V ′,E ′),

the O-O task aims to predict if a group of nodes G = {u1,u2, · · · ,u|G|} ⊆U that does not
have object-object links in C, should have object-object links in C′. For a group of nodes
G⊆U , they are considered to have object-object links in a network (U,V,E) if ∃v ∈V such
that ∀u ∈ G, (u,v) ∈ E.

O-A task: Given an original network C = (U,V,E) and a target network C′ = (U,V,E ′),
the O-A task aims to predict if two nodes u ∈U and v ∈ V that does not have an object-
attribute link in C, should have an object-attribute link in C′. For two nodes u ∈U and v ∈V ,
they are considered to have an object-attribute link in a network (U,V,E) if (u,v) ∈ E.

5.3.1 Related work

For the O-O task, the notable recently proposed methods are the two FCA4SML methods
briefly introduced in Chapter 1. In [28], the authors proposed an embedding-based method
called object2vec to embed objects into vectors using the information from the formal
concepts. Dually, they have also proposed attribute2vec for embedding attributes into
vectors, which uses exactly the same mechanism as object2vec. It has two embedding
models, object2vec-CBoW and object2vec-SG, both are derived from Word2Vec [75, 76].
Object2vec-CBoW, based on the continuous-bag-of-words model from Word2Vec, predicts
a target object using objects around it within the same extent; object2vec-SG, based on
the skip-gram model from Word2Vec, uses an object to predict other objects in the same
extent. They conducted experiments on the O-O task on an author-publication network and
demonstrated good performance. In [69], the authors proposed another embedding method
called Bag of Attributes (BoA). Their method trains a more complicated embedding model
using Bidirectional Long Short-Term Memory (Bi-LSTM) [39] and Variational Autoencoder
(VAE) [53] on formal contexts. They conducted experiments on the O-O task on the same
datasets as object2vec, and the results are similar to those obtained with object2Vec.

In [121], the authors proposed a rule-based method for the O-A task by analyzing the
overlapping formal concepts from a formal context. If the ratio of the overlapped part exceeds
a predefined threshold, they are considered parts of the same large formal concept, so all
the missing links in the non-overlapped part a.k.a. the structure hole [63] are predicted as
present links. It presents an interesting approach to bipartite link prediction but only has a
limited performance.
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Besides these two FCA4SML methods, other recently proposed O-O methods include
HPRA [61] and HyperTensor-EVD[72]. HPRA is an RML method that applies an algorithm
that computes the Hyper Resource Allocation (HRA) scores to determine if an object should
be included in an object group where the objects are predicted to be related. HyperTensor-
EVD is an SML method that computes the prediction score of a potential O-O link from
the eigenvectors of the tensor-based representation of the hyper-network, which can be built
from the O-O links of the bipartite network [72].

As analyzed in Chapter 1, the two FCA4SML methods only utilize the information within
the concepts, but not the information on the hierarchical order of the concepts. Furthermore,
although these two methods have shown a good performance, these are still outperformed
by other non-FCA-based methods like HPRA, so we consider it is worth trying to design a
better FCA4SML framework to capture the omitted information on the hierarchical order of
the concepts to see if it can contribute to better performance results.

For the O-A task, besides the matrix factorization methods and the classic RML methods
introduced in the last chapter, recently proposed methods also include SBGNN, a deep-
learning-based method which applies a special network structure called Signed Bipartite
Graph Neural Network to capture and learn the information in the observed part of the
network and thus predict the unobserved part.

5.4 The proposed method

To address the limitations of the previous FCA4RML and FCA4SML methods for these
tasks, we propose a novel method named BERT4FCA, which is designed to better learn the
information of concept lattices and can conduct both the O-O task and the O-A task. We
name our method BERT4FCA because it provides a general framework for using BERT
to learn and utilize the information of concept lattices, so it is expected to be generally
applicable to all tasks related to the context. Although in this chapter, we only discuss its
application in the two tasks, we plan to study the possibility of applying our method to other
tasks in the future.

Similar to all previous FCA4RML and FCA4SML methods for these tasks, the objective
of our method is to learn information from concept lattices and use it to make two link
prediction tasks. However, the information our method aims to learn not only includes the
extent and intent of a formal concept, but also includes the neighboring relations between
formal concepts. Note that here we choose to learn the neighboring relations instead of the
general order relations because, to reconstruct the concept lattice, the neighboring relations
are enough [37].
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Fig. 5.2 An overview of the working flow of our method.

Our method consists of 4 steps: data preparation with FCA, input tokenization, BERT
pre-training, and BERT fine-tuning. An overview of the workflow of our method is shown in
Fig 5.2.

Data Preparation: In this step, we convert the bipartite network into a formal context,
extract all formal concepts, and construct the concept lattice. Then, we extract the neighboring
relations between concepts from the concept lattice. We use the Z-TCA algorithm introduced
in Chapter 2 for extracting all formal concepts from a formal context, and use a topological
sorting algorithm to extract neighboring relations from the concept lattice. The details of
the algorithm are presented in Algorithm 14. After this step, we will obtain all extents and
intents and neighboring concepts in the concept lattice.

Input Tokenization: In this step, the objects and attributes are tokenized into one-hot
vectors. These one-hot vectors are further converted into dense vectors through the input
embedding so that they can be processed by BERT.

The input embedding is the sum of two parts: tokenization embedding and segment
embedding. Tokenization embedding is the general-sense embedding that uses a full-connect
layer to embed the tokenized one-hot vectors into a dense vector space. Segment embedding
is used to embed the tokens in the segment-info sequence into the vector space of the same
dimension as the tokenization embedding. In BERT, sometimes the training sample may be
a concatenation of two different sequences (details will be introduced later). In this case,
the segment-info sequence is generated to distinguish the two different sequences within the
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Algorithm 14 Get all neighboring relations using topological sorting.
Input A formal context K= (U,V,E) and its concept lattice B(K).
Output {N(C)}, a list of the lower neighbors of concepts. Here N(C) represents the

lower neighbor of C ∈ (B(K)− ( /0, /0′′)).
1: for C ∈B(K) do
2: D(C)← |{C1 ∈B(K) |C1 <C}|
3: end for
4: Create Q as an empty queue.
5: for C ∈B(K) do
6: if D(C) = 0 then
7: Push C into the back of Q.
8: end if
9: end for

10: while Q is not empty do
11: Fetch C from the front of Q and pop it.
12: for C1 ∈B(K) such that C <C1 do
13: D(C1)← D(C1)−1
14: if D(C1) = 0 then
15: N(C1)←C
16: Push C1 into the back of Q.
17: end if
18: end for
19: end while

same training sample. For example, in a training sample, the input is a sequence of seven
tokens, where the first four tokens belong to the first sequence, and the last three tokens
belong to the second sequence. Then, the segment-info sequence of this training sample
should be (0,0,0,0,1,1,1).

