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1 Introduction 

According to the Kolmogorov theory [13], energy dissipation in inviscid flows is closely 
related to 3D turbulence and we expect that energy dissipating solutions of the 3D Euler 
equations could describe 3D turbulent flows. Onsager conjectured that weak solutions 
of the 3D Euler equations acquiring a Holder continuity with the order greater than 1/3 
conserve the energy, and the energy dissipation could occur when the order is less than 1/3 
[7, 19, 20]; Onsager's conjecture has been proven mathematically [2, 3, 5]. For 2D inviscid 
flows, the Kraichnan-Leith-Batchelor theory [1, 14, 15] indicates that two inertial ranges 
corresponding to a backward energy cascade and a forward enstrophy cascade appear in 
2D turbulent flows. That is to say, 2D turbulent flows are characterized by conservation 
of the energy and dissipation of the enstrophy. In this work, we study energy conservation 
in inviscid flows by introducing the filtered-Euler equations that is a regularized model of 
the Euler equations. 

Motions of incompressible and inviscid flows are often described by the Euler equations: 

8tu + (u · 'v)u + 'vp = 0, 'v · u = 0, (1.1) 

where u = u(x, t) = (u1(x, t), u2 (x, t)) is the fluid velocity field and p = p(x, t) is the 
scalar pressure. A definition of a classical weak solution for (1.1) with u(x, 0) = u0 (x) is 
as follows, see [6]. 

Definition 1.1. A velocity field u E £ 00 (0, T; Lf0 c(l~.2)) vanishing at infinity is a weak 
solution of (1.1) with initial data u 0 provided that 

(i) for any vector w E C~(ffi.2 x (0, T)) with 'v • w = 0, 

!. { ( at w · u + 'v'lF : u ® u) dxdt = 0, 
JW!.2x(O,T) 

where v ® v = (viv1), 'vW = (81'1/Ji) and A: B = I:i,j aijbij, 

(ii) for any scalar 'ljJ E C~(ffi.2 x (0, T)), JJJR2x(O,T) 'v'ljJ · udxdt = 0, 

(iii) u E Lip([0, T]; H1~f(IR2)) for some L > 0 and u(•, 0) = uo(·) in H1~f(IR2). 
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We introduce vorticity defined by w := curl u = 8x1 u2 -8x2 u1 . Taking the curl of (1.1), 
we obtain the vorticity form of (1.1): 

8tw + (u · v')w = 0 (1.2) 

with initial vorticity w0 := curl u 0 . The velocity field u is recovered from w via the 
Biot-Savart law: 

u(x, t) = (K * w) (x, t) := f K(x - y)w(y, t)dy, 
J.JR2 

where K is the singular kernel defined by 

1 XJ_ 
K(x) := v'-1G(x) = ---

27r lxl2, 
1 

G(x) := - log lxl. 
27r 

(1.3) 

Here, we have used the notations v7-1 = (-8x2 , BxJ and x-1 = (-x2 , x1). In this paper, 
we treat weak solutions of (1.2) with w0 E L1 (JR.2) n V'(JR.2), p > 1; the existence of a 
global weak solution has been established for 1 < p :::;: oo and the uniqueness holds only 
for p = oo [6, 18, 21]. As it is mentioned in [17], a weak solution for w0 E L1 (JR.2) n V'(JR.2), 

p 2: 4/3 satisfies (1.2) in the following sense. 

!. f (8t7/J(x, t) + v'1j;(x, t) · u(x, t)) w(x, t)dxdt = O 
JJR2x(O,T) 

for any 7/J E C'/:' (JR.2 x (0, T)). For a weak solution of (1.2), we consider the kinetic energy, 

1 J 2 2 lu(x, t)I dx, (1.4) 

where u is given by (1.3), though (1.4) is not finite on JR.2 except for specific vorticity, 
see [6] for an example. Cheskidov et al. [4] have shown that a weak solution of the 2D 
Euler equations on the flat torus 11'2 , for which (1.4) is finite, conserves the energy for 
w0 E L312 (11'2) by using a spatial mollification. They have also shown energy conservation 
for the weak solution obtained by an inviscid limit of the 2D Navier-Stokes equations 
for w0 E LP('Jl.'2 ), p > 1. In this paper, we consider another regularization of the Euler 
equations, which we call the filtered-Euler equations, and show energy conservation on 
JR.2 in the limit of the regularization parameter. Although the energy for the filtered 
inviscid model is still infinite, we formally extract a finite time-dependent term and see 
the convergence of its time-derivative. We also see that the weak solution of the 2D 
filtered-Euler equations converges weakly to a weak solution of the 2D Euler equations 
and the limit satisfies a local energy balance. 

