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Abstract 

The self-organized pattern formation of run-and-tumble chemotactic bacteria is numerically in­

vestigated based on a kinetic transport equation considering internal adaptation dynamics and a 

finite tumbling duration. It is confirmed that the volcano-like aggregation profile is generated due 

to the coupling of diffusion and internal adaptation dynamics occurring at a large adaptation-time 

scaling. Moreover, an extended Keller-Segel model, derived by the asymptotic analysis of the ki­

netic model at the large adaptation-time scale, can describe the volcano effect well. It is also found 

that when the mean run length of the bacteria becomes large, the volcano effect is more enhanced 

and unexpectedly, different types of pattern formation (i.e., standing and traveling bands) arise at 

very large adaptation times. The mathematical mechanism of the novel pattern formation should 

be an important future study. This paper is a resume of previous studies by the author in S. Ya­

suda, Bull. Math. Biol. 84-, 113 (2022) and K. Adachi and S. Yasuda, Springer Proc. Math. Stat. 

4-29, 235 (2023). 
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I. INTRODUCTION 

Collective motion of chemotactic bacteria, such as E. Coli, relies on, at the individual 

level, a continuous reorientation by alternating runs and tumbles [1, 14]. It has been es­

tablished that the bacteria modulate the run length according to a temporal sensing of 

extracellular chemical cues via an intracellular signal transduction. This chemotactic be­

havior can be described by a kinetic transport equation with a scattering kernel describing 

the velocity jump process in the run-and-tumble motion of the bacteria [4, 5, 7, 9, 11, 16]. 

Kinetic transport equations have been successfully utilized to elucidate the mathematics 

and physics behind the collective motions of bacteria such as the traveling pulse in the 

microchannel [6, 21], the concentric pattern formation of engineered E. Coli [25], and the 

volcano-like aggregation profile observed in microscale aggregation [15]. This paper concerns 

the self-organized aggregation of chemotactic bacteria, such as the volcano effect (i.e., the 

bimodal aggregation of chemotactic bacteria), which was first observed in an experiment of 

microscale aggregation of E. Coli [15]. 

Recently, we investigated the microscale aggregation of chemotactic bacteria based on 

the kinetic transport model [27-29]. In Ref. [27], the occurrence of the self-organized aggre­

gation was investigated numerically based on a kinetic transport equation with an internal 

state, and the effect of internal adaptation on the self-organized aggregation was clarified. 

An important finding of Ref. [27] is the occurrence of the plateau ( or trapezoidal) profile 

in the chemotactic aggregation at a large adaptation-time regime. In Ref. [28], the ag­

gregation of chemotactic bacteria under a given background concentration of chemical cue 

was investigated based on a kinetic transport equation considering the non-instantaneous 

tumbling process, where the interaction between two different populations of running and 

tumbling cells is considered. It was clarified that the volcano effect occurs due to the cou­

pling of diffusion, adaptation, and finite tumbling duration at the large adaptation-time 

scaling. Furthermore, in Ref. [29], the volcano effect was also confirmed in self-organized ag­

gregations by the numerical analysis of the kinetic transport equation in a two-dimensional 

square periodic domain. Remarkably, the numerical simulations also discovered novel types 

of self-organized pattern formation (i.e., standing and traveling bands). 

This paper is a resume of the previous studies. The rest of the paper is organized as 

follows: In Sec. 2, we present the problem and the formulation of the kinetic transport 



118

equation. In Sec. 3, the continuum-limit equations are derived from the kinetic transport 

equation. In Sec. 4, the numerical results obtained by Monte Carlo simulations based on the 

kinetic transport equation are presented. In Sec. 4, we offer concluding remarks and some 

future perspectives. 

II. PROBLEM AND FORMULATION 

A. Problem 

We consider the chemotactic bacteria in the two-dimensional space, x E [O, L] x [O, L] with 

the periodic boundary condition. Initially, at time t=O, the bacteria are spatially uniformly 

distributed with random velocities with a constant speed lvl = Ve. Hereafter, the subscript 

"c" represents the characteristic quantities, which are used to nondimensionalize the basic 

equations. The external chemical cue is also uniformly distributed at time t = 0. 

The bacteria sense the temporal variation of the external chemical cue via their intra­

cellular signal transduction, which will be described in the next subsection, and create a 

biased random motion toward the higher concentration of the chemical cue. Moreover, the 

bacteria produce the chemical cue by themselves. 

Thus, the bacteria are more likely to migrate to a location with a higher concentration of 

chemical cues, and then the concentration of chemical cues at the location further increases 

due to the self-production of chemical cues by the bacteria population. This positive feedback 

triggers self-organized pattern formation. We will numerically investigate the self-organized 

pattern formation under a variation of the parameters related to the chemotactic response 

of the bacteria. 

