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1 Introduction 

This is a brief survey of the joint work [2] with Kenta Oishi, Waseda Univeristy. 

Let us consider a two-phase free boundary problem for inhomogeneous incompressible 

viscous fluids in the N-dimensional Euclidean space RN for N 2'. 3. Define 

R'f: = { ~ = (~,, ~N) : e ＝（も，．．．， ~N-1) E RN-1, 土~N > O}. 

An inhomogeneous incompressible viscous fluid occupies R~ at time t = 0, and the fluid 

is denoted by fluid+. On the other hand, another inhomogeneous incompressible viscous 

fluid occupies Rざatt = 0, and the fluid is denoted by fluid_. The two fluids are thus 

initially separated from one another by the flat interface 

岡＝｛~=（ぐ，邸） ：ぐ＝ (6,...'~N-1) E RN-l，邸＝O}.

Let (ER岱． Supposethat p~ (() are given functions and P± are positive constants. 
The initial densities of fluid士aregiven by p~ (~) + P±・ We suppose thatμ士＝匹(s)> 0 
are smooth functions on s > 0 and that the viscosity coefficients of fluid士 aregiven 

by 凡(p~ （() +尾） att = 0. Furthermore, the initial velocities of fluid土 aregiven by 

u~ (() = (u仇（(),...'u炭士(())T,where MT stands for the transpose of M. 
Our unknowns will be a transformation 8(・, t) : RN う ~f---+x=0（ふ t) ER凡densities
匹＝匹(x,t), pressures q士＝印(x,t), and velocities 

立＝立(x,t)= (v1士(x,t),...,VN士(x,t))T 

satisfying the following two-phase free boundary problem: 

⑬ =V士08, 8(~,0)=~, ~ER~, 

出 (t)= 8(R塁，t), f(t) = 8(R岱，t),

(1.1) 

(1.2) 
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8西＋ v土• V四＝0, x E 0且t),

div立＝0, x E O±(t), 

匹(at立＋立• ▽v±) ＝Div（四（p』D(v士)-q士I),

（匹(P+)D(v+)-q+I)nr(t) = (μ_(p_)D(v_) -q_I)nr(t), 

V+ = V_, XE r(t), 

立(~,0) = u~(~), ~ E Rt, 

四(~, 0) ＝瓜(~)+ P±, ~ E Rt, 

where at= a/at and V±o 8 = (v土o8)(~, t) = V且8(~,t), t). 

(1.3) 

(1.4) 

XE印 (t), (1.5) 

XE r(t), (1.6) 

(1. 7) 

(1.8) 

(1.9) 

Here llr(t) is the unit normal vector on r(t) pointing from O_(t) into O+(t) and I is the 

N x N identity matrix. For u = （附(x),..・丸v(x))T,D(u) is the doubled deformation 

rate tensor, i.e., 

如 1... a四 1
D(u)＝▽u+（▽u)T, ▽u =(:•..:), 

81UN... 8匹 N

where切＝ a;axjfor j = 1,..., N. Let M = (Mij(X)）国j:e;Nb ea matrix-valued function, 
and let 

f = f(x), g = (g1(x),...,gN(x))T, h =（柘(x),...'hN(x))T.

One then defines 

In particular, 

N N 

切＝（叩，．．．，恥f)T, △f=L的J, divg= L 切gj,
J=l J=l 

△g=（△91,...，△g砂▽2g=｛邸叫： i,j,k=l,...,N},
N 

g• • f ＝区砂f, g• • h = (g• ▽柘，．．．， g ．▽h訊
j=l 

N N T 

DivM=(〗aM切'..．〗 8甚Nj)

Div（圧（四）D(v』-q土I)

=μ士（四）（△v士十▽divv土）十μ'(p士）D(v土）▽p士―▽q士 in S1土(t).

Two-phase free boundary problems for inhomogeneous incompressible viscous fluids 

were studied by Tanaka [4], Xu and Zhang [5] in an £2 setting for both space and time. 

Those papers proved global existence theorems for small initial data. On the other hand, 
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Saito, Shibata, and Zhang [3] proved a local existence theorem on general unbounded 

domains for large initial data in an LP―in-time and Lq-in-space setting. Our work in this 

article is a continuation of [3] and gives a global existence theorem of (1.1)―(1.9) for small 

initial data with suitable p, q. 

2 Formulation in Lagrangian coordinates 

This section transforms (1.1)-(1.9) into a system in Lagrangian coordinates. 