Note that, as mentioned above, in the original framework of BERT, there is another input
embedding called position embedding used for learning the order of words in a sentence. In
BERT4FCA, however, it is removed because the input sequences are all unordered.

BERT Pre-training: In this step, we use the BERT framework to pre-train two models
– the object model and the attribute model – on all extents and intents, correspondingly.
Here, we only introduce the pre-training process of the object model for example. The input
of a training sample of the pre-training of the object model is a pair of sequences, each
representing an extent. Since the lengths of extents may be different, we pad short extents to
make all extents have the same length with a special token “[PAD]”. We also add a special
token, “[SEP]”, between two sequences in order to separate them.
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The model is trained with two tasks: masked token prediction (MTP) and neighboring
concepts prediction (NCP), derived from the MLM and NSP tasks in the original version of
BERT, correspondingly.

MTP is the task that helps the model learn the co-occurrence relationships between
objects within the same extent. In the task, we randomly select a certain percentage of
objects in both extents to be masked. For each object to be masked, we replace them into a
special token “[MASK]” with 80% probability, or replace it with a random object with 10%
probability, or keep it unchanged with 10% probability. Then, the model takes the masked
pair of extents as input and the unmasked pair of extents as the target for output. That is, it is
trained to predict the masked objects in the extents.

NCP is the task that helps the model learn the neighboring relations between formal
concepts in the concept lattice. In the task, the model takes a pair of extents as input and
is expected to output TRUE if the pair of extents corresponds to a pair of formal concepts
that have neighboring relations or output FALSE otherwise. Note that in this task, clearly,
the number of negative samples is much larger than the positive samples. To get a balanced
training set, we randomly select a small portion of negative samples and keep the number of
positive and negative samples to be the same.

The two tasks are trained simultaneously – the training loss is the sum of the losses of
the two tasks. After pre-training, the pre-trained models are expected to have captured and
stored information on the concept lattice, including relationships between objects and formal
concepts.

BERT Fine-tuning: In this step, we fine-tune the pre-trained object model and attribute
model to make them fit our target tasks.

For the O-O task, we fine-tune the pre-trained object model with the training samples
generated from the original bipartite network (U,V,E). The training samples are generated
with the following steps. First, we determine lm, the maximal length of a group of objects
we want to predict. Then, we enumerate all object subsets U1 ⊆U such that |U1| ≤ lm. For
each U1, we create a training sample that takes the tokenized and padded sequence of U1

as input, and the label for the sample is set to TRUE if the objects in U1 have object-object
links and FALSE otherwise. After generation, the training samples are fed into a network
that has the same structure as the network used in the pre-training step, except that in the
last layer, the hidden states are not fed into the output layer used for the two pre-training
tasks, but are fed into an output layer specified to the O-O task. Suppose the final output of
the fine-tuning network for the O-O task is PO−O; the last hidden state of the basic BERT
network, i.e., the “[CLS]” representation [24] is h[CLS]

L , then the O-O-task-specified output
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layer can be described as follows:

PO−O = σ(ReLU(h[CLS]
L W CLS)W ), (5.1)

where σ(·) is the sigmoid function; ReLU(·) is the Rectified Linear Unit (ReLU) [98]; W [CLS]

and W are weight matrices.
For the O-A task, we fine-tune both the pre-trained object model and the attribute model

together with training samples generated from the original bipartite network. The training
samples are generated with the following steps. We first enumerate all objects u ∈U and
attributes v ∈V . For each pair of (u,v), we create a training sample that takes the tokens of u
and v as input, and the label for the sample is set to TRUE if (u,v) ∈ E and FALSE otherwise.
After generation, the tokenized object and tokenized attribute are fed into two separate BERT
networks – except for the last output layer, the first network has the same structure as the
network used in pre-training the object model, and the second network has the same structure
as that used in pre-training the attribute model. The last hidden states of both networks are
concatenated and fed through a single output layer specified for the O-A task. Suppose the
final output of the fine-tuning network for the O-A task is PO−A; the last hidden states of the
two BERT networks are h[CLS]

L1 and h[CLS]
L2 , then the O-A-task-specified output layer can be

described as follows:

PO−A = σ(ReLU((h[CLS]
L1

⌢
h[CLS]

L2 )W CLS)W ), (5.2)

where a⌢b means the concatenation of vectors a and b.
Above is the whole workflow of our method. From above, we can see that our method

has three advantages. First, in the pre-training step, our method can learn more information
from concept lattices compared to the previous FCA4SML like object2vec. As shown in
Fig 5.3, in object2vec, when embedding an object, it uses only the information of a small set
of objects within the same extent. In the pre-training step of our method, however, we learn
the feature of an object using the information from all objects in the entire extent as well as
the objects in the extents of its neighbor concepts in concept lattice.

Second, our method can directly extract useful features for link prediction from the
formal context, in addition to learning from the concept lattice. During fine-tuning step, we
train the model with samples generated from the formal context, which enables the model to
learn directly from formal contexts. Therefore, even in datasets where the concept lattice
cannot provide much useful information for link prediction, our method can still learn from
the formal contexts for link prediction. In contrast, previous FCA4SML methods do not
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possess the capability of directly learning from the formal context. Additionally, previous
non-FCA-based methods cannot make use of bi-cliques for link prediction.

Third, our method works in a pre-train first and fine-tune next mode that first pre-trains
two large models and then fine-tunes them on various downstream tasks related to the formal
context, meaning that if we wish to conduct new tasks on a formal context where we have
pre-trained the object model and attribute model, we can skip the first three steps and directly
conduct the final fine-tuning step. Previous methods, however, may need to re-train the
models when coming to a new task.

Object2vec BERT4FCA

({ , , , },{ })g1 g2 g3 g4 m1

Target 

({ , , , },{ })g1 g2 g3 g4 m1

Target 

({ , , , , }, )g1 g2 g3 g4 g5 ϕ

({ , , },{ , })g2 g3 g4 m1 m5

({ , , },{ , )g1 g2 g3 m1 m2

Fig. 5.3 The comparison of how much information from a concept lattice is learned and
used when predicting an object by two methods, with object2vec shown on the left and
BERT4FCA shown on the right. The target object to be predicted is circled in blue. The
information used for predicting the object is shown in red.

5.5 The experiments

5.5.1 Datasets

We conduct experiments on five real-world datasets: ICFCA, BMS-POS, Keyword-Paper,
Review and iJO1366. All datasets are used for both the O-O task and the O-A task. We depict
the features of these datasets in Table 5.1. A detailed description of each follows.
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Table 5.1 The features of the datasets.

