
Doctoral Thesis

A Study on Crypto-Assisted Differentially

Private Graph Analysis

Shang Liu

June 2024

Department of Social Informatics

Graduate School of Informatics

Kyoto University

Doctoral Thesis

submitted to Department of Social Informatics,

Graduate School of Informatics,

Kyoto University

in partial fulfillment of the requirements for the degree of

DOCTOR of INFORMATICS

Thesis Committee: Takayuki Ito, Professor

Keishi Tajima, Professor

Hisashi Kashima, Professor

Copyright © 2024 Shang Liu All Rights Reserved.

A Study on Crypto-Assisted Differentially

Private Graph Analysis∗

Shang Liu

Abstract

Graph data analysis has become highly popular across various domains, in-

cluding social networks, transportation systems, and protein forecasting, due to

its widespread applicability. Standard graph analytics encompass degree distri-

bution, subgraph counting (e.g., k-star counting, triangle counting), and others.

Nevertheless, most graph analytics are performed on sensitive data, posing a

risk of data compromise through the analytical results. Thus, developing meth-

ods that enable these graph analytics while ensuring individual privacy is of

paramount importance.

Differential privacy (DP) has been widely used to provide formal privacy pro-

tection. It safeguards individual privacy against adversaries with arbitrary back-

ground knowledge and has emerged as the gold standard for private graph an-

alytics. However, DP ensures privacy by adding noise to sensitive information,

which can impact overall utility. Conversely, cryptography has long been the

foundation for secure communication in the presence of adversarial behavior. It

ensures data confidentiality, integrity, and authenticity across various digital plat-

forms and communications. Nevertheless, cryptography does not offer a formal

privacy guarantee like DP. In the literature of private graph analysis, DP and

cryptography have typically been studied separately. Combining these two ap-

proaches holds promise for improving the trade-off between utility and privacy in

differentially private graph analytics.

In this dissertation, we present three works on exploiting crypto-assisted dif-

ferentially private graph analytics. First, we introduce an approach that demon-

strates how cryptography can enable high utility in publishing differentially pri-

vate degree distribution under node-local differential privacy. Second, we present

∗Doctoral Thesis, Department of Social Informatics, Graduate School of Informatics, Kyoto
University, KU-I-DT6960-33-9715, June 2024.

i

CARGO, a crypto-assisted differentially private triangle counting system that

achieves high-utility triangle counting of a central model without relying on a

trusted server, akin to a local model. Finally, we introduce FEAT, a federated

graph analytic framework that achieves an optimal tradeoff between utility and

privacy by integrating cryptography into differential privacy. Specifically, we ad-

dress the following three research topics:

• Topic 1: Crypto-assisted differentially private degree distribution.

We propose an algorithm to publish the degree distribution with Node-LDP

by exploring how to select the graph projection parameter in the local set-

ting. Specifically, we design a crypto-assisted local projection method based

on cryptographic primitives, achieving higher accuracy than our baseline

pureLDP local projection method.

• Topic 2: Crypto-assisted differentially private triangle counting.

We propose a crypto-assisted differentially private triangle counting system,

named CARGO, leveraging cryptographic building blocks to improve the

effectiveness of differentially private triangle counting without the assump-

tion of trusted servers. It achieves high utility similar to the central model

but without the need for a trusted server, akin to the local model.

• Topic 3: Crypto-assisted differentially private federated graph an-

alytics. We propose a federated graph analytic framework, named FEAT,

which enables arbitrary downstream common graph statistics while preserv-

ing individual privacy. We design a differentially private set union (DPSU)

algorithm, which ensures that sensitive information is reported only once

and the output global graph is protected under differential privacy.

Keywords: Differential Privacy, Cryptography, Graph Analysis

ii

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Overview of Our Studies . 2

1.2.1 Crypto-assisted differentially private degree distribution . . 3

1.2.2 Crypto-assisted differentially private triangle counting . . . 3

1.2.3 Crypto-assisted differentially private federated graph ana-

lytics . 4

1.3 Thesis Structure . 5

2 Crypto-Assisted Differentially Private Degree Distribution 6

2.1 Introduction . 6

2.2 Problem Definition and Preliminaries 10

2.2.1 Problem Definition . 10

2.2.2 Preliminaries . 11

2.3 Overview of Proposed Methods 12

2.4 Projection Parameter Selection 14

2.4.1 PureLDP Selection . 14

2.4.2 Crypto-assisted Selection 16

2.5 Local Projection Methods . 18

2.5.1 Node-level Local Projection 18

2.5.2 Edge-level Local Projection 20

2.6 Analysis and Discussions . 22

2.7 Experimental Evaluation . 24

2.7.1 Datasets and Setting . 24

iii

Contents

2.7.2 Relation between ε and MSE, MAE 25

2.7.3 Impact of privacy budget allocation 26

2.7.4 Analysis on running time 26

2.8 Related Work . 26

2.9 Conclusion . 27

3 Crypto-Assisted Differentially Private Triangle Counting 30

3.1 Introduction . 30

3.2 Preliminaries . 33

3.2.1 Problem Statement . 33

3.2.2 Differential Privacy on Graphs 35

3.2.3 Additive Secret Sharing 36

3.3 CARGO System . 37

3.3.1 Design principle . 37

3.3.2 Framework . 38

3.3.3 Similarity-based Projection 40

3.3.4 Additive Secret Sharing-based Triangle Counting 44

3.3.5 Distributed Perturbation 46

3.4 Theoretical Analysis . 48

3.4.1 Security and Privacy Analysis 48

3.4.2 Utility Analysis . 50

3.4.3 Time Complexity . 52

3.5 Experimental Evaluation . 52

3.5.1 Experimental Setting . 53

3.5.2 Experimental Results . 54

3.6 Related Works . 58

3.6.1 Triangle Counting in DP 58

3.6.2 Crypto-assisted DP . 60

3.7 Conclusions . 61

4 Crypto-Assisted Differentially Private Federated Graph Analyt-

ics 62

4.1 Introduction . 62

4.2 Preliminary . 66

4.2.1 Problem Formulation . 66

4.2.2 Privacy Model . 66

iv

Contents

4.2.3 Private Set Union . 69

4.3 A General Framework: FEAT . 69

4.3.1 A Baseline Approach . 69

4.3.2 Overview of FEAT . 71

4.3.3 DPSU-based Graph Collection 73

4.3.4 Graph Query Processing 76

4.4 An Improved Framework: FEAT+ 78

4.4.1 Overview of FEAT+ . 80

4.4.2 Degree-based Node Partition 81

4.4.3 Graph Query Processing 81

4.5 Experimental Evaluation . 84

4.5.1 Experimental Setup . 86

4.5.2 Experimental Results . 88

4.6 Related Works . 90

4.7 Conclusion . 92

5 Conclusion and Future Work 96

5.1 Conclusion . 96

5.2 Future Directions . 98

Acknowledgements 100

References 101

Selected List of Publications 115

v

List of Figures

1.1 Overview of Doctoral Thesis . 2

2.1 Framework of our methods . 8

2.2 Example of publishing degree distribution 10

2.3 The impact of added noise on order information 16

2.4 Example of degree histogram . 19

2.5 The MSE and MAE of algorithms on different graphs 28

2.6 The MSE on different graphs, varying α 29

2.7 The runtime on different graphs 29

3.1 A comparison among CDP-based model, LDP-based model and

CARGO. (a) CDP-based model relies on a trusted server and

achieves a high accuracy, e.g., O(d
2
max

ε2
) error; (c) LDP-based model

removes a trusted server but introduces more error, i.e., O(eε

(eε−1)2
(d3maxn+

eε

ε2
d2maxn)); (b) Our CARGO achieves a good utility like CDP-based

model, i.e., O(d
′2
max

ε2
), but without a trusted server like LDP-based

model, where ε, n, dmax, d
′
max denote the privacy budget, number

of users, true maximum degree, and noisy maximum degree, re-

spectively. 31

3.2 CARGO system. 37

3.3 Limitation of random deletion. Assume that d′max is equal to 3,

if user v4 (or v5) projects the adjacent list by deleting the edge

⟨v4, v5⟩, all triangles in a graph will be removed. 41

vi

List of Figures

3.4 Local graph projection. Assume that d′max is equal to 2, user v2

projects the adjacent bit vector by deleting the edge ⟨v2, v1⟩ and
edge ⟨v2, v5⟩. 41

3.5 The l2 loss of triangle counting with ε varying from 0.5 to 3. . . . 54

3.6 The relative error of triangle counting with ε varying from 0.5 to 3. 55

3.7 The l2 loss of triangle counting with different n. 56

3.8 The relative error of triangle counting with different n. 56

3.9 The l2 loss of projection with various parameters. 58

3.10 The relative error of projection with various parameters. 59

3.11 Running time on Facebook. 59

3.12 Running time on Wiki. 59

4.1 Comparisons among central, local and federated scenarios. (a) In

a central scenario [1–4], one trusted server owns the entire graph.

(b) In a local scenario [5–8], each client owns one node and its 1-

hop path information. (c) In a federated scenario, each client owns

a subgraph that consists of multiple nodes and edges among them. 63

4.2 Overview of FEAT. 71

4.3 Motivation of FEAT+. 79

4.4 The MSE in 2-star counting. 85

4.5 The MRE in 2-star counting. 85

4.6 The MSE in triangle counting. 86

4.7 The MRE in triangle counting. 86

4.8 The MSE with various ρ. 87

4.9 The MRE with various ρ. 87

4.10 The MSE with various σ. 88

4.11 The MRE with various σ. 88

4.12 Running time with various ρ. 90

vii

List of Tables

2.1 Randomized projection vector . 22

2.2 optimal privacy allocation scheme α 23

2.3 optimal parameter θ . 23

2.4 running time complexity . 24

2.5 details of graph datasets . 25

3.1 Summary of Notations. 34

3.2 Summary of Theoretical Results. 49

3.3 Comparison between SS, RS, and d′max. 52

3.4 details of graph datasets. 53

3.5 Noisy maximum degrees under various ε. 53

4.1 Summary of Notations. 67

4.2 Performance of ECC with Three Libraries. 74

4.3 An Example of DPSU Protocol. 76

viii

CHAPTER 1

Introduction

1.1 Background and Motivation

Graph analysis is a powerful tool for uncovering meaningful insights in various

types of graph data, such as social network analysis, transportation analysis,

and epidemiological network analysis. For instance, the degree distribution [9]

(e.g., the number of edges connected to a node) can reveal the connectivity in

a social graph. Subgraph counts [10] (i.e., the number of triangles or stars)

can measure centrality properties in a graph, such as the clustering coefficient

[11], which represents the probability that two friends of an individual are also

friends with one another. However, directly releasing graph statistics may leak

sensitive information about individuals [12]. Most graph analytics are conducted

on sensitive data, which could be compromised through the results of these graph

statistics. Therefore, there is a need to develop solutions that can analyze these

graph properties while preserving the privacy of individuals in a graph.

Recently, many research efforts have focused on the problem of publishing

sensitive graph statistics under differential privacy (DP) [13, 14]. DP provides

individual privacy against adversaries with arbitrary background knowledge and

has emerged as the gold standard for private analytics. Compared with previous

privacy models (e.g., k-anonymity, l-diversity, t-closeness), DP can resist most

privacy attacks and provide a provable privacy guarantee. However, DP achieves

1

1. Introduction

Topic 2 Triangle CountingTopic 1 Degree Distribution Topic 3 Federated Analytics

Client C1

G1

Client C2

G2

Client Cm

Gm

. . .

Server

G

Crypto-Assisted Differentially Private Graph Analysis

Figure 1.1. Overview of Doctoral Thesis

this formal privacy guarantee by adding noise to sensitive information, which can

affect overall utility. Conversely, cryptography has long served as the foundation

for secure communication in the presence of adversarial behavior. It ensures

data confidentiality, integrity, and authenticity across various digital platforms

and communications. However, cryptography does not offer a formal privacy

guarantee like DP; adversaries can still infer sensitive information from graph

analytic results. In the literature of private graph analysis, DP and cryptography

have typically been studied separately. In this thesis, we explore how to improve

the trade-off between privacy and utility in differentially private graph analysis

by leveraging cryptographic techniques.

1.2 Overview of Our Studies

In this dissertation, we focus on three kinds of graph analytic tasks, with the

objective of exploring how cryptography can improve the utility of differentially

private graph analytics. Figure 1.1 provides an overview of this thesis, which

includes three research topics. We propose different methods for three common

graph tasks by leveraging cryptographic techniques to assist differential privacy

in improving accuracy in graph analysis, including degree distribution, triangle

counting, and federated graph analytics. As detailed motivations will be de-

scribed in the following chapters, we briefly introduce the motivation, target, and

approach of each research topic in this section:

2

1. Introduction

1.2.1 Crypto-assisted differentially private degree distri-

bution

Publishing graph statistics under node differential privacy [3,15–17] has attracted

much attention since it provides a stronger privacy guarantee than edge differen-

tial privacy [18–21]. Existing works related to node differential privacy typically

assume a trusted server that holds the entire graph. However, in many applica-

tions, a trusted curator is often not available due to privacy and security concerns.

In this chapter, for the first time, we investigate the problem of publishing

graph statistics under Node Local Differential Privacy (Node-LDP), which does

not rely on a trusted server. We propose an algorithm to publish the degree

distribution with Node-LDP by exploring how to select the graph projection

parameter in the local setting and how to execute the graph projection locally.

To be specific, we propose a crypto-assisted local projection method based on

cryptographic primitives, achieving higher accuracy than our baseline pureLDP

local projection method. Furthermore, we enhance our baseline graph projection

method from node-level to edge-level, preserving more neighboring information

and thus providing better utility. Extensive experiments on real-world graphs

demonstrate that crypto-assisted parameter selection offers better utility than

pureLDP parameter selection, and edge-level local projection provides higher

accuracy than node-level local projection, with improvements of up to 57.2% and

79.8%, respectively.

1.2.2 Crypto-assisted differentially private triangle count-

ing

Differentially private triangle counting in graphs is essential for analyzing con-

nection patterns and calculating clustering coefficients while protecting sensitive

individual information. Previous works have relied on either central [2, 15, 22]

or local models [5–7, 23] to enforce differential privacy. However, a significant

utility gap exists between the central and local models of differentially private

triangle counting, depending on whether a trusted server is needed. In particu-

lar, the central model provides high accuracy but necessitates a trusted server.

Conversely, the local model does not require a trusted server but suffers from

limited accuracy.

3

1. Introduction

In this chapter, we introduce a crypto-assisted differentially private triangle

counting system, named CARGO, leveraging cryptographic building blocks to

improve the effectiveness of differentially private triangle counting without the

assumption of trusted servers. It achieves high utility similar to the central

model but without the need for a trusted server like the local model. CARGO

consists of three main components. First, we introduce a similarity-based projec-

tion method that reduces the global sensitivity while preserving more triangles

via triangle homogeneity. Second, we present a triangle counting scheme based

on additive secret sharing that securely and accurately computes the triangles

while protecting sensitive information. Third, we design a distributed pertur-

bation algorithm that perturbs the triangle count with minimal but sufficient

noise. We also provide a comprehensive theoretical and empirical analysis of our

proposed methods. Extensive experiments demonstrate that our CARGO signif-

icantly outperforms the local model in terms of utility and achieves high-utility

triangle counting comparable to the central model.

1.2.3 Crypto-assisted differentially private federated graph

analytics

Collaborative graph analysis across multiple institutions is becoming increasingly

popular. Realistic examples include social network analysis across various social

platforms, financial transaction analysis across multiple banks, and analyzing

the transmission of infectious diseases across multiple hospitals. We define the

federated graph analytics, a new problem for collaborative graph analytics under

differential privacy. Although differentially private graph analysis has been widely

studied [1–8,24,25], it fails to achieve a good tradeoff between utility and privacy

in federated scenarios, due to the limited view of local clients and overlapping

information across multiple subgraphs.

Motivated by this, we first propose a federated graph analytic framework,

named FEAT, which enables arbitrary downstream common graph statistics while

preserving individual privacy. FEAT leverages our proposed differentially private

set union (DPSU) algorithm to aggregate the subgraph information, which en-

sures that the sensitive information is reported only once and the output global

graph is protected under DP. Furthermore, we introduce an optimized framework

based on our proposed degree-based partition algorithm, called FEAT+, which

4

1. Introduction

improves the overall utility by leveraging the true local subgraphs. Finally, ex-

tensive experiments demonstrate that our FEAT and FEAT+ significantly outper-

form the baseline approach by approximately one and four orders of magnitude,

respectively.

1.3 Thesis Structure

The structure of this thesis is as follows: Chapter 2 to Chapter 4 correspond to the

three presented research topics. In Chapter 2, we demonstrate how cryptography

can enable high utility in publishing differentially private degree distributions

under node-local differential privacy. In Chapter 3, we introduce a crypto-assisted

differentially private triangle counting system that achieves high-utility triangle

counting comparable to a central model without requiring a trusted server, similar

to a local model. In Chapter 4, we present a federated graph analytics framework

that balances utility and privacy by integrating cryptography into differential

privacy. Finally, Chapter 5 summarizes the thesis and discusses potential future

research directions.

5

CHAPTER 2

Crypto-Assisted Differentially

Private Degree Distribution

2.1 Introduction

Graph analysis has been receiving more and more attention on social networks,

transportation, protein forecast, etc. However, directly publishing graph statistics

may leak sensitive information about an individual [12]. Recently, many research

works have studied the problem of publishing sensitive graph statistics under

differential privacy (DP) [13, 14]. Compared with previous privacy models (e.g.,

k-anonymity, l-diversity, t-closeness), differential privacy can resist most private

attacks and provide a provable privacy guarantee.

When DP is applied to graph analysis, there are two common variants of DP

[26, 27]: Edge Differential Privacy [18–21] and Node Differential Privacy [3, 15–

17]. Intuitively, Edge Differential Privacy guarantees that a query result does

not significantly reveal sensitive information about a particular edge in a graph,

while Node Differential Privacy protects the information about a node and all its

adjacent edges. Obviously, Node Differential Privacy provides a much stronger

privacy guarantee than Edge Differential Privacy. Existing works related to Node

Differential Privacy are almost in the central (or global) model, where a trusted

curator holds the entire graph data before data publishing. We refer to the above

6

2. Crypto-Assisted Differentially Private Degree Distribution

two variants under a central server setting as Edge Central Differential Privacy

(Edge-CDP) and Node Central Differential Privacy (Node-CDP), respectively.

However, the assumption about a trusted server may not be practical in many

applications (i.e., individual contact lists) due to security reasons, such as privacy

leaks and breaches in recent years [28]. Local differential privacy (LDP) [29,

30] is a promising model that does not require a trusted server to collect user

information. In LDP, each user perturbs its sensitive information by herself and

sends perturbed messages to the untrusted server; hence it is difficult for the

curator to infer sensitive information with high confidence. We refer to the above

two variants of DP without a trusted server as Edge Local Differential Privacy

(Edge-LDP) and Node Local Differential Privacy (Node-LDP), respectively.

Although there are many recent studies on publishing statistics under Edge-

LDP [5, 31, 32], to the best of our knowledge, no existing work in literature at-

tempts to investigate graph statistics release under Node-LDP. Basically, it is

very challenging to publish graph statistics under Node-LDP due to the lack of

global view and prior knowledge about the entire graph. Consider querying the

node degree in a social graph, and if two graphs differ in one node, the results

may differ at most (n−1) edges in the worst case, where n is the number of users.

Thus the sensitivity of Node Differential Privacy is O(n) while that of Edge-DP

is O(1). Naively scaling the sensitivity of Edge-LDP for achieving Node-LDP

suffers the prohibitive utility drop.

Graph projection [3, 15, 17] is the key technique to reduce the high sensitivity,

but existing projections are only designed for the central model. When attempt-

ing to apply central graph projections into Node-LDP, it is difficult for each local

user to project its neighboring information with a limited local view. In cen-

tral models, with the global view, the server can determine optimal strategies of

removing which edges or nodes to maximize the overall utility. However, in the

local setting, each user can only see its own information but not other neighboring

information. What’s more, it is difficult for local users to obtain a graph pro-

jection parameter θ with high accuracy as they have little knowledge about the

entire graph. In general, graph projection transforms a graph into a θ-bounded

graph whose maximum degree is no more than θ. The parameter θ plays a vital

role as it reduces the sensitivity from O(n) to O(θ). If θ is too small, a large

number of edges will be removed during the projection. If θ is too large, the sen-

sitivity will become higher and more noise will be added during the protection.

7

2. Crypto-Assisted Differentially Private Degree Distribution

Aggregate and Compute

Overall Utility Loss ParameterSelection

 LocalProjection

 Send Noisy Degree

Collect and Publish

ServerUsers

v6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

Figure 2.1. Framework of our methods

Graph projections in the central setting can easily opt for the desirable projec-

tion parameter θ with some prior knowledge of the whole graph, for instance,

the maximum degree, the average degree, etc.; yet it is harder for local users to

achieve it, since they have little prior knowledge about the entire graph.

In this paper, we introduce a novel local graph projection method for publishing

the degree distribution under Node-LDP by addressing two main challenges: (1)

How to obtain the graph projection parameter θ in the local setting; (2) How to

execute the graph projection locally. The general framework is depicted in detail

in Fig. 2.1, which includes three phases: (1) local users and server collaboratively

select a projection parameter θ with minimum utility loss (Sec.2.4); (2) local users

execute local graph projection based on selected parameters (Sec.2.5); (3) local

users perturb individual information and send noisy degrees to the server.

First, to find the optimal projection parameter θ, we design a multiple-round

protocol to find which parameter has the minimum utility loss. Specifically, for

each round, each user calculates the potential utility loss with respect to a cer-

tain θ and sends to the server for computing the aggregated loss. The utility loss

contains sensitive information since it is calculated based on each user’s raw data.

We design two methods to protect individual messages based on different privacy-

enhancing techniques: pureLDP and crypto-assisted. The pureLDP method is a

naive local graph projection method under Node-LDP. The obvious disadvantage

is that multiple-round adding noise significantly deteriorates the utility. To im-

prove it, we design a crypto-assisted parameter selection method that improves

8

2. Crypto-Assisted Differentially Private Degree Distribution

the utility with cryptographic primitives. The key challenge is that aggregated

utility loss is computed for the evaluation while individual utility loss can be

protected. We first use the order-preserving encryption (OPE) scheme [33,34] to

encode individual information for comparing different utility loss values. Then,

we mask the encrypted value with Secure Aggregation (SA) technique [35] to pro-

tect the order information of individual utility loss. The masks can be cancelled

during the aggregation and the final aggregated utility loss is protected under

OPE scheme.

Second, we propose two different local projection methods based on different

granularity, including node-level method and edge-level method. In node-level

method, each node is the minimal unit of a graph and correlations among neigh-

boring users will be ignored coarsely. However, this approach loses too much

neighboring information that significantly influences the overall utility (detailed

analysis in Sec. 2.5.1). Then, we propose an improved approach, edge-level

method, where each edge is the minimal unit that is more fine-granularity in-

formation. One main challenge is that privacy leakage may happen via commu-

nication messages among neighboring users. We represent this message as an

operation vector and carefully design a randomized mechanism to perturb each

bit of this vector while satisfying Node-LDP. As a result, it is difficult for neigh-

boring users to distinguish whether the current node degree is larger than θ or

smaller than θ.

Our contributions can be summarized as follows:

• We propose and study the problem of publishing the degree distribution

under Node-LDP for the first time. We give a detailed description of the

problem definition and conclude the research gap. We present an overview

of publishing the degree distribution under Node-LDP.

• We design two methods to select the projection parameter θ in the local

setting: pureLDP and crypto-assisted. Crypto-assisted method guarantees

the security of individual utility loss with cryptographic primitives, which

achieves a higher accuracy than the baseline pureLDP method.

• We design two local graph projection approaches based on different granu-

larity: node-level and edge-level. The improved edge-level method preserves

more information and provides better utility than the baseline node-level

method.

9

2. Crypto-Assisted Differentially Private Degree Distribution

1

2
3 4

Degree Sequence
=(1, 3, 2, 2)

00

11

22

11 22 33 44

#o
f n

od
es

#o
f n

od
es

DegreeDegree

Degree HistogramDegree Histogram

00

0.250.25

0.50.5

11 22 33 44

%
 o

f n
od

es
%

 o
f n

od
es

DegreeDegree

Degree DistributionDegree Distribution

Figure 2.2. Example of publishing degree distribution

• Extensive experiments on real-world graph datasets validate the correctness

of our theoretical analysis and the effectiveness of our proposed methods.

2.2 Problem Definition and Preliminaries

2.2.1 Problem Definition

In this paper, we consider an undirected graph with no additional attributes on

nodes or edges. An input graph is defined as G = (V,E), where V = {v1, ..., vn}
is the set of nodes, where |V | = n, and E ⊆ V × V is the set of edges. For each

user i, Bi = {bi1, bi2, ..., bin} is its adjacent bit vector, where bij = 1 if the edge

(vi, vj) ∈ E and bij = 0 otherwise. The number of adjacent edges for one node i is

the node degree di, namely, di =
∑n

j=1 bij. The server collects a perturbed degree

sequence seq = {d1, d2, ..., dn} from each local user and publishes the degree

histogram hist(G). The degree distribution dist(G) can be easily obtained from

hist(G) by counting each degree frequency. Fig. 2.2 shows an example of degree

sequence, degree histogram, and degree distribution, respectively.

We use two common measures to assess the accuracy of our algorithms. First,

we use the mean squared error (MSE) [36] to estimate the error between noisy

histogram hist(G)′ and original histogram hist(G). Generally, the MSE can be

computed as MSE(hist(G), hist(G)′) = 1
n

∑n
i=1(hist(G)i−hist(G)i

′)2, where n is

the number of users in a graph. Also, we compute the mean absolute error (MAE)

[37] which can be represented by MAE(hist(G), hist(G)′) = 1
n

∑n
i=1 |hist(G)i −

hist(G)i
′)|.

10

2. Crypto-Assisted Differentially Private Degree Distribution

2.2.2 Preliminaries

Since the trusted third party is impractical, LDP has become the de facto stan-

dard of privacy protection to protect individual information. As a graph consists

of nodes and edges, there are two definitions when LDP is applied to either of

them: edge local differential privacy (Edge-LDP) in Definition 1 and node local

differential privacy (Node-LDP) in Definition 2.

Definition 1 (Edge-LDP) A random algorithm M satisfies ϵ-Edge-LDP, iff for

any i ∈ [n], two adjacent bit vectors Bi and B′
i that differ only one bit, and any

output y ∈ range(M),

Pr[M(Bi) = y] ≤ eϵPr[M(B′
i) = y]

Definition 2 (Node-LDP) A random algorithm M satisfies ε-Node-LDP, iff

for any i ∈ [n], two adjacent bit vectors Bi and B′
i that differ at most n bits, and

any output y ∈ range(M),

Pr[M(Bi) = y] ≤ eεPr[M(B′
i) = y]

Node-LDP is clearly a much stronger privacy guarantee than Edge-LDP since

it requires hiding the existence of each node along with its incident edges. To

our knowledge, however, there are few research works that release graph statis-

tics under Node-LDP. Although Zhang et al. [38] consider Node-DP in the local

setting where each node represents a software component and an edge represents

control flow between components, the directed graphs on the control-flow behav-

ior of different users are mutually independent. We consider a totally different

setting where each node represents a user and each edge represents the correlation

between neighboring users.

There are two kinds of DP, namely, bounded DP and unbounded DP [14, 39].

In a bounded DP, two neighboring datasets D, D′ have the same size n and D′
is obtained from D by changing or replacing one element. In unbounded DP,

D′ can be derived from D by deleting or adding one element. Here, we use the

bounded DP to publish the degree distribution. That is to say, the size of each

adjacent bit vector is equal to n, where n is the number of users. Node-LDP

satisfies the post-processing property (Theorem 1) and the composition property

(Theorem 2) [13].