2 The filtered-Euler equations 

The filtered-Euler equations are given by 

8tvc: + (uc: · v')vc: - (v'vc:f ·Uc:+ v'pc: = 0, y' ·Ve:= 0, (2.1) 
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where v" and p" denote the velocity field and the generalized pressure, respectively. An
other field u" is a spatially filtered velocity of v", that is, 

u"(x, t) = (h" * v") (x, t), h"(x) := : 2 h (~) , c > 0, (2.2) 

in 2D case. As for the derivation of the filtered-Euler equations, we consider the Hamil
tonian structure with the Hamiltonian, 

! { v"(x). u"(x)dx, 
2 Jffi.2 

and the Lagrangian flow map rf associated with u": 

Btrf(x, t) = u" (r{(x, t), t), r{(x, 0) = x. (2.3) 

Then, the filtered Euler equations arise from an application of Hamilton's principle, see 
[8, 12] for the details. Here, h E L1 (IR2), which we call the filter function, is a radial 
function satisfying Jffi.2 h(x)dx = l. For simplicity, we assume h E CJ(IR2 \ {0}): a 
continuously differentiable function that vanishes at infinity and may have a singularity 
at the origin. 

Note that, considering specific filter functions, we obtain two well-known regulariza
tions: the Euler-o: model and the vortex blob model, see [9, 12]. Indeed, the Euler-o: 
equations are derived by considering the filter function, 

h"(x) = - 1-Ko (l:?.l), 
21rc2 f 

where K 0 denotes the modified Bessel function of the second kind. It is important to 
remark that K 0 has a singularity at the origin like K 0 (r) ~ - log r as r --+ 0 and decays 
exponentially. A remarkable property of the Euler-o: model is that the filtered velocity u" 
is written by u" = (1 - c2~)-1v 0 • Thus, the filter function h" is a fundamental solution 
for the operator 1 - c2 ~- Since v" is explicitly expressed by u", we find the following 
equations for u". 

which are known as the Euler-o: equations (replace f with o:). In the vortex blob model, 
the filter functions is given by 

h"(x) = - 1 1jJ (l:?.l) , 
21rc2 c 

2 
1/J(r) := (r2 + 1 )2 

Since the filter function in the vortex blob model is a bounded function and decays 
algebraically, it is less singular than the Euler-o: model. 

Similarly to the Euler equations, taking the curl of (2.1) with the incompressible con
dition, we obtain the equation for q" := curl v", 

K" := K* h". (2.4) 
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Note that the Biot-Savart law for the filtered vorticity ws := curl us gives us = K * ws 
and we have v' • us = 0 and ws = hs * qs. The preceding study [9] has shown that the 2D 
filtered-Euler equations have a unique global weak solution for q0 E M(IR2 ), the space of 
finite Radon measures on IR2 , under certain conditions for the filter function: 

Theorem 2.1. [9] Suppose that h E CJ(IR2 \ {0}) satisfies 

Then, for any q0 E M(IR2), there exists a unique global weak solution of (2.4) and (2.3) 
such that 

us E C([0, T]; Co(IR2)), (2.5) 

where I§ denotes the group of all homeomorphisms of IR2 preserving the Lebesgue measure 
and Cw does the weak continuity. 

The assumption in Theorem 2.1 indicates that the filter function h may have a singu
larity such that 

h(x) ~ 0 (-log lxl), 
as lxl --+ 0. The condition in Theorem 2.1 is described in terms of the filter function, 
which allows us to apply the theorem to various filtered models including the Euler-a 
model and the vortex blob method. Note that r{, qs and us are related to each other, 
since we have qs(x, t) = q0 (rf(x, -t)) and us= Ks *qs. The weak solution (2.5) satisfies 
(2.4) in the sense that 