Dataset Task Input/Target Objects Attributes Edges Concepts

ICFCA
O-O

Input 334 12614 13399 775
Target 334 12614 15980 844

O-A
Input 351 12614 14445 878
Target 351 12614 16049 922

BMS-POS
O-O

Input 468 1946 7376 7791
Target 468 1946 8085 10235

O-A
Input 468 1946 7376 7791
Target 468 1946 8085 10235

Keyword-Paper
O-O

Input 162 5640 7274 1610
Target 162 5640 8308 2049

O-A
Input 162 5206 7648 1713
Target 162 5206 7907 2046

Review
O-O

Input 181 340 420 262
Target 181 340 465 281

O-A
Input 181 340 420 262
Target 181 340 465 281

iJO1366
O-O

Input 1805 2583 9231 5185
Target 1805 2583 10184 5595

O-A
Input 1805 2583 9231 5185
Target 1805 2583 10184 5595
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ICFCA: The ICFCA dataset is an author-paper network provided by [28] – the objects
represent the authors, the attributes represent the publications, and each edge (a.k.a. relation)
represents the author is in the author list of the publication. This dataset is generated from
Digital Bibliography & Library Project (DBLP) dump on 1st Aug 2019 which is available at
https://dblp.uni-trier.de/xml/.

For the O-O task, we are to simulate the practical case in which we wish to predict future
co-authorships or seek potential co-authors from an author-paper network at a certain time
point. Hence, we generate a history network from the full network as the input network for
this task by removing the authors, publications, and author-paper edges after 1st Jan 2016;
we generate the current network as the target network for this task from the full network
by removing authors who had no publication before 31st Dec 2015 and their corresponding
edges.

For the O-A task, we are to simulate the practical case that some parts of the network
are missing, and we wish to use the known edges in the network to predict the potentially
missing edges. We generate the input network for this task from the full network by randomly
removing 10% of author-paper edges; we use the full network as the target network for this
task.

BMS-POS: The BMS-POS dataset is a product purchased transactions network provided
by KDD Cup 2000 – the objects represent the products, the attributes represent purchasing
transactions, and an edge represents that the product is bought in a certain purchasing
transaction. The original data is very large, so in this research, we only select the first 1946
transactions. The dataset is available at https://kdd.org/kdd-cup/view/kdd-cup-2000.

For the O-O task, we are to simulate the practical case in which we wish to predict two
products will be likely to be bought by the same customer. Hence, we generate the input
network from the full network by randomly removing 10% of product-transaction edges; we
use the full network as the target network for this task.

For the O-A task, we are to simulate the same practical case as the ICFCA dataset. We
use the same input network and target network as those used in the O-O task of this dataset.

Keyword-Paper: The Keyword-Paper dataset is an original dataset generated by us –
the objects represent the keywords, the attributes represent the publications, and each edge
represents the paper has the keyword. It is generated from the DBLP dump on 31st Jan 2023.
From the dump, we select the top 162 most frequent keywords and all 5640 publications
after 1st Jan 2010 to create the keyword-paper network.

For the O-O task, we are to simulate the practical case in which we wish to predict
potentially related keywords, which may give inspiration for new research. For example,
while “BERT” and “FCA” were never used as keywords of the same paper before, if they are
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predicted to be related, researchers may get inspired and draft a new study similar to ours.
The generation of the input network and target network are similar to that of the ICFCA
dataset, and the date for the history network is also set to 31st Dec 2015.

For the O-A task, we are to simulate the same practical case as the previous two datasets.
We also use the same way to generate the input and target networks as the way we used in
the O-A tasks of the previous two datasets. Note that in this dataset, after removing 10% of
edges, some attributes will have no edge connecting to them, so the number of attributes in
the networks used for the O-A task is smaller than that used for the O-O task.

Review: The Review dataset is a peer review data from a top computer science conference.
It is collected from [23] and previously used as a test dataset in [45]. The objects represent
reviewers; the attributes represent manuscripts; and each edge represent that the reviewer
suggests accepting the manuscript.

For both the O-O and the O-A tasks, we are to simulate the practical cases similar to
those of the BMS-POS dataset. Hence, the input networks and the target networks are also
generated using the same procedures as for the BMS-POS dataset.

iJO1366: The iJO1366 dataset is a metabolite-reaction network processed from a genome
scale metabolic network of the Escherichia coli. It is collected from the BiGG dataset [52]
and previously used as a test dataset in [116]. We extract the metabolites as objects, and
the reactions as attributes, and each edge represents that the metabolite participates in the
reaction.

For both the O-O and the O-A tasks, we are to simulate the practical cases similar to
those of the BMS-POS dataset. Hence, the input networks and the target networks are also
generated using the same procedures as for the BMS-POS dataset.

5.5.2 Generation of labeled training and test samples

For each dataset, we have generated an input network C = (U,V,E) and the target network
C′ = (U,V,E ′). We are then to generate labeled training and test samples from the two
networks with the following procedure.

The O-O task

For the training samples, we first enumerate all object-object links in C which contains no
more than εp objects, with εp being a pre-determined threshold. These links are labeled as
positive training samples. That is, we are to enumerate every object group G⊆U satisfying
that |G| ≤ εp and ∃v ∈V such that ∀u ∈ G, (u,v) ∈ E. Then, we are to randomly choose the
same number of negative training samples samples as the positive training samples, with
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each negative sample being an object-object link which has no more than εp objects and
does exists in C. Formally, each negative sample should be an object group G ⊆U such
that |G| ≤ εp and ∄v ∈V such that ∀u ∈ G, (u,v) ∈ E. The proportion of object-object links
with different sizes in the set of negative training samples is kept the same as that in the set
of positive training samples. That is, suppose the set of all positive training samples is T1,
and the set of all negative training samples is T2, we should have |T1| = |T2| and for each
i = 2,3, · · · ,εp, we should have |{G ∈ T1 | |G|= i}|= |{G′ ∈ T2 | |G′|= i}|.

For the test samples, we enumerate all object-object links in C′ which contains no more
than εp nodes and does not appear in C. These links are labeled as positive test samples.
That is, we are to extract every object group G ⊆U satisfying that |G| ≤ εp and ∃v ∈ V
such that ∀u ∈ G, (u,v) ∈ E ′−E. Then, we are to randomly choose the same number of
negative test samples samples as the positive test samples, with each negative test sample
being an object-object link which has no more than εp objects and does exists in C′. Formally,
each negative test sample is a group G⊆U such that |G| ≤ εp and ∄v ∈V such that ∀u ∈ G,
(u,v) ∈ E ′. The proportion of object-object links with different sizes in the set of negative
test samples is also kept the same as that in the set of positive test samples.