11

2. Crypto-Assisted Differentially Private Degree Distribution

Theorem 1 (Post-Processing) If a randomized algorithm R satisfies ε-DP,

then for an arbitrary randomized algorithm S, S ◦R also satisfies ε-DP.

Theorem 2 (Composition Property) ∀ε ≥ 0, k ∈ N , the family of ε-DP

mechanism satisfies tε−DP under t-fold adaptive composition.

To satisfy DP, one way to add some noise into the query result. In the Laplace

mechanism (Theorem 3) [13, 14], given the privacy budget ε and sensitivity △,

one publishes the result after adding Lap(△
ϵ
) noise.

Theorem 3 (Laplace Mechanism) For any function f , the Laplace mecha-

nism A(D) = f(D) + Lap (△f
ε
) satisfies ε-DP.

2.3 Overview of Proposed Methods

We aim to design a method for publishing the degree distribution that approxi-

mates the original distribution as possible while satisfying the strict Node-LDP.

Our proposed methods support the following functions: 1) obtaining the graph

projection parameter θ in the local setting; 2) conducting the graph projection

locally; 3) publishing the degree distribution under Node-LDP.

Algorithm 1 Publishing the degree distribution

Input: Adjacent bit vectors {B1, ..., Bn},
privacy budget ε1, ε2, ε3

Output: A noisy degree distribution dist(G)′

1: θ ← SelectParameter({B1, ..., Bn}, ε1) // Sec. 2.4
/* User side. */

2: for each user i ∈ {1, 2, ..., n} do
3: d̂i ← LocalProjection(Bi, θ, ε2) // Sec. 2.5
4: d′i ← d̂i+Lap(2θ

ε3
)

5: User i sends d′i to server
6: end for/* Curator side. */
7: Curator collects all noisy degree d′i
8: return dist(G)′

We provide an overview of our solutions in Algorithm 1. First, a private param-

eter selection method is designed to select the projection parameter with mini-

mum utility loss in the local setting (Section 2.4). The curator collects individual

12

2. Crypto-Assisted Differentially Private Degree Distribution

utility loss from local users and evaluates each candidate projection parameter

k by computing the aggregated utility loss. To protect sensitive individual util-

ity loss during communications, we first propose one naive approach, pureLDP

parameter selection, which adds noise into individual utility loss. However, this

method adds too much noise to destroy the order information of different ag-

gregated utility loss, significantly influencing the selection accuracy. Then, we

propose an improved crypto-assisted parameter selection method using crypto-

graphic primitives. Specifically, the individual utility loss is encrypted by order-

preserving encryption (OPE) [40] scheme where the numerical order in the plain-

text domain will be preserved in the ciphertext domain. To prevent leaking the

order information of individual utility loss while preserving the order of the aggre-

gated utility loss, we add one mask into encrypted values with Secure Aggregation

technique [35]. The added masks are cancelled after the aggregation and the final

aggregated utility loss is protected under OPE scheme.

Second, as soon as the projection parameter is decided, each user can execute

the local projection (Section 2.5). Compared with the Node-CDP, it is more

difficult for each user to execute the local projection due to the limited local

view of the entire graph. We first give a baseline node-level approach that is

motivated by graph projection [5] with Edge-LDP. In node-level local projection,

the node is the minimal unit and correlations among users are ignored. It is easy

to deploy but lose much information that significantly influences the utility. Then

we design an improved edge-level local projection where each edge is the minimal

unit during the projection. The key challenge is that information leakage may

happen via mutual edges among neighboring users. For example, neighboring

users may know that the current degree is larger than or less than θ during the

local projection. We represent this sensitive message as each bit in an operation

vector and design a randomized mechanism to perturb each bit. Thus neighboring

users cannot distinguish the current node degree whether larger than θ or smaller

than θ.

Third, after finishing the local projection, each user perturbs its projected

degree using the Laplace mechanism. Here, the sensitivity is 2θ since any change

of one edge will make an effect on two node degrees. Then, they send the noisy

degree to the server. The curator collects the degree sequence and publishes the

degree histogram and degree distribution.

13

2. Crypto-Assisted Differentially Private Degree Distribution

2.4 Projection Parameter Selection

2.4.1 PureLDP Selection

Intuitively, the server can help local users select the parameter with the minimum

utility loss from the candidate set {1,2,...,K} through multiple-round communi-

cations. We design a utility loss function to evaluate each candidate parameter k.

Our utility loss function has two parts, as shown in Equation 2.1, which includes

projection utility loss during the local projection and publishing utility loss from

added Laplace noise. The publishing utility loss ED is usually a constant value.

For example, the publishing utility loss of degree distribution is equal to the vari-

ance, namely, ED = n.2(2k
ε3
)2 = 8nk2

ε23
. The projection utility loss EP is aggregated

by all individual projection utility losss, i.e., EP =
∑n

i=1{di − k|vi ∈ V, di > k}.
But directly collecting each individual utility loss from local users may reveal per-

sonal information. In baseline method, we use the Laplace mechanism to provide

the privacy guarantee and its sensitivity is (n− 1− k) in Node-LDP, as shown in

Lemma 1.

F (k) = EP + ED, (2.1)

EP =
∑n

i=1 |{di − k|vi ∈ V, di > k}|

ED = n.2(2k
ε3
)2 = 8nk2

ε23

Lemma 1 For any projection loss |di − d̂i| and |di − d̂i|′, we have

||di − d̂i| − |di − d̂i|′|1 ≤ (n− 1− k)

Proof of Lemma 1: Given the graph projection parameter is k, for each node

degree di, if di ≤ k, projected node degree d̂i will remain the original value,

namely, d̂i = di; otherwise, d̂i = k. Thus, we have

|di − d̂i| =

{
di − θ, di>k

0, di ≤ k

Since the maximum node degree is (n− 1), the projection loss value is bounded

by (n− 1− k).

14

2. Crypto-Assisted Differentially Private Degree Distribution

Algorithm 2 PureLDP parameter selection

Input: Adjacent bit vectors {B1, ..., Bn}, privacy budget ε1
Output: Projection parameter θ
1: for each integer k ∈ {1, 2, ..., K} do
2: /* User side. */
3: for each user i ∈ {1, 2, ..., n} do
4: d̂i ← LocalProjection(Bi, k) // Sec. 2.5
5: di ←

∑n
j=1 bi,j

6: EPk,i
← |di − d̂i|+Lap(n−1−k

ε1/K
)

7: User i sends EPk,i
to server

8: end for
/* Curator side. */

9: EPk
←
∑n

i=1 EPk,i

10: θ ← k when (EPk
+ ED) is minimum

11: end for
12: return θ

Algorithm. Algorithm 2 presents the formal description of pureLDP param-

eter selection. It takes as input a graph G that is represented as bit vectors

{B1, ..., Bn}, the privacy budget ε1, and the size of candidate parameter K. For

each candidate parameter k, the original graph is first projected to k-bounded

graph using the local graph projection method (in Section 2.5). Then, each user

computes the projection utility loss and adds the Laplace noise into individual

utility loss with the sensitivity (n − 1 − k). After collecting all noisy individual

projection utility loss, the server computes the sum of aggregated projection util-

ity loss and publishing utility loss. Finally, the parameter θ is selected when the

overall utility loss is the minimum and server sends this θ to each local user.

Limitation. Much noise is added into the true individual utility loss, which

significantly destroys the order information of aggregated utility loss. To capture

the impact of adding Laplace noise on the accuracy of pureLDP parameter selec-

tion method, we execute experiments on Wikipedia vote network from SNAP [41].

As shown in Fig. 2.3, the left figure presents the impact of added noise on the

order of individual utility loss when θ = 20, and the difference between true and

noisy utility loss is up to 85%. The right one shows the influence on the order of

aggregated utility loss under various θ and the difference is up to 90%. Finally,

the accuracy of selecting projection parameter θ is influenced significantly.

15

2. Crypto-Assisted Differentially Private Degree Distribution

User

0

5

M
es

sa
ge

1e2

true
noisy

(a) Under θ=20

5 10 15 20

1

2

3

A
gg

re
ga

tio
n

1e3

true
noisy

(b) Under various θ

Figure 2.3. The impact of added noise on order information

2.4.2 Crypto-assisted Selection

Our goal is that each individual projection utility loss can be protected when the

order of aggregated utility loss is preserved. Order-preserving encryption (OPE)

scheme [42, 43] can achieve this idea that the i-th data in the plaintext domain

is transformed to the i-th data in the ciphertext domain, so the numerical order

among plaintexts is preserved among ciphertexts. Thus when individual utility

loss are encrypted by OPE scheme, the numerical order of individual utility loss

can be preserved and the order of aggregated utility loss is also preserved. But

there is the other problem that the order of aggregated utility loss is preserved

while the order of individual utility loss is revealed to server. Next, we use the

secure aggregation [35] to mask encoded individual utility loss, and these masks

can be cancelled during the aggregation.

OPE Schemes. There are many existing works related to OPE scheme. For

example, Popa et al. [40] proposed an interactive OPE scheme between the client

and the server, which allows the encrypted state to update over time as the new

values are inserted. The server organizes the encrypted values by maintaining a

binary search tree, namely, OPE tree. To reduce the high cost of the encryption,

Kerschbaum et al. [44] designed a more efficient OPE scheme that uses a dictio-

nary to keep the state and thus does not need to store too much data. Roche et

al. [45] proposed an alternative approach to optimize the heavy insertion of OPE

schemes. It is very efficient at insertion and has a lower communication cost,

but it provides only a partial order. Here, we choose a linear OPE scheme [46]

to encode individual utility loss since it can be directly extended for the local

16

2. Crypto-Assisted Differentially Private Degree Distribution

Algorithm 3 Crypto-assisted parameter selection

Input: Adjacent bit vectors {B1, ...Bn},
security parameters a, b

Output: Projection parameter θ
1: for each integer k ∈ {1, 2, ..., K} do
2: /* User side. */
3: for each user i ∈ {1, 2, ..., n} do
4: d̂i ← LocalProjection(Bi, k) // Sec. 2.5
5: di ←

∑n
j=1 bi,j

6: noise ← randint(0, a− 1)
7: r ← PRG(seed)
8: mask =

∑n−1
j=i+1 ri,j −

∑i−1
j=1 ri,j

9: EncTk,i
← a ∗ |di − d̂i|+ b+ noise+mask

10: User i sends EncTk,i
to server

11: end for
/* Curator side. */

12: EncTk
←
∑n

i=1EncTk,i

13: θ ← k when (EncTk
+ ED) is minimum

14: end for
15: return θ

setting.

Discussion. It is important to note that order information can be sensitive and

may compromise individual privacy. While the utility loss can be mitigated using

order-preserving encryption techniques, they reveal ordering information to po-

tential attackers. These attackers might then estimate the plaintext distribution

based on the preserved order in the ciphertexts. To counteract this, we employ

secure aggregation techniques as outlined in [35] to mask individual utility loss.

It allows for the comparison of aggregated utility loss under different parameters

without revealing individual data.

Secure Aggregation [35]. Consider a curator with n users where user i ∈ [n]

has its private local vector xi. The objective of server is to compute the sum

of models
∑

i∈n xi without getting any other information on private local data.

Suppose each pair of users (i, j), i < j agree on some random vector si,j. If user i

adds si,j to xi and j subtracts it from xj, then the mask si,j will be canceled when

their vectors are added, but their true inputs will be concealed without revealing.

Formally, each masked value can be computed:

17

2. Crypto-Assisted Differentially Private Degree Distribution

yi = xi +
∑

j∈n:i<j

si,j −
∑

j∈n:i>j

si,j (mod R)

Then server collects yi and computes:

z =
∑
i∈n

yi

=
∑
i∈n

(
xi +

∑
j∈n:i<j

si,j −
∑

j∈n:i>j

si,j

)
=
∑
i∈n

xi (mod R)

Based on above two cryptographic primitives, we propose a crypto-assisted

parameter selection method, as presented in Algorithm 3. First, we use the

linear OPE scheme [46] to encode individual utility loss, namely, f(x) = a ∗ |di−
d̂i|+ b+ noise. Here security parameters a and b are kept secret from the server

and the noise is randomly selected from [0, a − 1]. Second, to hide the order

of individual utility loss, we add one mask into the encoded values of the OPE

scheme using SA. For each user i, it and the rest other n−1 users agree on common

seeds. Then local users generate the random numbers r with the common seeds

by the pseudorandom generator (PRG) [47] and add into the individual utility

loss. Finally, the server collects all encrypted individual projection utility loss

and computes the aggregated utility loss. The added masks can be cancelled

with each other after aggregation and any information about individuals cannot

be leaked. The final aggregated utility loss is still protected under OPE scheme.

2.5 Local Projection Methods

2.5.1 Node-level Local Projection

Local scenarios make projection operations challenging, since no party owns the

entire graph and local users cannot easily add or remove any edges. We propose a

node-level projection method where each node is the minimal unit. As presented

in Algorithm 4, it inputs an adjacent bit vector and projection parameter θ. Each

local user first counts the number of neighboring edges. If node degree di is larger

than θ, projected degree d̂i will be directly set as θ; otherwise, d̂i remains the

original value.

18

2. Crypto-Assisted Differentially Private Degree Distribution

Algorithm 4 Node-level Local Projection

Input: Adjacent bit vector Bi={bi1, ..., bin},
projection parameter θ

Output: θ-bounded node degree d̂i
1: di ←

∑n
j=1 bi,j

2: if di > θ then
3: d̂i = θ
4: else
5: d̂i ← di
6: end if
7: return d̂i

A B C

E

D

Degree Sequence
=(1, 2, 3, 1, 1)

1 2
3

4 00
11
22
33

00 11 22 33 44#
o

f n
o

d
es

#
o

f n
o

d
es

DegreeDegree

Degree HistogramDegree Histogram

Figure 2.4. Example of degree histogram

Limitations. Although node-level projection is easy to implement, it omits

correlations among neighboring users coarsely, influencing the accuracy signifi-

cantly. For example, we have a simple graph with five nodes and some edges,

as shown in Fig. 2.4. The original histogram can be represented as H1 = (0,

3, 1, 1, 0). Assume that the projection parameter θ = 1, the projected degree

sequence becomes Seq1 = (1, 1, 1, 1, 1) and the current histogram is H2= (0, 5, 0,

0, 0) after node-level projection. We can compute the projection loss: MSE(H1,

H2)=
6
5
. If correlations are considered, any change in mutual edges will update

two neighboring adjacent bit vectors. For example, if edge 2 and 3 are removed

to bound all degrees, the degree sequence will become Seq2= (1, 1, 1, 0, 1) and

the degree histogram will be H3= (1, 4, 0, 0, 0). The projection loss can be

computed: MSE(H1, H3)=
4
5
. Obviously, node-level method loses more edge

information, which significantly affects overall utility. What’s more, the charac-

teristic of degree distribution is destroyed by node-level projection. For instance,

it is not easy to find a real-world graph that is represented by the sequence Seq1.

Generally, we assume that the number of users in a graph is n, projection

19

2. Crypto-Assisted Differentially Private Degree Distribution

parameter is θ, and original degree histogram is H1=(h1, h2, ..., hn). If there

are m nodes with degree larger than θ, we can get the projected histogram

H2=(h1, h2, ..., hθ +m, 0, ..., 0) using node-level projection. On the other hand, if

mutual edge information is considered during the projection, the new histogram

will become H3=(h1 + t1, h2 + t2, ..., hθ + tm, 0, ..., 0), where ti ∈ Z (i ∈ [1,m]) is

the variation of each bin in the histogram. We refer to this method as edge-level

projection method. One mutual edge connects two nodes and there are two cases

during the edge-level local projection: (1) two node degrees are both over θ. The

final histogram of edge-level is same with that of node-level. (2) one node degree

is larger than θ and the other one is smaller than θ. The change from the former

one is same with the first case. The influence from the latter can be cancelled

finally. Thus, we can easily achieve m = t1 + t2 + ... + tm. Then we can com-

pute their projection loss, namely, MSE(H1, H2)=
m2

n
= 1

n
(t1+ t2+ ...+ tm)

2 and

MSE(H1, H3)=
1
n
(t21+ t22+ ...+ t2m). Since (t1+ t2+ ...+ tm)

2 ≥ (t21+ t22+ ...+ t2m),

we can get MSE(H1, H2) ≥ MSE(H1, H3). Therefore, the result of node-level

projection method is not desirable.

2.5.2 Edge-level Local Projection

Based on above discussions, if we consider the correlation among users, more

edge information will be reserved after the projection. However, unlike Node-

CDP where the trusted server can decide the optimal strategies of removing

which edges or nodes to maximize the overall utility, it is difficult for a local user

to update the mutual edges. The key challenge is that any change in the edges

may leak individual sensitive information via mutual edges. For example, if one

node degree di is larger than θ, it will delete some edges. At the same time, this

user i will send messages to its neighboring users to update their adjacent bit

vectors. The message itself reveals that the current node degree may be larger

than θ. We design an edge-level method to protect this sensitive message.

Security Assumptions. We assume that 1) the communication between

neighboring users is perfectly anonymous, that’s to say, the third party (e.g.,

server or third user) cannot know the communication exists or not; 2) the user

does not reveal sensitive neighboring information to other users, for example, B

will not tell C that A is one of its friends or not. Based on above assumptions,

one edge is only visible to two neighboring users and other edges are in a data-

20

2. Crypto-Assisted Differentially Private Degree Distribution

Algorithm 5 Edge-level Local Projection

Input: Adjacent bit vector Bi={bi1, ..., bin},
projection parameter θ, privacy budget ε2

Output: θ-bounded node degree d̂i
1: Ri=[0] × d̂i // Record which edges will be deleted
2: di ←

∑n
j=1 bi,j

3: if di ≥ θ then
4: Randomly select (di − θ) bits from Ri and set ’1’
5: for each rij ∈ Ri do
6:

r′ij =

{
rij w.p. θ

di

1− rij w.p. di−θ
di

7: end for
8: else
9: for each rij ∈ Ri do

10: if di−θ
di
≤ eε2−1

eε2−e−ε2
then

11:

r′ij =

{
rij w.p. 1− e−ε2 (di−θ)

di

1− rij w.p. e−ε2 (di−θ)
di

12: else
13:

r′ij =

{
rij w.p. eε2θ

di

1− rij w.p. di−eε2θ
di

14: end if
15: end for
16: end if
17: for each rij ∈ Ri do
18: if rij = 1 then
19: bij = 0 and bji = 0
20: end if
21: end for
22: return d̂i

invisible way. Thus, the communication message is just one bit and the sensitivity

becomes O(1).

Algorithm. We propose the edge-level projection method to improve node-

level method and the edge is the minimal unit during the projection, as shown in

Algorithm 5. Privacy leakage may occur when the local projection is performed

since the sensitive messages are sent to neighboring users. We represent this

21

2. Crypto-Assisted Differentially Private Degree Distribution

Table 2.1. Randomized projection vector
Pr 0 1
<θ 1-x x
≥ θ 1-p p

message as an operation vector Ri = {ri1, ..., ridi}, and the size of Ri is di. If

rij = 1, the corresponding edges in two neighbor lists will be removed; otherwise,

they remain the same. We carefully perturb each bit of the operation vector

to make two cases indistinguishable: node degree di is larger than θ or di is

smaller than θ. Ideally, we want to flip each bit of the projection bit vector with

probability in Table 2.1, where p = di−θ
di

and x = 0. Obviously, when x = 0, our

randomized mechanism cannot satisfy the Node-LDP. To satisfy the Node-LDP,

we have the following inequation:{
e−ε2 ≤ x

p
≤ eε2

e−ε2 ≤ 1−x
1−p
≤ eε2

Then, we can bound the scope of x as follows:{
pe−ε2 ≤ x ≤ peε2

(p− 1)eε2 + 1 ≤ x ≤ (p− 1)e−ε2 + 1

When di<θ, we want to preserve more edges during projection, that is to say, the

number of ‘1’ in projection bit vector is as small as possible. Thus we have

x =

{
pe−ε2 , pe−ε2 ≥ (p− 1)eε2 + 1

(p− 1)eε2 + 1, pe−ε2<(p− 1)eε2 + 1

After randomizing the bits of the projection bit vector, each user updates the

adjacent bit vector according to randomized bit vector (Line 19). Then, local

users count the number of edges and obtain the bounded degree d̂i.

2.6 Analysis and Discussions

Privacy Budget Allocation. As shown in Algorithm 1, there are three kinds

of privacy budgets. Our goal is to find the optimal privacy allocation scheme with

the best utility. Without loss of generality, we assume that the overall privacy

22

2. Crypto-Assisted Differentially Private Degree Distribution

Table 2.2. optimal privacy allocation scheme α
ε Ca-HepPh Cit-HepPh Twitter Com-DBLP
0.5 0.895 0.927 0.945 0.945
1 0.944 0.937 0.949 0.947
1.5 0.901 0.940 0.944 0.948
2 0.948 0.946 0.947 0.937
2.5 0.944 0.922 0.948 0.943
3 0.944 0.948 0.941 0.940

Table 2.3. optimal parameter θ
ε Ca-HepPh Cit-HepPh Twitter Com-DBLP
0.5 3 4 18 13
1 9 7 31 17
1.5 15 10 41 20
2 19 12 43 23
2.5 24 15 45 25
3 26 18 48 27

budget is ε, ε3 = αε, and ε1+ε2 = (1−α)ε. For inner privacy budget allocation of

local graph projection, we distribute the same privacy budget for the projection

parameter selection and executing the local graph projection, namely, ε1 = ε2.

We find the optimal α with the least utility loss by conducting many experiments

for different cases, as shown in Table 2.2. And we use the optimal α for each case

in the next experiments.

Selection of Parameter K. In Algorithm 2 and Algorithm 3, the parameter

K, namely, the size of the candidate pool, plays a significant role in the trade-

off between utility and privacy. When the size K is larger, more noise will be

added by the pureLDP parameter selection and time overhead becomes higher.

Similarly, the running time of crypto-assisted selection method will be higher.

But if the K becomes smaller, the optimal projection parameter α is not covered

possibly. We conduct extensive experiments and find the optimal parameter α

for each case, as shown in Table 2.3. In our paper, we use K = 50 that is ample

to cover the optimal parameter α of different cases.

Time Complexity. As shown in Table 2.4, we conclude the running time com-

plexity of different combinations theoretically, |V | and |E| represent the number

of nodes and edges respectively. Node-level local projection method transforms

each node degree into θ-bounded degree directly, which takes time O(|V |). In con-

23

2. Crypto-Assisted Differentially Private Degree Distribution

trast, edge-level local projection method needs to traverse each edge for each node,

resulting an O(|V |.|E|) running time. PureLDP parameter selection method se-

lects the optimal parameter θ from K candidates and for each candidate k, each

user has to compute the projection loss, which takes time at most O(K.|V |). By
comparison, for each candidate parameter k of crypto-assisted selection method,

each user has to communicate with the other (|V | − 1) users to determine the

seed, resulting an O(K.|V |2) running time overhead.

Table 2.4. running time complexity
pureLDP crypto-assisted

Node-level O(|V |+K.|V |) O(|V |+K.|V |2)
Edge-level O(|V |.|E|+K.|V |) O(|V |.|E|+K.|V |2)

Security Analysis. Publishing the degree distribution in Algorithm 1 is under

the following privacy guarantee.

Lemma 2 Publishing the degree distribution satisfies (ε1/K+ε2+ε3)-Node-LDP.

Proof of Lemma 2: In Algorithm 1, SelectParameter(.) (Line 1) uses the

Laplace with privacy budget ε1/K, K is the number of candidate parameters.

Executing the local projection (Line 3) uses our proposed mechanism and satis-

fies Node-LDP for ε2. And publishing the distribution with Laplace Mechanism

using ε3. According to the post-processing theorem and composition property,

Algorithm 1 satisfies (ε1/K + ε2 + ε3)-Node-LDP.

2.7 Experimental Evaluation

In this section, we would like to answer the following questions:

• What is the tradeoff between utility and privacy of our proposed methods?

• What are results of different privacy budget allocation schemes?

• How much time do our proposed algorithms take?

2.7.1 Datasets and Setting

Our experiments run in python on a server with Intel Core i9-10920X CPU,

256GB RAM running Ubuntu 18.04 LTS. We use four real-world graph datasets

24

2. Crypto-Assisted Differentially Private Degree Distribution

from SNAP [41], which are also used in [3, 36]. And we preprocess all graph

datasets to be undirected and symmetric graphs. Table 2.5 presents more details

about every graph dataset, including the number of nodes |V |, the number of

edges |E|, and the number of edges after preprocessing |E ′| after preprocessing.
In all experiments, we vary the privacy budget ε from 0.5 to 3. By default, we set

hyper-parameter K=50 as we discussed above. All of our experimental results

are the average values computed from 20 runs. We use ‘PureLDP’, CryptoAs-

sisted’, ‘NodeProj’ and ‘EdgeProj’ to represent pureLDP parameter selection,

crypto-assisted parameter selection, node-level local graph projection and edge-

level local graph projection respectively. Thus we have four different combinations

to publish the degree distribution.

2.7.2 Relation between ε and MSE, MAE

As shown in Fig. 2.5, the utility of each combination method becomes better

as the privacy budget ε increases. We can find that ‘CryptoAssisted+EdgeProj’

method always performs the best in most cases, while the results of ‘PureLDP+

NodeProj’ method are always the worst. To be specific, the MSE of ‘Cryp-

toAssisted+EdgeProj’ method is less than that of ‘PureLDP+NodeProj’ by up

to 87.2% on Twitter when ε = 2.5. The MAE of ‘CryptoAssisted+NodeProj’

method is larger than that of ‘CryptoAssisted+EdgeProj’ method by up to 66.4%

in Twitter when ε = 3. The reason that ‘CryptoAssisted+EdgeProj’ method

sometimes performs not the best in terms of MAE when ε = 0.5 is because our

utility loss function uses the MSE as the evaluation metric, which makes a lit-

tle influence on results of MAE, particularly when ε is very small. The results

of pureLDP parameter projection are always worse than that of crypto-assisted

parameter projection since the latter protects individual utility loss while preserv-

ing the order information of the aggregated utility loss accurately. Also, due to

more information is preserved, edge-level local projection method performs much

Table 2.5. details of graph datasets
Graph |V | |E| |E| ′
Ca-HepPh 12,008 118,521 474,020
Cit-HepPh 34,546 421,578 843,156
Twitter 81,306 1,768,149 3,536,298
Com-DBLP 317,080 1,049,866 2,099,732

25

2. Crypto-Assisted Differentially Private Degree Distribution

better than node-level local projection method. Overall, our proposed ‘CryptoAs-

sisted+EdgeProj’ method improves our baseline ‘PureLDP+NodeProj’ approach

for publishing the degree distribution under Node-LDP.

2.7.3 Impact of privacy budget allocation

To further estimate the influence of the privacy allocation scheme on the overall

utility, we compare the best α with other three constant α, including 0.3, 0.6,

and 0.9. We present the MSE results of different α on different graph datasets

in Fig. 2.6. We can observe that the best α owns the lowest MSE against the

other allocation schemes in most cases. On the other hand, with the increase of

the overall privacy budget ε, the MSE value is decreasing. Thus most of privacy

budget can be allocated to the final publishing the degree distribution, which is

roughly consistent with our best α in Table 2.2, namely, ε3 for publishing degree

distribution is approximately equal to the overall privacy budget ε.

2.7.4 Analysis on running time

Finally, we compare the running time overhead of our proposed methods, as shown

in Fig. 2.7. We can see that the running time of ‘CryptoAssisted+EdgeProj’

method is much larger than that of ‘PureLDP+NodeProj’ method. This is mainly

because edge-level projection method needs to traverse each edge of every node

and crypto-assisted parameter selection method has n users to communicate in

pairs, which is in line with our theoretical analysis in Section 2.6. The difference

between ‘CryptoAssisted+EdgeProj’ method and ‘PureLDP+NodeProj’ method

is larger on Twitter. This is because Twitter has more edges than other graphs, as

described in Table 2.5, which results in higher computation and communication

overhead. In addition, incorporating cryptographic tools into Differential Pri-

vacy (DP) increases running time. For instance, the running time of ‘CryptoAs-

sisted+NodeProj’ is greater than that of ‘PureLDP+NodeProj’. The running

time of ‘PureLDP+EdgeProj’ is shorter than ‘CryptoAssisted+EdgeProj’.

