SPHERICAL CONVEX BODY OF CONSTANT WIDTH AND ITS APPROXIMATION

HUHE HAN

1. Basic definitions

Throughout this note, let \mathbb{S}^n denote the unit sphere of the (n + 1)-dimensional Euclidean space \mathbb{R}^{n+1} . For any given point P of \mathbb{S}^n , we denote by H(P) the *hemisphere* whose center is P, namely,

$$H(P) = \{ Q \in \mathbb{S}^n \mid P \cdot Q \ge 0 \}.$$

Here the dot in the center stands for the scalar product of P, Q in \mathbb{R}^{n+1} . A nonempty subset W of \mathbb{S}^n is *hemispherical* if there exists a point P of \mathbb{S}^n such that the intersection set $W \cap H(P)$ is the empty set. A hemispherical set W of \mathbb{S}^n is said to be *spherical convex* if the arc PQ between any two points $P, Q \in W$ lies in the W. Here

$$PQ = \left\{ \frac{tP + (1-t)Q}{|| tP + (1-t)Q ||} \in \mathbb{S}^n \mid 0 \le t \le 1 \right\}.$$

Denote the boundary of W is denoted by ∂W . A spherical convex set W of \mathbb{S}^n is said to be *spherical convex body* if W has an interior point and closed. For any subset W of \mathbb{S}^n , the *spherical polar set* of W, denoted by W° , is the following set,

$$\bigcap_{P \in W} H(P).$$

For any non-empty closed hemispherical subset $W \subset \mathbb{S}^n$, the equality s-conv $(W) = (s-conv(W))^{\circ\circ}$ holds ([15]), where s-conv(W) is the *spherical convex hull of* W, that is, the smallest spherical convex body contains W. The *diameter* of a spherical convex body W is defined by

$$\max\{|PQ| \mid P, Q \in W\}.$$

A spherical convex body W is said to be *constant diameter* τ , if the diameter of K is τ , and for every point $P \in \partial W$ there exists a point Q of ∂W such that $|PQ| = \tau$ ([12]). We say a hemisphere H(Q) supports W at P if W is a subset of H(Q) and P is a point of $\partial W \cap \partial H(Q)$. The hemisphere H(Q) as defined above is called a supporting hemisphere of W at P. For any two points P, Q of \mathbb{S}^n , the intersection

$$H(P) \cap H(Q)$$

is called a *lune*, where $P \neq -Q$. The *thickness* of lune $H(P) \cap H(Q)$ is the real number $\pi - |PQ|$, denoted by $\Delta(H(P) \cap H(Q))$. Namely,

$$\Delta(H(P) \cap H(Q)) = \pi - \mid PQ \mid.$$

²⁰¹⁰ Mathematics Subject Classification. 52A30.

Key words and phrases. Constant width, approximation, spherical convex body, spherical polytope, Wulff shape, self-dual Wulff shapes.

It is clear that thickness of any lune is greater than 0 and less than π . Let H(P) be a supporting hemisphere of a spherical convex body W. The width of W with respect to H(P) is defined by ([9])

width_{H(P)}(K) = min{ $\Delta(H(P) \cap H(Q)) \mid W \subset H(Q)$ }.

The minimum width of W is called *thickness of* W, denoted by ΔW . Following [9], a spherical convex body W is said to be *of constant width*, if all widths of W with respect to any supporting hemispheres H(P) are equal; and a convex body W of \mathbb{S}^n is said to be *reduced* if $\Delta(X) < \Delta(W)$ for every convex body X properly contained in W.

2. Some results

2.1. Width of spherical convex bodies.

Lemma 2.1 ([15]). The subset \mathcal{P} is a spherical polytope if and only if \mathcal{P}° is a spherical polytope.

Lemma 2.2 ([12]). Every spherical convex body of constant width smaller than $\pi/2$ on S^n is strictly convex.

Lemma 2.3 ([8]). Let C be a spherical convex body in S^n , and $0 < \tau < \pi$. The following two statements are equivalent:

- (1) C is of constant width τ ;
- (2) C° is of constant width $\pi \tau$.