In this research, the value of εp is set to 5 for the ICFCA and Review datasets; it is set
to 3 for the other three datasets. Although theoretically, our method as well as all previous
methods can predict object-object links containing any number of objects, we set this limit to
prevent the number of training/test samples from exponentially growing.

The O-A task

For the training samples, we first enumerate all object-attribute links in C and label them as
positive training samples. That is, we are to enumerate every object-attribute pair (u,v) such
that u ∈U,v ∈ V and (u,v) ∈ E. Then, we are to randomly generate the same number of
negative training samples as the positive training samples, with each negative training sample
being an object-attribute link which does not exist in C. Formally, each negative training
sample (u,v) should satisfy u ∈U,v ∈V and (u,v) /∈ E.

For the test samples, we first enumerate all object-attribute links in C′ which does not exist
in C. These links are all labeled as positive test samples. That is, we are to enumerate every
pair (u,v) such that u ∈U,v ∈ V and (u,v) ∈ E ′−E. Then, we are to randomly generate
the same number of negative training samples as the positive training samples, with each
negative training sample being an object-attribute link which does not exist in C′. Formally,
each negative test sample (u,v) should satisfy u ∈U,v ∈V and (u,v) /∈ E ′.
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5.5.3 Evaluation metrics

To give a fair and comprehensive evaluation, we use the following three measures: F1 score,
AUC score, and AUPR score. All three scores are estimated with the four basic values: TP,
TN, FP, and FN. TP represents the number of samples that are positive and are predicted
positive. FN represents the number of samples that are negative but are falsely predicted to
be positive. TN represents the number of samples that are negative but are predicted negative.
FN represents the number of samples that are positive but falsely predicted negative.

The F1 score is the harmonic mean of the precision and recall. Precision, recall, and F1

are estimated as follows:

Percision :=
T P

T P+FP
,

Recall :=
T P

T P+FN
,

F1 :=
2

recall−1 + percision−1 .

(5.3)

The F1 value may vary as we change the threshold for the prediction score. Hence, in
this research, for each test case, we try 20 different thresholds with the following procedure –
the initial threshold is set to 0, and at each trial, we add the threshold by 0.05. After all trials,
we report the highest F1 value we get.

The AUC (Area Under the Curve) score is estimated by computing the area under the
ROC (Receiver Operating Characteristic) curve. The ROC curve is created by plotting the
true positive rate (TPR) against the false positive rate (FPR) at various threshold settings.
TPR and FPR are estimated as follows:

T PR :=
T P

T P+FN
,

FPR :=
FP

T N +FP
.

(5.4)

The AUPR (Area Under the Precision-Recall Curve) score is estimated by computing the
area under the Precision-Recall curve, which is created by plotting the precision rate against
the recall rate at various threshold settings.

5.5.4 Experimental environment and parameters

Experimental environment: The experiments are conducted on a Windows 11 server with
64GB RAM, an AMD Ryzen 9 7900X CPU, and an NVIDIA GeForce RTX 4090 GPU.
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The codes for the deep-learning part of our method are implemented with Python 3.8.18
and Pytorch 2.1.0. The code for the algorithm for extracting formal concepts is written in
C++ and complied by MinGW 13.2.0.

Parameters: The dimension of input embeddings of the Transformer encoder is 768, the
dimension of hidden layer in Transformer encoder is 3072.

For the BERT pre-training step, the maximum number of masked tokens used in MTP
is set to 4, the dimension of embeddings is set to 768, the number of heads is set to 12, the
number of Transformer encoders is set to 6.

For the BERT fine-tuning step, the dimension of the hidden layer is set to 512. The batch
size is set to 24.

5.5.5 The experiment of the O-O task

We evaluate the performance of BERT4FCA in the O-O task on the five datasets. The
competitor methods used in this experiment include an FCA4SML method object2vec [28],
a widely-used classic method Node2Vec [40], two widely-used classic hyperedge prediction
methods, common neighbors [86] and Katz index [50], and a relatively new hyperedge
prediction method HPRA [61]. Note that for the object2vec method, both CBoW and SG
models are tested. For the Node2Vec method, after obtaining embedding vectors for each
object and attribute from the input network, we train a downstream Logistic Regression
classifier using the labeled training samples generated with the procedure introduced above.
For each sample G, its feature is set to the concatenation of the embedding vectors of every
object g ∈ G. The objects are sorted in the lexicographical order before concatenation. If a
sample has fewer than εp objects, its feature vector is padded with zeros to make sure that
all samples’ feature vectors are of the same dimension. For the three hyperedge prediction
methods, as introduced previously, they can be directly applied to the O-O task simply
because the O-O task is a special case of hyperedge prediction.

The results are shown in Table 5.2.
The results show that BERT4FCA outperforms the other models across all datasets. We

have also discovered that although Node2Vec has achieved high scores close to our method
on the BMS-POS dataset, its performances on the other datasets are much lower than our
method. This shows the stability of our method, i.e., we can have a stable and high perfor-
mance across different datasets. Also, as can be seen from the result, the three hyperedge
prediction methods’ performance are far better than object2vec, while our BERT4FCA can
still outperform all of them. This implies that the ideology of utilizing the information in
concept lattice for link prediction is valuable, while object2vec does not utilizes it very
well. Our BERT4FCA, on the other hand, has fully learned and utilizes the information
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from the concept lattice and thus has achieved good results. We will conduct extra ablation
experiments later in this section to prove that our inference is correct.

5.5.6 The experiment of the O-A task

We evaluate the performance of BERT4FCA in the O-A task on all datasets. We compare
BET4FCA with an FCA4RML method, Structure Hole [121], two widely-used non-FCA-
based classic methods – Node2Vec and matrix factorization with singular value decomposition
(MF-SVD), and a relatively new deep-learning method, SBGNN [45]. For the Node2Vec
method, after obtaining embedding vectors for each object and attribute from the input
network, we train a downstream Logistic Regression classifier using the labeled training
samples generated with the procedure introduced above. For each sample (u,v), its feature is
set to the concatenation of the embedding vectors of object u and attribute v.

The results are shown in Table 5.3.
From the results, we can see that among all five datasets, BERT4FCA has the best overall

performance. Its performance is notably better than Structure Hole and generally better
than SBGNN. For MF-SVD and Node2Vec, although they have achieved higher scores than
BERT4FCA in some metrics in some dataset, their overall performance is mixed, while our
BERT4FCA has an overall good performance acorss five datasets. The reason why these two
methods get mixed performance is analyzed below.

