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1 Introduction

This note is a survey of our paper [6]. We consider the initial value problem for the
incompressible magnetohydrodynamics (MHD) equations with the Coriolis force in a 3D
infinite layer I = R? x T:

Ou—vAu+Qeg xu+ (u-V)u— (B-V)B+Vp=0 t>0, (z,2) €D,

B—AB+ (u-V)B—(B-V)u=0 t>0, (z,2) €D, )
V-u=V-B=0 t>0, (z,2) €D,
u(0,2,2) = up(x, 2), B(0,z,2)= By(z,2) (x,2) € D.

Here T = R/Z ~ [0, 1] represents the 1D torus. The point of D is denoted by (x, z) with
r = (r;,75) € R? and z € T. Let u = u(t,x,2) = (u1(t, 7, 2), us(t, v, 2), uz(t, z,2)), B =
B(t,x,z) = (Byi(t,z,2), Ba(t, x, 2), Bs(t,x, z)) and p = p(t,z, z) be the unknown velocity
field, the unknown magnetic field and the unknown pressure of the fluids, respectively.
The vector fields ug = ug(x,z) = (uo1(z, 2), up2(z, 2),up3(z, z)) and By = By(z,2) =
(Boi1(z,2), Boa(x,2), Bys(x, z)) denote the given initial velocity field and the given initial
magnetic field satisfying the divergence-free conditions V - ug = V - By = 0, respectively.
The constants 2 € R and v > 0 are the speed of rotation around the vertical unit vector
es3 = (0,0,1) and the viscosity coefficient, respectively.

Let us first review the known results for the rotating MHD equations (1) in R3. Ahn—
Kim-Lee [1] proved the unique existence of global solution to (1) for the initial data
uy € H*(R®) (3 < s < 2), By € (L* N LYR?)) (¢ > 3), when the rotating speed |Q|
is sufficiently large. Takada—Yoneda [8] showed that (1) has a unique global solution for
sufficiently large |2 when ug, By € Hz2(IR®). It follows from the proof of [§] that the global
solution (u, B) converges to (0, e By) as the size of rotating speed || tends to infinity.
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In the case B = 0, (1) corresponds to the Navier-Stokes equation with the Coriolis
force. We review the known results for the rotating Navier-Stokes equations in . We
decompose a function f as f = f + f, where the 2D part f(z) = Qf(x) == [, flz,2)dz
and the 3D part f = (I — Q)f(x,z) := f — f. Gallay and Roussier-Michon [4] showed
that for the initial velocity uy € H}. (D) satisfying @y € (I — Q)H' (D), @ip3 € H'(R?),
Oillgs — Oalig; € (L' N L*)(R?), there exists a unique global solution for the sufficiently
large |Q|, and the solution converges to 2D Lamb-Oseen vortex in L'(R?) as ¢ — oo.
The authors in [5] showed that there exists a unique global solution for the sufficiently
large |Q| if ug = @y + @ € L*(R?) + (I — Q)H%(}D))7 and the solution converges to the
solution to 2D incompressible Navier—Stokes equations associated with the initial data
as |Q — oo.

We first introduce limit equations. The limit equations are represented as the coupled

system of the 2D incompressible MHD equations in R?:

@a"o - VA}LI_LOO

+P[(ae - V,)a™® — (B;® - V) B® — Q(B®-V)B®] =0 t >0,z €R?

;B> — Ay B>® + (u° - Vy,) B> — (B - V,)u™ = 0 t>0,zeR? (2
Vi a2 =V, B =0 t>0,2€R?
(0, 2) = tg(z), B>(0,z) = By(z) z € R?

and the induction equation in the 3D layer D:

B> — AB> + (@™ - V)B® — (B® - V,)a® =0 t>0, (z,2) €D,
v.B*—0 t>0, (z,2) €D, (3)
B>(0,z,2) = By(z, 2) (x,2) € D.

Here A, = 07 + 03, Vi, = (01,0), v, = (v1,v2), and P is the Helmholtz projection onto
the divergence free vector fields defined in (5).