2.8 Related Work

There are many existing works related to Node-CDP and Edge-LDP.

26

2. Crypto-Assisted Differentially Private Degree Distribution

Node-CDP. There have been many prior research works related to Node dif-

ferential privacy (Node-DP). For example, a handful of graph algorithms [3,15–17]

have been designed for publishing the degree distribution by proposing different

graph projection methods. For instance, the truncation method [15] removes all

nodes with the degree over θ. Edge-removal approach [17] traverses all edges in

an arbitrary order and removes each edge connected to a node with a degree more

than θ. Edge-addition method [3] traverses the edges in a stable order and inserts

each edge correlated to node with degree over θ. However, the existing projection

methods are only designed for Node-CDP and are not viable in Node-LDP.

Edge-LDP. Since there is no need for a trusted server and a large amount of

valuable information resides in a decentralized social network, LDP is becoming

increasingly popular in privacy protection of graph analysis. Existing works fo-

cus on various graph statistics, such as degree distribution (or histogram) [36],

subgraph counting (e.g., k-clique, k-star, k-triangle) [5,23], synthetic graph gener-

ation [32,48], publishing attributed graph [31,49], etc. For instance, Ye et al. [36]

propose a LDP-enabled graph metric estimation framework for general graph

analysis. In [5], subgraph counting is protected locally by a more sophisticated

algorithm that uses an additional round of interaction between individuals and

server. To strike a balance between noise added to satisfy LDP and information

loss from a coarser granularity, Qin et al. [32] design a novel multi-phase approach

to synthetic decentralized social graph generation. However, these existing works

are all based on Edge-LDP which provides a weaker privacy guarantee than our

work under Node-LDP.

2.9 Conclusion

To conclude, we first discuss the motivation for publishing the graph statistics un-

der Node-LDP, and present the challenges of finishing the projection locally. We

propose two methods for the projection parameter selection: pureLDP parameter

selection and crypto-assisted parameter selection. Also, we design two methods

for executing local graph projection: node-level local projection and edge-level

local projection. Theoretical and experimental analysis verify the utility and

privacy achieved by our proposed work.

27

2. Crypto-Assisted Differentially Private Degree Distribution

PureLDP + NodeProj CryptoAssisted + NodeProj PureLDP + EdgeProj CryptoAssisted + EdgeProj

0.5 1 1.5 2 2.5 3

103

104
M

SE

(b) Ca-HepPh

0.5 1 1.5 2 2.5 3

103

104

M
SE

(c) Cit-HepPh

0.5 1 1.5 2 2.5 3

104

M
SE

(d) Twitter

0.5 1 1.5 2 2.5 3

103

104

M
SE

(e) Com-DBLP

0.5 1 1.5 2 2.5 3
10

20

30

M
A

E

(f) Ca-HepPh

0.5 1 1.5 2 2.5 3

20

40

60

M
A

E

(g) Cit-HepPh

0.5 1 1.5 2 2.5 3
20

40

60

M
A

E

(h) Twitter

0.5 1 1.5 2 2.5 3

20

40

60

M
A

E

(i) Com-DBLP

Figure 2.5. The MSE and MAE of algorithms on different graphs

28

2. Crypto-Assisted Differentially Private Degree Distribution

0.5 1 1.5 2 2.5 3
0

2

4

6

8

M
SE

1e3

=0.3
=0.6

=0.9
best

(a) Ca-HepPh

0.5 1 1.5 2 2.5 3
0

1

2

3

M
SE

1e4

=0.3
=0.6

=0.9
best

(b) Cit-HepPh

0.5 1 1.5 2 2.5 3
0

2

4

M
SE

1e4

=0.3
=0.6

=0.9
best

(c) Twitter

0.5 1 1.5 2 2.5 3
0

1

2

3

M
SE

1e4

=0.3
=0.6

=0.9
best

(d) Com-DBLP

Figure 2.6. The MSE on different graphs, varying α

PureLDP + NodeProj CryptoAssisted + NodeProj PureLDP + EdgeProj CryptoAssisted + EdgeProj

0.5 1 1.5 2 2.5 3

1

10

50

Ti
m

e
(s

)

(b) Ca-HepPh

0.5 1 1.5 2 2.5 3
100

101

102

Ti
m

e
(s

)

(c) Cit-HepPh

0.5 1 1.5 2 2.5 3

101

102

103

Ti
m

e
(s

)

(d) Twitter

0.5 1 1.5 2 2.5 3
101

102

Ti
m

e
(s

)

(e) Com-DBLP

Figure 2.7. The runtime on different graphs

29

CHAPTER 3

Crypto-Assisted Differentially

Private Triangle Counting

3.1 Introduction

Graph data analysis is gaining popularity in various fields such as social networks,

transportation systems, and protein forecasting due to its widespread presence.

In graph analysis, triangle counting [50] is a crucial component for downstream

tasks, including clustering coefficient [11], transitivity ratio [51], and structural

similarity [52]. However, triangle counting involves sensitive individual informa-

tion that could be leaked through the results of the process [53]. Differential

privacy (DP) [14, 54] has been widely used to provide formal privacy protec-

tion. Existing works on differentially private triangle counting [2, 5, 7, 15, 22, 23]

are mainly based on two DP models depending on the trust assumption of the

server: central differential privacy (CDP), which requires a trusted server, and

local differential privacy (LDP), which is preferable since it does not rely on a

trusted server.

However, there is a significant utility gap between CDP-based [2, 15, 22] and

LDP-based [5–7,23] of differentially private triangle counting, which depends on

whether or not there is a trusted server needed. In particular, CDP-based triangle

counting models (as shown in Fig. 3.1(a)) need a trusted server to collect the

30

3. Crypto-Assisted Differentially Private Triangle Counting

Trusted Server
Y=f (x1, ,xn)+ξ

x1 xi xn

x1 xi xn

... ... Y1E(x1)

Y1 Yi Yn

... YiE(xi) YnE(xn)...

Untrusted Server

Y=f (Y1, ,Yn)

Y1R(x1)

Y1 Yi Yn

... YiR(xi) YnR(xn)...

User 1 User i User n User 1 User i User n User 1 User i User n

(a) CDP-based (b) CARGO (c) LDP-based

Untrusted Server

Y=f (Y1, ,Yn)+ξ

LDPTrust Boundary No Perturbation DDP

Figure 3.1. A comparison among CDP-based model, LDP-based model and
CARGO. (a) CDP-based model relies on a trusted server and achieves a high

accuracy, e.g., O(d
2
max

ε2
) error; (c) LDP-based model removes a trusted server but

introduces more error, i.e., O(eε

(eε−1)2
(d3maxn+

eε

ε2
d2maxn)); (b) Our CARGO achieves

a good utility like CDP-based model, i.e., O(d
′2
max

ε2
), but without a trusted server

like LDP-based model, where ε, n, dmax, d
′
max denote the privacy budget, number

of users, true maximum degree, and noisy maximum degree, respectively.

whole graph before executing differentially private graph analysis. For a graph

with n users and a privacy budget ε, the squared error of the central model is at

most O(d
2
max

ε2
), where dmax is the maximum degree in a graph. In contrast, existing

LDP-based triangle counting models (as shown in Fig. 3.1(c)) do not require a

trusted server. Instead, each user perturbs its sensitive information using an

LDP mechanism and sends noisy data to the untrusted server. The server then

aggregates the data and releases a noisy triangle count. However, LDP-based

triangle counting models incur more error of O(eε

(eε−1)2
(d3maxn + eε

ε2
d2maxn)) (refer

to Table 2 in [5] as the state-of-the-art LDP-based triangle counting protocol),

which is much larger than that of CDP-based models, especially, when n is large.

In this paper, we propose a crypto-assisted differentially private triangle coun-

ting system (CARGO) that (1) achieves the high-utility triangle counting of the

central model (2) without a trusted server like the local model. Our goal is to

calculate the triangles in a graph, where each node represents a user and each edge

denotes the relationship between users, while protecting each user’s neighboring

information (i.e., edges). Our system is inspired by recent studies [55–62] that

employ cryptographic techniques to bridge the utility gap between LDP and CDP

models. However, these systems are specifically designed to process tabular data

[55–57] or gradients in federated learning [58–60] but not graph data. Designing

secure and private methods for counting triangles requires new principles due to

the high sensitivity of triangle counting and the limited view of local users for

a global graph. As shown in Fig. 3.1(b), CARGO establishes a trust boundary

31

3. Crypto-Assisted Differentially Private Triangle Counting

for local data by leveraging cryptographic primitives and distributed differential

privacy instead of injecting LDP noise, allowing for high-utility triangle counting

comparable to that of CDP-based models (see more details in section 3.3.1). We

now elaborate on our key contributions:

Similarity-based projection. We propose a novel local projection method to

reduce the sensitivity of the triangle counting while preserving more triangles. A

significant obstacle in achieving differential privacy in counting triangles is the

high sensitivity of triangle queries, leading to more noises needed for differen-

tially private results. The basic idea to address this in a central setting [3, 15] is

to project (i.e., truncate) the original graph into a bounded graph. The previous

local graph projection method via randomly deleting edges [5] tries to reduce the

sensitivity but results in much projection loss. Our similarity-based projection

method relies on the significant fact that node degrees of a triangle are pretty

similar to each other [63]. We prioritize deleting the edges with the least possi-

bility of constructing triangles, which results in preserving more triangles. It is

worth noting that this simple yet efficient local projection algorithm can also be

used to improve the utility of locally private triangle counting (details in Section

3.3.3).

ASS-based triangle counting. We introduce a novel triangle counting algo-

rithm based on an additive secret sharing (ASS) technique [64]. Local users often

face difficulties in calculating triangle counts due to their limited view of the

global graph. This limitation prevents them from seeing the third edges between

others. The state-of-the-art triangle counting method [5] attempts to address

this problem in untrusted settings by including an additional round of interac-

tion. However, there is still a significant gap in utility compared to the central

model. We propose a secure triangle counting method based on the ASS method

with high accuracy. A triangle exists in a graph if three edges of a triple exist

simultaneously. Namely, the multiplication of three bits in a matrix is equal to

1. We introduce a protocol for multiplying three secret values, which allows us

to securely and accurately compute the triangle counts while protecting sensitive

neighboring information (details in Section 3.3.4).

Distributed perturbation. We present a distributed perturbation method by

combining additive secret sharing [64] and distributed noise generation [65–67].

The previous state-of-the-art crypto-assisted differential privacy (crypto-assisted

DP) method [56] randomizes the private value by adding two instances of Laplace

32

3. Crypto-Assisted Differentially Private Triangle Counting

noise, which leads to significant loss of utility. Our distributed perturbation adds

minimal but sufficient noise to the local user data. This partial noise is insufficient

to provide an LDP guarantee but the aggregated noise is enough to provide a CDP

protection. Furthermore, secret sharing ensures that two untrusted servers only

see encoded values beyond other information. And the final aggregated noise

can provide ε-Edge Distributed Differential Privacy (DDP) guarantee (details in

Section 3.3.5).

Comprehensive theoretical and empirical analysis. We provide a compre-

hensive theoretical analysis of our proposed protocols, including utility, privacy,

and time complexity. In particular, we provide the upper-bounds on the estima-

tion error for triangle counting and find that CARGO can significantly reduce

the estimation error of local models. Additionally, we prove that our proposed

CARGO satisfies ε-Edge DDP (details in Section 3.4). Finally, several experi-

ments have been conducted to demonstrate that our CARGO achieves high-utility

triangle counts comparable to central models, and significantly outperforms local

models by at least an order of 5 in utility (details in Section 3.5).

3.2 Preliminaries

3.2.1 Problem Statement

Graphs and Triangle Counting

In our work, we consider an undirected graph with no additional attributes

on nodes or edges, which can also be represented as G = (V,E), where V =

{v1, ..., vn} is the set of nodes, and E ⊆ V × V is the set of edges. Each local

user vi owns one adjacent bit vector Ai = {ai1, ..., ain} that records the neigh-

boring information, where aij = 1, j ∈ [n] if and only if edge ⟨vi, vj⟩ ∈ E. The

adjacent bit vectors of all local users compose a symmetric adjacency matrix

A = {A1, A2, ..., An}. A triangle in a graph G consists of three nodes where each

node connects to the other two nodes. Table 3.1 summarizes the major notations

used in this paper.

33

3. Crypto-Assisted Differentially Private Triangle Counting

Table 3.1. Summary of Notations.
Notation Definition
G = (V,E) Graph with nodes V and edges E
n Number of users
vi i-th node in V
di Node degree of vi
A Adjacent matrix
Ai Adjacent bit vector of vi
D True degree set
D′ Noisy degree set
dmax True maximum degree
d′max Noisy maximum degree
△ Sensitivity of triangle counting
T True number of triangles
T ′ Noisy number of triangles

Trust Assumptions

Our system includes n users and two servers, as illustrated in Fig. 3.2. We assume

that two servers are semi-honest and non-colluding. This is a common assumption

in cryptographic systems, such as [56, 58, 68, 69], and can be enforced via strict

legal bindings. Semi-honest implies that they follow the protocol instructions

honestly but may be curious about additional information. Non-colluding means

that they do not disclose any information to each other beyond what is allowed by

the defined protocol. Furthermore, we assume that there are no corrupt users, and

each user has a private channel with each server to share sensitive information

confidentially. We also assume that any parties beyond the system, such as

servers, analysts, or other individuals, are adversaries who are computationally

constrained.

Utility Metrics

We use two common utility metrics to evaluate our methods, including l2 loss

(e.g., squared error) like [70,71], and relative error as with [72,73]. To be specific,

let T ′ be a private estimation of the true triangles T . The l2 loss function maps

the true number of triangles T and the private estimation T ′ to the l2 loss, which

can be denoted by: l2(T, T
′) = (T −T ′)2. When T is large, the l2 loss may also be

large. Thus, we also compute the relative error in our experiments. The relative

34

3. Crypto-Assisted Differentially Private Triangle Counting

error is defined as: re(T, T ′) = |T−T ′|
T

, where T ̸= 0.

3.2.2 Differential Privacy on Graphs

Differential privacy (DP) [14, 54] has become a standard for privacy protection,

which can formalized in Definition 3. Based on different trusted assumptions,

DP can be divided into two types: central differential privacy (CDP) and local

differential privacy (LDP).

Definition 3 (Differential Privacy [54]) Let n be the number of users. Let

ε > 0 be the privacy budget. Let X be the set of input data for each user. A

randomized algorithm M with domain X n satisfies ε-DP, iff for any neighbor-

ing databases D,D′ ∈ X n that differ in a single datum and any subset S ⊆
Range(M),

Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S]

In this work, we use the global sensitivity [54] to achieve the DP. The global

sensitivity considers the maximum difference between query results on two neigh-

boring databases.

Edge DP. As a graph consists of nodes and edges, there are two definitions

when DP is applied to either of them: edge differential privacy (Edge DP) [19]

and node differential privacy (Node DP) [19]. Edge DP guarantees the output

of a randomized mechanism does not reveal whether any friendship information

(i.e., edge) exists in a graph G; whereas Node DP hides the existence of one user

(e.g., node) along with her adjacent edges. Node DP provides a stronger privacy

guarantee since it protects not only edge information but also node information.

But Node DP brings much more error than Edge DP. Considering our privacy

goal (protecting the neighboring information) and higher accuracy requirement,

we choose to use Edge DP in our work like [2, 5–7,23].

Definition 4 and Definition 5 give the formal definition of Edge CDP and Edge

LDP respectively. Edge LDP assumes that two edges ⟨vi, vj⟩ and ⟨vj, vi⟩ between
user vi and vj are different secrets [5].

Definition 4 (Edge CDP [74]) Let ε > 0 be the privacy budget. A randomized

algorithm M with domain G satisfies ε-Edge CDP, iff for any two neighboring

graphs G,G′ ∈ G that differ in one edge and any subset S ⊆ Range(M),

35

3. Crypto-Assisted Differentially Private Triangle Counting

Pr[M(G) ∈ S] ≤ eϵPr[M(G′) ∈ S]

Definition 5 (Edge LDP [32]) Let ε > 0 be the privacy budget. For any i ∈
[n], let Mi be a randomized algorithm of user vi. Mi satisfies ε-Edge LDP, iff

for any two neighboring adjacent bit vectors Ai and A′
i that differ in one edge and

any subset S ⊆ Range(Mi),

Pr[Mi(Ai) ∈ S] ≤ eϵPr[Mi(A
′
i) ∈ S]

Edge DDP. Combining DDP [65–67] with standard Edge CDP (Definition 4),

we introduce an Edge Distributed Differential Privacy (Edge DDP) for protecting

triangle counting in CARGO. The formal definition is as follows:

Definition 6 (Edge DDP) Let ε > 0 be the privacy budget. Let ri be a dis-

tributed noise generated by user vi. A randomized algorithm M with random-

ness over the joint distribution of r:=(r1, ..., rn) satisfies ε-Edge DDP, iff for

any neighboring graphs G and G′ that differ in one edge, for any output y ∈
range(M),

Pr[M(G) = y] ≤ eεPr[M(G′) = y]

Note that both ε-Edge LDP (Definition 5) and ε-Edge DDP (Definition 6)

protect one edge with privacy budget ε. The difference is that Edge LDP is for

the local model, whereas Edge DDP is for the crypto-assisted DP model. We use

Edge LDP to prove Edge DDP for the entire process of our CARGO.

3.2.3 Additive Secret Sharing

In two-party additive secret sharing (ASS) [64], a private value is split into two

secret shares that can be used to construct the true value, like [75–77]. Each value

is represented as an l-bit integer in the ring Z2l , and cannot reveal any information

about the private value. In this paper, we denote a secret share of x by ⟨x⟩. To
additively share a secret value x, a random number r ∈ Z2l is generated. Then the

shares for parties S1 and S2 can be represented as ⟨x⟩1 = r mod 2l, ⟨x⟩2 = (x−r)

mod 2l, respectively, where ⟨x⟩ = ⟨x⟩1 + ⟨x⟩2. The basic operations naturally

supported in the ASS domain include addition and multiplication. Given two

shared values ⟨x⟩ and ⟨y⟩, each party Si∈{1,2} receives ⟨x⟩i and ⟨y⟩i. Each party Si

locally computes ⟨u⟩i = ⟨x⟩i + ⟨y⟩i. Then, the addition can be securely computed

36

3. Crypto-Assisted Differentially Private Triangle Counting

 Similarity-based
ProjectionUsers

0 1 ... 1

1 0 ... 0

0 1 ... 1

.

.

.

 A1 , r1

.

.

.
.
.
.

Analyst

Query

Noisy result

T
 Server S2

 Server S1

 ASS-based

Triangle Counting

 Distributed
Perturbation

 An-1 , rn-1

 An , rn

Figure 3.2. CARGO system.

by aggregating ⟨u⟩1 and ⟨u⟩2, i.e., u = ⟨u⟩1 + ⟨u⟩2 = ⟨x⟩1 + ⟨x⟩2 + ⟨y⟩1 + ⟨y⟩2 =
x + y. The multiplication of two shared values may be complex. It needs one-

round communication of the Beaver triple, which can be prepared offline.

3.3 CARGO System

3.3.1 Design principle

Our main idea is to let the users and two servers collaboratively compute secret

shares of the true triangle counts securely and add distributed differentially pri-

vate noise without requiring any trusted servers. The previous crypto-assisted

differentially private data analysis protocols [55–60] are designed for the general

tabular data. The high sensitivity of triangle counting and the limited view of

local users for a global graph make these protocols less effective for private graph

data analysis. Furthermore, Cryptε [56], a state-of-the-art crypto-assisted DP

protocol, employs two non-colluding and untrusted servers to independently add

Laplace noise twice, resulting in twice the utility loss compared to CDP models.

To this end, we first design a novel local projection based on triangle homogene-

ity to reduce the high sensitivity from O(n) to O(d′max) while preserving more

triangles as much as possible. Then, we propose a secure protocol for counting

triangles using additive secret sharing techniques, which enables users and two

servers to collaboratively calculate the secret shares of true triangle counts T , i.e.,

⟨T ⟩1 and ⟨T ⟩2. We then introduce a distributed perturbation algorithm that adds

minimal yet sufficient noise to triangles for privacy preservation. To safeguard

the privacy of the partial noise, users do not directly transmit it to the server.

Each user encodes the noise using additive secret sharing and then distributes it

37

3. Crypto-Assisted Differentially Private Triangle Counting

Algorithm 6 Overall protocol of CARGO system

Input: G represented as adjacent lists A = {A1, ..., An},
True degree set D = {d1, ..., dn},
Privacy budget ε = ε1 + ε2

Output: Noisy triangle count T ′

1: Initialize: T = ∅
Step 1: Similarity-based Projection

2: (D′, d′max)← Max(D, ε1) ▷ Algorithm 7
3: Â← Project(A,D,D′, d′max) ▷ Algorithm 8

Step 2: ASS-based Triangle Counting
4: ⟨T ⟩ ← Count(Â) ▷ Algorithm 9

Step 3: Distributed Perturbation
5: T ′ ← Perturb(⟨T ⟩, d′max, ε2) ▷ Algorithm 10
6: return T ′

to the servers. The servers integrate this encoded noise into their secret shares

of the triangle counts. By aggregating these shares, the servers can compute the

differentially private triangle counts accurately.

3.3.2 Framework

Fig. 3.2 shows CARGO’s system architecture. CARGO involves two kinds of

entities: local users and two non-colluding servers. The local user vi, i ∈ [n] (n =

number of users in a graph), owns the sensitive friendship information which is

represented as an adjacent bit vector. At the beginning, local users interact with

one of the servers for the private estimation of maximum degree d′max. The local

user then projects the original adjacent bit vector into d′max-bounded adjacent bit

vector (step ①). Next, the local user secretly shares her adjacent bit vector to

two servers and each server computes the secret share of the true triangle counts

(step ②). Subsequently, the local user generates a distributed noise and secretly

shares it with two servers. Two servers sum up their own shares of the noise, and

add aggregated noise into the share of the triangle counts, respectively. In other

words, each server obtains the secret share of the noisy triangle counts personally.

The final aggregation of two shares is equal to the noisy triangle counts of the

entire graph, which satisfies ε-Edge Distributed DP (step ③).

Main Steps. Algorithm 6 presents the overall protocol of CARGO system,

which consists of three main steps:

38

3. Crypto-Assisted Differentially Private Triangle Counting

Step 1: Similarity-based Projection. Graph projection is the key technique to

reduce the global sensitivity from O(n) to O(θ), where θ is the projection pa-

rameter. Here, we set θ as the maximum degree dmax to avoid removing edges

from an adjacent bit vector (e.g., to avoid the loss of utility). However, there is

no prior knowledge about the maximum degree. CARGO recalls a Max(.) func-

tion (Algorithm 7) to privately compute a noisy maximum degree d′max that is

approximately equal to dmax, as shown in Table 3.5. Next, each user transforms

the original adjacent bit vector into a d′max-bounded adjacent bit vector using a

Project() function (Algorithm 8). Previous local projection method via randomly

deleting edges [5] results in much projection loss. We propose a similarity-based

projection method by leveraging the triangle homogeneity (Observation 1). Dur-

ing the projection, the user deletes the edges with the least possibility of con-

structing triangles, and thus more triangles are preserved (see more details in

Section 3.3.3).

Step 2: ASS-based Triangle Counting. Next, the true triangle count can be

computed based on the projected adjacent bit vector. The main challenge in

triangle counting is that each user has a limited view of a global graph. In other

words, local users cannot see the third edge between others. The previous state-

of-the-art two-round triangle counting method [5] in untrusted settings leads to

more errors. We propose an ASS-based triangle counting method for securely

and accurately calculating the triangle count. Each user encodes each bit in its

adjacent bit vector via additive secret sharing and sends it to two sever. Each

server obtains the secret share of the triangle count and knows nothing about the

true result. CARGO recalls a Count() function (Algorithm 9) to calculate the

number of triangle counts securely and accurately via Additive Secret Sharing

(ASS) (refer to Section 3.3.4 for more details).

Step 3: Distributed Perturbation. After accurately calculating the shares of tri-

angle counts, CARGO employs a Perturb() function (Algorithm 10) to privately

estimate the triangle count of a graph. The previous state-of-the-art crypto-

assisted DP method [56] guarantees differential privacy by incorporating two in-

stances of Laplace noise, which results in a significant loss of utility. We propose

a distributed perturbation method by combining the additive secret sharing and

distributed noise. Each user first generates a minimal but sufficient noise. Since

such a small amount of noise is unable to provide enough privacy guarantees

compared with LDP, we employ ASS to let each user split the generated noise

39

3. Crypto-Assisted Differentially Private Triangle Counting

Algorithm 7 Max: private estimation of dmax

Input: True degree set D = {d1, ..., dn},
Privacy budget ε1

Output: Noisy maximum degree d′max

1: Initialize: D′ = ∅
2: for i = 1 to n do
3: d′i ← di + Lap(1

ε1
)

4: D′ ← D′ ∪ {d′i}
5: Send d′i to untrusted server
6: end for
7: Server: d′max ← max(d′1, ..., d

′
n)

8: return (D′, d′max)

into two secrets and share them with two servers, respectively. The servers, in

turn, are unable to decipher any information about the noise independently. By

merging the shared noise with the shared triangle count, each server acquires a

secret share of the noisy triangle count. The final computation of the noisy trian-

gle count, safeguarded under ε-Edge Distributed DP by aggregating two shared

noisy results (details in Section 3.3.5).

Extension to Node DP. CARGO can be extended to Node DP by revising

Algorithm 7 and Algorithm 10. The main change is from the sensitivity updates.

To be specific, given the number of nodes n, in Algorithm 7, any change of one

node will influence the other (n − 1) node degrees in the worst case. Thus,

the sensitivity of Max is O(n) when we use Node DP. Similarly, the sensitivity

of Perturb in Algorithm 10 becomes O
(
d′max
2

)
. Although our algorithm Project

can reduce the high sensitivity from O
(
n
2

)
to O

(
d′max
2

)
, there are still much more

utility loss than Edge DP. Therefore, how to reduce the high sensitivity of Node

DP while preserving more triangles is the focus of future work.

3.3.3 Similarity-based Projection

Private Estimation of the Maximum Degree

In this work, we assign the maximum degree dmax as the projection parameter

θ just like [3, 5], primarily for two main reasons. On the one hand, as shown

in Table 3.4, dmax is much smaller than the number n of users in real-world

graphs, which can significantly reduce the sensitivity. On the other hand, it

40

3. Crypto-Assisted Differentially Private Triangle Counting

21

4 5

321

4 5

3

Projection

Figure 3.3. Limitation of random deletion. Assume that d′max is equal to 3, if
user v4 (or v5) projects the adjacent list by deleting the edge ⟨v4, v5⟩, all triangles
in a graph will be removed.

1

2

3 4

5

0V1 1 0 0 0

101V2 1 1

010V3 1 0

110V4 0 0

010V5 0 0

1 2 3 4 5

0V1 1 0 0 0

100V2 1 0

010V3 1 0

110V4 0 0

010V5 0 0

1 2 3 4 5

Projection

Deletion

Figure 3.4. Local graph projection. Assume that d′max is equal to 2, user v2
projects the adjacent bit vector by deleting the edge ⟨v2, v1⟩ and edge ⟨v2, v5⟩.

avoids deleting neighboring friends from an adjacent list ideally; i.e., it avoids the

utility loss during the projection. In the untrusted scenario, however, each user

knows no about dmax since it has a limited view of the global graph. To handle

this, local users privately compute dmax with the leverage of the server’s global

view. Specifically, as shown in Algorithm 7, each user vi first adds Lap(
1
ε1
) to her

node degree di. Here, we use Edge LDP (Definition 5), and the sensitivity is one

since two edges ⟨vi, vj⟩ and ⟨vj, vi⟩ between user vi and vj are different secrets [5],

and any change of one edge will influence one node degree. Then each user sends

noisy degree d′i to the untrusted server. In CARGO, one of two parties S1 and S2

can be used for computing d′max. Finally, the server computes the max value of

the noisy degree sequence {d′1, ..., d′n} as d′max, and sends d′max back to local users.