Let u慕，t)=立(8(~,t), t) for（ふt)E R':c x R+, where R+ = (O,oo). The solution 8 

to (1.1) is then given by 

成t) ＝← 1• u±(~, s) ds, (~, t) ER~ x R+・ 

゜It follows from (1.1) and (1.3) that 8t[P士 (8(~,t), t)] = 0, and thus integrating this equation 

over [O, t] with respect to time variable shows 

P土(8(tt), t) = p土 (8(~,0), 0), (~, t) ER~ x R+. 

Combining this with 8(~, 0) =~in (1.1) and p士(~,0) = pi (~) + P± in (1.9), we obtain 

P土 (8(~,t), t) = p~ (~) + p~, (~, t) E R~ x R+・ 

From the above observation, our new unknowns in Lagrangian coordinates will be the 

Lagrangian velocities u土((,t) = V士(8((,t), t) and pressures p士((,t) = q士(8((,t), t) for 

（もt)ER塁xR+. Let us define 

酎＝ R~URパ

and let (~, t) E記 xR+. One sets 

and also 

Furthermore, 

U = u(Ct) ＝ ｛U+（ふt)，
U_（ふt),

p = P(＜,t) ＝ ｛礼（ふt)，
JJ-(~, t), 

而＝疇）＝｛瓜((), C E R:' 
p°_（(），（ E Rぎ，

（ふt)ER~ x R十9

(~, t) ERパxR十 9

（ふt)ER~ x R十9

(~, t) E R1!_ x R十9

び＝畷）＝｛凡，（ ER§,
p*_, ~ER竺

μ(s, 0 = µ+(s)1R~(O + μ_(s)1Rざ（＜），
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whereい isthe indicator function of A C R凡 i.e. ，い（~) = 1 for ~ E A and い（~) = 0 

for ~ (/_ A. It then holds that 

μ（疇）＋パ） ＝｛ 
µ+(Pi(＜）＋瓜）， ~ER~,
µ_(p~(~) + p*_), ~ER~, 

μ（畷），く） ＝｛μ＋（p:)，＜ E Rり，
μ_(p*_), ~ER竺

Let us denote µ(a0(~)+a,~) by μ(a0+a) and µ(a(( ),~) by μ(a) for short in what follows. 
Notice that a and μ(a) are piecewise constants. 

Let f = f (~) be a function defined on RN. Then [J] stands for the jump of the quantity 
f across the flat interface邸＝0,i.e., 

[f] ＝ ［f]（(＇）＝l四(!((＇ふ）ー f(C'，ー邸）），
where('=（ふ，．．．，(N-1)E RN-l_ 

Let us now substitute the new unknowns (u,p) into (1.4)-(1.8). We then achieve the 

following set of equations: 

畑—戸 Div(µ（りD(u) -pl)= u―1F(u) in RN x R十 9

divu = G(u) = di心(u)

[(μ(cr)D(u) -pl)eN] = [H(u)] 

[u] = 0 

ult=o = u。
where eN = (0,..., 0, l)T and 

in RN x R十 9

on RN-Ix R十 9

on RN-Ix R十 9

in R凡

Uo = Uo（く） ＝ ｛迂（く），く ER:' 
u鸞）， ~ER〉.

(2.1) 

Here the right members F(u), G(u), G(u), and H(u) stand for nonlinear terms, see [2] for 

their exact formulas. 
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3 Global solvability in Lagrangian coordinates 

System (2.1) leads us to the following linearized problem: 

畑ー戸Div(μ(a)D(u)-pl)＝ぴ―1f in RN x R十 9

divu=g=divg inRNxRが

[(μ（a)D(u) -pl)eN] = [h] 

[u] = 0 

ult=O = u。

on RN-l x R十 9

on RN-l x R十 9

in RN. 

(3.1) 

To state a main result for (3.1), we introduce the notation. Let N be the set of all 

positive integers. For a = (aい•.．， aN汀 and b = (bぃ．．．，加）T,we set 

N 

〈a,b〉＝こもも， atan = a-eN〈eN,a〉.
j=l 

Let p E [1,oo], q E (1,oo), n EN, ands ER+・ Let G be an open set in RN. Then 

ら(G),H;(G), and Bi,v(G) are the standard Lebesgue space, Sobolev space, and Besov 

space on G, respectively. Their respective norms are denoted by II・||ら(G),II・ II的(G),and 

11 ・ IIB知(G)・ The homogemeous Sobolev space恥(G)is given by 

恥(G)= { u E Lq,loc(G)：▽u E Lq(G)N}. 