In this manuscript, we prove the global well-posedness of (1) for (ug, By) € L*(R?) +
(I — Q)Hz(D) when the rotating speed || is sufficiently large. Furthermore, we shall
consider the global solution (u, B) to (1) converges to that of the limit system (2) and (3)
as |Q2] — oo in the space-time norm L?(0, co; L4(D)) for 2 < p,q < oo with % + % =1

The main results of [6] read as follows:

Theorem 1. Let (ug, By) = (o, Bo) + (iio, Bo) € L2(R?) + (I — Q)Hz (D).

(I) There exists a constant w = w(v, Uy, iy, By, Bo) > 0 such that for every Q € R with



Q| > w, (1) has a unique global solution (u, B) = (@, B) + (@, B) in the class

u, B € C([0, 00); L*(R?)) N L*(0, 00; H'(R?)),
i, B € C([0,00); (I — Q)H2(D)) N L*(0, 00; H2 (D).

(IT) Let 2 < p,q < o0 satisfy % + % =1. Then,

am o= @ llar @ cestamy = o 1B = B¥|[r0.00:L5(m)) = 0- (4)

Here, (a>°, B*®) is the global solution to (2), (3) associated with the initial data
(To, By) in the class
7>, B> € C([0,00); L*(R?)) N L*(0, o0; H'(R?)),
B € C((0,00); (I = QD)) N L*(0, 003 (D)),

Remark 2. Let 2 < p,q < oo satisfy 2/p 4+ 2/q = 1. Then, by the Sobolev embedding
H'-2/9(R?) — L9(R?) and the interpolation inequality, it holds

L>=(0, 00; L*(R?)) N L*(0, 00; HY(R?)) — LP(0, 00; LI(R?)).

Moreover, it follows from the Sobolev embedding #2129 (D) < LI(D), and the Poincaré
inequality (6) that

L>(0, 00; (I — Q)H=(D)) N L*(0, 00; 13 (D))
< L(0,00; (I — Q)LA(D)) N L*(0,00; H2(D)) = L¥(0,00; (I — Q)L(D)).

Remark 3. In the proof of [8], it is shown that for 2 < ¢ < 6

lim ||(u, B) — (0, e By)|| =0.

|Q|—o00 LA(0,00:1 25 (R3))
On the other hand, our result yields

lim H(U, B) - (aoov BOO)HLP(QOO;L‘I(D)) =0.

|Q]—00

This manuscript is organized as follows. In Section 2, we introduce some notation and
prepare the some inequalities. In Section 3, we prove the global regularity to the limit
system (2) and (3). In Section 4, we consider the linear solution and state the space-
time estimate. In Section 5, we introduce the modified linear solution @”, and state
the global space-time estimates. In Section 6, we establish the energy estimates for the

perturbations. Finally in Section 7, we present the proof of Theorem 1.
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2 Preliminaries

In this section, We follow the notation in [4], state several notation in . We define the

Fourier transforms in D as

fn(k) =5 //fxz milka+2m) qodr, ke R, nel
™ JR2

for f € L?(D)3. Then, the inverse Fourier transform is represented as

flx, / an iat2ms) g 2 e R%, 2 e T.

Also, we introduce the inner-product of the homogeneous Sobolev space H*(D) for s € R

as

D)oo / SR + 4m202)* £ () (R)

nez
Then, we define the norm of f in H*(D) as
||f||12ﬁ1s(m>) = (/, f)Hs(D)
Note that (I — Q)H*(D) is equivalent to (I — Q)H*(ID) in the sense of equivalent norms:
min{1, 2/} |

feD) S £l 7r=my < max{1, 22} f|

(D)
for all f € (I — Q)H*(D) and s € R. Indeed for k € R? and n € Z \ {0}, there hold
fo(kz) =0 and

|k[2 4 4mn® < 1+ |k|* + 47%n® < 2(|k|* + 47°n?).

Next, we define the Helmholtz projection P in the 3D layer D onto the divergence-free
vector fields by

®BF)alk) = (f - “@5) fuk), (5)

|k|? 4 472n?
where £ = (k,2mn) € R? x 27Z and k = (ky, ko) € R? with |k]* = k? + k3.
Finally, we state the following Poincaré inequality and the interpolation estimates in .