We denote this algorithm by Max.

Local Graph Projection

After obtaining the estimation of the maximum degree d′max, each user vi trans-

forms the original adjacent bit vector Ai into a d′max-bounded adjacent bit vector

41

3. Crypto-Assisted Differentially Private Triangle Counting

Âi via the graph projection. Although there have been some works involving

graph projection methods [2, 3, 5, 78], they do not perform in the triangle count-

ing within untrusted settings very well. For instance, the most related work is

that Imola et al. [5] implements graph projection via randomly deleting edges in

untrusted settings. However, this random projection possibly deletes key edges

involved in many triangles. For example, in Fig. 3.3, if user v4 randomly deletes

the edge ⟨v4, v5⟩ to bound the adjacent list, all triangles in a graph will disappear.

We propose a similarity-based projection for reducing the global sensitivity in

untrusted scenarios. The main target of our methods is that the high global sensi-

tivity can be reduced while more triangles can be preserved after the projection.

As illustrated in Fig. 3.4, if di > d′max, user vi will delete (di − d′max) friends

from her adjacent bit vector. The candidates to be deleted are selected based on

significant knowledge in the following observation:

Observation 1 (Triangle Homogeneity [63]) Node degrees of a triangle are

quite similar to each other in a graph (i.e., social and interaction graphs).

Durak et al. [63] demonstrate this observation through experiments conducted

on graphs from various scenarios. According to Observation 1, a significant num-

ber of triangles can be preserved by selecting nodes with a high degree of simi-

larity. This is an intuition behind our proposed local graph projection method

in triangle counting. The degree similarity between two nodes is quantified as

outlined in Definition 7. It is important to note that Equation 3.1 reflects the

relative difference in degrees between two nodes. Consequently, a lower value of

DS(d1, d2) indicates a higher degree of similarity between the nodes.

Definition 7 (Degree Similarity) Given two node degrees d1 and d2 in a graph,

the degree similarity between them is computed by

DS(d1, d2) =
|d1 − d2|

d1
(3.1)

Algorithm 8 shows the details of our local graph projection method. It takes as

input the adjacent matrix of a graph, true degree set D, noisy degree set D′, and

noisy maximum degree d′max. If di > d′max, each user vi first initializes an array

ds with size n and an empty set Âi, where ds records degree similarities and Âi

is the projected adjacent bit vector (line 3). Then user vi computes the degree

42

3. Crypto-Assisted Differentially Private Triangle Counting

Algorithm 8 Project: Similarity-based Projection

Input: Adjacent matrix A of a graph
True degree set D = {d1, ..., dn}
Noisy degree set D′ = {d′1, ..., d′n}
Noisy maximum degree d′max

Output: Projected adjacent matrix Â
1: for each user vi, i ∈ [1, n] in a graph do
2: if di > d′max then
3: Initialize: ds = [0] ∗ n, Âi = ∅
4: for j = 1 to n do
5: if Aij == 1 then
6: ds[j]← DS(di, d

′
j)

7: end if
8: end for
9: Sort ds in ascending order

10: d̂s← ds[1 : d′max]
11: for j = 1 to n do
12: if ds[j] in d̂s then
13: Âi ← Âi ∪ {1}
14: else
15: Âi ← Âi ∪ {0}
16: end if
17: end for
18: else if di ≤ d′max then
19: Âi ← Ai

20: end if
21: end for
22: return Â

similarities between di and all her friends based on Definition 7, and records the

similarities using the array ds (line 5). Here, the neighboring node degrees are

noisy degrees that have been calculated in Max function (Algorithm 7). Then

the array ds is sorted in ascending order (line 6), and then the top d′max elements

are sliced and stored into the array d̂s (line 7). After that, user vi traverses

each neighboring friend vk, k ∈ [n] and checks the degree similarity ds[k] between

them. If the element ds[k] is in d̂s, the bit ‘1’ will be added into Âi; the bit

‘0’ will be added otherwise (line 9-12). If di ≤ d′max, the projected adjacent bit

vector Âi will be set as the original vector Ai. The final answer is the projected

adjacent matrix Â. We denote this algorithm by Project.

43

3. Crypto-Assisted Differentially Private Triangle Counting

3.3.4 Additive Secret Sharing-based Triangle Counting

Our triangle counting strategy is based on an intriguing fact that a triangle exists

if three neighboring edges of a triple exist simultaneously, namely, aij×aik×ajk =
1, where i, j, k ∈ [1, n]. The challenge lies in computing the multiplication of

three adjacent bits while preserving the privacy of neighboring information. We

seek help from the multiplication of secret values using additive secret sharing.

However, existing protocols [75,76] mainly focus on multiplying two secret values,

which cannot be directly employed for triangle counting.

Motivated by this, we propose a secure multi-party triangle counting protocol

that executes the multiplication of three secret values utilizing additive secret

sharing. Given three secret values a, b, c, our goal is to compute the multipli-

cation of these three secrets while not leaking anything about secrets, namely,

d = a × b × c. Like the multiplication of two secrets, two servers precompute

Multiplication Groups (MGs) via oblivious transfer [79, 80]. MGs refer to a set

of shared values:x, y, z, w, o, p, q, where w = x × y × z, o = x × y, p = x × z, q =

y × z. Each value is represented as an l-bit integer in the ring Z2l . In of-

fline phase, server S1 receives ⟨x⟩1, ⟨y⟩1, ⟨z⟩1, ⟨w⟩1, ⟨o⟩1, ⟨p⟩1, ⟨q⟩1, and server S2

receives ⟨x⟩2, ⟨y⟩2, ⟨z⟩2, ⟨w⟩2, ⟨o⟩2, ⟨p⟩2, ⟨q⟩2. After having shares of MGs, the mul-

tiplication is performed as follows:

1. Server Si (i ∈ {1, 2}) computes ⟨e⟩i = ⟨a⟩i − ⟨x⟩i,
⟨f⟩i = ⟨b⟩i − ⟨y⟩i, and ⟨g⟩i = ⟨c⟩i − ⟨z⟩i

2. Both server S1 and S2 communicate to reconstruct e, f, and g.

3. Server Si computes its secret share of the multiplication result as: ⟨d⟩i =
⟨w⟩i + ⟨xy⟩ig + ⟨xz⟩if + ⟨yz⟩ie+ ⟨x⟩ifg + ⟨y⟩ieg + ⟨z⟩ief + (i− 1)efg

Theorem 4 Our proposed multiplication of three secret values is correct.

Proof of Theorem 4. d = ⟨d⟩1+ ⟨d⟩2 = ⟨w⟩1+ ⟨xy⟩1g+ ⟨xz⟩1f + ⟨yz⟩1e+ ⟨x⟩1fg+
⟨y⟩1eg+ ⟨z⟩1ef + ⟨w⟩2+ ⟨xy⟩2g+ ⟨xz⟩2f + ⟨yz⟩2e+ ⟨x⟩2fg+ ⟨y⟩2eg+ ⟨z⟩2ef +efg

= w + xyg + xzf + yze+ xfg + yeg + zef + efg.

Then, we put e = a − x, f = b − y, g = c − z into above equation and obtain

d = a× b× c.

Algorithm 9 shows how to securely calculate the secret shares of true triangle

count based on our proposed multiplication protocol of three secret shares. It

44

3. Crypto-Assisted Differentially Private Triangle Counting

Algorithm 9 Count: ASS-based Triangle Counting

Input: Projected adjacent matrix Â = {Â1, ..., Ân}
Output: Secret shares of triangle count ⟨T ⟩
1: Initialize: ⟨T ⟩1 = ⟨T ⟩2 = 0
2: for i = 1 to n do
3: for j = i+ 1 to n do
4: for k = j + 1 to n do
5: Initialize: w = xyz, o = xy, p = xz, q = yz

⟨x⟩1, ⟨y⟩1, ⟨z⟩1, ⟨w⟩1, ⟨o⟩1, ⟨p⟩1, ⟨q⟩1 → S1

⟨x⟩2, ⟨y⟩2, ⟨z⟩2, ⟨w⟩2, ⟨o⟩2, ⟨p⟩2, ⟨q⟩2 → S2

6: Server S1: ⟨e⟩1 = ⟨aij⟩1 − ⟨x⟩1
⟨f⟩1 = ⟨aik⟩1 − ⟨y⟩1
⟨g⟩1 = ⟨ajk⟩1 − ⟨z⟩1

7: Server S2: ⟨e⟩2 = ⟨aij⟩2 − ⟨x⟩2
⟨f⟩2 = ⟨aik⟩2 − ⟨y⟩2
⟨g⟩2 = ⟨ajk⟩2 − ⟨z⟩2

8: Server S1 and S2 communicate and obtain:
e = ⟨e⟩1 + ⟨e⟩2, f = ⟨f⟩1 + ⟨f⟩2, g = ⟨g⟩1 + ⟨g⟩2

9: Server S1: u1 = ⟨w⟩1 + ⟨xy⟩1g + ⟨xz⟩1f + ⟨yz⟩1e
+⟨x⟩1fg + ⟨y⟩1eg + ⟨z⟩1ef

10: Server S2: u2 = ⟨w⟩2 + ⟨xy⟩2g + ⟨xz⟩2f + ⟨yz⟩2e
+⟨x⟩2fg + ⟨y⟩2eg + ⟨z⟩2ef + efg

11: Server S1: ⟨T ⟩1 ← ⟨T ⟩1 + u1

12: Server S2: ⟨T ⟩2 ← ⟨T ⟩2 + u2

13: end for
14: end for
15: end for
16: ⟨T ⟩ ← {⟨T ⟩1, ⟨T ⟩2}
17: return ⟨T ⟩

takes as input a projected graph that is represented as an adjacent matrix Â =

{Â1, ..., Ân}. It traverses all possible triangle triples by computing u = aij×aik×
ajk. If u = 1, these three nodes and three edges constitute a triangle; otherwise

not. Note that we reduce the repeat computation by only u = aij × aik × ajk(i <

j < k). Each user secretly shares each bit of its adjacent bit vector to two

servers. Currently, server S1 obtains ⟨aij⟩1 and S2 owns ⟨aij⟩2, where i, j ∈ [1, n].

For each possible triangle, it first initializes the multiplication groups including

x, y, z, w, o, p, q, where w = x × y × z, o = x × y, p = x × z, q = y × z. The

multiplication groups can be precomputed in the offline phase and then shared

45

3. Crypto-Assisted Differentially Private Triangle Counting

with two servers (line 5). After that, server S1 computes ⟨e⟩1 = ⟨aij⟩1 − ⟨x⟩1,
⟨f⟩1 = ⟨aik⟩1−⟨y⟩1, ⟨g⟩1 = ⟨ajk⟩1−⟨z⟩1. Server S2 computes ⟨e⟩2 = ⟨aij⟩2−⟨x⟩2,
⟨f⟩2 = ⟨aik⟩2−⟨y⟩2, ⟨g⟩2 = ⟨ajk⟩2−⟨z⟩2 (line 6-7). Next, two servers communicate

and reconstruct e, f, and g. It is worth noting that secret values are masked with

random values x, y, z, and thus any server knows nothing about aij, aik, ajk. Then,

server S1 computes the secret share of the current triangle, namely, u1. Server S2

computes the secret share of the current triangle, namely, u2 (line 9-10). S1, S2

adds u1, u2 into ⟨T ⟩1 and ⟨T ⟩2, respectively. Finally, each server obtains the

secret share of the true triangle counting, namely, ⟨T ⟩1 and ⟨T ⟩2. The server

cannot know any information about true triangle count T from ⟨T ⟩1 or ⟨T ⟩2.
The final answer of Algorithm 9 is the secret shares of true triangles. We denote

this algorithm by Count.

3.3.5 Distributed Perturbation

Upon computing the true triangle count T , we can add DP noise into the tri-

angle count, in order to guarantee that the final output is differentially private.

The state-of-the-art crypto-assisted differential privacy model [56] adds two in-

stances of Laplace noise to the query result in tabular data analysis. However,

the additional round randomization brings more noise than the CDP model. We

propose a distributed perturbation method by combining the additive secret shar-

ing [64, 75, 76] and distributed noise generation method [65–67]. Each user first

generates sufficient but minimal noise and then sends it to two servers. Since

such a noise is also sensitive, we employ additive secret sharing to encode the

noise and share them with two servers, respectively. The server can not obtain

any information about each added noise and the final noisy triangle count is pro-

tected under ε-Edge Distributed DP. The Laplace mechanism has been widely

used for protecting the triangle counting in CDP or LDP model [2, 5, 7], and a

key property of Laplace distribution, namely, infinite divisibility [67, 81] (as pre-

sented in Lemma 3), allows us to simulate the Laplace noise by summing up n

other random variables from independent identically distribution.

Lemma 3 (Infinite Divisibility [81]) Let Lap(λ) denote a random variable

that is sampled from a Laplace distribution with PDF f(x, λ) = 1
2λ
e

|x|
λ . Then

the distribution of Lap(λ) is infinitely divisible; i.e., Lap(λ) can be expressed as

the sum of an arbitrary number of independent and identically distributed (i.i.d.)

46

3. Crypto-Assisted Differentially Private Triangle Counting

Algorithm 10 Perturb: Distributed Perturbation

Input: Secret share of triangle count ⟨T ⟩,
Noisy maximum degree d′max,
Privacy budget ε2

Output: Noisy triangle count T ′

1: for each user vi, i ∈ [1, n] do

2: Gam1 = Gamma(n, d
′
max

ε2
)

3: Gam2 = Gamma(n, d
′
max

ε2
)

4: γi = (Gam1 −Gam2)
5: Split γi into two secret shares

γi = ⟨γi⟩1 + ⟨γi⟩2
6: Send ⟨γi⟩1, ⟨γi⟩2 to two servers S1, S2

⟨γi⟩1 → S1, ⟨γi⟩2 → S2

7: end for
8: Server S1: Aggregate n shared distributed

⟨γ⟩1 =
∑n

i=1⟨γi⟩1
9: Server S2: Aggregate n secret shares

⟨γ⟩2 =
∑n

i=1⟨γi⟩2
10: Server S1: Compute the secret share of T ′

⟨T ′⟩1 = ⟨T ⟩1 + ⟨γ⟩1
11: Server S2: Compute the secret share of T ′

⟨T ′⟩2 = ⟨T ⟩2 + ⟨γ⟩2
12: Server S1, S2: Communicate and compute

T ′ = ⟨T ′⟩1 + ⟨T ′⟩2
13: return T ′

random variables. Specifically, for arbitrary integer n ≥ 1,

Lap(λ) =
n∑

i=1

[Gam1(n, λ)−Gam2(n, λ)], (3.2)

where Gam1(n, λ) and Gam2(n, λ) are independent Gamma distributed random

variables with densities as follows,

Gamma(x, n, λ) =
(1/λ)1/n

Γ(1/n)
x

1
n
−1e−

x
λ , (3.3)

where Γ is the Gamma function, such that Γ(β) =
∫∞
0

xβ−1e−xdx.

Algorithm 10 contains the details of perturbing the triangle count using dis-

47

3. Crypto-Assisted Differentially Private Triangle Counting

tributed noise. It takes as input the encoded triangle count ⟨T ⟩ = {⟨T ⟩1, ⟨T ⟩2},
noisy maximum degree d′max, and privacy budget ε2. According to Lemma 3, one

Lap(.) random variable can be obtained by summing up 2n random variables.

Each user vi samples two random variables Gam1 and Gam2 from Gamma dis-

tribution, and then obtains a partial noise by computing γi = (Gam1 − Gam2)

(line 2-4). To avoid the size of noise, each user encodes γi using additive secret

sharing, i.e., γi = ⟨γi⟩1 + ⟨γi⟩2, and then sends the shares to two servers (line

5-6). Server S1, S2 collects all secret shares of the partial noise and aggregates

them as: ⟨γ⟩1 =
∑n

i=1⟨γi⟩1 and ⟨γ⟩2 =
∑n

i=1⟨γi⟩2, respectively (line 7-8). Each

server adds the secret share of noise into the share of triangle count, namely,

⟨T ′⟩1 = ⟨T ⟩1 + ⟨γ⟩1 and ⟨T ′⟩2 = ⟨T ⟩2 + ⟨γ⟩2 (line 9-10). After communicating

with each other, server S1, S2 can obtain the final noisy triangle counting result

T ′. This algorithm is denoted by Perturb.

3.4 Theoretical Analysis

3.4.1 Security and Privacy Analysis

Security Analysis

We first analyze the security of our proposed Algorithm 9 and Algorithm 10.

Following the simulation-based paradigm [82], we prove the security guarantee

by giving a simulator, ensuring that simulator’s view and each server’s real view

are computationally indistinguishable.

Definition 8 Let Π denote the protocol in the semi-honest and non-colluding

scenario. Let viewΠ
Si

be the view of the server Si. Let SimSi
be the view of a

simulator. The execution of Π is secure if viewΠ
Si

and SimSi
are computationally

indistinguishable, namely, viewΠ
Si
≈ SimSi

.

Theorem 5 Given the security of additive secret sharing, our Algorithm 9 and

Algorithm 10 are secure according to Definition 8.

For multiplication in Algorithm 9 and addition in Algorithm 10 via additive

secret sharing, the random split of secret values guarantees that both the sim-

ulator view and the real view are identical. Each server obtains no information

about user’s sensitive information, where the information leakage from aggrega-

tion result is bounded and qualified via formal DP (refer to Privacy Analysis).

48

3. Crypto-Assisted Differentially Private Triangle Counting

Table 3.2. Summary of Theoretical Results.
CentralLap△ CARGO Local2Rounds△

Server Trusted Untrusted Untrusted
Privacy ε-Edge CDP (ε1 + ε2)-Edge DDP ε-Edge LDP

Utility O(d
2
max

ε2
) O(d

′2
max

ε22
) O(eε

(eε−1)2
(d3maxn+ eε

ε2
d2maxn))

Time Complexity O(1) O(n3) O(n2 + nd2max)

Privacy Analysis

Then, we present privacy guarantee of Algorithm 7 and Algorithm 6.

Theorem 6 Algorithm 7 satisfies ε1-Edge LDP.

Proof of Theorem 6. Let Ai and A′
i be two neighboring adjacent lists that differ

in one edge, and di and d′i be their node degrees respectively. Clearly, |di−d′i| = 1.

Let the noise x and x′ are two random values drawn from Lap(1
ε1
), the probability

of outputting the same noisy degree d′ can be bounded by:

Pr[d′ = di + x]

Pr[d′ = d′i + x′]
=

Pr[x = d′ − di]

Pr[x′ = d′ − d′i]

=
e−ε1.|d′−di|

e−ε1.|d′−d′i|
= eε1.(|d

′−d′i|−|d′−di|) ≤ eε1|di−d′i| = eε1 ,

which proves that di satisfies ε1-Edge LDP. Then, according to the post-processing

property [54], Algorithm 7 satisfies ε1-Edge LDP.

Theorem 7 Algorithm 6 satisfies (ε1 + ε2)-Edge DDP (Definition 6).

Proof of Theorem 7. Algorithm 6 uses two privacy budgets: ε1 in Max and ε2

in Perturb. By Theorem 6, Max provides ε1-Edge LDP. Below, we analyze the

privacy of Perturb.

Let G and G′ be two neighboring graphs that differ in one edge, and T (G)

and T (G′) are their corresponding triangle counts respectively. The sensitivity of

triangle counting is denoted by |T (G) − T (G′)| = △. Let ⟨T ⟩1 and ⟨T ⟩2 be two

secret shares for true triangle count T . Then, we have

T (G) = ⟨T ⟩1 + ⟨T ⟩2, T (G′) = ⟨T ′⟩1 + ⟨T ′⟩2

49

3. Crypto-Assisted Differentially Private Triangle Counting

Let r = {r1, ..., rn} and r′ = {r′1, ..., r′n} be two sets of distributed noise from

Gam1(n,
△
ε2
)−Gam2(n,

△
ε2
). Let x and x′ be two random variables sampled from

Lap(△
ε2
) distribution. According to the infinite divisibility of Laplace distribution

(Lemma 3), x and x′ can be denoted by:

x = r1 + ...+ rn, x
′ = r′1 + ...+ r′n

The probability of outputting the same noisy triangle count T̃ can be bounded

by:

Pr[T̃ = ⟨T ⟩1 + ⟨T ⟩2 + (r1 + ...+ rn)]

Pr[T̃ = ⟨T ′⟩1 + ⟨T ′⟩2 + (r′1 + ...+ r′n)]

=
Pr[T̃ = T + (r1 + ...+ rn)]

Pr[T̃ = T ′ + (r′1 + ...+ r′n)]

=
Pr[T̃ = T (G) + x]

Pr[T̃ = T (G′) + x′]
=

Pr[x = T̃ − T (G)]

Pr[x′ = T̃ − T (G′)]

=
e

−ε2.|T̃−T (G)|
△

e
−ε2.|T̃−T (G′)|

△

= e
ε2.(|T̃−T (G′)|−|T̃−T (G)|)

△

≤e
ε2|T (G)−T (G′)|

△ = eε2

Thus, Perturb provides ε2-Edge DDP. As described in Section 3.2.2, both ε-

Edge LDP and ε-Edge DDP protect one edge with privacy budget ε. Thus, the

entire process of Algorithm 6 provides (ε1 + ε2)-Edge DDP.

3.4.2 Utility Analysis

The utility error of CARGO is mainly from the projection loss in Algorithm 8

and perturbation error in Algorithm 10.

Theorem 8 (Projection Loss) Let T (G) and T̂ (G, d′max) be the triangle count

before and after projection respectively. The projection parameter is set as the

noisy maximum degree d′max. Then, for any d′max ≥ 0 and G,

E[l22(T (G), T̂ (G, d′max))] = (T (G)− T̂ (G, d′max))
2

Theorem 9 (Perturbation Error) Let T ′(G, ε2, d
′
max) and

T̂ (G, d′max) be the triangle count before and after perturbation, respectively. Then,

for any privacy budget ε2 ≥ 0, noisy maximum degree d′max ≥ 0, and graph G,

50

3. Crypto-Assisted Differentially Private Triangle Counting

E[l22(T ′(G, ε2, d
′
max), T̂ (G, d′max))] = O(d

′2
max

ε22
)

Proof of Theorem 9. According to the well-known bias-variance decomposition

[83], the expected l2 loss consists of the bias and variance, which can be written

as follows:

E[l22(T ′(G, ε2, d
′
max), T̂ (G, d′max))]

=(E[T ′(G, ε2, d
′
max)]− T̂ (G, d′max))

2 + V[T ′(G, ε2, d
′
max)]

Since the mean of Laplacian noise Lap(△
ε2
) is 0, the estimation T ′(G, ε2, d

′
max) is

unbiased. Then, the expected l2 loss will be equal to the variance, which can be

formalized as:

E[l22(T ′(G, ε2, d
′
max), T̂ (G, d′max))] = V[T ′(G, ε2, d

′
max)]

=V[Lap(
d′max

ε2
)] = O(

d′2max

ε22
)

In fact, after empirical analysis, we find that d′max ≈ dmax, as presented in Table

3.5. Specifically, we find that l22(d
′
max, dmax) < 0.009dmax, where dmax is the true

maximum degree. In addition, d′max ≥ dmax holds in most cases, which means that

there is no deletion of edges during a projection and E[l22(T (G), T̂ (G, d′max))] = 0.

For a convenient comparison, we omit the projection loss in theoretical analysis.

Thus, our CARGO attains the expected l2 loss of O(d
′2
max

ε22
), where ε2 = 0.9ε in

our setting.

Discussion. It is worth noting that the private maximum degree is the upper

bound of local sensitivity, and there are some advantages and disadvantages. On

the one hand, it provides a privacy guarantee for the worst case at the expense

of utility. For instance, if we only consider bipartite graphs, the result of triangle

counting is always 0. The local sensitivity is 0 while the maximum degree can be

very large, which leads to much error. Recently, some works [84, 85] utilize the

smooth sensitivity (SS) and residual sensitivity (RS) for common graph queries,

which can achieve constant noise. Furthermore, we compare the value of d′max

with values of SS and RS in Table 1 in [84], as presented in Table 3.3. We find that

d′max can be larger than SS and RS in some graphs, for example, CondMat and

HepTh, which means that our approach can add much more noise than SS and

RS. On the other hand, our d′max uses the Laplace distribution and the expected

51

3. Crypto-Assisted Differentially Private Triangle Counting

Table 3.3. Comparison between SS, RS, and d′max.
Graph CondMat AstroPh HepPh HepTh GrQc
d′max 560 1,008 984 130 162
SS 489 1,050 1,350 102 183
RS 493 1,054 1,354 205 222

Privacy budget ε = 1

l2 loss (= variance) is finite. However, considering that RS can be regarded as an

instantiation of SS [84], both SS and RS draw noise from a Cauchy distribution,

which has an infinite variance.

3.4.3 Time Complexity

Let n and dmax denote the number of users and the maximum degree, respectively.

In CARGO, the time complexity of Max in Algorithm 7 is O(n). Then, the

time complexity of project in Algorithm 8 is O(ndmax) since one user needs to

compute degree similarities (Lemma 7) between her and her all neighboring users.

Next, the time complexity of Count in Algorithm 9 is O(n3). This is because

CARGO needs to traverse all triples to justify if three edges of a triple exist

simultaneously. Finally, the time complexity of Perturb in Algorithm 10 is O(n),

and the time complexity of secret sharing and aggregation is also O(n). Thus,

the time complexity of our CARGO is O(n3).

Summary of Theoretical Results. Table 3.2 summarizes the theoretical re-

sults compared with the state-of-the-art methods, namely, CentralLap△ [5] and

Local2Rounds△ [5]. The results of CentralLap△ and Local2Rounds△ have been

analyzed (refer to Table 2 in [5]). On the one hand, CARGO can achieve a high-

utility triangle count comparable to CentralLap△, but it does not necessarily have

a trusted server. On the other hand, CARGO outperforms much better than

Local2Rounds△ in terms of utility.

3.5 Experimental Evaluation

In this section, we conduct experiments to answer the following questions:

• Q1: What is the utility-privacy trade-off of our CARGO compared with

the state-of-the-art CDP-based and LDP-based protocols?

52

3. Crypto-Assisted Differentially Private Triangle Counting

Table 3.4. details of graph datasets.
Graph |V | |E| dmax Domain
Facebook 4,039 88,234 1,045 social network
Wiki 7,115 103,689 1,167 vote network
HepPh 12,008 118,521 982 citation network
Enron 36,692 183,831 2,766 communication network

Table 3.5. Noisy maximum degrees under various ε.

Graph
ε

0.5 1 1.5 2 2.5 3

Facebook 1079 1063 1047 1037 1052 1047
Wiki 1153 1166 1173 1213 1155 1167
HepPh 967 1013 975 983 979 981
Enron 2834 2764 2754 2777 2767 2762

• Q2: How does our similarity-based projection method (Project algorithm)

outperform the existing projection method?

• Q3: How much running time does our CARGO take compared with com-

petitors?

3.5.1 Experimental Setting

We use four real-world graph datasets from SNAP [41], and all graphs are prepro-

cessed into undirected and symmetric graphs. These graphs are from different

domains and have different scales. Table 3.4 presents more details about each

graph G, including the number of nodes |V |, the number of edges |E|, the true

maximum degree dmax, and domains that graphs belong to. For each algorithm,

we evaluate the l2 loss and relative error while varying the number of users n and

privacy budget ε. The default values of n and ε are 2 × 103 and 2, respectively.

Usually, triangle counting needs more privacy budget than the other information

(i.e., dmax) [5, 23]. Thus, we set ε1 = 0.1ε for publishing noisy maximum degree

d′max and ε2 = 0.9ε for perturbing triangles.

