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Abstract:  

Despite its ever-growing use, the sensitivity to adversarial attacks and random noise is a 
significant drawback of neural networks, posing a challenge to its deployment in safety-
critical areas, such as medical diagnosis, and low-cost devices. Consequently, understanding 
and quantifying their robustness has attracted much attention. Concerning quantification, in 
one extreme, the worst-case approach gives a region in the input space that is safe against 
any adversarial perturbation, that is, a worst-case region. On the other extreme, the average-
case approach describes robustness against random perturbations. While the former can 
yield too pessimistic certifications, the latter often fails to give a tight guarantee of 
robustness. Studies have attempted to bridge these two extremes, among them, Randomized 
Smoothing became prominent by certifying a worst-case region of a classifier subjected to 
input noise. In its original form, used in quantification of image classification robustness, the 
radius of the region certified by Randomized Smoothing scales with the input noise standard 
deviation, and requires an estimate of the correct classification probability with confidence 
intervals. This quantification suffers from a trade-off: for small variance one needs an 
exponentially larger sample size to obtain valid certifications, which is impractical, while for 
large variance there is a drop in the classifier’s generalization. 

In Chapter 2, inspired by the smoothed analysis of algorithmic complexity, which bridges the 
worst-case and average-case analyses of algorithms, we provide a novel theoretical 
framework for robustness analysis of classifiers, which we name Smoothed Robustness 
Analysis. We first present it in its general form, then demonstrate how to use it to obtain the 
worst-case, average-case, and Randomized Smoothing analyses as special cases. 

In Chapter 3, we use the framework to propose a novel robustness analysis based on the 
classification margin, i.e., the difference between the largest incorrect and correct outputs. 
This approach works even in the small noise regime and thus provides a more confident 
robustness certification than Randomized Smoothing. To validate the approach, we evaluate 
the robustness of Lipschitz constrained fully connected and convolutional neural networks on 
the MNIST and CIFAR-10 datasets, respectively, by maximizing the deterministic margin, the 
expected margin, and the Randomized Smoothing certified radii, and we find that it indeed 
improves both adversarial and noise robustness.  

In the experiments from Chapter 3 we used closed form estimates of the expected margin and 
Randomized Smoothing certified radii as losses, which are valid when using orthogonal 



layers. However, the computational overhead of orthogonal layers hinders them impractical 
to larger neural networks architecture, required for more complex datasets. In Chapter 4, we 
discuss how to overcome these limitations and propose a practical approach for expected 
margin maximization. 

Among safety-critical applications that benefit from robust classifiers are healthcare related 
ones, in which the wellbeing of individuals depends on the classifier’s performance. In 
Chapter 5, we tackled the problem of detecting pain in Japanese macaques (Macaca fuscata) 
via single frame facial features. Due to their competitive behavior, macaques often hide any 
signs of weakness, making it difficult for veterinarians to know when medical intervention is 
needed. Despite the small sample size, with only 21 individuals, we found the finetuned 
ResNet50 able to generalize relatively well to individuals not presented during training, with 
best accuracy of 64%, and best precision and recall of pain classification, the most safety-
critical class, of 61% and 69%, respectively. 