Lemma 4.
(i) Let —o0 < so < 51 < 0o. Then, it holds for f € (I — Q)H* (D)
171 oy < @)~ Fl gon - (6)

(i) Let —00 < 59 < s < 81 < o0 and 0 < 0 < 1 satisfy s = 0sg + (1 — 0)sy. Then, it
holds for f € H* (D) N H* (D)

1l er=y < [If]

oo (o) 1/ 117

e ()" (7)
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3 Limit System

In this section, we prove the result on the global existence and global energy estimate
for the limit system (2) and (3). Let U* := (4>, B*®), and Uy := (i, Bo).
Theorem 5. For Uy € L*(R2) with V, - (i) = Vi - (Bo)n = 0 and By € (I — Q)Hz (D)
with V- By =0, (2), (3) has a unique global solutions @™, B>, B> with
@, B> € C([0,00); L*(R?))* N L*(0, 00; H' (R?))?,
B> € C([0, 00); (I = Q)H?(DD))’ N L*(0, 00; H2(D))".

Moreover, there exists a positive constant C = C(HUO ‘BOH . ) such that
172 (D)

e |

~ ) _ 2 . o .
a>m2, .. HB‘X’ ¢ H 2 min{1, / 0|12 H dt
e <|| Ol @)+ ®) %) + 2min{l, v} 0 10 W ey + i3 )
<K. (8)

Proof. Taking the L?(IR?)-inner product of the first equation of (2) and u*>(¢), the L*(R?)-
inner product of the second equation of (2) and B*(t), and the L?(D)-inner product of
1d

2
2t (”“ Ol + 15202, + [ B ‘wm)
minfL v} (1980 Bagesy + [ V380 s + IVB~0) )
< = (@ - Va)u™, @) ey + (B V) B™, 0%) 5 50
+{QUB~-v)B~,q >L2(R2)

< vh BOO BOO>L2 (R2) + <(B}C;O : Vh)aoo7BOO>L2(R2)

< LQ(D)+ ( h h)u L2(D)

the equation of (3) and B>(t), we have

:O7

which follows from the integration by parts and the divergence-free condition.

Therefore we have (8) and this complete the proof of this lemma. O

4 Linear Solution

In this section, we state the linear solution associated with (1) with B = 0.
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Let {Tq(t) }+>0 denote the semigroup generated by the linear operator —vA + QPes x P
in D, which is given explicitly by

TQ(t)fL(x z)
—or 2 [ 3 D G (1), (07 (s (07 (R

o’E{i} neZ\{0}

= Z AT g ?(z, 2) (9)

oe{+t}

for x € R?, z € T and the vector field @ with V - @ = 0, where

(@) (k) = (G (k), (V)n(k))es (V7 n(R),  (V)n(k) = 72

and
27Tk'1n + Zk2|§|

27Tk2n + Zk1|é|
—[k?

1
V2I¢] k|

Here, we remark that (@, (k), (v"),(k))cs = 0 from the divergence-free condition of @. For

(v5)n(k) =

the derivation of the explicit form of (9), we refer to [4,5].
Next, let R > 0, and we define Py as

Pas) ) =x () 50 (10)

where y € C5°(R) satisfies 0 < y <1,y =1in[-1,1] and x =0 in R\ [-2,2]. Then, we

recall the following space-time estimates for the semigroup Tq(t).
Lemma 6 ([3], Theorem 5.3, [4], Corollary 2.4). Let R > 0, let v > 0, and let 1 < p < o0
and 2 < q < oo satisfy —+— < 1. Then, there exists a positive constant Cr = C(v, R, p, q)
P q )
such that if iy € (I — Q)L*(D) and f € L*(0,00; (I — Q)L*(D)) satisfy the divergence-free
condition and if v is the solution to the linear equation:
v — vAV + Qey x v+ Vp = Prf t>0, (z,2) €D,
V.u=0 t>0, (v,2) €D, (11)
0(071’,2) :,PR’ELO(xv Z) (.Z', Z) E]Dy
then it holds for Q € R\ {0}

[olossasion < Cal S (ol + [P

L1(0,00; L2(]D)))>
Here, Pg is defined in (10).