Competitors. To justify the utility-privacy tradeoff of our CARGO system,

we compare it with the state-of-the-art CDP and LDP methods: (1) CentralLap△

[5], an algorithm for triangle counting using Laplace mechanism in CDP. (2)

Local2Rounds△ [5], a two-round algorithm for counting triangles in LDP. To verify

53

3. Crypto-Assisted Differentially Private Triangle Counting

0.5 1 1.5 2 2.5 3

106

108

1010
l2

 lo
ss Local2Rounds

Cargo
CentralLap

(a) Facebook

0.5 1 1.5 2 2.5 3

105

107

109

1011

l2
 lo

ss Local2Rounds
Cargo
CentralLap

(b) Wiki

0.5 1 1.5 2 2.5 3

103

105

107

l2
 lo

ss Local2Rounds
Cargo
CentralLap

(c) HepPh

0.5 1 1.5 2 2.5 3

103

105

107

109

l2
 lo

ss Local2Rounds
Cargo
CentralLap

(d) Enron

Figure 3.5. The l2 loss of triangle counting with ε varying from 0.5 to 3.

the performance of our local projection algorithm (i.e., Project in Section 3.3.3),

we compare it with the existing projection method in LDP (i.e., GraphProjection

in [5]).

3.5.2 Experimental Results

Utility-privacy trade-off. We evaluate Q1 by comparing the accuracy of our

CARGO with that of the aforementioned state-of-the-art LDP and CDP methods

when the privacy budget ε varies from 0.5 to 3. We also evaluate the accuracy of

our Max algorithm in Section 3.3.3 that privately estimates the noisy maximum

degree d′max. As shown in Table 3.5, d′max approaches the true maximum degree

dmax in Table 3.4. For each graph, the average of relative error between dmax and

d′max is less than 1%. Thus, we allow an additional round to estimate d′max in our

experiments.

Fig. 3.5 and Fig. 3.6 present that CARGO significantly outperforms the

LDP model Local2Rounds△ in all cases. For example, Fig. 3.5(a) shows that for

54

3. Crypto-Assisted Differentially Private Triangle Counting

0.5 1 1.5 2 2.5 3

10 2

100
R

el
at

iv
e

Er
ro

r

Local2Rounds
Cargo
CentralLap

(a) Facebook

0.5 1 1.5 2 2.5 3

10 1

101

R
el

at
iv

e
Er

ro
r

Local2Rounds
Cargo
CentralLap

(b) Wiki

0.5 1 1.5 2 2.5 3

10 1

100

101

102

R
el

at
iv

e
Er

ro
r

Local2Rounds
Cargo
CentralLap

(c) HepPh

0.5 1 1.5 2 2.5 3

100

102

R
el

at
iv

e
Er

ro
r

Local2Rounds
Cargo
CentralLap

(d) Enron

Figure 3.6. The relative error of triangle counting with ε varying from 0.5 to 3.

CARGO, ε = 3 results in l2 loss of 1.09×105 as compared to an error of 3.33×108

achieved by Local2Rounds△. Fig. 3.5(c) illustrates that for ε = 3, CARGO owns

a l2 loss of 82 while Local2Rounds△ has an error of 1.22×106. Similarly, in Fig.

3.6(a), CARGO gives a relative error of only 2.11×10−3 when ε = 3. In contrast,

Local2Rounds△ has a relative error of 0.48. Fig. 3.6(c) shows that Local2Rounds△

has a relative error of 28.6 while CARGO only has an error of 3.37×10−2 for

ε = 3. Thus, CARGO improves the Local2Rounds△ significantly.

Another observation is that the error of CARGO is around 1× ∼ 2× larger

than that of CentralLap△ for most of cases. With the increase of ε, the error

gap between CARGO and CentralLap△ roughly decreases. For example, in Fig.

3.6(a), CARGO has a relative error of 2.29×10−2 as CentralLap△ has an error of

8.10×10−3 when ε = 0.5. Similarly, when ε = 3, Fig. 3.6(a) also shows that the

relative error of CARGO is 2.11×10−3 when CentralLap△ owns a relative error of

1.35×10−3. This is intuitive because an additional round for privately estimating

dmax (Max algorithm) leads to a little error (as shown in Table 3.5), influencing

the overall utility. On the other hand, increasing ε improves the accuracy of

55

3. Crypto-Assisted Differentially Private Triangle Counting

0.5 1 2 3 4
n (×103)

105

107

109

1011

l2
 lo

ss
Local2Rounds
Cargo
CentralLap

(a) Facebook

0.5 1 2 3 4
n (×103)

103

105

107

109

l2
 lo

ss

Local2Rounds
Cargo
CentralLap

(b) Wiki

Figure 3.7. The l2 loss of triangle counting with different n.

0.5 1 2 3 4
n (×103)

10 2

100

102

R
el

at
iv

e
Er

ro
r

Local2Rounds
Cargo
CentralLap

(a) Facebook

0.5 1 2 3 4
n (×103)

10 2

10 1

100

101

R
el

at
iv

e
Er

ro
r

Local2Rounds
Cargo
CentralLap

(b) Wiki

Figure 3.8. The relative error of triangle counting with different n.

Max. Therefore, the error of CARGO is not significantly larger than that of

CentralLap△.

Fig. 3.7 and Fig. 3.8 show that CARGO outperforms Local2Rounds△ and

achieves the high accuracy comparable to CentralLap△ while varying n (ε = 2).

Here, we just present the results of two graphs due to the limited space. To

be specific, in Fig. 3.7(a), the l2 loss of CARGO is 9.68×105 when n = 4000.

In contrast, Local2Rounds△ owns an l2 loss of 6.8 ×1010. Furthermore, in Fig.

3.8(b), CARGO has a relative error of 6.59×10−3 when CentralLap△ has an er-

ror of 3.64×10−3 for n = 4000. Therefore, CARGO significantly outperforms

Local2Rounds△ and performs similarly to CentralLap△.

Local graph projection. Next, we evaluate Q2 by performing a comparative

analysis between our local projection method (Project) and the existing projection

method in local settings (GraphProjection). We set projection parameter θ from

10 to 1000, and compute the projection loss by comparing triangle counts before

and after projection. Fig. 3.9 and Fig. 3.10 show that Project owns better

56

3. Crypto-Assisted Differentially Private Triangle Counting

utility than the baseline GraphProjection in all cases. On the other hand, when

θ increases, the projection loss for both of them decreases and the improvement

of Project becomes more significant. For example, in Fig. 3.9(a), the l2 loss of

GraphProjection is 1.01× larger than that of Project when θ = 10; In contrast, for

θ = 1000, the l2 loss of Project is at least 8× less than that of GraphProjection.

This is roughly consistent with our theoretical analysis in Section 3.3.3. Namely,

randomly deleting edges in GraphProjection is likely to remove some key edges

that involve in many triangles, resulting in losing many triangles in a graph.

Running time. Finally, we evaluateQ3 by testing the performance of CARGO

and competitors while changing n. Due to limited space, we only present the re-

sults of two graphs. Fig. 3.11 and Fig. 3.12 show the execution time over

Facebook and Wiki, respectively. We can observe that the time cost of all meth-

ods grows with graph size n increases, which is consistent with our theoretical

analysis in Section 3.4. The running time of Local2Rounds△ is approximately

2× higher than that of CentralLap△. This is because Local2Rounds△ needs an

additional round for collecting a noisy global graph. Another important obser-

vation is that CARGO needs more time overhead than the other two methods.

For example, in Fig. 3.11, CARGO takes the time of 485s while Local2Rounds△

takes 0.235s and CentralLap△ only takes 0.105s. After further evaluation, we find

that most of time overhead in CARGO is from the computation of secure triangle

counting, namely, Count in Algorithm 9. As shown in Fig. 3.12, the execution

time of Count accounts for at least 90% of overall running time. This is because

CARGO needs to traverse all triples and the time complexity of triangle counting

is up to O(n3).

Summary of Experimental Results. In summary, our answers to three

questions at the start of Section 3.5 are as follows. Q1: Our CARGO outper-

forms significantly than Local2Rounds△ and achieves comparative accuracy to

CentralLap△ without a trusted server. Q2: Our Project algorithm significantly

reduces the projection loss compared with the existing GraphProjection. Q3: The

running time of CARGO is higher than that of other methods and most of com-

putation overhead is from Count.

57

3. Crypto-Assisted Differentially Private Triangle Counting

10 50 100 250 500 1000

104

106

108

1010

1012

l2
 lo

ss
GraphProjection
Project

(a) Facebook

10 50 100 250 500 1000

107

109

1011

l2
 lo

ss

GraphProjection
Project

(b) Wiki

10 100 200 400 600 800

109

1010

1011

1012

1013

l2
 lo

ss

GraphProjection
Project

(c) HepPh

100 500 1000 1500 2000 2500

107

109

1011

l2
 lo

ss

GraphProjection
Project

(d) Enron

Figure 3.9. The l2 loss of projection with various parameters.

3.6 Related Works

3.6.1 Triangle Counting in DP

Differentially private triangle counting has been widely studied, and previous

works are mainly based on either central DP (CDP) or local DP (LDP).

Triangle Counting in CDP. Existing works related to triangle counting in

the central model mainly focus on how to reduce the global sensitivity. Ding

et al. [2] propose novel projection methods, namely, two edge-deletion strategies

(DL and DS) for triangle counts distributions (histogram of triangle counts and

cumulative histogram of triangle counts) while satisfying Node DP. Karwa et

al. [22] give a differentially private algorithm for releasing the triangle counts

based on the higher-order local sensitivity, which adds less noise than methods

with global sensitivity. Kasiviswanathan et al. [15] develop algorithms for private

graph analysis under Node DP. They design a projection operator that projects

the input graph into a bounded-degree (low-degree) graph, resulting in a lower

sensitivity. But these works assume that there is a trusted server that owns the

58

3. Crypto-Assisted Differentially Private Triangle Counting

10 50 100 250 500 1000

10 4

10 3

10 2

10 1

100

R
el

at
iv

e
Er

ro
r

GraphProjection
Project

(a) Facebook

10 50 100 250 500 1000

10 2

10 1

100

R
el

at
iv

e
Er

ro
r

GraphProjection
Project

(b) Wiki

10 100 200 400 600 800

10 2

10 1

100

R
el

at
iv

e
Er

ro
r

GraphProjection
Project

(c) HepPh

100 500 1000 1500 2000 2500
10 3

10 2

10 1

100

R
el

at
iv

e
Er

ro
r

GraphProjection
Project

(d) Enron

Figure 3.10. The relative error of projection with various parameters.

0.5 1 2 3 4
n (×103)

10 2

100

102

R
un

ni
ng

 T
im

e
(s

)

CentralLap
Local2Rounds
Cargo
Count

Figure 3.11. Running time on Face-
book.

0.5 1 2 3 4
n (×103)

10 2

100

102

R
un

ni
ng

 T
im

e
(s

)

CentralLap
Local2Rounds
Cargo
Count

Figure 3.12. Running time on Wiki.

entire graph, which may not be practical in many applications due to the risk of

privacy leaks [28].

Triangle Counting in LDP. Triangle counting in LDP has recently attracted

much attention. The main challenge is from the complex inter-dependencies

involving multiple people. For example, each user cannot see edges between

other users. Imola et al. [5] propose a two-round interaction for triangle counts

59

3. Crypto-Assisted Differentially Private Triangle Counting

to handle the above challenge. However, local randomization aggregates many

errors and two-round interaction brings additional communication overhead. Sun

et al. [23] assume that each user has an extended view, and thus each user can

see the third edges between others. Different from this, we make a minimal

assumption where each user only knows her friends.

In a nutshell, there is an apparent tradeoff between CDP-based models and

LDP-based models in terms of privacy and utility while calculating the triangles.

3.6.2 Crypto-assisted DP

The approach of using cryptographic tools to enhance the utility of differential pri-

vacy (we call it as crypto-assistend DP) has been studied in the literature [55–62].

He et al. [55] compose differential privacy and two-party computation for private

record linkage while ensuring three desiderata: correctness, privacy, and efficiency.

Bohler et al. propose Cryptε [56] is a system and a programming framework for

supporting a rich class of state-of-the-art DP programs, and it achieves the accu-

racy of CDP without a trusted server. Honeycrisp [57] combines cryptographic

techniques and differential privacy for answering periodic queries, which can sus-

tainably run queries like the one from Apple’s deployment while protecting user

privacy in the long run. Some works such as [58–61] combine cryptography and

differential privacy for federated learning, reducing the injected noise without

sacrificing privacy. Fu et al. [62] proposes a crypto-assisted differentially pri-

vate framework for hierarchical count histograms under untrusted servers. These

protocol, therefore, achieve nearly the same accuracy as CDP models with un-

trusted servers. Although the crypto-assisted DP model has been applied to tab-

ular data [55–57, 62] and gradients in federated learning [58–61], characteristics

of graph data, such as high-dimensional and inter-correlated, lead to significant

challenges (discussed in Section 3.1). Some works [86,87] focus on securely com-

puting the triangles using cryptographic tools, which is orthogonal to the formal

privacy guarantee provided by Edge DDP. To our knowledge, our work is the first

work for triangle counting using crypto-assisted DP model.

60

3. Crypto-Assisted Differentially Private Triangle Counting

3.7 Conclusions

To conclude, we propose the first crypto-assisted differentially private graph anal-

ysis framework, CARGO, which achieves high-utility triangle counting compara-

ble to CDP-based models but without requiring a trusted server like LDP-based

models. Through theoretical and experimental analysis, we verify the privacy

and utility achieved by our framework.

61

CHAPTER 4

Crypto-Assisted Differentially

Private Federated Graph

Analytics

4.1 Introduction

Graph data has become a crucial resource for analyzing big data in a variety of ap-

plications such as finance, social networks, and healthcare due to its widespread

usage. Owing to escalating privacy concerns and regulatory measures like the

GDPR, conducting centralized graph analysis has become increasingly challeng-

ing. In this paper, we define the federated graph analytics (FGA), a new problem

for collaborative graph analysis with the privacy guarantee, which is motivated

by the following scenarios:

Example 1.1. Social Network Analytics. Various social media platforms, in-

cluding Facebook, Twitter, and LINE, collaborate to estimate different metrics

of a global social network within a particular region. Each platform has its own

local subgraph, which is a subset of a ground-truth global social network graph.

In a graph, a node represents a user, and an edge represents a friendship between

two users. As users may use multiple platforms, these clients (i.e., subgraphs)

may have overlapping edges.

62

4. Crypto-Assisted Differentially Private Federated Graph Analytics

Client C1

G1

Client C2

G2

Client C3

G3

Client C1

G1

Client C2

G2

Client C3

G3G

Server

Server Server

(a) Central Scenario (b) Local Scenario (c) Federated Graph Analytics

V1 V2

V4

V6
V3

V5

V1 V2

V4

V6V5

V2

V4

V6V3

V5

V1

V4

V6

V3V5

Trust Boundary

V1

V2

V4

V3V5

V1

V2

V4

V6V3

V1 V2

V6V3V5

Figure 4.1. Comparisons among central, local and federated scenarios. (a) In a
central scenario [1–4], one trusted server owns the entire graph. (b) In a local
scenario [5–8], each client owns one node and its 1-hop path information. (c) In
a federated scenario, each client owns a subgraph that consists of multiple nodes
and edges among them.

Example 1.2. Financial Transaction Analytics. Several banks work together

to analyze transaction data [88] for financial risk management or macroeconomic

analysis over transaction graphs, in which each node represents a bank account

owned by a user, and each edge represents a money transaction between two

accounts.

Example 1.3. Disease Transmission Analytics. Several medical institutions

are collaborating to study the transmission of diseases, such as COVID-19 [89],

in a particular region. Each hospital is responsible for a subgraph that includes

nodes representing patients and edges representing the transmission of the disease

between those patients.

This study is the first to discuss the problem of federated graph analytics (FGA)

under the differential privacy (DP) [14,54]. Different from existing differentially

private graph analytic works, such as central models [1–4, 24] and local models

[5–8,25], FGA considers a more general setting. In particular, in a central scenario

(as shown in Figure 4.1(a)), a trusted server owns the entire global graph that

consists of multiple nodes and edges. Nevertheless, a central server is amenable

to privacy issues in practice, such as data leaks and breaches [90, 91]. In a local

scenario (as shown in Figure 4.1(b)), each client manages an user and her 1-hop

path information (i.e, neighboring information). Each client doesn’t trust the

server and directly perturbs local sensitive data. In contrast, in federated graph

analytics (as shown in Figure 4.1(c)), each client possesses a subgraph consisting

63

4. Crypto-Assisted Differentially Private Federated Graph Analytics

of multiple nodes and edges. Each client does not trust other parties, including the

server and other clients. In fact, local scenarios can be viewed as an extreme case

of federated graph analytics when each client contains a subgraph consisting of

one user and her 1-hop path. At this point, m is equal to n, wherem and n are the

number of clients and users, respectively. Additionally, FGA is similar to cross-

silo federated learning [77,92–94] where different silos (or clients) collaboratively

train machine learning models without collecting the raw data. Nevertheless,

federated learning focuses on optimization-based questions (i.e., learning models)

that differ from graph statistics.

Although differentially private graph analysis has been widely studied [1–8,

24, 25], this does not apply to FGA due to the following reasons. On the one

hand, the limited view of each local client leads to utility issues. Each client

only possesses a portion of the entire graph, making it hard to calculate accurate

statistics. For instance, if a query task Q is to count triangles, each client in

Figure 4.1(c) returns the answer Qi = 1. Although their sum is 3, the true an-

swer is 4. This discrepancy happens because the edges of the triangle ⟨v1, v2, v3⟩
come from three different clients. Consequently, it is impossible for any individ-

ual client to obtain the ground truth answer. On the other hand, overlapping

information among different subgraphs causes privacy issues. An edge may exist

in multiple subgraphs owned by different clients. In Figure 4.1(c), for example,

the edge ⟨v1, v4⟩ appears in both client C1 and client C3. Although each client

can individually provide sufficient privacy guarantees for ⟨v1, v4⟩, multiple reports

of the same information amplify the probability of distinguishing such an edge

multiple times, leaking the edge privacy.

In this paper, we propose a federated graph analytic framework, named FEAT,

which enables arbitrary downstream common graph statistics while preserving

individual privacy. The main idea is to let the server privately collect the sub-

graph information from local clients and then aggregate a noisy global graph for

executing targeted query tasks, thereby overcoming the limited view problem.

To avoid collecting the same edge multiple times, FEAT leverages the private set

union (PSU) technique [95–98] to aggregate the subgraph information. However,

existing multi-party private set union protocols do not satisfy DP. Hence, we

design a differentially private set union (DPSU) algorithm, which ensures that

the sensitive information is reported only once and the output global graph is

protected under DP.

64

4. Crypto-Assisted Differentially Private Federated Graph Analytics

Moreover, we observe that there is still room for improving the accuracy by

leveraging true local subgraphs. To this end, we introduce an improved framework

FEAT+ that allows additional communication between the server and clients. In

FEAT+, each client reports the intermediate answer based on its local subgraph

and the global graph. However, a key challenge arises from the possibility of

different clients reporting the same edge multiple times, thereby compromising

individual privacy. To mitigate this risk, we devise a degree-based node partition

method to partition entire nodes into multiple disjoint sets. Consequently, the

query answer associated with each set is collected only once.

In summary, our contributions in this work are elaborated as follows:

• We investigate the federated graph analytics (FGA) under DP for the first

time. By comparing with previous protocols, we conclude unique challenges

in FGA.

• We present a generalized federated graph analytic framework with differen-

tial privacy (FEAT) based on our proposed DPSU protocol, which supports

a wide range of common graph statistics, e.g., subgraph counting.

• We introduce an optimized framework (FEAT+) based on our proposed

degree-based partition algorithm, which improves the overall utility by

leveraging true subgraphs.

• We verify the effectiveness of our proposed methods through extensive ex-

periments. FEAT reduces the error than baseline approach by up to an

order of 4. FEAT+ outperforms FEAT by at least an order of 1.

Section 4.2 introduces the preliminaries. Our generalized framework FEAT

and improved framework FEAT+ are proposed in Section 4.3 and Section 4.4.

Section 4.5 presents experimental results. Section 4.6 reviews the related work

and Section 4.7 draws a conclusion.

65

4. Crypto-Assisted Differentially Private Federated Graph Analytics

4.2 Preliminary

4.2.1 Problem Formulation

System Model

In our work, we consider undirected, unattributed graphs, represented as G =

(V,E), where V = {v1, ..., vn} is the set of nodes, and E ⊆ V × V is the set

of edges. We study the common graph statistics in cross-silo federated scenario,

where there are an untrusted server and m silos, i.e., clients C = {C1, ..., Cm}.
Each client Ci owns a subgraphGi, which is represented as a n×n adjacent matrix.

The virtual global graph is the union of all subgraphs, which can be represented

as G =
⋃m

i=1 Gi. It is worth noting that each client is mutually independent of

others and there may exist overlapping information among different subgraphs,

denoted as Gi ∩ Gj ̸= ∅, where i ̸= j. Clients collaboratively support graph

queries over their subgraph data while preserving user privacy. Table 4.1 lists the

major notations used in this paper.

Trust Assumption

Our objective is to create a protocol that enables the server to coordinate graph

statistics while ensuring that none of the clients’ sensitive information is disclosed.

Similar to prior works [77, 99, 100], we assume that clients are semi-honest. In

other words, each client follows the protocol honestly but is curious about the

sensitive information on other clients. The server is untrusted and has no access

to individual sensitive information. Furthermore, we presume that any parties

beyond the system, such as servers, analysts, or other individuals, are adversaries

who are computationally constrained.

4.2.2 Privacy Model

Like previous works [5–8, 25], the private information considered in this study is

the edge privacy. We assume that the server knows the node information, i.e.,

V = {v1, ..., vn}, which makes sense in some real-world applications. For example,

consider that the healthy administration is examining the spread of COVID-19

in a certain region. It collects the disease transmission paths according to the

released census in this area.

66

4. Crypto-Assisted Differentially Private Federated Graph Analytics

Table 4.1. Summary of Notations.
Notation Definition
G True global graph
V Node set
E Edge set
G′ Noisy global graph
C A set of all clients
m Number of clients in C
Ci The i-th client
Gi Subgraph of client Ci

n Number of nodes in G
D′ Noisy degree sequence
S ′
k Noisy k-stars counts

T ′ Noisy triangle counts

Differential privacy (DP) [14,54] has become a de-facto standard for preserving

individual privacy, which can be formalized in Definition 9. In our work, we use

global sensitivity [54] to achieve the DP, defined as Definition 10. It considers

the maximum difference between statistic results on two neighboring graphs.

Definition 9 (Differential Privacy [54]) Let ε > 0 be the privacy budget and

n be the number of users. A randomized algorithm M with domain Dn satisfies

ε-DP, iff for any neighboring datasets D,D′ ∈ Dn that differ in a single user’s

data and any subset S ⊆ Range(M),

Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S],

Definition 10 (Global Sensitivity [54]) For a query function f : D → R, the
global sensitivity is defined by

△GS = max
D∼D′

|f(D)− f(D′)|,

where D and D′ are neighboring databases that differ in a single user’s data.

The Laplace mechanism is one of common techniques to achieve DP. The formal

definition is as follows:

Definition 11 (Laplace Mechanism [101]) Given any function f : D → Rk,

let △f be the sensitivity of function f . M(x) = f(x)+ (Y1, ..., Yk) satisfies (ε, 0)-

differential privacy, where Yi are i.i.d random variables drawn from Lap(△/ε).

67

4. Crypto-Assisted Differentially Private Federated Graph Analytics

Definition 12 (Edge LDP [32]) For any i ∈ [n], let Mi be a randomized al-

gorithm of user vi. Mi satisfies ε-Edge LDP, iff for any two neighboring adjacent

bit vectors Ai and A′
i that differ in one edge and any subset S ⊆ Range(Mi),

Pr[Mi(Ai) ∈ S] ≤ eϵPr[Mi(A
′
i) ∈ S],

where ε > 0 is the privacy budget.

Existing locally differentially private models, such as edge local differentially

privacy (Definition 12) [5–7] is a promising model. However, it fails to provide

privacy guarantee in federated scenarios. While the same edge may exist in multi-

ple different clients, each client only considers its own edge information. Multiple

reports of the same information increase the probability of distinguishing such

an edge multiple times, leading to privacy issues. To address this challenge, we

introduce edge distributed differential privacy to achieve our privacy objectives.

The formal definition is as follows:

Definition 13 (Neighboring Graphs) Two graphs G and G′ are neighboring

graphs if G and G′ differ in one edge.

Definition 14 (Edge Distributed Differential Privacy (Edge DDP)) Let

G = (V,E) and G′ = (V,E ′) be two neighboring global graphs. Let C = {C1, ..., Cm}
be the client set. Let Gi and G′

i (i ∈ [1,m]) be graphs owned by client Ci in G

and G′, respectively. A set of randomized mechanisms {Mi, i ∈ [1,m]} collectively
satisfy ε-Edge DDP iff. for any subsets of possible outputs Si ⊆ range(M), i ∈
[1,m], we have the following inequality.

Pr[M1(G1) ∈ S1, ...,Mm(Gm) ∈ Sn]

≤ eϵ · Pr[M1(G
′
1) ∈ S1, ...,Mm(G

′
m) ∈ Sm].

Edge DDP guarantees that the server cannot distinguish the presence or ab-

sence of any edge based on all reports collected from clients. It also guarantees

that the information about which client Ci an edge in E belongs to is private,

if the edge exists. For example, in Figure 4.1(c), both the presence of the edge

⟨v2, v3⟩ in G and the absence of the edge ⟨v1, v6⟩ in G are private. Furthermore,

no party knows that the edge ⟨v2, v3⟩ belongs to clients C2 even if the existence

of ⟨v2, v3⟩ has been disclosed.

68

4. Crypto-Assisted Differentially Private Federated Graph Analytics

4.2.3 Private Set Union

Private Set Union (PSU) [95–98] is a secure multiparty computation crypto-

graphic technique designed for securely computing the union of private sets held

by different parties. At its core, neither party reveals anything to the counter-

party except for the elements in the union. From a high-level perspective, a

typical PSU protocol involves the following steps: (1) Set Encoding : each party

privately encodes its set into a cryptographic form suitable for secure compu-

tation: [[Xi]] ← Enc(Xi), i ∈ [1,m]. (2) Union Computation: parties engage in

computing the union of their encoded sets without revealing the underlying el-

ements: [[X]] ← Enc(X1) ∪ Enc(X2)...Enc(Xm). (3) Result Decoding : once the

computation is complete, parties decode the computed union from its crypto-

graphic representation to obtain the set union: X ← Dec([[X]]).

4.3 A General Framework: FEAT

In this section, we introduce our proposed general framework for federated graph

analytics with differential privacy, called FEAT. The main idea is to let the

server privately collect subgraphs from local clients and aggregate a noisy global

graph, which facilitates common graph statistics. As shown in Figure 4.2, in

general, FEAT enhances the utility by (1) reducing the added noise by introducing

the crypto technique (i.e., PSU) into differentially private graph statistics; (2)

calibrating the noisy results to suppress the estimation bias.

We first present a baseline approach which revises the prior protocol (e.g.,

randomized response) in order to satisfy our privacy goal, and discuss its limita-

tions. Then, we introduce the overview of our proposed general framework FEAT,

which substantially improves the baseline approach, and elaborate on its details

in subsequent sections.