In the BMS-POS dataset, MF-SVD exhibits higher AUC scores than other methods but
with very low AUPR scores. A low AUPR score indicates that the model’s high prediction
scores do not correlate well with being in the positive class, suggesting that the model
has difficulty achieving high precision. Since in link prediction, we focus on predicting
the generation of new links, which is predicting the positive samples but not the negative
samples, so if a model exhibits a low AUPR, it is considered to have low performance in link
prediction. The low performance of MF-SVD may suggest that the underlying latent features
of the networks and the relationships between nodes are intricate and challenging for MF
to capture effectively. Additionally, since the BMS-POS dataset is extracted from a large
dataset, maybe the relationships between nodes in this network are not consistent and stable,
resulting in low prediction performance of MF.

In the iJO1366 dataset, Node2Vec exhibits higher AUPR and AUC scores than our
method. However, its scores in the Review dataset is far lower than our method, indicating
that the performance of Node2Vec varies greatly across different datasets. According to
previous research [20], the sparser the network is, the better the process can capture the
features of the network. Hence, it is expected to work better on sparse networks. Since
iJO1366 is the most sparse data set, Node2Vec achieved to gain a better performance, but for
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relative dense networks, its performances become notably lower. Hence, we consider our
method to be more practical than Node2Vec thanks to its overall good performance in all
metrics across all datasets.

Finally, we have also found that the performance of the other FCA4RML method,
Structure Hole, is notably lower on these five datasets than the datasets used in [121]. As
analyzed before, Structure Hole is a rule-based method that uses the same simple rule to
extract information from the concept lattices and make predictions on all datasets, which will
be highly likely to have lower performance on some datasets because not all datasets fit the
rule well, and our experimental results just proved it. This again shows the importance of
developing a method like our BERT4FCA that can automatically capture the information
from concept lattices using statistical machine-learning techniques.
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5.5.7 Ablation experiments

To verify if our original mechanisms are functioning well, we conduct two ablation exper-
iments – the first one checks if our method can indeed learn the neighboring relations of
formal concepts; the second one checks if the information in concept lattices our method
learned is indeed helpful for making link predictions.

In the first ablation experiment, we only use 80% of the training samples to pre-train both
the object model and the attribute model on all datasets. The remaining 20% of the original
training samples are kept as test samples for the NCP task – these intents/extents pairs are
not presented in the training samples, so if our method can correctly predict whether they
are neighbors or not, it should indicate that our method has learned the structure of concept
lattice well. The results are shown in Table 5.4.

Table 5.4 The results for the first supplementary experiment.

Dataset Object/Attribute F1 AUC AUPR

ICFCA
Object 0.903 0.896 0.842

Attribute 0.868 0.842 0.785

BMS-POS
Object 0.993 0.993 0.987

Attribute 0.978 0.978 0.963

Keyword-Paper
Object 0.965 0.966 0.934

Attribute 0.900 0.902 0.850

Review
Object 0.938 0.826 0.882

Attribute 0.857 0.706 0.786

iJO1366
Object 0.977 0.990 0.956

Attribute 0.880 0.918 0.796

The results suggest that BERT4FCA indeed learned the neighboring relations from the
concept lattice on all datasets well. We have also noticed that the results of the object models
are generally better than the attribute models across all datasets. We analyze it because, in
these datasets, the average lengths of intents are longer than that of the extents, making it
potentially more challenging to effectively capture the neighboring relations of intents.

In the second ablation experiment, we check if the information we learned from concept
lattices indeed contributes to better link prediction results. Since the information of the
concept lattices is learned in the NCP and MTM tasks in the pre-training step, in this
experiment, we skip the pre-training step and directly fine-tune the models with randomly
initialized weights. By comparing the results with that of our full method, we will know
whether our specially designed tasks for learning the information of concept lattices are
functioning well. The results for the O-O tasks are shown in Table 5.5, and the results for the
O-A tasks are shown in Table 5.6.
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The results show that learning more information from concept lattices indeed contributes
to the improvement of performances in both tasks, while the degree of improvement varies
across different datasets and tasks. The overall degree of improvement in O-O tasks is higher
than that in the O-A task. We analyze it because compared to the attribute models, the object
models better capture the information on concept lattices, such as the neighboring relations,
as demonstrated in the first ablation experiment. The difference in improvements shows that
better learning the neighboring relations contributes to the prediction performance.

Also, we find that in the O-O task on the BMS-POS dataset, learning the information
from concept lattices contributes to the least degree of improvement. This may be because
the performance of our method without learning the information is already sufficiently high,
as the AUC and AUPR scores have reached 96%. In such a case, it is considered hard to
improve the performance further, even with an effective mechanism.

Furthermore, we observe that even without the pre-training step, our method can still have
a relatively good performance. This indicates the BERT framework is capable of extracting
information to make predictions even directly from the raw bipartite network. This discovery
may provide hints for further research on the possibility of training a light-weight model with
a small part of the network utilizing the effective BERT-like transformer network structure.
Nevertheless, when there is an urge requirement of stability and quality, it is recommended
to apply our full BERT4FCA model as the information from maximal bi-cliques extracted by
our proposed MTP and NCP tasks can indeed further improve the performance.

5.6 Conclusion of the chapter

In this chapter, we proposed BERT4FCA, a novel FCA4SML method for learning the
information in the concept lattices and use them for downstream machine learning tasks.
The experimental results demonstrated that our methods outperform previous FCM4SML
methods like object2Vec and non-FCA-based classic methods like MF and Node2Vec in
both the O-O and the O-A tasks on five different datasets. The results have shown that our
method is stabler than previous methods. We also demonstrated by ablation experiments that
neighboring relations between maximal bi-cliques are well learned by the model as expected
and that such information contributes to better link prediction results. Furthermore, we have
shown that BERT4FCA provides a general framework for employing BERT to learn the
information extracted by FCA. Hence, in addition to these tasks, we believe BERT4FCA
can also be further applied to a broader range of real-world tasks. We plan to explore the
potential applications in the future and make BERT4FCA become the first widely applicable
FCA4SML framework.
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However, we have also found some points of our method that may be further refined
and improved. First, limited by computational resources, we were unable to pre-train an
all-in-one model for both objects and attributes in this research. If such a model can be
trained well, it will be more convenient as all downstream tasks will only need one single pre-
trained model. Second, although BERT4FCA outperforms previous methods in prediction
results, the pre-training step is time-consuming, especially when dealing with datasets with
a large number of formal concepts. With our current computational resources, to finish the
pre-training step in a reasonable time, the maximum number of concepts should be around
15,000. Although there have been methods for reducing the number of formal concepts in
concept lattices, it is uncertain whether training on a reduced concept lattice will result in
lower performances. If so, we may need to work out a technique to make a trade-off between
the training time and the performance. We plan to address these two points in our future
work.