B. Kinetic Transport Model for Chemotactic Bacteria 

As previously mentioned, the collective motion of the chemotactic bacteria stems, at the 

individual level, from biased random motion by alternating runs and tumbles, where the 

length of the run is determined via intracellular signal transduction. Although intracellular 

signal transduction is very complicated in general, the fundamental property necessary for 

the chemotactic response is described by the excitation and adaptation dynamics of the 
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internal state of the bacteria [7, 23]. In the present paper, we only consider the following 

simple adaptation dynamics of the internal state m E JR: 

. M(S)-m 
m=-~--, 

T 
(1) 

where T is the adaptation time and M(S) denotes the local equilibrium of the internal state 

at the concentration of the external chemical cue S. 

The modulation of the run length is determined by the deviation of the current internal 

state m from the local equilibrium state M(S), i.e., IM(S) - ml. We consider the following 

modulation function for the tumbling frequency: 

(2) 

where 8 denotes the stiffness of the chemotactic response and the response function F(X) 

has the following property: 

F(0) = 0, F'(X) > 0, F(X---+ ±oo) = ±x, 

where x (0<x<l) represents the modulation amplitude. In this study, we consider the 

following form: 

F(X)- xX 
vl+X2 

(3) 

For the local equilibrium of the internal state, we consider the following formula: 

M(S) = log(S). (4) 

This formula comes from the well-known logarithmic sensing of E. coli [10]. 

The bacteria alternate runs and tumbles. We write the frequency when the running cells 

change to the tumbling cells as >.Aii(M(S) - m) and the frequency when the tumbling cells 

change to the running cells as µ > 0. Here, >. > 0 is the mean tumbling frequency of the 

bacteria when their internal state is in local equilibrium, i.e., m = M(S). 

Then, when we write the population density of running cells with a velocity v E [v, v+dv] 

and an internal state m E [m, m + dm] at time t > 0 and at space x E Rd (where dis the 

dimension of space) as dp1 = f(t, x, v, m)dvdm and that of the tumbling cells with an 

internal state m E [m, m + dm] as dp9 = g(t, x, m)dm, the time evolution of the densities 

J(t, x, v, m) and g(t, x, m) is described as follows: 

(5a) 
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atg + am { ( M(S~ - m) g} = >.A,5(M(S) - m) Iv J(t, x, v, m)dv - µg, (5b) 

where I IVI I is the volume of the velocity space, i.e., I IVI I = fv dv, and the velocity space is 

the surface of the ball (i.e., V = vc§d). 

The total population density p, the population density of running cells Pt, and the pop­

ulation density of tumbling cells pg are given as follows: 

p(t, x) = P1(t, x) + pg(t, x), 

P1(t, x) = l Iv J(t, x, v, m)dvdm, 

pg(t, x) = l g(t, x, m)dm. 

(6a) 

(6b) 

(6c) 

Since we consider the self-organized pattern formation, the kinetic transport equation (5) 

is coupled with the reaction-diffusion equation of the chemical cue S(t, x), i.e., 

(7) 

where D8 is the diffusion constant, a is the degradation rate of the chemical cue, and b is 

the production rate of the chemical cue by the bacteria. 

C. Nondimensionalization 

We introduce the nondimensional quantities as follows: 

Then, the kinetic transport equation (5) can be written as follows: 

CJa/1 + am { ( M ( S~ - m) g} = ~ [ A,5 ( M ( S) - m) < f > - µg] , 

where < J > is the average of Jover the velocity space V, which is defined as 

< f >= ___;_ { J(i, x, v, m)dv, 
IIVlllv 

(9a) 

(9b) 
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with IIVII fv dv. In Eq. (9), we have also introduced the following nondimensional 

parameters: 

(11) 

Here, O" is the time parameter, E is the mean run length at the reference state, f is the 

non-dimensional adaptation time, and P, is the ratio of the mean run duration to the mean 

tumbling duration. 

The population densities defined in Eq. (6) are written as follows: 

fJ(i, x) = h(i, x) + fJ9 (i, x), 

h(i, x) = 1 < 1 > (i, x, m)dm, 

p9 (t, x) = 1 g(t, x, m)dm. 

(12a) 

(12b) 

(12c) 

We note that when taking the small tumbling duration limit f) = p,-1 ----+ 0, the density 

of tumbling cells g becomes g ----+ 0, and thus, Eq. (9) is reduced as follows: 

(13) 

The reaction-diffusion equation (7) is nondimensionalized as follows: 

(14) 

where O"s, S, and Ds are defined as follows: 

In the following text, we fix Ds = l. This indicates that the characteristic length Le is 

defined as Le = ,Jl5";1a. 