5 Modified Linear Equation

In this section, we follow the ideas in [2,7], and introduce the modified linear dispersive
solution @ for the velocity fields. We shall state that the space-time norm L (0, oo; L(D))
of @* can be taken arbitrarily small when the rotating speed || is sufficiently high.

We consider the linear equation generated by (1) with the external force Ns:

Oyt — vAT" + QP (e5 x a") = PrPN5 t>0, (x,2) €D,
v.il =0 t>0, (z,2) €D, (12)
ﬂL(O,Jj,Z> :,PR{LO(xa Z) (CL‘,Z) G]D),
where P denotes (10), and N5 is defined by
Ny = (1= Q) (B™-V) B+ (B=-V) B+ (B - v,) B,

L

Also, in order to establish the space-time estimates for @", we introduce the following

integral equations for (12), which follows from the Duhamel principle:
t
i (t) = To(t)Prip + / Tao(t — 7)YPrPN;5(T)dT. (13)
0

Here, Tq(t) is defined in (9). Then, we shall state the global-in-time existence of the
solution @ to (12), the global a priori H %(]D))—estimates for u”, and space-time estimates
for al:

Lemma 7. Let iy € (I — Q)H%(]D)) satisfy V - g = 0, and (B>, B®) is a global-in-time
solution to the system (2) and (3). Then, the equation (12) with the initial data Priyg
has a unique global solution @* in the class

i € C([0,00); (I — Q) H*(D))* N L*(0, 00; H* (D)™,
Moreover, the solution a* to (12) satisfies the following estimates:

(i) There exists a positive constant C' = C(v) such that

wﬂﬁw&mﬁwAHWMw%mﬁﬂm@mﬁcw, (14)

>0

where the positive constant K is defined in (8).

1 2
(i) Let 1 < p < o0, 2<qg< o0 satisfy —+— <1 and R > 0. Then, there exists a
positive constant Cy = C(v,p, q, R) such that for any Q € R\ {0}, there holds

- R ~ 3 1
18" o0 sty < CalU™ <||“°||L2<D> + K <K4 + 1)) ' (15)
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6 Energy Estimate for the Perturbation terms

In this section, we establish the global a priori estimates for the perturbations (u", B"),
and (", B"), where @’ := i — @™, B" := B— B®, @" := ti— " and B" :== B— B>. First,
we have the time evolution equation for (a", B"):

0" — vAL T +PNg =0 t>0,x¢€R?,
OB"—AB"+N; =0  t>0,z€R?

_ (16)
V-t =V, By =0 t>0, z € R?
' (0,z) = B"(0,z) =0  x€R?
where N and N are denoted as
Now= > Q(-V)i*
j,ke{r,L}
+ Y @ v - BV B - (B V) B,
J.ke{r,c0}
(4,k)#(00,00)
No= YD (Vi) B - (B Vi) @)
j.ke{r,co}
(J,k)#(00,00)
+ > o{@-v) B - (B v)w},
j=r,L
k=r,00
respectively. Secondly, we state the time evolution equation for (@", BT):
Ot — vAU"+ QP (e3 x ") + PINg — (I = Pr)Ns| =0 t>0, (x,2) €D
O,B" — AB"+ Ny =0 t>0, (z,2) €D, (7
V-0 =V-B =0 t>0, (z,2) €D
’l’:LT(O,.Z‘,Z) = (I_PR)ﬁO(CCVZ)a BT(O,Z’,Z) =0 (ZE,Z) GID),



where N5, Ny and Ny are given by
A@):(I—Q)(BWV)B%HB%-V)BO%(B;f.vh)ém,
No= D (- -V)a"+ > {(@-Va)a"+ (@ v)a'}

j,ke{r,L} ]gz::OLo
- ¥ {(z_g) (BJ’-V) B+ (B,{-vh) BM(BJ‘.v)Bk},
ittt
No= 3 @ v) B~ (B Vi) @}
jkE{roo)
(k) A(00,00)
_ . Rk _ (BF. 7Y
n %:OLO { (I-Q) (@ -V)B (B v) @

+ (i, - Va) B* — (B*- V) i },

respectively.
Let U := (@, B") and U" := (@, B"). Then, we establish the following energy estimates
for the perturbations U” and Ur:

Lemma 8. Let v > 0, and let U", U", @, (@™, B®) and B> be solutions of (16), (17),
(12), (2) and (3), respectively.