Chapter 6

Conclusion

6.1 Summary of our contributions

In this thesis, we have proposed four methods contributing to the integration of FCA and
SML.

• In Chapter 2, we have proposed the algorithm Z-TCA, an algorithm utilizing ZDDs to
speed up the process of FCA and TCA. The algorithm is especially efficient in denser
contexts and is about three times as fast as previous methods.

• In Chapter 3, we have proposed a method for reducing the number of objects and
concept lattices using integer linear programming. The method is more reliable than
previous method because it has the ability to prevent the context and the concept lattice
from being modified too much.

• In Chapter 4, we have proposed an FCA4SML method for link prediction in bipartite
networks. This method avoids direct processing of the concept lattice with the SML
method, but instead uses a rule-based method to process the concept lattice and generate
training samples for the SML method. Our experimental results have shown that the
process contributes to good performance.

• In Chapter 5, we have proposed a generally applicable FCA4SML method called
BERT4FCA. The method utilizes a BERT-like Transformer encoder network to effi-
ciently capture both types of information in the concept lattice. The method shows
its great performance in two machine learning tasks – link prediction and hyper-link
prediction on bipartite networks. Our ablation experiments have also shown that the
information in the concept lattice is indeed captured in the trained model, and the
captured information indeed contribute to the good performance.
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Among the four methods we have proposed, two of these are general improvements to
FCA, so they can be also applied to any task that utilizes FCA like data mining or knowlege
processing. The other two of these are not only successful integration of FCA and SML, but
are also counted as the best-performing methods in the related machine learning tasks, that
is, link prediction and hyper-link prediction in bipartite networks. Hence, we believe that our
methods can not only contributes to further research on FCA4SML, but also open up new
possibilities to the research on FCA itself and all related machine learning tasks.

6.2 Outlook on the future of FCA4SML

We now present our views on the possible future research trends related to the integration
of FCA and SML. We consider that in the near future, the main purpose of research on
FCA4SML will still focus on how to use FCA to help the preceding SML process capture
more information from the data. However, ever since the introduction of large language
models (LLM) [122], SML methods’ capability of capturing information has increased
sharply – the GPT3.5 and GPT4 models used for the well-known ChatGPT service [1] has
already shown a strong ability to capture relatively deep latent information within the most
unprocessed data like raw text [1]. Hence, we predict that advanced SML methods will
eventually become capable of directly retrieving information and features from any source
of raw data. At that time, we predict that the main purpose of integrating FCA with the
SML methods will shift to preventing the hallucination and increasing the reliability of
advanced SML methods utilizing large generative models. The way of integrating FCA with
SML will also become “reversed” – instead of using SML methods to capture the information
in concept lattices, future research at that time will focus on using SML methods to decode
the captured information in large generative models back into concept lattices.

Currently, although large generative models are believed to already have the ability to
retrieve information from raw data, methods utilizing these models suffer from the problem
of hallucination [49], that is, these methods may frequently generate outputs that appear
factual but are actually unfaithful to the input reference data. It has been conjectured that a
possible cause of hallucination is that the information from the raw data is only retrieved and
stored in the form of weight matrices in the generative model but not correctly organized
into knowledge and thus the model cannot precept and process it before generating outputs.
To verify this conjecture, we need to analyze how the information from the raw data is
stored in the model and how the model utilizes the information to generate outputs, which
is impossible because, inside the model, the information is encoded into large numbers of
parameters which is not understandable for human beings [122]. Nevertheless, inspired by
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the idea of knowledge representation that aims to represent knowledge in a structural form
that is both comprehensible for human beings and easy for machine processing, we have
come up with the idea to use another SML process to simulate the knowledge extraction and
representation process. That is, we aim to train a decoding model to decode the information
stored within the generative model back into a structural knowledge representation form that
can be understood by human beings. With such a decoding model, we can understand what
knowledge has been learned by the model and from what knowledge did they generate the
output, which greatly improves the reliability of the generative model.

Recently, methods for generating knowledge graphs from LLMs have already been
proposed for relieving the hallucination and increasing the reliability of generative models [89,
117]. Since for some specific types of data like biological taxonomy, concept lattices are
better suitable as the form of knowledge representation thanks to their capability of showing
the conceptual hierarchy, we believe that it is also of high value to develop such an SML
method that simulates the FCA process to decode the information in the generative model
back into concept lattices. Compared to the traditional way of using SML method to capture
the information from the concept lattice, such a “reversed” integration of FCA and SML
is far more difficult because to the furthest of our knowledge, it is still unclear whether
the strict conceptual hierarchical structure of concept lattices can be generated by SML
methods. Nevertheless, if such a method can be worked out, it can not only help in reducing
the hallucination problem of generative models, but also help us build up closer connection
between FCA and SML and thus open up new possibilities to both fields.

Although in this thesis, we did not directly study on the reversed integration of FCA and
SML, some of our contributions may also be used in future research on such a topic. For
example, in Chapter 2, we have proposed formal methods for checking the reliability of an
object reduction process. These methods may also be used for working out or evaluating an
SML method that simulates the object reduction process. Also, in Chapter 5, our method for
using the two tasks in BERT to capture the information in concept lattices may also provide
hints on designing the structure of network for training the decoding model. Hence, we
believe our contributions will have a long-term influence in related fields.

6.3 Future work

The future work for each sub-topic related to our proposed methods has already been
discussed at the end of each chapter. Hence, in this section, we are to list some planned
work related to the general topic of the thesis, that is, the integration of FCA and SML.
As introduced in the last section, in the near future, the studies of integration of FCA and
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SML will still focus on using FCA to boost the performance of preceding SML methods; in
relatively further future, the studies on this topic will shift to the reversed version, that is, to
use the SML methods to decode the information learned by the generative models back into
the concept lattices. Hence, our plan for future work will also follow our prediction – we
plan to first continue research on the traditional integration of FCA and SML before shifting
to the more challenging reversed integration.

Firstly, in this thesis, we only studied the application of the FCA4SML method on
machine learning tasks that take binary relational data as input. However, over the years,
real-world data have becoming more and more complex and may be hard to be represented
into such a clean form of binary relational tables. In order to broaden the scope of applications
of FCA4SML, we plan to develop an FCA4SML method that can take more complex forms
of data as input, probably with the help of pre-processing methods or variations of FCA
(including the natural extension TCA).

Secondly, previous FCA4SML methods, including the two methods proposed in this
thesis, are all supervised learning methods. However, there have been successful unsuper-
vised FCA4RML methods in tasks like node clustering, showing the potential possibility
of developing an unsupervised FCA4SML method [93]. Hence, we also plan to develop an
unsupervised FCA4SML method, which may further broaden the scope of applications of
FCA4SML.