Define for f = f(x) = (J1(x),..., JN(x))T and g = g(x) = (g1(x),..., 9N(x))T 

J 
N 

(f,g)G= G〈f(x),g(x) 〉 dx=〗い疇(x)dx 

The space lq (R州ofsolenoidal vector fields is then defined as 

Jq(R州＝｛fEら(R州N:(f，▽r.p)RN = 0 for any r.p E恥,(R州｝，
where q'= q/(q -1). 

Let X be a Banach space. Then X凹 M 2': 2, is the M-product space of X, while 

the norm of XM is denoted by II ・ llx instead of II ・ llxM for the sake of simplicity. Let 

ら(R+,X) and ~川 (R+,X) be the X-valued Lebesgue space on R+ and the X-valued 

Sobolev space on R+, respectively. Their respective norms are denoted by II ・||ら(R+,X)

and II・ IIHJ(R+,Xl・ Furthermore, we set 

国（R+,X)= {J E H;(R+,X): flt=□= 0 in X} 

endowed with the norm 11 ・||。男(R+,Xl:= II・ IIHJ(R+,Xl・ Let [·,•]。 be th 
lation functor for 0 E (0, 1). Define 

H戸(R+,X)=［ら(R+,X)，現(R+,X) ］ 1/2•

e complex interpo-
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Let w(t) be a function of time t and 

00 p l/p 

llw(t)f||ら(R+,Xl= (100 (w(t)llf(t)llx r dtr1p, 
where p E (1, oo). For the right members f, g, g, and h of (3.1), we introduce 11 ・ IIFv,o(w(t)) 

as follows: 

II (f, g, g, h) 11Fv,0(w(t)) = llw(t)fll1ャ(R+,L0(RNJNJ+ llw(t)gllLv(R+,HJ(RNJJ 

+llw（鳴g||ら(R凸 (RN)N)+ llw(t)h||ら(R+,HJ(Rりり

+ llw(t)hll H~12(R十，伍（記）N)'

Then we have the following theorem for (3.1). 

Theorem 3.1. Suppose N 2'. 3. Let p, q1,ゅE(1, oo) satisfy 

N l 
2 < q1 < N, qlさ卯 <oo, p（玩―う）＞ 1 

and 
2 1 2 1 
2 --—ーナ 0, 1- —ーーナ 0 for i = 1, 2. 
p qi p 佑

Let u。,f,g, g, and h satisfy the following conditions: 
(a)〈t〉fEn疋｛qi/2，叩｝ら(R+,Lr（か）州；

(b)〈t〉gEn心{q1/2,q2}ん(Rぃ糾（か））；

(3.2) 

(c)〈t〉1/2gE n庄 {qi/2,q2}0虎(R十 9ム(R、N)州 with[〈g,eり］ ＝0 on RN-l x R+, while 

〈t減gn疋 {q1/2，ゃ｝ら(R+,Lr（か）州；

(d) 〈t〉hEn疋fo/2,q2}(H~;2(R、+Lr(R州州 n ら(R+,H;(R州州）；

(e)u0EB虚戸(R、N)NnB虐笠(RN)Nn Jqi12(R州；

(f) [(μ(c,)D(uo)e刈tan]=[(hlt=o)tan] in B~~;fp-l/q2(RN-l) if 1 -2/p-1／ゅ＞ O;

(g) [uo] = 0 in B孟;/p-l/q2(RN-1) if 2 -2/p -1／ゅ＞ 0.

Then (3.1) admits a unique solution u with some pressure p, and there holds for q = q1 

or q = q2 

||〈t〉1;2u||ら(R占 (RN)N)+||〈t鳩u||ら(R占 (Rりり

+ ||〈t〉▽u||ら(R凸 (RりNxN)+||〈t〉v'ullH炉(R+,Lq(RN)NXN)

:SC [lluollB勾，戸（RN)+lluollB~~デ(RN)+ lluollLqi12(Rり
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］ + L (11 (f, g, g, h) IIFp,r(〈t〉)+ ||〈t〉l/2gllLp(R+,Lr(R州NJ)I, 
疋 {q1/2m}

where C = C(N 
．． 

, p, q1, q2) is a positive constant. 