(i) There exists a positive constant C = C(v) such that
d 7 )2 rrr
7 (107 e + 0

< (00 e+ 0"

2
Hl(D))

) O+ G0+ C I~ PRAE 0 (19
2 ~
o) 5
75 (D)

2
H%(D)}’
2

_ ~ R ~ 12
aw=cww;m{§:ww;m+Wﬂ P }
Jj=r,00

L2(D L2(D)

2 . R— ~
LQ(D)> + min{1, v} (HU ||H1(]R2) + HU

2
L3(D)

where

Fi(t) = C{||U°°H21<R2> + (1 + HBO@

(ii) There exists a positive constant C' = C(v) such that

e {1, 03 |07
dt H 2 (D) +mindl, v} H i3 ()
. . 2 . 2
< " " " F: F 1
- CHU (t)HH%(D) HU (t)HH%(D) + HU (t>HH%(D) 21(0) + Foalt) + Golt),  (19)
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where
Farl®) =€ 32 (141070 [7agasy ) 107 O3 g
j=r,00
8~ s[5 15 T 1t |
_ ~ 2
Faa(t) = CL I = PR)N g )+ 107 O] e | B0 5,

~ 2
B”t‘ )
+H ()Hz(

1T O |
HaLHim(D) {1+ Z HU HH1 r2) T HBT ’ (D)}
j=r,00

IV ey 3 107 ey 197 e (1 0700

Jj=r,00

Ga(t) = C

2 > ]
.1 M
112 (D)

7 Proof of Theorem 1
We present the proof of Theorem 1.

Proof of Theorem 1. Let T, be the maximal existence time of the perturbation part of
the solution (@", B", 4", B") to (16) and (17) with
a, B" e C([0,T2,.); L*(R*)* N L*(0, T2 ; H'(R?))?,

)’ - max ? T max)
3

@, B e C(0,T2,,): (I — QH2(D))® N L*0,T2,.: H?(D))®.

J — max 7 T max’

Let 0 < & < 1 be determined later, and we define the positive time 772 as

T? = {OSTST]?I&X o

(T) < &%, Bu(T) < 6},

LQ(D))

as(T) := sup (H[jr(t)Hi2 B2 +HUT

0<t<T
+ min{1, y}/ <|UT||H1 R2)+HU’” i D)) dt,
~ 2 J
o o / o dt. 20
Bo(T) OiltlgT () 2t o) len{ v} . ‘ (t) 3 (D) (20)

Choosing a positive constant R; such that

~ IS
1T = Priol 1 ) < 5



we see that T? is positive.
Assume that 0 < T2 < T?

2 - Integrating (18) on [0,7] and using (6), we have for
0<T<T?and R> R,

rrr 2 Frr 2 . g 7|2 T 2
1078 ey + || (t)HLz(D)—I—mln{l,u}/o (HU ey + [[© Hlm)) dt

4
i / ((HUTu)Hiz(Ra) + fﬂ(ﬁH;(w) Fi(t) + Ga(t) + C (I — PR>A%<””§I-%<D>) o

We see from (8) that

g g oo |12 200 2 00 2
/0 Fl(t)dt—C/O {thU [y <1+HB H%(D)> HVB H%(m}dt

< CK(K +1) = K. (21)

It follows from (8), (14) and (15) that there exists a positive constant C} g such that
T T o ~
/ Gl(t)dt—C/ > HUJHL;,(R?)JFHUT
0 0 j=r,00

<O [y

< CurllH. (22)

’ il || e dt
L2(D) + ||L2(D) t H HL2(D)

By the Gronwall lemma, combining (21) and (22) yields
4 T
o) < (S Conldl € [T -PANOI 3 ). (@3)
0