Thirdly, as a long-term plan, we plan to develop the aforementioned “reversed” integration
of FCA and SML. For the first step, we plan to work out a simple version of the integration –
that is, to use an SML process to simulate a basic FCA process that constructs the concept
lattice from formal contexts. A related topic has been discussed in [28] where the authors
proposed a method to use neural networks to simulate the derivation operators within a
context. The method is proven to work but only has a limited performance. Hence, we plan to
follow up their research and improve their methods first before trying to work out completely
new methods. After we achieve such a simple version of reversed integration, we then plan
to challenge the full version for decoding the learned information in the large generative
models back into concept lattices.
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Appendix A

A Running Example for our method in
Chapter 3

We hereby introduce two simple running examples to better show the working flow of our
method. In the first example, we are to reduce a sample context with our method applying
the OR rule, and in the second example, we are to reduce another sample context applying
the AND rule.

A.1 Example 1: ILP-based concept lattice reduction apply-
ing the OR rule

In this example, we are to use integer programming to reduce the formal context shown in
the left panel of Fig. A.1. Its corresponding concept lattice is shown in the right panel of the
figure.

Parameters and Variables

First, we are to determine the following hyper-parameters:

• εr, which represents the maximum allowed “distances” of two objects to be merged;

• εm, which represents the maximum allowed modifications to the context;

• εI , which represents the maximum allowed number of inserted concepts.

In this example, we set εr to 2, εm to 2, and εI to 0.
With the values of parameters determined, we are to derive matrix C = {ci j}, where ci j

is a Boolean variable representing whether the incidence xi j is allowed to be modified. As
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Fig. A.1 Left: The sample context to be reduced in Example 1. Right: The corresponding
concept lattice of the context on the left.

introduced in Section 4.2, when applying the OR rule, an incidence xi j is set to be modifiable
if and only if xi j = FALSE and there exists another object gk such that xk j = TRUE and
the distance between two objects are no larger than εr, i.e., |(AT (gk)−AT (gi))∪ (AT (gi)−
AT (gk))| ≤ εr. In this example, we have:

• The distance between objects g1 and g4 is 2. Since x12 = FALSE and x42 = TRUE,
we should have c12 = TRUE. Similarly, we should have c13 = TRUE because x13 =

FALSE and x43 = TRUE.

• Similarly, for objects g2 and g3, we should have c24 = TRUE and c33 = TRUE.

• For any other object pairs , their distances are all beyond 2, so we have ci j = FALSE
for any other i, j values.

From above, we can see that in this example, we have in total 4 modifiable incidences.
Hence, we set 4 variables – v12, v13, v24 and v33. Each variable vi j represents whether the
incidence xi j should be modified after reduction.

After setting the variables, we are to derive the values of Ixy. As introduced in Section
4.3, each Ixy is a Boolean variable indicating whether objects gx and gy will be merged after
reduction. In this example, we have:
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• Object g2 will be merged with g3 if incidences x24 and x33 are both modified. That is,
we should have I23 = v24∧ v33.

• Object g1 will be merged with g4 if incidences x12 and x13 are both modified. That is,
we should have I14 = v12∧ v13.

• For any other object pairs, modifying the 4 modifiable incidences will not make them
merge with each other, so we should have Ixy = FALSE for any other x,y values.

Constraints for preventing too much modification

As introduced in Section 4.4, we may add the following constraint to set the maximum
allowed number of modified incidences to εm. In this example, we have 4 modifiable
incidences and the value of εm is 2, so we have:

1v12 +1v13 +1v24 +1v33 ≤ 2. (A.1)

Constraints for preventing too many inserted concepts

First, we need to compute Can(M), which represent the candidate space of attribute sets that
may be extent of an inserted concept. In this example, we have 4 modifiable incidences,
which will introduce one attribute set, {m1,m2,m3,m4}, in Can(M). Hence, suppose that
this attribute set is denoted as M1. In this example, we only need to derive the value of UM1

to check whether M1 will become extent of an inserted concept.
The value of UM1 can be derived with the series of equations introduced in Section 4.5.2.

First, we are to derive SM1,gi , which represents whether gi ∈ OT ′(M1), i.e., whether gi will
have all attributes in M1 after modification. The derivation process for SM1,gi are as follows:

• g4 and g5 do not have all attributes in M1, and both of them are unmodifiable. For g1,
it will never have the attribute m4 since x14 is FALSE and unmodifiable. Hence, we
should have:

SM1,g1 = SM1,g4 = SM1,g5 = FALSE. (A.2)

• For g2, if and only if the incidence x24 is modified will it have all attributes in M1 and
become a member of OT ′(M1), so we should have:

SM1,g2 = v24. (A.3)
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• Similarly for g3, we should have:

SM1,g3 = v33. (A.4)

The values of SM1,gi can be used to derive EM1 , which represents whether M1 will become
the intent of a concept after reduction. As shown by Equation (3.14), EM1 will be TRUE if for
any attribute m j /∈M1, there must be at least one object gi ∈ OT ′(M1) such that xi j = FALSE
and that xi j will not be modified to TRUE after reduction, i.e., ¬(ci j∧ vi j). In this example,
we have two objects, g2 and g3, that may be elements of OT ′(M1). It is clear that if either of
them becomes an element of OT ′(M1), EM1 will be TRUE because we have xi j = FALSE and
ci j = FALSE for all i ∈ {2,3} and j ∈ { j | m j /∈M1}. However, if neither g2 nor g3 becomes
element of OT ′(M1), EM1 will be FALSE because in this case, OT ′(M1) will be an empty set.
From above, we should have:

EM1 = SM1,g2 ∨SM1,g3

= v24∨ v33.
(A.5)

Now we are to derive FM1,(Go,Mo), which represents whether this newly introduced concept
of which the intent is M1, that is, (OT ′(M1),M1), will be the generalization of some concept
(Go,Mo) from the original concept lattice. This should be derived with Equation (3.15).
In this example, among all (Go,Mo) ∈ L(T ), four of them – ({g1,g2,g3,g4,g5},{m1}),
({g2,g3,g4,g5}, {m1,m2}), ({g2,g4},{m1,m2,m3}), and ({g3,g5},{m1,m2,m4}) – satisfy
that Mo ⊆M1. However, none of these four concepts will satisfy that Go ⊆ OT ′(M1) because
only g2 and g3 can be members of OT ′(M1), while all four concepts have objects other than
g2 and g3 in their extent. That is, in this example, we should have:

FM1,(Go,Mo) = FALSE for all (Go,Mo) ∈ L(T ). (A.6)

With all preliminaries derived, we can now derive UM1 , that is, whether M1 will become
the intent of an inserted concept with Equation (3.16):

UM1 = EM1 ∧
∧

(Go,Mo)∈L(T )

¬FM1,(Go,Mo)

= EM1

= v24∨ v33.