4.3.1 A Baseline Approach

Randomized response (RR) [54] is a common methodology for enhancing local

differential privacy. However, it fails to provide ε-Edge DDP, as the same one

edge could be reported by different clients multiple times. One edge may exist

in multiple subgraphs. In the worst case, an edge is included by all subgraphs

Gi, i ∈ [1,m]. Without loss of generality, assume Gi and G′
i are neighboring

69

4. Crypto-Assisted Differentially Private Federated Graph Analytics

Algorithm 11 Baseline: Plain Randomized Response

Input: Subgraph set G = {G1, ..., Gm}, privacy budget ε,
Gi is represented as adjacent matrix Mi ⊆ {0, 1}n×n

Output: Noisy global graph G′

Each client Ci perturbs Mi

1: for each bit b in Mi do
2:

b′ =
{

b w.p. eεl
1+eεl

1− b w.p. 1
1+eεl

where εl = ε/m
3: end for
4: Client Ci: Send the noisy subgraph G′

i to server
5: Server: G′ ←

⋃m
i=1G

′
i

6: return G′

graphs and differ in edge e1, we have Pr[Mi(Gi) ∈ Si] ≤ eϵ · Pr[Mi(G
′
i) ∈ Si].

Then, we have

Pr[M1(G1) ∈ S1, ...,Mm(Gm) ∈ Sm]

Pr[M1(G′
1) ∈ S1, ...,Mm(G′

m) ∈ Sm]

=
Pr[M1(G1) ∈ S1]...P r[Mm(Gm) ∈ Sm]

Pr[M1(G′
1) ∈ S1]...P r[Mm(G′

m) ∈ Sm]

≤(eε)m = emε.

Theorem 10 Baseline approach satisfies ε-Edge DDP.

To address this privacy issue, we could consider the following baseline method.

It divides the overall privacy budget into m portions equally. Then each client

randomizes each subgraph using the randomized response with εl = ε/m. As a

result, the baseline can provide ε-Edge DDP, i.e.,

Pr[M1(G1) ∈ S1, ...,Mm(Gm) ∈ Sm]

Pr[M1(G′
1) ∈ S1, ...,Mm(G′

m) ∈ Sm]

≤(eεl)m = em· ε
m = eε.

Algorithm 11 shows the details of the baseline approach. It takes as input

the subgraph set G = {G1, ..., Gm} and privacy budget ε. Each graph Gi is

represented as a n × n adjacent matrix Mi, where each bit ∈ {0, 1}. If there is

an edge between two users, the bit will be set as 1; otherwise, it will be set as 0.

70

4. Crypto-Assisted Differentially Private Federated Graph Analytics

Client C1

G1

Client C2

G2

Client Cm

Gm

. . .

Server

G

Q Q Qsk1 sk2 skm

 G1

 Query & Calibration

Q=f (G)

 DPSU-based Collection

 G2 Gm-1

Figure 4.2. Overview of FEAT.

After that, each client flips each bit in the upper triangular part of the matrix

with the flipping probability 1
1+εl

, where εl = ε/m. After that, the server collects

all noisy edges and aggregates an union as a noisy global graph G′. Finally, the

server computes the targeted graph statistics f(G)′ based on the noisy global

graph G′. This algorithm is denoted as Baseline.

Discussion. To provide a strong privacy guarantee, too small privacy budget is

allocated to each client. Although the baseline approach achieves our privacy goal

discussed in Section 4.2, much redundant noise is added into results. For example,

for k-star counting, Baseline obtains the expected l2 loss errors of O((mn)2k−2

ε2
);

For triangle counting, it attains the expected l2 loss errors of O((mn)2

ε2
). Our

experiments in Section 4.5 further shows that the baseline approach cannot obtain

competitive result accuracy under various cases.

4.3.2 Overview of FEAT

To alleviate the limitations of Baseline method, we propose a federated graph

analytic framework, called FEAT, as shown in Figure 4.2. It supports arbitrary

downstream common graph statistics while satisfying ε-Edge DDP.

As discussed in the above section, one edge appears in m clients in the extreme

case and then the overall privacy budget ε should be allocated to m clients, i.e.,

εl = ε/m, which leads to much noise. In FEAT, we leverage the private set union

71

4. Crypto-Assisted Differentially Private Federated Graph Analytics

Algorithm 12 Overall Protocol of FEAT.

Input: Subgraph set G = {G1, ..., Gm},
where Gi represented as n× n adjacent matrix,
Privacy budget ε, Targeted query Q

Output: Query result Q′

Step 1: DPSU-based Graph Collection
1: G′ ← CollectGraph(G, ε) ▷ Algorithm 13

Step 2: Graph Query and Calibration
2: Q′ ← Query(G′, Q) ▷ Section 4.3.4
3: return Q′

(PSU) technique [95–98] to achieve εl = ε, reducing the noise scale. PSU allows

parties to collaboratively compute the union of multiple sets held by different

parties without revealing the individual elements of the sets to other parties.

It guarantees that an element appears in the final union only once. However,

previous PSU protocols cannot be easily applied in our FGA setting. Most of

PSU works [95, 96, 98] focus on a two-party setting, which is different from our

multi-party scenario. Although the paper [97] proposes a multi-party protocol,

it faces the security and efficiency issue. Additionally, this multi-party PSU [97]

outputs the true union and is unable to provide the differential privacy guarantee.

To this end, we propose a differentially private set union protocol to compute the

union of multiple subgraphs while satisfying ε-Edge DDP. The detailed analysis

will be presented in Section 4.3.3.

Algorithm 12 presents the overall protocol of FEAT. It involves two kinds of

entities: clients and a server. The local clients Ci, i ∈ [m], owns a subgraph

that is represented as a n × n adjacent matrix (n is the number of users). It

takes as input the set of subgraphs G = {G1, ..., Gm}, privacy budget ε, and the

targeted graph query Q. At the beginning, FEAT recalls a CollectGraph() function

to collect a noisy global graph (step ①). Each client perturbs its subgraph with

suitable noise and then encrypts the noisy subgraph. Next, clients communicate

with each other to compute the union of subgraphs. All clients collaboratively

decrypts the union and outputs a noisy global graph (details in Section 4.3.3).

Once obtaining the noisy global graph, it executes the targeted graph statistics

(step ②). In this paper, we compute the subgraph counts (i.e., k-stars, triangles)

to verify the effectiveness of our framework. Considering the estimation bias, the

server further calibrates the noisy results to improve the utility (refer to Section

72

4. Crypto-Assisted Differentially Private Federated Graph Analytics

4.3.4 for details).

4.3.3 DPSU-based Graph Collection

We propose a DPSU protocol based on the state-of-the-art PSU method for com-

puting the global graph under DP.

PSU Protocol. Suppose that each client Ci∈[1,m] owns a set Xi ⊆ X =

{x1, ..., xn}. Our goal is to compute the union X =
⋃m

i=1Xi.

The SOTA multi-party PSU method [97] supports computing the union among

multiple clients as follows:

(1) Initialization. Each client Ci creates a flag vectorWi. If xj∈[1,n] ∈ Xi,Wi,j = 1;

otherwise, Wi,j = 0.

(2) Key Generation. Each client Ci∈[1,m] generates a pair of keys ⟨pki, ski⟩,
where pki = gski . All clients jointly generate the public key: pk =

∏m
i=1 pki =

gsk1+...+skm .

(3) Encryption. Each client Ci∈[1,m] encryptsWi with the public key pk: Enc(Wi) =

(Enc(Wi,1), ...,Enc(Wi,n).

(4) Modification. Each client Ci∈[2,m] modifies the flag vector Wi in sequence

as follows: if xj∈[1,n] /∈ Xi, Enc(Wi,j) = Enc(Wi−1,j); otherwise, Enc(Wi,j) =

Enc(Wi,j).

(5)Decryption. All clients jointly decrypt Enc(Wm) with secret keys {sk1, ..., skm}:
Wm ← Dec[Enc(Wm)]. For j ∈ [1, n], if Wm,j = 1, X ← X ∪ {xj}.
However, the above protocol may face the security issue. It is implemented

based on finite field cryptography (FFC) [102] and in fact the prime number p

with 512 bits is not secure according to Table 2 in [103]. If this multi-party PSU

is implemented in a secure way, the prime number p should be set as 3072 bits.

As a result, it is inefficient for the large-scale graph analytics. To improve the

tradeoff between security and efficiency, we implement the PSU protocol based on

the Elliptic Curve Cryptography (ECC) [104], which is more efficient than finite

field cryptography (FFC). In particular, there are three cryptographic libraries

for implementing ECC, namely, Libsodium, OpenSSL, and MCL. As shown in

Table 4.2, Libsodium is more suitable for processing large-scale graph data, which

motivates us to implement PSU protocol based on Libsodium library.

DPSU Protocol. We then propose a differentially private set union (DPSU)

protocol for aggregating a global graph. One challenge is that the output of the

73

4. Crypto-Assisted Differentially Private Federated Graph Analytics

Table 4.2. Performance of ECC with Three Libraries.

ECC
n

10 102 103 103 104 105

Libsodium 0.0056 0.059 0.558 5.26 53.14 528.10
OpenSSL 0.0098 0.060 0.549 5.49 53.76 539.52
MCL 0.0541 0.504 4.983 49.84 498.84 4986.43

n: data size

PSU protocol does not satisfy DP. The individual privacy could be disclosed via

the union of subgraphs. Although some previous works [105–108] discuss how

to calculate the private set union while satisfying DP, their system models differ

from ours and can not be used directly. One naive solution is that each client Ci

perturbs the flag vector Wi using the randomized response (RR) mechanism [109]

before encrypting. Specifically, each client Ci flips each bit in her flag vector Wi

with probability p = 1
1+eε

in the step Initialization of PSU protocol, where ε

is the privacy budget. Subsequently, the differentially private set union can be

computed according to step (2)∼(5) in the above PSU protocol.

Although this natural solution can provide the DP guarantee, it leads to much

bias in a noisy graph. In fact, most of real-world graphs tend to be sparse, which

means that there are much more 0s than 1s in an adjacent matrix. After the

randomly flipping bits, however, the number of 1s is much larger than that of 0s,

making the noisy global graph denser than the original one. Additionally, the

step Modification further amplifies the denser problem. Even if ‘0’ bit is flipped

into ‘1’ bit in one of m subgraphs, the according bit in final union will become

‘1’. In particular, assume that the number of ‘1’ bits in a true global graph is t

and the number of ‘0’ bits is (n2 − t). After flipping, the number of ‘1’ bits in

a noisy global graph becomes m[(1− p)t + p(n2 − t)]. Take the Facebook graph

as an example, which has 4,039 nodes (i.e., n) and 88,234 edges (i.e., t). Even

with a fairly small privacy budget ε = 0.1 and the number of clients m = 5, the

expected number of ‘1’ bits will become 3.8×107, increasing at least 439 times

than before.

To address the above issue, we propose a novel differentially private set union

protocol. In particular, ‘0’ bits are perturbed only by the first client and ‘1’ bits

are randomized by all clients. The server can then obtain the whole noisy matrix

by computing the union of them. Theoretically, our method can reduce the denser

problem by a factor of m. As a result, the utility loss can be alleviated by at least

74

4. Crypto-Assisted Differentially Private Federated Graph Analytics

a factor of O(m2). For instance, for k-star counting, FEAT achieves the expected

l2 loss errors of O(n
2k−2

ε2
); For triangle counting, it attains the expected l2 loss

errors of O(n
2

ε2
). To further suppress the bias from the randomized response, we

calibrate the noisy results during the graph query processing. The details will be

discussed in next Section 4.3.4.

Algorithm 13 describes the details of our DPSU-based edge collection method.

It takes as input the subgraph set G and the privacy budget ε. Each client Ci

initializes an edge domain E according to the node information V . In particular,

each client Ci first constructs a n × n adjacent matrix Mi, where n = |V |, and
then transforms the upper triangular part of Mi into a vector E with the size

N = |E| = n(n−1)
2

. For example, E1 = e1 = ⟨v1, v2⟩, E2 = e2 = ⟨v1, v3⟩. The

server initializes an empty set E for collecting the edge information. Each client

Ci generates a pair of keys ⟨psi, ski⟩, and all clients jointly generate the public

key pk. Client Ci first initializes a flag vector Y according to the principle in line

5. If Ej exists in E1, the according bit will be set as 1; otherwise, it will be set

as 0. After, client C1 perturbs each bit of Y with the flipping probability 1
1+eε

using the randomized response, and encrypts the noisy Y ′ with the public key

pk. Then, client C1 sends Enc(Y
′) to the client C2. For each client Ci from C2 to

Cm, Ci updates Enc(Y
′) according to the principle in lines 10 to 15. If Ej is in Ei,

client Ci will flip ‘1’ with RR and then replace Enc(Y ′
j) with Enc(RR(1)). Once

the client Cm completes updating Enc(Y ′) and sending it to the server, all clients

jointly decrypt Enc(Y ′) and send decrypted Y ′ to the server. Finally, the server

generates and releases E according to Y ′. We call this algorithm by CollectGraph.

Example 3.1. Table 4.3 shows how Algorithm 13 works for computing the

union of local edge sets while satisfying the DP. Specially, clients C1, C2, C3 owns

private edge sets E1 = {e1, e2}, E2 = {e2, e3}, E3 = {e5}, and node set is V =

{v1, v2, v3, v4}. Thus, E1, E2, E3 ⊆ E = {e1, e2, e3, e4, e5, e6}, where e1 = ⟨v1, v2⟩,
e2 = ⟨v1, v3⟩, e3 = ⟨v1, v4⟩, e4 = ⟨v2, v3⟩, e5 = ⟨v2, v4⟩, e6 = ⟨v3, v4⟩. The goal is to
compute E = E1∪E2∪E3. Firstly, client C1 constructs a flag vector Y according

to line 5 in Algorithm 13. Then, C1 perturbs each bit of Y and encrypts it to

obtain Y ′. Secondly, clients C2 and C3 update Y based on the principle of lines

10 to 15 in Algorithm 13. Thirdly, all clients jointly decrypt Enc(Y ′) and send

Y ′ to the server. Finally, the server can obtain the edge union E = {e1, e2, e4, e5}
according to Y ′.

75

4. Crypto-Assisted Differentially Private Federated Graph Analytics

Table 4.3. An Example of DPSU Protocol.

Y Y1 Y2 Y3 Y4 Y5 Y6

C1 [[(1)]] [[(1)]] [[(0)]] [[(0)]] [[(0)]] [[(0)]]

C2 [[(1)]] [[(1)]] [[(1)]] [[(0)]] [[(0)]] [[(0)]]

C3 [[(1)]] [[(1)]] [[(1)]] [[(0)]] [[(1)]] [[(0)]]

Y ′ 1 1 0 1 1 0

E e1 e2 - e4 e5 -

[[x]]: Enc(x) (x): RR(x).
In this example, Y ′

3 and Y ′
4 are flipped by RR.

Theorem 11 Algorithm 13 satisfies ε-Edge DDP.

Proof of Theorem 11. Let G = (V,E) and G′ = (V,E ′) be two neighboring

graphs. Let Gi and G′
i (i ∈ [1,m]) be the neighboring graphs of client Ci with re-

spect to G and G′, respectively. Let {Mi, i ∈ [1,m]} be a set of randomized mech-

anisms with any subsets of possible outputs Si ⊆ range(Mi), i ∈ [1,m]. Given

the privacy budget ε, we can easily obtain Pr[Mi(Gi) ∈ Si] ≤ eεPr[Mi(G
′
i) ∈ Si].

Due to using the threshold ElGamal encryption, any change of adding or deleting

an edge from m clients is only collected by the server once. Thus, we have

Pr[M1(G1) ∈ S1, ...,Mm(Gm) ∈ Sm]

Pr[M1(G′
1) ∈ S1, ...,Mm(G′

m) ∈ Sm]

=
Pr[M1(G1) ∈ S1]...P r[Mm(Gm) ∈ Sm]

Pr[M1(G′
1) ∈ S1]...P r[Mm(G′

m) ∈ Sm]

=eε

Therefore, Algorithm 13 satisfies ε-Edge DDP. Furthermore, by the immunity

to post-processing [54], Algorithm 12 provides ε-Edge DDP guarantee.

4.3.4 Graph Query Processing

In this section, we execute two common subgraph counting queries, i.e., k-star

counting [5, 7, 110] and triangle counting [2, 5, 10], in order to explain how to

execute the Query function of Algorithm 12 and how to calibrate the noisy results.

A k-star refers to a subgraph consisting of a central node connecting to k other

nodes. To count the number of k-stars in a given graph, we iterate through each

76

4. Crypto-Assisted Differentially Private Federated Graph Analytics

vertex in the graph and compute
(
d′i
k

)
, where d′i is the noisy degree of node vi.

The k-star counts S of the whole graph is equal to the summation of each node’s

k-stars, i.e., S =
∑n

i=1

(
d′i
k

)
. However, a direct computation of node degrees from

G′ can lead to significant bias induced by the randomized response in Algorithm

13. To mitigate the bias, we leverage the post-processing property of DP [54],

yielding an unbiased estimation d̃i of di as Proposition 1. Hence, we can obtain

an unbiased estimation of k-stars, i.e., S =
∑n

i=1

(
d̃i
k

)
.

Proposition 1 Let G′ be a noisy global graph. Let d′i be the node degree of vi in

G′ and d̃i be an unbiased estimate of d′i. Let n be the number of nodes in G′. Let

p = 1
1+eε

be the flipping probability, where ε is the privacy budget in FEAT. We

have

d̃i =
1

1− 2p
(d′i − np). (4.1)

Proof of Proposition 3. The mapping relationship between d′i and d̃i can be

represented as:

d′i = d̃i(1− p) + (n− d̃i)p. (4.2)

Then we can prove Proposition 3.

A triangle in a graph refers to a subgraph consisting of three nodes connected

by three edges, forming a closed loop. To count the number of triangles in a

graph, one common approach is to iterate each subgraph with three nodes and

check if it is a loop. However, simply counting the triangles in a noisy graph G′

introduces a significant bias. We continue to calibrate the biased triangle counts

through the post-processing. Building upon the insights of [5], we categorize

triplets in Gi into four types based on the number of edges they involve: t0, t1,

t2, and t3, where tj (j ∈ 0, 1, 2, 3) represents the count of triplets in Gi involving

j edges (referred to as j-edge; 3-edges are identical to triangles). Thus, we can

compute the unbiased triangle counts T̃ according to Proposition 2.

Proposition 2 Let G′ be a noisy global graph. Let t0, t1, t2, t3 be the number of

0-edges, 1-edges, 2-edges, and triangles in G′, respectively. Let ε be the privacy

budget used in FEAT. We have

T̃ =
1

(eε − 1)3
(−t0 + t1e

ε − t2e
2ε + t3e

3ε). (4.3)

77

4. Crypto-Assisted Differentially Private Federated Graph Analytics

Proof of Proposition 2. Let u0, u1, u2, u3 be the number of 0-edges, 1-edges,

2-edges, and triangles in G, respectively, when we do not flip 1/0 using the ran-

domized response. Let x = eε. Then we have:

(t0, t1, t2, t3) = (u0, u1, u2, u3)A, (4.4)

A = 1
(x+1)2


x3 3x2 3x 1

x2 x3 + 2x 2x2 + 1 x

x 2x2 + 1 x3 + 2x x2

1 3x 3x2 x3

.
A is a transition matrix from a type of subgraph (0-edge, 1-edge, 2-edge, and tri-

angle) in an original graph to a type of subgraph in a noisy graph. Let (ũ0, ũ1, ũ2,

ũ3) be an unbiased estimate of (u0, u1, u2, u3). Then we obtain:

(ũ0, ũ1, ũ2, ũ3) = (t0, t1, t2, t3)A
−1 (4.5)

Let A−1
i,j be the (i, j)-th element of A−1. Then we have:

A−1
1,1 =

x3

(x− 1)3
,A−1

2,1 = −
x2

(x− 1)3
, (4.6)

A−1
3,1 =

x

(x− 1)3
,A−1

4,1 = −
1

(x− 1)3
. (4.7)

By combining above equations, Proposition 2 is proved.

4.4 An Improved Framework: FEAT+

Although FEAT reduces the problems from the limited view and overlaps, there

is still large space for improving the overall utility. FEAT calculates common

graph statistics based on a noisy global graph collected from local clients and

without considering the true local subgraph information. The graph statistics

such as k-stars and triangles can be calculated more accurately via an additional

round of interaction between the server and clients. After the server publishes

G′, each client Ci can concatenate her local subgraph Gi with G′, which removes

the limited view issues. For example, in Figure 4.3, if the targeted query is to

count triangles, client C1 will return Q1 = 4 instead of Q1 = 1 since she can see

78

4. Crypto-Assisted Differentially Private Federated Graph Analytics

Client C1 Client C2 Client C3

D1'

D2'

D3'

d1'

3

0

3

3

3

0

0

3

3

2

1

1

1

12

1 2

1

d2' d3' d4' d5' d6' G

V1 V2

V4

V6
V3

V5
Server

U1

U2

U3

Noisy degree Partition

G1

V1 V2

V4

V3V5 V6

G2

V1 V2

V4

V3V5 V6

G3

V1 V2

V4

V3V5 V6

Noisy edge

D1'
D2' D3'U1 U2

U3

Figure 4.3. Motivation of FEAT+.

the edges ⟨v1, v3⟩, ⟨v2, v3⟩, ⟨v3, v5⟩ and ⟨v3, v6⟩ via G′. Thus, the final answer will

be (4 + 4 + 4)/3 = 4 (redundant counts will be removed).

Nevertheless, one edge may be reported by different clients multiple times,

which leaks individual privacy (as discussed in Section 4.1). For example, in

Figure 4.3, the triangle ⟨v1, v2, v3⟩ may be collected by the server three times

during counting triangles. In intuition, if one edge is reported by one of m clients

only once, the probability of distinguishing such an edge will be reduced. Hence,

the problem is reduced to determining how to assign the same information to one

of the clients for reporting. To do this effectively, we propose a degree-based node

partition method that splits nodes into m disjoint node sets so that each node

is assigned to a client with the highest node degree. In this context, the degree

information plays a significant role: the higher a node degree, the more edges

it possesses, and the more likely it is to be involved in k-stars or triangles. For

instance, in Figure 4.3, the degree of node v4 in client C1 (= 2) is larger than the

degrees of clients C2 and C3 (= 1). Thus, client C1 can count 2-stars or triangles

of v4 more accurately than clients C2 and C3. This is an intuition behind our

FEAT+.

79

4. Crypto-Assisted Differentially Private Federated Graph Analytics

4.4.1 Overview of FEAT+

Algorithm 14 presents the overall protocol of FEAT+. It mainly consists of two

phases: global graph collection and local query collection. The global graph col-

lection is used to publish a noisy global graph G′, which is finished by FEAT

(Algorithm 12). The local query collection consists of three main steps: degree-

based partition (Algortihm 15), graph query processing (Section 4.4.3), and per-

turbation. To be specific, it takes as input local subgraph set G = {G1, ..., Gm},
privacy budget ε = ε1 + ε2 + ε3, and query sensitivity △. FEAT+ first collects

a noisy global graph G′ via FEAT using ε1. Then, this global graph is published

to each client Ci for local query collection. Next, FEAT+ recalls a PartitionNode

function with privacy budget ε2, to split the node set V into m disjoint node sets

U (Step 1). These node sets are distributed to the respective clients. After that,

each client Ci computes the targeted query. In our paper, we take k-star and tri-

angle counting as examples to explain the rationale behind Query (Step 2). Since

the noisy global graph G′ is dense, we carefully design calibration techniques to

obtain unbiased estimates of k-stars or triangles, as presented in Section 4.4.3.

Upon obtaining the query results, each client Ci perturbs the local answers using

a suitable noise (Step 3). Specifically, each client Ci calculates the noisy query

Q′
i = Qi + Lap(△

ε3
) by adding the Laplacian noise to Qi, where △ is the global

sensitivity. Finally, the server computes Q′ ←
∑m

i=1Q
′
i, which is an unbiased

estimate of Q and satisfies DP.

Theorem 12 Algorithm 14 satisfies (ε1 + ε2 + ε3)-Edge DDP.

Proof of Theorem 12. Algorithm 14 uses three kinds of privacy budgets: ε1 in

FEAT, ε2 in PartitionNode, and ε3 in Perturbation. By Theorem 11, FEAT satis-

fies ε1-Edge DDP. In PartitionNode, each client Ci∈[m] adds the Laplacian noise

Lap(m
ε2
) to the node degree, which satisfies ε2-Edge DDP. In Perturbation, each

client Ci∈[m] adds the Laplacian noise Lap(△
ε3
) to the query result Qi, which satis-

fies ε3-Edge DDP. Following the post-processing property of DP, the aggregated

result Q′ satisfies ε3-Edge DDP. Thus, the entire process of Algorithm 14 provides

(ε1 + ε2 + ε3)-Edge DDP.

80

4. Crypto-Assisted Differentially Private Federated Graph Analytics

4.4.2 Degree-based Node Partition

We propose a degree-based user partition technique to split the node set V into

multiple disjoint user sets {Ṽ1, ..., Ṽm}. For each node, the server collects m

node degrees {d′1, ..., d′m} from m clients privately. The node (i.e., user) will be

distributed to the client that sends the maximum degree to the server. Algo-

rithm 15 presents how to partition users into multiple disjoint sets. It takes as

input the true subgraph sets G = {V,E} = {G1, ..., Gm} and privacy budget ε.

At the outset, the server initializes the empty set U = {U1, ..., Um} for each client,

in order to record the partition information. For each node vi in the node set

V , each client Cj computes the node degree di,j based on its true subgraph Gj.

Then, client Cj perturbs the degree with the Laplace mechanism and sends the

noisy degree d′i,j to the server. After that, the server computes the max noisy

degree d′i,k = max{d′i,1, ..., d′i,m} for each node vi and adds the user index i to the

corresponding user partition set Uk. The final output is the user partition sets

U = {U1, ..., Um}, where Ui∩Uj = ∅ and
⋃m

i=1 Ui = V . This algorithm is denoted

by PartitionNode.

4.4.3 Graph Query Processing

In this section, we execute two basic subgraph counting queries, i.e., k-star count-

ing [5, 7, 110] and triangle counting [2, 5, 10], in order to explain how to execute

the Query function in line 4 of Algorithm 14.

k-Star Counting

A k-star refers to a subgraph consisting of a central node connecting to k other

nodes. The key is to compute the total number of edges in a graph, i.e., the

summation of node degrees. From each client Ci’s view, each node degree is

contributed from a local subgraph Gi and a noisy global graph G′. Thus, the

problem is reduced to compute the true node degree d1 and noisy node degree d2.

Algorithm 16 shows an instantiation of the Query function in k-star counting.

It takes as input a noisy global graph G′, i-th subgraph Gi, and i-th user partition

Ui. Client Ci first initializes d1 = d2 = 0 to record two kinds of degrees. Then,

it obtains a new global graph G by computing the union between G′ and its true

subgraph Gi (line 2). After that, it traverses each node in the user partition set

81

4. Crypto-Assisted Differentially Private Federated Graph Analytics

Ui and calculates d1 and d2. If the edge ⟨vj, vk⟩ exists in subgraph Gi, the true

degree will be updated as d1 ← d1+1; otherwise, the noisy degree will be updated

as d2 ← d2 + 1 (lines 5-6). However, simply computing the degrees from G′ can

introduce a significant bias, as the randomized response in Algorithm 13 makes

a graph dense [5,6,32]. By the post-processing property of DP [54], we obtain an

unbiased estimate d̃2 of d2 according to Proposition 3 (line 7). Upon obtaining

the node degree d = d1 + d̃2, client Ci can calculate the k-stars by
(
d
k

)
. The final

output is the number of k-stars.

Proposition 3 Let G be the union of a noisy global graph G′ and local subgraph

Gi. Let GC be the absolute complement of Gi in G. Let d′i be the node degree of

vi in GC and d̃i be an unbiased estimate of d′i. Let n be the number of nodes in

GC. Let p = 1
1+eε1

be the flipping probability, where ε1 is the privacy budget in

FEAT (i.e., line 1 of Algorithm 14). We have

d̃i =
1

1− 2p
(d′i − np). (4.8)

Proof of Proposition 3. The mapping relationship between d′i and d̃i can be

represented as:

d′i = d̃i(1− p) + (n− d̃i)p. (4.9)

Then we can prove Proposition 3.