!. f (8t'I/J(x, t) + v''I/J(x, t) · us(x, t)) qs(x, t)dxdt = O 
JJR2x(O,T) 

for any 1/J E C0 (IR2 x (0, T)), the space of smooth functions vanishing at infinity in IR2 

and the boundary of (0, T). We mention the convergence of weak solutions of the 2D 
filtered-Euler equations to those of the 2D Euler equations in the c --+ 0 limit. For 
q0 E L1 (IR2 ) n L00 (IR2), the weak solution of (2.4) strongly converges to a unique global 
weak solution of (1.1) with the same initial vorticity, since the filtered flow map r,S 
converges to a flow map induced by the 2D Euler equations: 

Theorem 2.2. [9] Let q0 = w0 E L1 (IR2) n L00 (IR2). Under the assumption for h zn 
Theorem 2.1, for any T > 0, there exists C(T) > 0 such that 

sup sup 11,S(x, t) -11(x, t)I ::; C(T)c:e-T, 
tE[O,T] :z:ElR2 

where 1J is the Lagrangian flow map induced by the weak solution of the 2D Euler equations 
with initial vorticity w0 . 

For q0 E L1 (IR2 ) n LP(IR2), 1 < p < oo, as we show in Theorem 3.1, the filtered weak 
solution converges weakly to a weak solution of (1.1), which is constructed in [6]. The 
convergence result has been extended to initial vorticity in M(IR2 ) n Hj;;-~(IR2 ) with a 
distinguished sign: 
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Theorem 2.3. [10] In addition to the assumption of Theorem 2.1, suppose that h is a 
positive function satisfying 

Let ( u'", qc;) be a solution of the 2D filtered Euler equations for q0 E M (IR2 ) n H1~~ (1~2) with 
a distinguished sign and compact support. Then, for any T > 0, there exist subsequences 
{ucj}, {qcj} and their limits u E Lf0 c(IR2 x [O,T]), q = curlu E L00 ([0,T];M(IR2)) such 
that 

ucj --'- u in £ 2 (IR2 x [O T]) loc , , 

and ( u, q) are a weak solution of the 2D Euler equations with initial vorticity q0 in the 
sense of Definition 1.1. 

In this paper, we use the following notations. A open ball is denoted by Br := { x E 
IR2 I lxl < r }. For the exponent pin the Lebesgue or Sobolev space, p' is the conjugate 
exponent of p, that is, 1 = 1/p + 1/p' for p E [1, oo], and p* E (2, oo) is defined by 
p* := 2p/(2 - p), that is, 1/p* = 1/p - 1/2 for p E (1, 2). We omit the domain in the 
norm when it is the entire space IR2 • 

3 Main results 

We first see basic properties of a weak solution of (2.4) with q0 E M(IR2). Considering 
the Lagrangian flow map rf, we have 

and {qc}oo is uniformly bounded in C([O, T]; M(IR2)). We also have 

llwc(·, t) IILP :S llhc IILP llqollM = E-2(l-l/p) llhli£P llqollM 

for any 1 :Sp < oo, which implies that {we} C C([O, T]; L1 (IR2 )) is uniformly bounded. 
As for the filtered velocity uc;, it follows that 

(3.1) 

for any 2 < r :S oo. Next, we consider the energy for a filtered solution by replacing u 
with uc in ( 1.4). Note that the energy for uc is not finite in general. Indeed, uc = Kc;* qc; 
implies uc(x) ~ lxl-1 as lxl ----+ oo and thus lucl 2 is not integrable on IR2 . We now formally 
derive the energy dissipation rate by dividing the energy into two parts: a time-invariant 
term and a time-dependent term. In particular, we focus on the time-dependent term, 
which is well-defined for weak solutions of (2.4) with qo E M(IR2), and differentiate it 
with respect to t. We start by substituting uc = Kc * qc into the energy: 

11
2 

luc(x, t)1 2 dx = 1 J J J Kc;(x - y) · Kc;(x - z)t(y, t)t(z, t)dydzdx. 



6

Note that Ke= "vj_Ge and !).Ge= he, Then, integration by parts formally yields 

11
2 

lue(x, t) 1
2 dx = -1 J J J he(x - y) · Ge(x - z)qe(y, t)q°(z, t)dxdydz 

= -1 J J (he* Ge) (y - z)qe(y, t)q°(z, t)dydz. 