(A.7)

Finally, we are able to add the constraint for preventing too many inserted concepts as
below:

1UM1
≤ 0. (A.8)
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Target function

Now, with all variables set and all constraints added, we are to set the target function of the
logical optimization problem with Equation (3.4) and run an ILP solver to get the optimal
solution. In this example, the target function should be:

maximize
4

∑
i=1

1∨5
i+1 Ii j

,

subject to (A.1) and (A.8).

(A.9)

The optimized solution to this logical optimization problem is to set v12 and v13 to be
TRUE and set v24 and v33 to be FALSE. That is, to modify x12 and x13 to be TRUE and
keep x24 and x33 unmodified. The reduction plan will reduce one object – g1 and cause no
inserted concept. Note that the reason why we cannot merge g2 with g3 by modifying x24

and x33 is that it will cause UM1 to be TRUE. That is, it will introduce an inserted concept
({g2,g3},{m1,m2,m3,m4}), which is prevented by Constraint (A.8).

A.2 Example 2: ILP-based concept lattice reduction apply-
ing the AND rule

In this example, we will use our method to reduce the formal context shown in the left panel
of Fig. A.2. The corresponding concept lattice of the context is shown in the right panel of
the figure:

Parameters and Variables

First, we are to determine the hyperparameters εr,εm and εI . Here εr and εm have the exactly
same meanings as in the previous example, while εI now represents the maximum allowed
number for eliminated concepts. In this example, we set εr to 1, εm to 2 and εI to 3.

After setting the parameters, we are to derive the {ci j} matrix and set the variables. This
step is also very similar to the case we apply the OR rule, except that now an incidence
xi j is set to be modifiable if and only if xi j = TRUE and there exists an object gk such that
xk j = FALSE and |(AT (gi)−AT (gk))∪ (AT (gk)−AT (gi))| ≤ εr = 1. In this example, we
should have c23 = c33 = TRUE and ci j = FALSE for any other i, j values. Hence, we set the
following two variables – v23 and v33.

With the variables set, we are now to derive Ixy, representing whether gx and gy will be
merged after reduction. The derivation is completely the same as the previous example. In
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Fig. A.2 Left: The sample context to be reduced in Example 2. Right: The corresponding
concept lattice of the context on the left.

this example, we should have:

I12 = v23,

I34 = v33,

I14 = I23 = I24 = FALSE.

(A.10)

Constraints for preventing too much modification

Similar to the previous example, we may add the following constraint to limit the maximum
allowed number of modified incidences:

1v23 +1v33 ≤ 2. (A.11)

Constraints for preventing too many eliminated concepts

Now we are to derive DGo,Mo , which represents whether each concept (Go,Mo) from the
original concept lattice will be eliminated after reduction. In this example, clearly that
the following four concepts – ({g1,g2},{m1}), ({g3,g4},{m2}), ({g1,g2,g3,g4}, /0) and
( /0,{m1,m2,m3}) will not be eliminated because the former two concepts’ incidences are not
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modifiable and the latter two concepts have no incidence. So for these four concepts, we must
have D(Go,Mo) = FALSE. For the other three concepts that may be eliminated, since their
D(Go,Mo) have completely the same derivation procedure, here we only present the derivation
of D({g2},{m1,m3}).

To get D({g2},{m1,m3}), we first need to derive the values of S{m1,m3},gi , which represents
whether object gi will still have all attributes in the intent of the concept, that is, m1 and
m3, after reduction. According to the analysis in Section 4.5.1, we only need to compute
the S{m1,m3},gi values for each gi in the extent of the concept, that is, {g2}. This is because
objects not in the extent will sure have the S{m1,m3},gi value to be FALSE. For the only object
g2 in the extent, it will keep having these two attributes as long as the incidence x23 is not
modified, so we should have:

S{m1,m3},g2 = ¬v23. (A.12)

Now we are able to derive E({g2},{m1,m3}), which represents whether none of the objects
will have all attributes in the intent of the concept, i.e., m1 and m3, after reduction. This
should be derived with Equation (3.9). In this example, we have:

E({g2},{m1,m3}) =
∧

gi∈{g2}
¬S{m1,m3},g2

= ¬S{m1,m3},g2

= v23.

(A.13)

Besides E({g2},{m1,m3}), we also need to derive F({g2},{m1,m3}), which represents whether
the “featured” part of the concept will be removed after reduction. That is, whether we
will have {m1,m3} ⊂ AT ′({gi}) for all gi ∈ OT ′({m1,m3}). This should be derived with
Equation (3.10). In this example, this condition will never stand because there is only one
object g2 that may be a member of OT ′({m1,m3}), and the only object g2 does not have any
other attributes that are not elements of {m1,m3}. Hence, we should have:

F({g2},{m1,m3}) = FALSE. (A.14)

With E({g2},{m1,m3}) and F({g2},{m1,m3}) derived, we are finally able to derive the value of
D({g2},{m1,m3}) with Equation (3.11) as follows:

D({g2},{m1,m3}) = E({g2},{m1,m3})∨F({g2},{m1,m3})

= E({g2},{m1,m3})

= v23.

(A.15)
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With D({g2},{m1,m3}) derived, we should repeat the above procedure to derive D({g3},{m2,m3})
and D({g2,g3},{m3}) since we have these three concepts in the original lattice that may be
eliminated. Here we directly give the results for D({g3},{m2,m3}) and D({g2,g3},{m3}) because
the derivation processes are similar to that of D({g2},{m1,m3}):

D({g3},{m2,m3}) = v33,

D({g2,g3},{m3}) = v23∧ v33.
(A.16)

After that, we will finally be able to add the following constraint that sets the maximum
allowed number of eliminated concepts to 3:

1D({g2},{m1,m3})
+1D({g3},{m2,m3})

+1D({g2,g3},{m3})
≤ 3. (A.17)

With all constraints added, we can set the target function as follows and run our ILP
solver to get the optimized values for the variables:

maximize
3

∑
i=1

1∨4
i+1 Ii j

,

subject to (A.11) and (A.17).

(A.18)

The optimized solution to this logical optimization problem is to set both variables
v23 and v33 to be TRUE. That is, to modify both x23 and x33 to be FALSE, which merges
object g2 with g1, and merges object g3 with g4. The reduction will cause three concepts –
({g3},{m2,m3}), ({g2},{m1,m3}) and ({g2,g3},{m3}) – to be eliminated, which does not
exceeds the εI we set.
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