1
Integrating (19) on [0, 7] and choosing an e such that Ce: < 5 min{1, v} yield

B 2 T o2
HUT(T)‘ . —i—min{l,u}/ HVUT L dt
12 (D) 0 12 (D)
! C U oo ool F F. G d
v (¢ (¢ t t t) St
Jr/0 H (t>’ 3 (D) H (t) % (D) * H (t) HE (D) 21() + Foa(t) + Ga(t)

et 1 Tllor
< —|—min{1,y}/ HVUT
12 ;

2 T (-
ottt [l
H2(D) 0

sy P21+ Fas(t) + Go (t)} "

2
H2(

65



66

It follows from (8) and (

/OT P ()t — C/OT

1 L P Y

14) that

> (T 17O 19507 O

j=r,00

e 195, )}u

A2 (D)
<C {(1 +K)+ (”’lNLOHH%(D) + Kz) } =: K. (24)
We have by (8)
T T . 2
F = [_ 2. 1 T 2 Boo
| Pt = [ {10 =Py ) + 10Ol 9570,

2

T
<C [ U= PNl g e+ CRE

1 LalCl PN LR A

We see from (8) and (15) that there exists a positive constant Cs g such that

/OTGQ(t)dt:C/OT (- {1+ 3 +th(7f|\L2<R2)+Hé%)H;(D)}

. ~ SN
IV ey 2 10Ny + 98 ey (14 070 5,) ]dt

J=r,00

J=r,00

<C [ (18 ey + IV g+ IV )

o ([ 1) {2 [ 190

J=r,o0

H,_/
Nl

< Cun 00 j0 ). 20

It follows from (24), (25), (26) and the Gronwall lemma that

Ba(T)
4 T
< el {5 + c/ I = PRINGIZ, -y dt + O 4 Cop (mrz + \Q|‘8)} . (27)
0

Choosing an € > 0 such that

. 11 L L1 1
e<ming 5 g mindl vt oo T e [
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we can take Ry = max{R;, R} satisfying

> , g2 £
[0 =Pt < min { e i |

Thus, we can choose positive w such that

8C) m e\t /120, g ef2\®
meax{1,< 1':206 >,( 2;06 ) )

and we see from (23) and (27) that

(0% (T) S

Po(T) < (28)

N ™

c
2 Y
for Q € R with |Q| > w. This contradicts to the definition of 77, and we complete the
proof of the global well-posedness of (1).

It remains to prove (4). Let 2 < p,q < oo satisfy — + — = 1, and we can decompose
p q

w—T® =0 +4 +a*, B-—B*=B +B.

Then, we consider the estimates for the each term. We first establish the estimates for
-— . 2

(@", B"). It follows from the Sobolev embeddings H'™4(R?) < L?(R?) and the interpola-

tion inequality that

=T
I imtinzon < O3y < € 18 e 1907 .
—T|q =T 1-2
<Clu ”Zoo(o,oo;Lz(W)) |V ||L2(%7OO;L2(R2)) ’ (29)
— - _ .1=2
1Bl oo eitamay < C 1B |0 soirzmon VB 2o estaey - (30)

We next derive the estimates for (", B"). We see by (6), (7) and the Sobolev embedding
H?"D(D) — LI(D), that

~7 ~r : ~7 1-2
iy <O -t < 0|1 Mg IV,
LP(0,00)
o 1-2
<C Hff ! o IVE 0 (31)
(0700;H2 (D)) L2(0,003H 2 (D))
. 1-2
HB’ <C HB’” HVB’“ o (32)
LP(0,00;L9 (D)) L0(0,00;12 (D L2(0,00;H % (D))
Finally, since ;17 + % < % % =1, we have by (15) in Lemma 7 that
~L _1
HU ||LP(0,oo;Lq(]D))) < ¢ ‘52’ o (33)
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Combining (29)-(33) with (28) yields that there exist R > 0 and w > 0 such that for
Q] > w

1t = @0 o0 esno)) < T N o0 00sm0m2y) + 18 | oo sesacoy + 18 || oo ooy
<C(e+low), (34)
< Ce. (35)

LP(0,00;L4(D))

1B = Bl 0 estnoy < 1B | oo oy + | B
Thus, we obtain (4) from (34) and (35), and this completes the proof of Theorem 1. [
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