To state a global existence theorem for (2.1), we introduce function spaces. Define 

恥，p,q=的(R十9伝（記）州nら(R十9虎（記）州．

Let 15 be a positive number and〈t〉=《戸二丁． Weset 

zt,p,q = { U E Z N,p,q :〈t〉塙uEら(R、がら(R州州，〈t〉6uEら(R,+，虎(RN)州｝

with the norm 

llullzt,p,q=||〈t〉08tul1Lp(R+,Lq(RN)N)+||〈t〉0ull1ク(R+,H名(RN)N)・

Furthermore, the auxiliary function space A~ N,p,q is defined by 

A心，p,q= {u:〈t〉塙uEら(R+,Lq（か）州，

〈t〉6▽uEら(R十9的（記）NxN),

〈t〉6▽ue H戸(R+,Lq(RN)NxN)} 

with the semi-norm 

llullAt,p,q=||〈t〉08tU||ら(R+,Lq(RN)N)+||〈t〉6▽u||ら(R+,HJ(RりNxN)

+ ||〈t〉べ▽ullH戸(R占（記）NXN)"

Let us now introduce an assumption of p, q. 

Assumption 3.2. Suppose N 2'. 3. Let p, q1, q2 E (1, oo) satisfy 

N l 
2 < q1 < Nくゅ <oo, p（玩―う）＞1. 

For p, q1, and q2 satisfying Assumption 3.2, we define 

応，p,q団 2= z謬，qlnz芯，q2n A応，qln A如，q2'

llullKN,p,q□2 ＝こ（1|u|1Z1/2 + ||u||A1. N,p,q N,p,q) 
qE{q国 2}

In addition, we set for 15。>0and the initial velocity u。

応，p,q国 2;uo(<5。)=｛u E KN,p,q1m : llullKN,p,qい2:S 15。,
[u] = 0 on RN-i, ult=O = u。inR汀

Combining our linear theory, Theorem 3.1, with the contraction mapping principle 

shows the following global existence theorem for (2.1). 
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Theorem 3.3. Suppose that Assumption 3.2 and (3.2) hold. Then there exist constants 

6。，釘，E2E (0, 1) such that (2.1) admits a unique solution u E KN,p,qim;uo(o0) with some 

pressure p for any 

びoE Hよ（か）nHよ（か）

and for any 

uo EB盃;/P(RN)Nn B;;:;IP(R州Nn Jq1/2(RN) 

satisfying the smallness conditions: 

2 

どIIびo||鬼（記）さ釘，
i=l 

lluollLqi12(Rり＋喜||Uo||B勾戸(R州さ E2
and the compatibility conditions (a) and (b) : 

(a) [(μ（びo+ <Y)D(uo)eN)tan] = 0 on RN-I if l -2/p-l/q2 > 0, 

(b) [u0]=0onRN-l i/2-2/p-1／ゅ＞ 0.

4 Global solvability for the original system 

(3.3) 

(3.4) 

This section shows a global existence theorem for (1.1)-(1.9). Following [1], we introduce 

definition of solutions to (1.1)-(1. 9). 

Definition 4.1. We call (8, pゎ Vゎ印） aglobal-in-time solution to (1.1)―(1.9) if the 

following assertions hold for some p, q E (1, oo), Pi EH川 (R~), and ui E B;,;21P(R~)N. 

(1) Let 0士(t)= 8(R~, t) fort> 0. Then 8(・, t) is a C1-diffeomorphism from Rlj_ onto 

化 (t)and from RぎontoO_(t) for each t > 0. 

(2) 8 = 8(/;, t) is a solution to (1.1) in the classical sense. 

(3)四＝ P土(x,t) is given by p且x,t) = pす(8□(x))+ P± for x E 0土(t)and t > 0, where 
e;1 is the inverse mapping of 8(・, t) : R』N→O(t) with O(t) = D+(t) u O_(t). 

(4) (2.1) admits a solution (u,p), and (v士，q土） aregiven by 

v±(x, t) = u(e;1(x), t), q士(x,t) = p(E切―1(x),t), XE 0士(t),t>O.

The following theorem then holds. 

Theorem 4.2. Suppose that Assumption 3.2 and (3.2) holds. Furthermore, we assume 

2 N —+ -＜1. 
p q2 
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Let E1, E2 be the positive numbers given by Theorem 3.3, and let u0, u。satisfy(3.3), (3.4), 
respectively, together with the smallness conditions and the compatibility conditions stated 

in Theorem 3.3. Then there exists a global-in-time solution (0, p土，v土， q士） to(1.1)―(1.9), 

and also 

llv士(t)IIB盆2/p（出（t）） = 0(t―112) as t→ 00 

for q = q1 or q = q2. 
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