Triangle Counting

Next, we focus on triangle counting. This is more challenging because three

edges of a triangle can be from the local subgraph Gi or a noisy global graph

G′. There are four kinds of triangles according to the number of edges from Gi:

T0, T1, T2, and T3, where Tj (j ∈ {0, 1, 2, 3}) is the number of triangles involving

j edges from Gi (referred to as j-edge in Gi). Since T0, T1, and T2 involves some

noisy edges from G′, simply counting the noisy triangles can introduce a bias.

We propose different empirical estimation methods to obtain unbiased counts, as

presented in Propositions 4, 5, and 6 at the end of this subsection.

Algorithm 17 presents an instantiation of the Query function in triangle count-

ing. It takes as input a noisy global graph G′, the i-th subgraph Gi, the i-th

user partition Ui, and the privacy budget ε1. Client Ci first obtains a graph G̃

by merging G′ and Gi. Then it calculates four kinds of triangles (T0, T1, T2, T3),

82

4. Crypto-Assisted Differentially Private Federated Graph Analytics

i.e., 0-edge, 1-edge, 2-edge, and 3-edge in Gi. After that, the unbiased estimates

(T̃0, T̃1, T̃2) of (T0, T1, T2) are computed based on Proposition 4, 5, and 6. The

final triangle count T can be obtained by aggregating T̃0, T̃1, T̃2, and T3.

Proposition 4 Let G be the union of a noisy global graph G′ and local subgraph

Gi. Let G
C be the absolute complement of Gi in G. Let t0, t1, t2, t3 be the number

of 0-edges, 1-edges, 2-edges, and triangles in GC, respectively. Let T0 be the

number of 0-edges in Gi, i.e., T0 = t3. Let T̃0 be an unbiased estimate of T0. Let

ε1 be the privacy budget used in FEAT (i.e., line 1 of Algorithm 14). We have

T̃0 =
1

(eε1 − 1)3
(−t0 + t1e

ε1 − t2e
2ε1 + T0e

3ε1). (4.10)

The proof details of Proposition 4 can refer to Proposition 2.

Proposition 5 Let G be the union of a noisy global graph G′ and local subgraph

Gi. Let G
C be the absolute complement of Gi in G. Let t0, t1, t2 be the number of

0-edges, 1-edges, and 2-edges in GC, respectively. Let T1 be the number of 1-edges

in Gi, i.e., T1 = t2. Let T̃1 be an unbiased estimate of T1. Let ε1 be the privacy

budget used in FEAT. We have

T̃1 =
(eε1 + 1)[e2ε1t0 − eε1(eε1 + 1)t1 + (2eε1 + 1)T1]

(eε1 − 1)(e2ε1 − 2eε − 1)
. (4.11)

Proof of Proposition 5. Consider that one edge of a triangle is from Gi and

another two edges are from GC . Let u0, u1, u2 be the number of 0-edges, 1-edges,

and 2-edges in GC , respectively, when we do not flip 1/0 using the randomized

response. Let x = eε1 . Then we have:

(t0, t1, t2) = (u0, u1, u2)A (4.12)

A = 1
(x+1)2

x2 2x 1

x 1 + x x

1 2x x2


A is a transition matrix from a type of subgraph (0-edge, 1-edge, 2-edge) in

an original graph to a type of subgraph in a noisy graph. Let ũ0, ũ1, ũ2 be the

unbiased estimation of (u0, u1, u2). Then we obtain:

(ũ0, ũ1, ũ2) = (t0, t1, t2)A
−1 (4.13)

83

4. Crypto-Assisted Differentially Private Federated Graph Analytics

Let A−1
i,j be the (i, j)-th element of A−1. Then we have:

A−1
1,1 =

(x+ 1)x2

(x− 1)(x2 − 2x− 1)
, (4.14)

A−1
2,1 =

(x+ 1)(−x2 − x)

(x− 1)(x2 − 2x− 1)
, (4.15)

A−1
3,1 =

(x+ 1)(2x+ 1)

(x− 1)(x2 − 2x− 1)
, (4.16)

By combining above equations, Proposition 5 is proved.

Proposition 6 Let G′ be a noisy global graph and Gi be the local subgraph. Let

T2 be the number of 2-edges in Gi. Let S be the number of 2-stars in Gi. Let T̃2

be an unbiased estimate of T2. Let p = 1
1+eε1

be the flipping probability. We have

T̃2 =
1

1− 2p
(T2 − Sp). (4.17)

Proof of Proposition 6. The mapping relationship between d′i and d̃i can be

represented as:

T2 = T̃2(1− p) + (S − T̃2)p. (4.18)

Then we can prove Proposition 6.

4.5 Experimental Evaluation

In this section, we evaluate our FEAT and FEAT+ along two dimensions: utility

and running time. To simulate the federated scenario, we split a graph randomly

into multiple local subgraphs by controlling two key parameters: sampling rate ρ

and overlapping rate σ. Then, we conducted experiments to answer the following

questions:

• Q1: How do our general FEAT and improved FEAT+ compare with baseline

approaches (denoted by Baseline) in terms of the utility-privacy trade-off?

• Q2: How do the sampling rate ρ and overlapping rate σ affect accuracy?

• Q3: How much do our FEAT and FEAT+ compare with Baseline in terms

of the running time?

84

4. Crypto-Assisted Differentially Private Federated Graph Analytics

1 2 3 4 5 6

106

109

1012

1015

M
SE

Baseline
FEAT
FEAT+

(a) Facebook

1 2 3 4 5 6

106

109

1012

1015

M
SE

Baseline
FEAT
FEAT+

(b) Wiki

Figure 4.4. The MSE in 2-star counting.

1 2 3 4 5 6

10 3

10 1

101

M
R

E

Baseline
FEAT
FEAT+

(a) Facebook

1 2 3 4 5 6

10 3

10 1

101
M

R
E

Baseline
FEAT
FEAT+

(b) Wiki

Figure 4.5. The MRE in 2-star counting.

Evaluation Highlights:

• FEAT reduces the error of Baseline by up to an order of 4. FEAT+ outper-

forms FEAT by at least an order of 1 (Figures 4.4 to 4.7).

• FEAT and FEAT+ significantly outperform Baseline and FEAT, respectively,

under various values of ρ and σ (Figures 4.8 and 4.11).

• FEAT and FEAT+ takes more time than Baseline by at least an order of 1

(Figure 4.12).

85

4. Crypto-Assisted Differentially Private Federated Graph Analytics

1 2 3 4 5 6

102

106

1010

1014

M
SE

Baseline
FEAT
FEAT+

(a) Facebook

1 2 3 4 5 6

103

107

1011

1015

M
SE

Baseline
FEAT
FEAT+

(b) Wiki

Figure 4.6. The MSE in triangle counting.

1 2 3 4 5 6

10 5

10 3

10 1

101

M
R

E

Baseline
FEAT
FEAT+

(a) Facebook

1 2 3 4 5 6

10 4

10 2

100

102
M

R
E

Baseline
FEAT
FEAT+

(b) Wiki

Figure 4.7. The MRE in triangle counting.

4.5.1 Experimental Setup

Datasets. We use two real-world graph datasets from SNAP [41] as follows: (1)

Facebook. The Facebook graph is collected from survey participants using the

Facebook app, which includes 4039 nodes and 88234 edges. The average degree

of the Facebook graph is 21.85 (=88234
4039

). (2) Wiki-Vote. The Wiki-Vote graph

contains all the Wikipedia voting data from the inception of Wikipedia till 2008,

which includes 7115 nodes and 103689 edges. The average degree of Wiki-Vote

graph is 14.57 (=103689
7115

). Thus, Wiki-Vote graph is more sparse than the Facebook

graph. As explained above, we split a graph randomly into 4 local subgraphs by

controlling the sampling rate ρ and overlapping rate σ.

Parameters. There are some key parameters that influence the overall accuracy

of the FEAT system. (1) Privacy Budget ε. The privacy budget varies from 1 to

86

4. Crypto-Assisted Differentially Private Federated Graph Analytics

0.1 0.2 0.3 0.4 0.5

108

1011

1014

M
SE

Baseline
FEAT
FEAT+

(a) 2-Star counting

0.1 0.2 0.3 0.4 0.5

105

108

1011

1014

M
SE

Baseline
FEAT
FEAT+

(b) Triangle counting

Figure 4.8. The MSE with various ρ.

0.1 0.2 0.3 0.4 0.5

10 2

100

102

104

M
R

E

Baseline
FEAT
FEAT+

(a) 2-Star counting

0.1 0.2 0.3 0.4 0.5

101

103

105
M

R
E

Baseline
FEAT
FEAT+

(b) Triangle counting

Figure 4.9. The MRE with various ρ.

6, and the default is 3. Note that FEAT+ involves three kind of privacy budgets,

namely, ε = ε1 + ε2 + ε3. We set ε1 = ε3 = 0.45ε and ε2 = 0.1ε. (2) Sampling

rate ρ. The sampling rate is the ratio of each local subgraph to the global graph.

It is set from 0.1 to 0.5, and the default is 0.3. (3) Overlapping Rate σ. The

overlapping rate is the ratio of edges shared among multiple local subgraphs to

the total number of edges. It varies from 0 to 0.4, and the default is 0.2.

Graph Statistics and Metrics. For graph analytic tasks, we evaluate two

common graph statistics: 2-star counts and triangle counts, as in [2,5,7,8,10,110].

For each query, we compare the results Q and Q′ from the true graph and noisy

graph respectively. We use two common measures to assess the accuracy of our

algorithms: mean squared error (MSE) [111] and mean relative error (MRE) [112].

We evaluate the average results over 10 repeated runs.

87

4. Crypto-Assisted Differentially Private Federated Graph Analytics

0 0.1 0.2 0.3 0.4

109

1011

1013

M
SE

Baseline
FEAT
FEAT+

(a) 2-Star counting

0 0.1 0.2 0.3 0.4

107

109

1011

1013

M
SE

Baseline
FEAT
FEAT+

(b) Triangle counting

Figure 4.10. The MSE with various σ.

0 0.1 0.2 0.3 0.4

10 2

10 1

100

M
R

E

Baseline
FEAT
FEAT+

(a) 2-Star counting

0 0.1 0.2 0.3 0.4

10 2

10 1

100

101
M

R
E

Baseline
FEAT
FEAT+

(b) Triangle counting

Figure 4.11. The MRE with various σ.

4.5.2 Experimental Results

Utility-Privacy Trade-off (Q1). We first answer Q1 by comparing the utility

of our FEAT and FEAT+ with that of Baseline when the privacy budget varies

from 1 to 6. Figures 4.4 to 4.7 show that the utility loss of all methods decreases

with an increase in ε. Our general framework FEAT significantly outperforms

Baseline in all cases, and our improved framework FEAT+ can further improve

the accuracy of FEAT.

In particular, FEAT outperforms Baseline by at least an order of 1. For instance,

for 2-star counting, Figure 4.4(b) shows that when ε = 6, FEAT owns an MSE

of 5.09 × 105 while Baseline gives an MSE of 1.45 × 1011. Similarly, for triangle

counting, Figure 4.7(a) shows that FEAT gives an MRE of only 9.53×10−4 when

ε = 4. In contrast, Baseline has an MRE of 8.27×10−1. This is because Baseline

88

4. Crypto-Assisted Differentially Private Federated Graph Analytics

uses small privacy budgets (i.e., ε/m) to perturb sensitive data, which leads to

much noise. Instead, FEAT collects noisy graphs using ε by combining PSU and

DP. The same information is collected only once, and therefore, individual privacy

is not leaked.

Another observation is that the error of FEAT+ is smaller than that of FEAT

in all cases. For example, Figure 4.5(b) shows that when ε = 6, FEAT+ only

owns an MRE of 3.86×10−5, whereas FEAT has an MRE of 2.98×10−4. Similarly,

Figure 4.6(a) shows that when ε = 3, the MSE of FEAT+ is 4.68×102 when

FEAT owns a MSE of 6.25×104. This is mainly because FEAT+ calculates graph

statistics by utilizing local true subgraphs. In contrast, the results of FEAT are

computed based on noisy graphs, which results in much utility loss. Thus, FEAT

outperforms Baseline significantly, and FEAT+ improves the utility of FEAT.

Parameter Effects (Q2). Next, we evaluate the key parameters that may

influence the overall utility of FEAT, i.e., sampling rate ρ and overlapping rate σ.

ρ determines the size of local subgraphs Gi, i ∈ [m], and the size of Gi becomes

larger as ρ increases. σ determines the number of the same edges that exist in

multiple local subgraphs.

Figures 4.8 and 4.9 show that in all cases, the MSE and MRE increase with

an increase in ρ. This is because graph analytic tasks are executed over a noisy

graph G′. The added error becomes larger as the graph size increases. We can

also observe that FEAT and FEAT+ owns better utility than Baseline and FEAT,

respectively, for all ρ.

Figures 4.10 and 4.11 show that Baseline performs the worst while FEAT+

owns the best utility over all values of the overlapping rate σ. Another interesting

observation is that the overlapping rate σ has little influence on the overall utility.

For instance, Figure 4.10(a) shows that with the increase in σ, the MSE of Baseline

increases from 1.014×1016 to 1.0442×1016. The slight growth is from multiple

perturbations of the same edge information. There are little changes in the results

of FEAT and FEAT+ over various σ. This is because the same information is

randomized and collected only once.

Execution Time (Q3). Finally, we answer the third question by evaluating the

running time over graphs with different sizes. Here, we use different sampling

rates ρ to generate multiple graphs with different scales. Figure 4.12 presents

the running time of Baseline, FEAT, and FEAT+ for various values of ρ. We

can find that the running time increases when the graph scale becomes larger.

89

4. Crypto-Assisted Differentially Private Federated Graph Analytics

0.1 0.2 0.3 0.4 0.5
100

101

102

103

104

R
un

ni
ng

 T
im

e

Baseline
FEAT
FEAT+

(a) Facebook

0.1 0.2 0.3 0.4 0.5

101

102

103

104

R
un

ni
ng

 T
im

e

Baseline
FEAT
FEAT+

(b) Wiki

Figure 4.12. Running time with various ρ.

This is because when ρ increases, there are more edges collected and computed

accordingly. Another important observation is that the running time of FEAT is

approximately 10× higher than that of Baseline. This is because the computation

of cryptographic techniques leads to additional time overhead. FEAT+ takes

more time than FEAT by about 50%. This is because additional communication

between clients and the server consumes more time. Thus, utilizing cryptographic

tools improves the utility while not leaking sensitive information but at the cost

of efficiency.

4.6 Related Works

Federated Analytics. The term “federated analytics” is first introduced by

Google in 2020 [113], which is explored in support of federated learning for Google

engineers to measure the quality of federated learning models against real-world

data. Bharadwaj et al. [114] introduces the notion of federated computation,

which is a means of working with private data at a rather large scale. Wang

et al. [115] clarify what federated analytics is and its position in literature and

then presents the motivation, application, and opportunities of federated analyt-

ics. Elkordy et al. [116] gives a comprehensive survey about federated analytics.

Nevertheless, they only focus on tabular data analytics, which totally differs from

graph analytics in our work. Roth et al. [117] introduce Mycelium for large-scale

distributed graph queries with differential privacy. Yuan et al. [118] define the

notion of graph federation for subgraph matching, where graph data sources are

temporarily federated. However, they assume that all clients are mutually in-

90

4. Crypto-Assisted Differentially Private Federated Graph Analytics

dependent, which is different from ours. Our (informal) previous work [119]∗

introduces the concept of federated graph analytics for the first time. However, it

encountered privacy leakage issues due to the potential disclosure of intersection

information between two clients.

Cross-silo Federated Learning. There exist several works related to cross-

silo federated learning [77, 92–94, 120, 121]. Huang et al. [92] propose FedAMP

that employs federated attentive message passing to facilitate the collaboration

effectiveness between clients without infringing their data privacy. Li et al. [121]

propose a practical one-shot federated learning algorithm by using the knowledge

transfer technique. Liu et al. [93] empirically show that MR-MTL is a remarkably

strong baseline under silo-specific sample-level DP. Tang et al. [94] propose an

incentive mechanism for cross-silo federated learning, addressing the public goods

feature. Zheng et al. [77] propose a one-server solution based solely on homo-

morphic encryption and a two-server protocol based on homomorphic encryption

and additive secret sharing, which are designed for contribution evaluation in

cross-silo federated learning. However, these protocols are designed for machine

learning cannot be used for graph analytics.

Differentially Private Graph Analytics. The standard way to calculate

graph statistics is through differential privacy (DP) [14, 54], which is a golden

standard in the privacy community. However, existing protocols [2, 3, 5, 7–9,110]

are designed for different scenarios and not applicable to federated graph sce-

narios. To be specific, central protocols [2, 3] rely on a trusted server to collect

the entire graph information from local users and then release accurate graph

statistics privately. Nevertheless, a centrally trusted server is amenable to pri-

vacy issues in practical such as data leaks and breaches [90, 91]. Instead, local

protocols [5,7] remove the assumption of a trusted server, and each user directly

perturbs local sensitive data. However, they cannot protect the user-client mem-

bership and faces the edge privacy issues due to the overlaps. Extended local

view (ELV)-based protocols [8,23] consider an extension of local scenarios, where

each client can see not only her 1-hop path but also her 2-hop path. Similar to lo-

cal mechanisms, ELV-based protocols fail to protect the user-client membership.

Additionally, decentralized differential privacy in [23] can protect edge privacy in

ELV but fails to do it in federated settings since overlaps of ELV are different

∗Note that [119] was not published in proceedings in accordance with the policy of the KDD
conference, cf. https://fl4data-mining.github.io/calls/.

91

4. Crypto-Assisted Differentially Private Federated Graph Analytics

from those of federated graph analytics. In a nutshell, this paper is the first work

to formulate the federated graph analytics (FGA) to our best of knowledge. Our

proposed FEAT is a general framework for various common graph analytics.

4.7 Conclusion

We made the first attempt to study federated graph analytics with privacy guar-

antee. We showed unique challenges in federated graph analytics, namely, utility

issue from the limited view and privacy issue due to overlaps. To alleviate them,

we proposed a general federated graph analytic framework FEAT, based on our

proposed differentially private set union protocol. Furthermore, we observed that

it calculates graph statistics over a noisy global graph without considering true

local subgraphs, and there is still room for improving the overall utility. To ad-

dress this issue, we introduced an improved framework FEAT+ by combining a

noisy global graph with true local subgraphs. Comprehensive experiments verify

that our proposed methods significantly outperform the baseline approaches in

various graph analytics.

92

4. Crypto-Assisted Differentially Private Federated Graph Analytics

Algorithm 13 CollectGraph: DPSU-based Graph Collection.

Input: Subgraph set G = {G1, ..., Gm}, Gi = (Vi, Ei),
Privacy budget ε

Output: Noisy global graph G′

1: Initialize: An edge domain E according to V ,
where N = |E| = n(n−1)

2

2: Server: Initialize E ′ = ∅
3: Each client Ci∈[1,m] generates a pair of keys ⟨pki, ski⟩,

where pki = gski

4: All clients jointly generate the public key:

pk =
∏m

i=1 pki = gsk1+...+skm

5: Client C1: Initialize a flag vector Y ,

Yj∈[1,N] =

{
1, Ej ∈ E1

0, Ej /∈ E1

6: Client C1: Perturb Y with RR,

Y ′
j∈[1,N] =

{
Yj w.p. eε

1+eε

1− Yj w.p. 1
1+eε

7: Client C1: Encrypt Y
′ with pk to

Enc(Y ′) = [Enc(Y ′
1), ...,Enc(Y

′
ñ)]

Send Enc(Y ′) to client C2

8: for each client Ci, i ∈ [2,m] do
9: for each bit Y ′

j , j ∈ [1, N] do
10: if Ej ∈ Ei then
11: if RR(1) == 1 then Enc(Y ′

j)← Enc(1)
12: else if RR(1) == 0 then Enc(Y ′

j)← Enc(Y ′
j)

13: else if Ej /∈ Ei then
14: if RR(0) == 1 then Enc(Y ′

j)← Enc(1)
15: else if RR(0) == 0 then Enc(Y ′

j)← Enc(Y ′
j)

16: end if
17: end for
18: end for
19: All clients jointly decrypt Enc(Y ′) with secret keys:

Y ′ ← Dec[Enc(Y ′)]

Send Y ′ to server
20: for each bit Y ′, j ∈ [1, N] do
21: if Y ′

j = 1 then E ′ ← E ′ ∪ {Ej}
22: end for
23: Server: G′ ← (V,E ′)
24: return G′

93

4. Crypto-Assisted Differentially Private Federated Graph Analytics

Algorithm 14 Overall Protocol of FEAT+.

Input: Subgraph set G = {G1, ..., Gm},
Privacy budget ε = ε1 + ε2 + ε3, sensitivity △.

Output: Query result Q′

Phase I: Global Graph Collection
1: G′ ← FEAT(G, ε1) ▷ Algorithm 12

Phase II: Local Query Collection
2: U ← PartitionNode(G, ε2) ▷ Step 1: Algorithm 15
3: for each client Ci∈[m] in C do
4: Qi ← Query(G′, Gi, Ui) ▷ Step 2: Section 4.4.3
5: Q′

i = Qi + Lap(△
ε3
) ▷ Step 3: Perturbation

6: end for
7: Server: Q′ ←

∑m
i=1Q

′
i

8: return Q′

Algorithm 15 PartitionNode: Degree-based Node Partition.

Input: Subgraph set G = {V,E} = {G1, ..., Gm},
Privacy budget ε2

Output: User partition U = {U1, ..., Um}
1: Initialize: U = {U1, ..., Um}, where Ui∈[m] = ∅
2: for each node vi in V do
3: Client Cj∈[1,m]: Compute i-th node degree di,j

Perturb d′i,j ← di,j + Lap(m
ε2
)

Send d′i,j to Server

4: Server: Compute d′i,k ← max{d′i,1, ..., d′i,m}
Obtain index k
Update Uk ← Uk ∪ {i}

5: end for
6: return U

94

4. Crypto-Assisted Differentially Private Federated Graph Analytics

Algorithm 16 k-Star Counting.

Input: Noisy global graph G′, i-th subgraph Gi

i-th user partition Ui.
Output: Number of k-stars S.
1: Initialize: d1 = d2 = 0
2: G← G′ ∪Gi

3: for each node vj in Ui do
4: for each friend vk of vj in G do
5: if edge⟨vj, vk⟩ in Gi then d1 ← d1 + 1 ▷ True degree in Gi

6: else d2 ← d2 + 1 ▷ Noisy degree in G′

7: end for
8: end for
9: p← 1

1+eε1
, d̃2 ← 1

1−2p
[d2 − np] ▷ De-bias

10: d← d1 + d̃2, S ←
(
d
k

)
11: return S

Algorithm 17 Triangle Counting.

Input: Noisy global graph G′, i-th subgraph Gi

i-th user partition Ui.
Output: Number of triangles T .
1: Initialize: T0 = T1 = T2 = T3 = 0
2: G← G′ ∪Gi

3: for each node vj in Ui do
4: for each friend vk of vj in G do
5: for each friend vl of vj in G do
6: if j < k < l then
7: if vk, vl are friends in G then
8: Initialize: e = {⟨vj, vk⟩, ⟨vj, vl⟩, ⟨vk, vl⟩}
9: if 0 edges of e in Gi then T0 ← T0 + 1
10: if 1 edges of e in Gi then T1 ← T1 + 1
11: if 2 edges of e in Gi then T2 ← T2 + 1
12: if 3 edges of e in Gi then T3 ← T3 + 1
13: end if
14: end if
15: end for
16: end for
17: end for
18: (T̃0, T̃1, T̃2)← Debias(T0, T1, T2)

19: T ← T̃0 + T̃1 + T̃2 + T3

20: return T

95

CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we focus on crypto-assisted differentially private graph analytics.

We present three works to demonstrate how cryptography can improve the trade-

off between privacy and utility in differentially private graph analytics. The

contributions in the three research topics described in this dissertation are listed

as follows:

Topic 1: Crypto-assisted differentially private degree distribution.

• We propose and study the problem of publishing the degree distribution

under Node-LDP for the first time. We give a detailed description of the

problem definition and conclude the research gap. We present an overview

of publishing the degree distribution under Node-LDP.

• We design two methods to select the projection parameter θ in the local

setting: pureLDP and crypto-assisted. Crypto-assisted method guarantees

the security of individual utility loss with cryptographic primitives, which

achieves a higher accuracy than the baseline pureLDP method.

• We design two local graph projection approaches based on different granu-

larity: node-level and edge-level. The improved edge-level method preserves

96

5. Conclusion and Future Work

more information and provides better utility than the baseline node-level

method.

• Extensive experiments on real-world graph datasets validate the correctness

of our theoretical analysis and the effectiveness of our proposed methods.

Topic 2: Crypto-assisted differentially private triangle counting.

• We propose a crypto-assisted differentially private triangle counting system

(CARGO) that (1) achieves the high-utility triangle counting of the central

model (2) without a trusted server like the local model.

• We propose a novel local projection method to reduce the sensitivity of the

triangle counting while preserving more triangles. We prioritize deleting

the edges with the least possibility of constructing triangles, which results

in preserving more triangles.

• We introduce a novel triangle counting algorithm based on an additive

secret sharing (ASS) technique. We introduce a protocol for multiplying

three secret values, which allows us to securely and accurately compute the

triangle counts while protecting sensitive neighboring information.

• We present a distributed perturbation method by combining additive secret

sharing and distributed noise generation. This partial noise is insufficient

to provide an LDP guarantee but the aggregated noise is enough to provide

a CDP protection.

• We provide a comprehensive theoretical analysis of our proposed proto-

cols, including utility, privacy, and time complexity. Our CARGO achieves

high-utility triangle counts comparable to central models, and significantly

outperforms local models by at least an order of 5 in utility.

Topic 3: Crypto-assisted differentially private federated graph ana-

lytics.

• We investigate the federated graph analytics (FGA) under DP for the first

time. By comparing with previous protocols, we conclude unique challenges

in FGA.

97

5. Conclusion and Future Work

• We present a generalized federated graph analytic framework with differen-

tial privacy (FEAT) based on our proposed DPSU protocol, which supports

a wide range of common graph statistics, e.g., subgraph counting.

• We introduce an optimized framework (FEAT+) based on our proposed

degree-based partition algorithm, which improves the overall utility by

leveraging true subgraphs.

• We verify the effectiveness of our proposed methods through extensive ex-

periments. FEAT reduces the error than baseline approach by up to an

order of 4. FEAT+ outperforms FEAT by at least an order of 1.

5.2 Future Directions

The three research topics in this thesis aim to inspire greater interest and atten-

tion in crypto-assisted differentially private graph analytics. Several promising

research avenues can be explored in future work.

• Graph Synthesis. The goal of private graph synthesis is to publish a syn-

thetic graph that is semantically similar to the original graph while satis-

fying differential privacy (DP). This approach is superior to tailored algo-

rithms because it enables arbitrary downstream graph data analysis tasks.

Previous works rely on either the central DP model or the local DP model,

resulting in a significant utility-privacy gap between CDP-based and LDP-

based differentially private graph synthesis. This motivates us to explore

how to achieve high-utility of the central model without the need for a

trusted server like the local model, by leveraging cryptographic techniques.

• Attributed Graph. Social networks encode complex relationships among

individuals (e.g., friendships, acquaintances, sexual relationships, disease

transmission), which can be sensitive. Additionally, the nodes (e.g., users)

in real-world social networks may be associated with various sensitive at-

tributes, such as age, location, or sexual preference. Most prior works have

focused primarily on the graph structure in isolation and have not provided

methods to handle richer graphs with correlated attributes. There is sig-

nificant potential to explore how cryptography can enhance differentially

private attributed graph analytics.

98

5. Conclusion and Future Work

• Dynamic Graph. Dynamic graphs better capture the temporal evolution

and properties of networks. While several differentially private mechanisms

have been proposed for static graph data mining, there are currently few

algorithms for protecting and mining dynamic data. This motivates us to

design a method for differentially private dynamic graph analytics. Further-

more, we can explore how to improve the utility of dynamic graph analytics

by combining differential privacy (DP) and cryptography.