An alternative proof of Lemma 2.3 in the case of \mathbb{S}^2 is given in [14].

Theorem 1 ([8, 13]). Let C be a spherical convex body in S^n , and $0 < \tau < \pi$. The following two statements are equivalent:

- (1) C is of constant diameter τ ;
- (2) C is of constant width τ .

Then by Theorem 1 and Lemma 2.3 we have the following:

Corollary 2.1 ([8]). Let C be a spherical convex body in \mathbb{S}^n , and $0 < \tau < \pi$. The following two propositions are equivalent:

- (1) C is of constant diameter τ ;
- (2) C° is of constant diameter $\pi \tau$.

We say a spherical convex body C is *self-dual* if $C = C^{\circ}$. A characterization of self-dual spherical convex body is given as follows:

Theorem 2 ([6]). Let C be a spherical convex body. Then the following two statements are equivalent:

- (1) C is self dual;
- (2) C is of constant width $\pi/2$.

Let \mathcal{P} be a spherical polytope. By Lemma 2.4, its dual \mathcal{P}° is a spherical polytope. By Lemma 2.3, if \mathcal{P} is of constant width τ if and only if \mathcal{P}° is of constant width $\pi - \tau$ for any $0 < \tau < \pi$. Then by Lemma 2.2, we have the following fact:

Lemma 2.4 ([2]). Let \mathcal{P} be a hemispherical convex polytope of constant width τ . Then $\tau = \pi/2$. Then by Lemma 2.4, Theorem 2 and Theorem 1, we know that the condition $\pi/2$ of Theorem 2 is unnecessary if \mathcal{P} is a convex polytope:

Theorem 3 ([2]). Let Wulff shape \mathcal{P} be a spherical convex polytope. Then the following there statements are equivalent:

- (1) \mathcal{P} is self-dual;
- (2) \mathcal{P} is of constant width spherical convex body;
- (3) \mathcal{P} is of constant width spherical convex body.

A Problem 2.7 from [11]: "Do there exist reduced spherical *n*-dimensional polytopes (possibly some simplices?) on \mathbb{S}^n , where $n \geq 3$, different from the $1/2^n$ part of \mathbb{S}^n ?".

An affirmative answer (in the case n = 3): Let Q be an interior point of the spherical convex hull of $\{P_1, P_2, P_3, -N\}$ of \mathbb{S}^3 . Set

$$Q_i = \partial H(Q) \cap NP_i, \quad i = 1, 2, 3.$$

Then the spherical polytope

$$\mathcal{P} = s\text{-conv}\{Q_1, Q_2, Q_3, P_1, P_2, P_3, Q\}$$

is of constant width $\pi/2$ (see the proof in general case in [2]).

2.2. Approximation of spherical convex bodies of constant width.

Theorem 4 ([10]). For any spherical convex body $C \subset S^2$ of constant width $\tau < \pi/2$, and for any $\varepsilon > 0$ there exists a body C_{ε} of constant width $\Delta(C) = \Delta(C_{\varepsilon})$ whose boundary consists only of arcs of circles of radius $\Delta(C)$ such that

$$h(C, C_{\varepsilon}) \leq \varepsilon$$

where $h(C_1, C_2)$ means the Hausdorff distance between C_1 and C_2 .

In [4], applying the fact that spherical dual transform is an isometry ([7]) and the relationships between boundary of C and its dual obtains a counterpart result of Theorem 4 as follows:

Theorem 5 ([4]). For any spherical convex body $\widetilde{C} \subset S^2$ of constant width $\tau > \pi/2$, and for any $\varepsilon > 0$ there exists a body $\widetilde{C}_{\varepsilon}$ of constant width τ whose boundary consists only of arcs of circles of radius $\tau - \frac{\pi}{2}$ and great circle arcs, such that

$$h(\widetilde{C}, \widetilde{C}_{\varepsilon}) \le \varepsilon,$$

where h is the Hausdorff distance.

Notice that the spherical convex body of C in Theorem 4 is of constant width $\tau < \pi/2$ and the spherical convex body of C in Theorem 5 is of constant width $\tau > \pi/2$. For the remaining case (the spherical convex body C of $\pi/2$), we have a conjecture as follows.