Here, we introduce the pseudo-energy: 

Although ,Yee is not finite in general, we find that ,Yee is a invariant quantity. Indeed, 
for the point-vortex initial vorticity, ,Yee gives the Hamiltonian of the filtered point-vortex 
system, see [11]. On the basis of the above calculation, we divide the energy into two 
parts as follows. 

and 

where 
H0(x) :=(he* Ge) (x) - Ge(x) =(he* (Ge - G)) (x). (3.2) 

Since He belongs to C0 (I~.2) for any fixed c:, we find 

where Ce is the constant depending on c:. Thus, the time-dependent term t&'(t) is finite 
for any qo E M(ffi.2). Note that 

J J H0(x - y)qe(x, t)qe(y, t)dydx = J J H0(rf(x, t) - rf(y, t))qo(x)qo(y)dxdy. 

Then, the time-derivative of t&'(t) is given by 

:tt&'(t) = -1 J J ("v Hc)(rf(x, t) - rf(y, t)) 

· (ue(rf(x, t), t) - ue(r/(y, t), t)) qo(x)qo(y)dxdy 

= -1 J J ("v H0)(x - y) · (ue(x, t) - ue(y, t)) qe(x, t)qe(y, t)dxdy. 

Hence, we define the energy dissipation rate by 

~Ht) := -1 J J ("v Hc)(x - y). (ue(x, t) - ue(y, t)) qe(x, t)qe(y, t)dxdy. 

It follows from "vHc E C0 (IR2 ) and (3.1) that 

l~Ht)I ::; ll"v Hallu" llue(·, t)llvx, lit(-, t)ll7'-1 ::; Cellqollit-
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Thus, ~k is well-defined for weak solutions of (2.4) with q0 E M(IR2). However, the 
boundedness of ~k depends on the filter parameter E and, in the E ---+ 0 limit, ~k is 
not finite in general. Our concern is the set of initial vorticity that provides the uniform 
boundedness of {~f}c>O· In this study, we consider weak solutions of (2.4) with q0 E 
L1 (IR2 ) n £P(IR2), and give a sufficient condition for p that yields energy conservation. 
In the following theorems, we assume the same condition as Theorem 2.1 for the filter 
function h. 

Theorem 3.1. Suppose that h E CJ(IR2 \ {O}) is a radial function satisfying 

I· lh, "vh E L1(IR2), 

for some a E [O, 1). Let (uc, qc) be a weak solution of the 2D filtered-Euler equations with 
q0 E L1 (IR2 ) n LP(JR2 ), 3/2 < p :S oo. Then, we have 

lim 11~1IIL00 (0T) = 0. 
c-+0 ' 

Moreover, there exists a weak solution of the 2D Euler equations, 

u E L00 (0, T; £P* (IR2 ) n W1~!(IR2)), w = curl u E L00 (0, T; L1 (IR2) n £P(IR2)), 

such that, taking subsequences as needed, we have 

qc __o. w in £P(IR2 X (0, T)), 

for any r E [l,p*) in the E---+ 0 limit, and there exists PE L 00 (0, T; £P*l2 (IR2)) such that 
the following local energy balance holds in the sense of distributions. 

The conditions for h in Theorem 3.1 imply h E £P(IR2 ) and "vh E U(IR2 ) for any p E 
[1, oo) and q E [1, 2). The filter functions for the Euler-a model and the vortex blob model 
satisfy these conditions. The convergence to the Euler equations for q0 E L1(IR2) n £P(IR2) 

is proven in the same way as [10]. For the case p = 3/2, the same result as Theorem 3.1 
holds under an additional condition for the regularity of uc: 

Theorem 3.2. Let (uc, qc) be a weak solution of the 2D filtered-Euler equations with 
q0 E L 1 (IR2 ) n L 312 (IR2) and uc satisfy 

lluc(· - Y, t) - uc(·, t)11£3 :S C(T)IYI", (y, t) E IR2 X (0, T), (3.3) 

for some a E (1/3, 1], where C(T) is independent of E. Then, we have the same result as 
Theorem 3.1 with p = 3/2. 

We remark that (3.3) is related to Onsager's critical condition. Although Onsager 
conjectured for the 3D Euler equations, the energy conservation holds for the weak solution 
of the Euler equations satisfying (3.3) regardless of the dimension [3]. As it is mentioned 
in [4], weak solutions of the 2D Euler equations with w0 E L312 satisfy (3.3). Our main 
theorems are consistent with these preceding results, though we require the family { uc} 
to satisfy (3.3) uniformly. 
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