• Benchmark on Private Graph Synthesis. Differentially private graph syn-

thesis has garnered significant attention from researchers. Generally, a

pipeline for private graph synthesis includes steps such as graph representa-

tion, perturbation, generation, and evaluation, with many candidate meth-

ods for each step. For example, a graph can be represented as an adjacency

matrix, degree information, or neighbor lists. Common perturbation mech-

anisms include the Laplace mechanism, randomized response mechanism,

and Exponential mechanism. There are various graph generator models,

such as the CL model, BTER model, and ER model. Different combina-

tions of these methods can be suitable for different cases. This motivates

us to design a benchmark for differentially private graph synthesis to yield

more interesting findings.

99

Acknowledgements

This dissertation represents not just my efforts but a journey made possible by

the invaluable support and inspiration from many. I am deeply grateful to all

who have guided and aided me along this path.

First and foremost, I would like to express my deepest gratitude to my supervi-

sors, Professor Yang Cao, Professor Masatoshi Yoshikawa, and Professor Takayuki

Ito, for their invaluable guidance, patience, and support throughout the course

of this research. Your expertise and insightful critiques have been instrumental

in shaping this work.

My sincere thanks also go to my advisors, Professor Keishi Tajima and Pro-

fessor Masayuki Abe, for their constructive feedback and encouragement at cru-

cial stages of my research. My special thanks go to Associate Professor Takao

Murakami, who is now at the Department of Interdisciplinary Statistical Mathe-

matics in the Institute of Statistical Mathematics. He provided many invaluable

comments and suggestions on my research work.

I am grateful to my colleagues and friends at Kyoto University, Hokkaido Uni-

versity, and Tokyo Institute of Technology, for their companionship and exchange

of ideas. A special word of thanks goes to the Kyoto University Division of Grad-

uate Studies SPRING Program for their financial support, without which this

research would not have been possible.

Finally, I must acknowledge the support of my family, who have provided me

with the motivation and strength needed to pursue my academic goals. Spe-

cial thanks to my wife, Mrs. Xinru Ge, for her continuous understanding and

encouragement.

Shang Liu, June 2024

100

References

[1] Xun Jian, Yue Wang, and Lei Chen. Publishing graphs under node dif-

ferential privacy. IEEE Transactions on Knowledge and Data Engineering,

2021.

[2] Xiaofeng Ding, Shujun Sheng, Huajian Zhou, Xiaodong Zhang, Zhifeng

Bao, Pan Zhou, and Hai Jin. Differentially private triangle counting in

large graphs. IEEE Transactions on Knowledge and Data Engineering,

34(11):5278–5292, 2021.

[3] Wei-Yen Day, Ninghui Li, and Min Lyu. Publishing graph degree distribu-

tion with node differential privacy. In Proceedings of the 2016 International

Conference on Management of Data, pages 123–138, 2016.

[4] Quan Yuan, Zhikun Zhang, Linkang Du, Min Chen, Peng Cheng, and

Mingyang Sun. PrivGraph: Differentially private graph data publication by

exploiting community information. In USENIX Security Symposium, 2023.

[5] Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. Locally differen-

tially private analysis of graph statistics. In 30th USENIX Security Sym-

posium (USENIX Security 21), pages 983–1000, 2021.

[6] Qingqing Ye, Haibo Hu, Man Ho Au, Xiaofeng Meng, and Xiaokui Xiao.

Lf-gdpr: A framework for estimating graph metrics with local differen-

tial privacy. IEEE Transactions on Knowledge and Data Engineering,

34(10):4905–4920, 2020.

[7] Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. Communication-

101

References

efficient triangle counting under local differential privacy. In 31st USENIX

Security Symposium (USENIX Security 22), pages 537–554, 2022.

[8] Yuhan Liu, Suyun Zhao, Yixuan Liu, Dan Zhao, Hong Chen, and Cuip-

ing Li. Collecting triangle counts with edge relationship local differential

privacy. In 2022 IEEE 38th International Conference on Data Engineering

(ICDE), pages 2008–2020. IEEE, 2022.

[9] Shang Liu, Yang Cao, Takao Murakami, and Masatoshi Yoshikawa. A

crypto-assisted approach for publishing graph statistics with node local

differential privacy. In IEEE Big Data, pages 5765–5774, 2022.

[10] Shang Liu, Yang Cao, Takao Murakami, Jinfei Liu, and Masatoshi

Yoshikawa. Cargo: Crypto-assisted differentially private triangle counting

without trusted servers. arXiv preprint arXiv:2312.12938, 2023.

[11] Mark EJ Newman. Random graphs with clustering. Physical review letters,

103(5):058701, 2009.

[12] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavt-

sev. Private analysis of graph structure. Proc. VLDB Endow.,

4(11):1146–1157, aug 2011.

[13] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differ-

ential privacy. Found. Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.

[14] Ninghui Li, Min Lyu, Dong Su, and Weining Yang. Differential privacy:

From theory to practice. Synthesis Lectures on Information Security, Pri-

vacy, & Trust, 8(4):1–138, 2016.

[15] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and

Adam Smith. Analyzing graphs with node differential privacy. In Theory

of Cryptography Conference, pages 457–476. Springer, 2013.

[16] Sofya Raskhodnikova and Adam Smith. Lipschitz extensions for node-

private graph statistics and the generalized exponential mechanism. In

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

(FOCS), pages 495–504. IEEE, 2016.

102

References

[17] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. Differen-

tially private data analysis of social networks via restricted sensitivity. In

Proceedings of the 4th conference on Innovations in Theoretical Computer

Science, pages 87–96, 2013.

[18] Qing Qian, Zhixu Li, Pengpeng Zhao, Wei Chen, Hongzhi Yin, and Lei

Zhao. Publishing graph node strength histogram with edge differential

privacy. In International Conference on Database Systems for Advanced

Applications, pages 75–91. Springer, 2018.

[19] Michael Hay, Chao Li, Gerome Miklau, and David Jensen. Accurate esti-

mation of the degree distribution of private networks. In 2009 Ninth IEEE

International Conference on Data Mining, pages 169–178. IEEE, 2009.

[20] Vishesh Karwa and Aleksandra B Slavković. Differentially private graphical

degree sequences and synthetic graphs. In International Conference on

Privacy in Statistical Databases, pages 273–285. Springer, 2012.

[21] Davide Proserpio, Sharon Goldberg, and Frank McSherry. A workflow for

differentially-private graph synthesis. In Proceedings of the 2012 ACM work-

shop on Workshop on online social networks, pages 13–18, 2012.

[22] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavt-

sev. Private analysis of graph structure. Proceedings of the VLDB Endow-

ment, 4(11):1146–1157, 2011.

[23] Haipei Sun, Xiaokui Xiao, Issa Khalil, Yin Yang, Zhan Qin, Hui Wang,

and Ting Yu. Analyzing subgraph statistics from extended local views with

decentralized differential privacy. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security, pages 703–717,

2019.

[24] Sen Zhang, Weiwei Ni, and Nan Fu. Community preserved social graph

publishing with node differential privacy. In 2020 IEEE International Con-

ference on Data Mining (ICDM), pages 1400–1405. IEEE, 2020.

[25] Chengkun Wei, Shouling Ji, Changchang Liu, Wenzhi Chen, and Ting

Wang. Asgldp: collecting and generating decentralized attributed graphs

103

References

with local differential privacy. IEEE Transactions on Information Forensics

and Security, 15:3239–3254, 2020.

[26] Christine Task and Chris Clifton. A guide to differential privacy theory in

social network analysis. In 2012 IEEE/ACM International Conference on

Advances in Social Networks Analysis and Mining, pages 411–417. IEEE,

2012.

[27] Yang Li, Michael Purcell, Thierry Rakotoarivelo, David Smith, Thilina

Ranbaduge, and Kee Siong Ng. Private graph data release: A survey.

arXiv preprint arXiv:2107.04245, 2021.

[28] Mengmeng Yang, Lingjuan Lyu, Jun Zhao, Tianqing Zhu, and Kwok-Yan

Lam. Local differential privacy and its applications: A comprehensive sur-

vey. arXiv preprint arXiv:2008.03686, 2020.

[29] John C Duchi, Michael I Jordan, and Martin J Wainwright. Local privacy

and statistical minimax rates. In 2013 IEEE 54th Annual Symposium on

Foundations of Computer Science, pages 429–438. IEEE, 2013.

[30] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya

Raskhodnikova, and Adam Smith. What can we learn privately? SIAM

Journal on Computing, 40(3):793–826, 2011.

[31] C. Wei, S. Ji, C. Liu, W. Chen, and T. Wang. Asgldp: Collecting and

generating decentralized attributed graphs with local differential privacy.

IEEE Transactions on Information Forensics and Security, 15:3239–3254,

2020.

[32] Zhan Qin, Ting Yu, Yin Yang, Issa Khalil, Xiaokui Xiao, and Kui Ren.

Generating synthetic decentralized social graphs with local differential pri-

vacy. In Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, pages 425–438, 2017.

[33] Mohamed Alie Kamara and Xudong Li. A review of order preserving en-

cryption schemes. In The International Conference on Natural Computa-

tion, Fuzzy Systems and Knowledge Discovery, pages 707–715. Springer,

2020.

104

References

[34] Anselme Tueno and Florian Kerschbaum. Efficient secure computation of

order-preserving encryption. In Proceedings of the 15th ACM Asia Confer-

ence on Computer and Communications Security, pages 193–207, 2020.

[35] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,

H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn

Seth. Practical secure aggregation for privacy-preserving machine learning.

In proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, pages 1175–1191, 2017.

[36] Qingqing Ye, Haibo Hu, Man Ho Au, Xiaofeng Meng, and Xiaokui Xiao.

Lf-gdpr: A framework for estimating graph metrics with local differential

privacy. IEEE Transactions on Knowledge and Data Engineering, 2020.

[37] Cort J Willmott and Kenji Matsuura. Advantages of the mean absolute

error (mae) over the root mean square error (rmse) in assessing average

model performance. Climate research, 30(1):79–82, 2005.

[38] Hailong Zhang, Sufian Latif, Raef Bassily, and Atanas Rountev.

Differentially-private control-flow node coverage for software usage anal-

ysis. In USENIX Security Symposium (USENIX Security), 2020.

[39] Daniel Kifer and Ashwin Machanavajjhala. No free lunch in data privacy.

In Proceedings of the 2011 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’11, page 193–204, New York, NY, USA,

2011. Association for Computing Machinery.

[40] Raluca Ada Popa, Frank H Li, and Nickolai Zeldovich. An ideal-security

protocol for order-preserving encoding. In 2013 IEEE Symposium on Secu-

rity and Privacy, pages 463–477. IEEE, 2013.

[41] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network

dataset collection. http://snap.stanford.edu/data, June 2014.

[42] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu.

Order preserving encryption for numeric data. In Proceedings of the 2004

ACM SIGMOD international conference on Management of data, pages

563–574, 2004.

105

References

[43] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-

preserving encryption revisited: Improved security analysis and alternative

solutions. In Annual Cryptology Conference, pages 578–595. Springer, 2011.

[44] Florian Kerschbaum and Axel Schröpfer. Optimal average-complexity ideal-

security order-preserving encryption. In Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security, pages

275–286, 2014.

[45] Daniel S Roche, Daniel Apon, Seung Geol Choi, and Arkady Yerukhi-

movich. Pope: Partial order preserving encoding. In Proceedings of the

2016 ACM SIGSAC Conference on Computer and Communications Secu-

rity, pages 1131–1142, 2016.

[46] Dongxi Liu and Shenlu Wang. Programmable order-preserving secure index

for encrypted database query. In 2012 IEEE Fifth International Conference

on Cloud Computing, pages 502–509, 2012.

[47] Manuel Blum and Silvio Micali. How to generate cryptographically strong

sequences of pseudorandom bits. SIAM journal on Computing, 13(4):850–

864, 1984.

[48] Yuxuan Zhang, Jianghong Wei, Xiaojian Zhang, Xuexian Hu, and Wenfen

Liu. A two-phase algorithm for generating synthetic graph under local

differential privacy. In Proceedings of the 8th International Conference on

Communication and Network Security, pages 84–89, 2018.

[49] Zach Jorgensen, Ting Yu, and Graham Cormode. Publishing attributed

social graphs with formal privacy guarantees. In Proceedings of the 2016

international conference on management of data, pages 107–122, 2016.

[50] Comandur Seshadhri and Srikanta Tirthapura. Scalable subgraph counting:

the methods behind the madness. In Companion Proceedings of The 2019

World Wide Web Conference, pages 1317–1318, 2019.

[51] Thomas Schank and Dorothea Wagner. Approximating clustering coef-

ficient and transitivity. Journal of Graph Algorithms and Applications,

9(2):265–275, 2005.

106

References

[52] TE GOLDSMITH. Assessing structural similarity of graphs. Pathfinder

Associative Networks: Studies in Knowledge Organization, pages 75–87,

1990.

[53] Chih-Hua Tai, Philip S Yu, De-Nian Yang, and Ming-Syan Chen. Privacy-

preserving social network publication against friendship attacks. In Pro-

ceedings of the 17th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 1262–1270, 2011.

[54] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differ-

ential privacy. Foundations and Trends® in Theoretical Computer Science,

9(3–4):211–407, 2014.

[55] Xi He, Ashwin Machanavajjhala, Cheryl Flynn, and Divesh Srivastava.

Composing differential privacy and secure computation: A case study on

scaling private record linkage. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, pages 1389–1406,

2017.

[56] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanava-

jjhala, and Somesh Jha. Cryptε: Crypto-assisted differential privacy on

untrusted servers. In Proceedings of the 2020 ACM SIGMOD International

Conference on Management of Data, pages 603–619, 2020.

[57] Edo Roth, Daniel Noble, Brett Hemenway Falk, and Andreas Haeberlen.

Honeycrisp: large-scale differentially private aggregation without a trusted

core. In Proceedings of the 27th ACM Symposium on Operating Systems

Principles, pages 196–210, 2019.

[58] Xiaolan Gu, Ming Li, and Li Xiong. Precad: Privacy-preserving and ro-

bust federated learning via crypto-aided differential privacy. arXiv preprint

arXiv:2110.11578, 2021.

[59] Timothy Stevens, Christian Skalka, Christelle Vincent, John Ring, Samuel

Clark, and Joseph Near. Efficient differentially private secure aggregation

for federated learning via hardness of learning with errors. In 31st USENIX

Security Symposium (USENIX Security 22), pages 1379–1395, 2022.

107

References

[60] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Lud-

wig, Rui Zhang, and Yi Zhou. A hybrid approach to privacy-preserving

federated learning. In Proceedings of the 12th ACM workshop on artificial

intelligence and security, pages 1–11, 2019.

[61] Lichao Sun and Lingjuan Lyu. Federated model distillation with noise-

free differential privacy. In Proceedings of the Thirtieth International Joint

Conference on Artificial Intelligence, IJCAI, pages 1563–1570, 2021.

[62] Congcong Fu, Hui Li, Jian Lou, and Jiangtao Cui. Dp-horus: Differentially

private hierarchical count histograms under untrusted server. In Proceedings

of the 31st ACM International Conference on Information & Knowledge

Management, pages 530–539, 2022.

[63] Nurcan Durak, Ali Pinar, Tamara G Kolda, and C Seshadhri. Degree rela-

tions of triangles in real-world networks and graph models. In Proceedings

of the 21st ACM international conference on Information and knowledge

management, pages 1712–1716, 2012.

[64] Adi Shamir. How to share a secret. Communications of the ACM,

22(11):612–613, 1979.

[65] Elaine Shi, HTH Chan, Eleanor Rieffel, Richard Chow, and Dawn Song.

Privacy-preserving aggregation of time-series data. In Annual Network &

Distributed System Security Symposium (NDSS). Internet Society., 2011.

[66] Gergely Ács and Claude Castelluccia. I have a dream!(differentially pri-

vate smart metering). In Information hiding, volume 6958, pages 118–132.

Springer, 2011.

[67] Slawomir Goryczka and Li Xiong. A comprehensive comparison of mul-

tiparty secure additions with differential privacy. IEEE transactions on

dependable and secure computing, 14(5):463–477, 2015.

[68] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. Aby2.

0: Improved mixed-protocol secure two-party computation. In USENIX

Security Symposium, pages 2165–2182, 2021.

108

References

[69] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran,

Divya Gupta, Aseem Rastogi, and Rahul Sharma. Cryptflow2: Practical 2-

party secure inference. In Proceedings of the 2020 ACM SIGSAC Conference

on Computer and Communications Security, pages 325–342, 2020.

[70] Takao Murakami and Yusuke Kawamoto. {Utility-Optimized} local differ-
ential privacy mechanisms for distribution estimation. In 28th USENIX

Security Symposium (USENIX Security 19), pages 1877–1894, 2019.

[71] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. Locally

differentially private protocols for frequency estimation. In 26th USENIX

Security Symposium (USENIX Security 17), pages 729–745, 2017.

[72] Rui Chen, Gergely Acs, and Claude Castelluccia. Differentially private

sequential data publication via variable-length n-grams. In Proceedings of

the 2012 ACM conference on Computer and communications security, pages

638–649, 2012.

[73] Vincent Bindschaedler and Reza Shokri. Synthesizing plausible privacy-

preserving location traces. In 2016 IEEE Symposium on Security and Pri-

vacy (SP), pages 546–563. IEEE, 2016.

[74] Sofya Raskhodnikova and Adam Smith. Differentially private analysis of

graphs. Encyclopedia of Algorithms, 2016.

[75] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable

privacy-preserving machine learning. In 2017 IEEE symposium on security

and privacy (SP), pages 19–38. IEEE, 2017.

[76] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M

Songhori, Thomas Schneider, and Farinaz Koushanfar. Chameleon: A hy-

brid secure computation framework for machine learning applications. In

Proceedings of the 2018 on Asia conference on computer and communica-

tions security, pages 707–721, 2018.

[77] Shuyuan Zheng, Yang Cao, and Masatoshi Yoshikawa. Secure shapley value

for cross-silo federated learning. Proceedings of the VLDB Endowment,

16(7):1657–1670, 2023.

109

References

[78] Shang Liu, Yang Cao, Takao Murakami, and Masatoshi Yoshikawa. A

crypto-assisted approach for publishing graph statistics with node local

differential privacy. In 2022 IEEE International Conference on Big Data

(Big Data), pages 5765–5774, 2022.

[79] Michael O Rabin. How to exchange secrets with oblivious transfer. Cryp-

tology ePrint Archive, 2005.

[80] Joe Kilian. Founding crytpography on oblivious transfer. In Proceedings

of the twentieth annual ACM symposium on Theory of computing, pages

20–31, 1988.

[81] Samuel Kotz, Tomasz Kozubowski, and Krzysztof Podgórski. The Laplace

distribution and generalizations: a revisit with applications to communica-

tions, economics, engineering, and finance. Number 183. Springer Science

& Business Media, 2001.

[82] Yehuda Lindell. How to simulate it–a tutorial on the simulation proof

technique. Tutorials on the Foundations of Cryptography: Dedicated to

Oded Goldreich, pages 277–346, 2017.

[83] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press,

2012.

[84] Wei Dong and Ke Yi. A nearly instance-optimal differentially private mech-

anism for conjunctive queries. In Proceedings of the 41st ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, pages 213–

225, 2022.

[85] W. Dong and K. Yi. Residual sensitivity for differentially private multi-

way joins. In SIGMOD/PODS’21: Proceedings of the 2021 International

Conference on Management of Data, 2021.

[86] Songlei Wang, Yifeng Zheng, Xiaohua Jia, Qian Wang, and Cong Wang.

Mago: Maliciously secure subgraph counting on decentralized social graphs.

IEEE Transactions on Information Forensics and Security, 2023.

[87] Yulin Wu and Lanxiang Chen. Structured encryption for triangle counting

on graph data. Future Generation Computer Systems, 145:200–210, 2023.

110

References

[88] Dawei Cheng, Fangzhou Yang, Sheng Xiang, and Jin Liu. Financial time

series forecasting with multi-modality graph neural network. Pattern Recog-

nition, 121:108218, 2022.

[89] Stephanie J Dancer. Reducing the risk of covid-19 transmission in hos-

pitals: focus on additional infection control strategies. Surgery (Oxford),

39(11):752–758, 2021.

[90] Nelson Novaes Neto, Stuart Madnick, Anchises Moraes G De Paula, and

Natasha Malara Borges. Developing a global data breach database and the

challenges encountered. JDIQ, 13(1):1–33, 2021.

[91] Brandon Gibson, Spencer Townes, Daniel Lewis, and Suman Bhunia. Vul-

nerability in massive api scraping: 2021 linkedin data breach. In IEEE

CSCI, 2021.

[92] Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu,

Jian Pei, and Yong Zhang. Personalized cross-silo federated learning on

non-iid data. In Proc. AAAI, volume 35, pages 7865–7873, 2021.

[93] Ken Liu, Shengyuan Hu, Steven Z Wu, and Virginia Smith. On privacy

and personalization in cross-silo federated learning. Advances in Neural

Information Processing Systems, 35:5925–5940, 2022.

[94] Ming Tang and Vincent WS Wong. An incentive mechanism for cross-silo

federated learning: A public goods perspective. In IEEE INFOCOM, pages

1–10, 2021.

[95] Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and Dongdai Lin. Linear

private set union from {Multi-Query} reverse private membership test. In

USENIX Security Symposium, pages 337–354, 2023.

[96] Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du, and Dawu Gu.

Shuffle-based private set union: Faster and more secure. In 31st USENIX

Security Symposium (USENIX Security 22), pages 2947–2964, 2022.

[97] Wenli Wang, Shundong Li, Jiawei Dou, and Runmeng Du. Privacy-

preserving mixed set operations. Information Sciences, 525:67–81, 2020.

111

References

[98] Changyu Dong and Grigorios Loukides. Approximating private set

union/intersection cardinality with logarithmic complexity. IEEE Trans-

actions on Information Forensics and Security, 12(11):2792–2806, 2017.

[99] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang

Liu. {BatchCrypt}: Efficient homomorphic encryption for {Cross-Silo}
federated learning. In USENIX ATC, pages 493–506, 2020.

[100] Yang Liu, Yan Kang, Chaoping Xing, Tianjian Chen, and Qiang Yang. A

secure federated transfer learning framework. IEEE Intelligent Systems,

35(4):70–82, 2020.

[101] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Cali-

brating noise to sensitivity in private data analysis. In Springer TCC, pages

265–284, 2006.

[102] Whitfield Diffie and Martin E Hellman. New directions in cryptography.

In Democratizing Cryptography: The Work of Whitfield Diffie and Martin

Hellman, pages 365–390. 2022.

[103] Elaine B Barker, William C Barker, William E Burr, W Timothy Polk, and

Miles E Smid. Sp 800-57. recommendation for key management, part 1:

General (revised), 2007.

[104] Darrel Hankerson and Alfred Menezes. Elliptic curve cryptography. In

Encyclopedia of Cryptography, Security and Privacy, pages 1–2. Springer,

2021.

[105] Sivakanth Gopi, Pankaj Gulhane, Janardhan Kulkarni, Judy Hanwen Shen,

Milad Shokouhi, and Sergey Yekhanin. Differentially private set union. In

International Conference on Machine Learning, pages 3627–3636. PMLR,

2020.

[106] Kunho Kim, Sivakanth Gopi, Janardhan Kulkarni, and Sergey Yekhanin.

Differentially private n-gram extraction. Advances in Neural Information

Processing Systems, 34:5102–5111, 2021.

[107] Ricardo Silva Carvalho, Ke Wang, and Lovedeep Singh Gondara. Incorpo-

rating item frequency for differentially private set union. In Proc. AAAI,

volume 36, pages 9504–9511, 2022.

112

References

[108] XUE Qiao, ZHU Youwen, and Xingxin LI Jian WANG. Locally differen-

tially private distributed algorithms for set intersection and union. Infor-

mation Sciences, 64(219101):1–219101, 2021.

[109] Stanley L Warner. Randomized response: A survey technique for eliminat-

ing evasive answer bias. Journal of the American Statistical Association,

60(309):63–69, 1965.

[110] Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. Differentially

private triangle and 4-cycle counting in the shuffle model. In ACM CCS,

2022.

[111] Kalyan Das, Jiming Jiang, and JNK Rao. Mean squared error of empirical

predictor. 2004.

[112] Tron Foss, Ingunn Myrtveit, and Erik Stensrud. Mre and heteroscedastic-

ity: An empirical validation of the assumption of homoscedasticity of the

magnitude of relative error. In Proc. ESCOM, pages 157–164, 2001.

[113] D. Ramage and S. Mazzocchi. Federated analytics: Collaborative data

science without data collection. https://ai.googleblog.com/2020/05/

federated-analytics-collaborative-data.html, 2020.

[114] Akash Bharadwaj and Graham Cormode. An introduction to federated

computation. In Proceedings of the 2022 International Conference on Man-

agement of Data, pages 2448–2451, 2022.

[115] Dan Wang, Siping Shi, Yifei Zhu, and Zhu Han. Federated analytics: Op-

portunities and challenges. IEEE Network, 36(1):151–158, 2021.

[116] Ahmed Roushdy Elkordy, Yahya H Ezzeldin, Shanshan Han, Shantanu

Sharma, Chaoyang He, Sharad Mehrotra, Salman Avestimehr, et al. Feder-

ated analytics: A survey. APSIPA Transactions on Signal and Information

Processing, 12(1), 2023.

[117] Edo Roth, Karan Newatia, Yiping Ma, Ke Zhong, Sebastian Angel, and

Andreas Haeberlen. Mycelium: Large-scale distributed graph queries with

differential privacy. In Proc. SOSP, pages 327–343, 2021.

113

References

[118] Ye Yuan, Delong Ma, Zhenyu Wen, Zhiwei Zhang, and Guoren Wang. Sub-

graph matching over graph federation. Proceedings of the VLDB Endow-

ment, 15(3):437–450, 2021.

[119] Shang Liu, Yang Cao, and Masatoshi Yoshikawa. Federated graph ana-

lytics with differential privacy. In International Workshop on Federated

Learning for Distributed Data Mining, 2023 (informal paper not published

in proceedings, cf., https://fl4data-mining.github.io/calls/.

[120] Yansheng Wang, Yongxin Tong, Dingyuan Shi, and Ke Xu. An efficient

approach for cross-silo federated learning to rank. In 2021 IEEE 37th Inter-

national Conference on Data Engineering (ICDE), pages 1128–1139. IEEE,

2021.

[121] Qinbin Li, Bingsheng He, and Dawn Song. Practical one-shot federated

learning for cross-silo setting.

114

Selected List of Publications

• Journals

[1] Shang Liu, Yang Cao, Takao Murakami, Weiran Liu, Seng Pei Liew,

Tsubasa Takahashi, Jinfei Liu, Masatoshi Yoshikawa. Federated Graph

Analytics with Differential Privacy. arXiv preprint, May 2024 (Sub-

mitted to IEEE Transactions on Dependable and Secure Computing).

• International Conferences and Workshops

[2] Shang Liu, Yang Cao, Takao Murakami, Masatoshi Yoshikawa. A

crypto-assisted approach for publishing graph statistics with node lo-

cal differential privacy. Proceedings of 2022 IEEE International Con-

ference on Big Data (Big Data 2022), pp. 5765-5774, Osaka, Japan,

December 2022.

[3] Shang Liu, Yang Cao, Masatoshi Yoshikawa. Federated Graph Ana-

lytics with Differential Privacy. International Workshop on Federated

Learning for Distributed Data Mining (KDD FL4Data-Mining 2023),

Long Beach, USA, August 2023.

[4] Shang Liu, Yang Cao, Takao Murakami, Jinfei Liu, Masatoshi Yoshikawa.

CARGO: Crypto-Assisted Differentially Private Triangle Counting with-

out Trusted Servers. Proceedings of 40th IEEE International Confer-

ence on Data Engineering (ICDE 2024), Utrecht, Netherlands, May

2024.

115