Conjecture: Any spherical convex body of constant width $\pi/2$ can be approximated by a sequence of spherical convex polytopes of constant width $\pi/2$ ([4]).

Since a polytope \mathcal{P} is of constant width τ , then $\tau = \pi/2$ (Lemma 2.4). This means any spherical convex body of constant width $\tau \neq \pi/2$ can not be approximated by a sequence of spherical convex polytopes of constant width τ .

HUHE HAN

3. Applications to Wulff shapes

Let $\gamma : \mathbb{S}^n \to \mathbb{R}_+$ be a continuous function, where \mathbb{R}_+ is the set consisting of positive real numbers. Then the *Wulff shape* associated with the function γ , denoted by \mathcal{W}_{γ} , is defined by

$$\bigcap_{\theta \in \mathbb{S}^n} \Gamma_{\gamma,\theta}.$$

Here $\Gamma_{\gamma,\theta}$ is the half space determined by the given continuous function γ and $\theta \in \mathbb{S}^n$,

$$\Gamma_{\gamma,\theta} = \{ x \in \mathbb{R}^{n+1} \mid x \cdot \theta \le \gamma(\theta) \}.$$

By definition, Wulff shape is a convex body, namely, convex, compact and contains the origin of \mathbb{R}^{n+1} as an interior point. Conversely, for any convex body W contains the origin of \mathbb{R}^{n+1} as an interior point, there exits a continuous function $\gamma : \mathbb{S}^n \to \mathbb{R}_+$ such that $\mathcal{W}_{\gamma} = W$. For more details in Wulff shapes, see for instance [1, 3, 5]. Let $Id : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1} \times \{1\} \subset \mathbb{R}^{n+2}$ be the mapping defined by

$$Id(x) = (x,1)$$

Let $N = (0, \ldots, 0, 1) \in \mathbb{R}^{n+2}$ be the north pole of \mathbb{S}^{n+1} , and let $\mathbb{S}_{N,+}^{n+1}$ denote the north open hemisphere of \mathbb{S}^{n+1} ,

$$\mathbb{S}_{N,+}^{n+1} = \mathbb{S}^{n+1} \setminus H(-N) = \{ Q \in \mathbb{S}^{n+1} \mid N \cdot Q > 0 \}.$$

Let $\alpha_N : \mathbb{S}_{N,+}^{n+1} \to \mathbb{R}^{n+1} \times \{1\}$ be the central projection relative to N, defined by

$$\alpha_N(P_1, \dots, P_{n+1}, P_{n+2}) = \left(\frac{P_1}{P_{n+2}}, \dots, \frac{P_{n+1}}{P_{n+2}}, 1\right).$$

We call the spherical convex body $\widetilde{W}_{\gamma} = \alpha^{-1}(Id(\mathcal{W}_{\gamma}))$ is the spherical Wulff shape of \mathcal{W}_{γ} . The Wulff shape

$$Id^{-1} \circ \alpha_N \big((\alpha_N^{-1} \circ Id(\mathcal{W}_{\gamma}))^{\circ} \big).$$

is called *dual Wulff shape of* W_{γ} , denoted by $\mathcal{D}W_{\gamma}$. We call a Wulff shape \mathcal{W} is a *self-dual* if $\mathcal{W} = \mathcal{D}\mathcal{W}$, namely, \mathcal{W} and its dual Wulff shape $\mathcal{D}\mathcal{W}$ are exactly the same convex body. By Theorem 1, Lemma 2.3 and Corollary 2.1, we have the following.

Corollary 3.1 ([8]). Let $\gamma : \mathbb{S}^n \to \mathbb{R}_+$ be a continuous function. Suppose that the spherical Wulff shape $\widetilde{W}_{\gamma} = \alpha_N^{-1} \circ Id(\mathcal{W}_{\gamma})$ of \mathcal{W}_{γ} is of constant width. Then

- (1) $\Delta(\widetilde{W}_{\gamma}) + diam (\widetilde{W}_{\gamma}^{\circ}) = \pi,$
- (2) $\Delta(\widetilde{W}_{\gamma}) + \Delta(\widetilde{W}_{\gamma}^{\circ}) = \pi,$
- (3) $diam(\widetilde{W}_{\gamma}) + \Delta (\widetilde{W}_{\gamma}^{\circ}) = \pi,$
- (4) $diam(W_{\gamma}) + diam(W_{\gamma}^{\circ}) = \pi$,

where $\Delta(C)$ and diam(C) are the width and the diameter of spherical convex body C in S^n , respectively.

A characterization of self-dual Wulff shape is given as follows.

Proposition 3.1 ([6]). Let $\gamma : \mathbb{S}^n \to \mathbb{R}_+$ be a continuous function. Then \mathcal{W}_{γ} is a self-dual Wulff shape if and only if its spherical Wulff shape is of constant width $\pi/2$, namely, the spherical convex body $\alpha_N^{-1} \circ Id(\mathcal{W}_{\gamma})$ is of constant width $\pi/2$.

By Theorem 1, we have the following:

Corollary 3.2 ([8]). Let $\gamma : \mathbb{S}^n \to \mathbb{R}_+$ be a continuous function. Then \mathcal{W}_{γ} is a self-dual Wulff shape if and only if its spherical Wulff shape is of constant diameter $\pi/2$, namely, the spherical convex body $\alpha_N^{-1} \circ Id(\mathcal{W}_{\gamma})$ is of constant diameter $\pi/2$.

By Theorem 3, we have the following:

Theorem 6 ([2]). Let Wulff shape W_{γ} be a convex polytope. Then the following statements are equivalent:

- (1) the Wulff shape W_{γ} is self-dual;
- (2) the spherical Wulff shape of W_{γ} is constant width;
- (3) the spherical Wulff shape of W_{γ} is constant diameter.

References

- [1] F. Morgan, The cone over the Clifford torus in \mathbb{R}^4 in Φ minimizing, Math. Ann., **289** (1991), 341-534.
- [2] H. Han, Self-dual polytope and self-dual smooth Wulff shape, to appear in Results in Mathematics.
- [3] H. Han, Maximum and minimum of convex integrands, Hokkaido Mathematical Journal, 52 (2023), 381–399.
- [4] H. Han, Behavior of convex integrand at apex of its Wulff shape, arXiv:2310.09710 (2023).
- [5] H. Han and T. Nishimura, Strictly convex Wulff shapes and C¹ convex integrands, Proc. Amer. Math. Soc., 145 (2017), 3997–4008.
- [6] H. Han and T. Nishimura, Self-dual Wulff shapes and spherical convex bodies of constant width π/2, J. Math. Soc. Japan., 69 (2017), 1475–1484.
- [7] H. Han and T. Nishimura, The spherical dual transform is an isometry for spherical Wulff shapes, Studia Math. 245, (2019), 201–211.
- [8] H. Han and D. Wu, Constant diameter and constant width of spherical convex bodies, preprint (available from arXiv:1905.09098v2.)
- [9] M. Lassak, Width of spherical convex bodies, Aequationes Math., 89 (2015), 555–567.
- [10] M. Lassak, Approximation of spherical convex bodies of constant width and reduced bodies, J. Convex Analysis, 29 (2022), 921–928.
- [11] Lassak M.: Spherical Geometry A survey on width and thickness of convex bodies, In: Papadopoulos, A. (eds) Surveys in Geometry I. Springer, Cham, (2022)
- [12] M. Lassak and M. Musielak, Spherical bodies of constant width, Aequationes Math., 92 (2018), 627–640.

- [13] M. Lassak, When a spherical body of constant diameter is of constant width?, Aequat. Math., 94 (2020), 393–400.
- [14] M. Musielak, Covering a reduced spherical body by a disk, arXiv:1806.04246.
- [15] T. Nishimura and Y. Sakemi, *Topological aspect of Wulff shapes*, J. Math. Soc. Japan, **66** (2014), 89–109.

College of Science, Northwest Agriculture and Forestry University, China $\mathit{Email}\ address: \texttt{han-huhe@nwafu.edu.cn}$