III. CONTINUUM-LIMIT EQUATIONS 

It has been proved that different types of continuum-limit (i.e., E ----+ 0) equations are 

obtained by the asymptotic analysis of the kinetic transport equation at different scalings of 

the adaptation time [7, 17, 19, 25]. In this study, we utilize the continuum-limit equations 

to confirm the asymptotic behaviors of the MC simulations of the kinetic transport equation 
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(9), which will be given in the next section. In this section, we summarize the continuum­

limit equations obtained at two different scalings of the adaptation time. An asymptotic 

relation between the two different continuum-limit equations is also briefly explained. 

We consider small and large adaptation-time scalings, i.e., f = 0(s) and f = 0(1/s), 

respectively. We also consider the diffusive time scale Cl = E. These settings of the time 

scale parameters are physically interpreted as follows: The time scale parameter Cl = E reads 

that the characteristic time tc corresponds to the diffusion time of the population density, 

i.e., tc = td, where the diffusion time td is defined as 

(15) 

with the diffusion constant defined as Dp = Ve 2 / .X. The small adaptation time scaling 

f = 0(s) indicates that the adaptation time is comparable to the running duration (i.e., 

T ~ .x-1 ), while the large adaptation-time scaling f = 0(1/s) indicates that the adaptation 

time is comparable to the diffusion time (i.e., T ~ td)-

In the following, we only consider the case where the stiffness of the modulation function 

is independent on E and /j = 0(1) in Eq. (2) (although the stiff chemotactic response, such 

as those considered in the previous studies [17, 19, 20] are more realistic in general). 

In the following of the text, we write the nondimensional quantities without 

simplicity unless otherwise stated. 

A. Small adaptation-time scaling 

We consider the small adaptation-time scaling in Eq. (9) as follows: 

T = OcE, Cl= E, 

" A " for 

(16) 

where the parameter a= 0(1) denotes the ratio of the adaptation time to the mean running 

duration (i.e., a = T / .x-1). 

Then, Eq. (9) is written as follows: 

(17a) 

(176) 
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where the subscript c represents the expansion of the quantity with respect to E, e.g., fs = 

Jo+ cfi + c2 h · · ·. Here, we also write M(S0 ) as M0 = M(S0 ) = M0 + cM1 + · · ·. 
The asymptotic analysis of the above equation gives the following standard KS equation 

for the total population density p at the continuum limit c -+ 0 as follows: 

(18) 

where Clv is the time-scale parameter defined as Clv = l + v and cd is the diffusion constant 

calculated as cd = l/d ford= l, 2, and 3. Here, we note again that the parameter v = µ-1 

denotes the relative mean tumbling duration to the mean running duration. The population 

densities of the running and tumbling cells are obtained as follows: 

1 
PJ = 1 + vPo, (19) 

The formal derivation of the KS equation (18) is concisely described in Appendix A 1. 

Equation (18) shows that the tumbling duration v only affects the time scale, but the 

spatial distribution of the population density p0 in the steady state are not affected by the 

tumbling duration at the continuum limit c-+ 0 in the small adaptation-time scaling (16). 

B. Large adaptation-time scaling 

We consider the large adaptation time scaling at Eq. (9) as follows: 

T=/3/E, CJ=E, (20) 

where the parameter (3 = O(l) denotes the ratio of the adaptation time to the diffusion time 

(i.e., (3 = Ta/td)-

Then, Eq. (9) is written as follows: 

(21a) 

(21b) 

The asymptotic analysis of Eq. (21) gives the continuum-limit equation at c -+ 0 as 

follows: 
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where h0 denotes the density of the cells with internal state m and is defined as follows: 

ho(t, x, m) =< Jo > (t, x, m) + go(t, x, m). 

Although the above continuum-limit equation (22) was previously derived in Ref. [25], we 

concisely describe the formal derivation of Eq. (22) in Appendix A 2 for the completeness of 

the present paper. We also remark that Eq. (22) with v = 0 was also derived in Ref. [27] from 

the kinetic transport equation without finite tumbling duration (13). However, interestingly, 

the volcano effect was not observed in the previous study while, as it will be seen in Sec. IV, 

the volcano effect arises both in MC simulations and numerical results of Eq. (22) with the 

finite tumbling duration v -=/=- 0. This indicates that the small modification introduced in 

Eq. (22) with the parameter v enables to produce the volcano effect. 

The total population density of cells p0 (t, x) is given by the integration of ho with respect 

to the internal state m, i.e., 

Po(t, x) = 1 ho(t, x, m)dm. 

In the following text, we call Eq. (22) the extended Keller-Segel (ExKS) model because the 

consistency with the standard Keller-Segel model is confirmed at (3 --+ 0, as shown in the 

next subsection. 

C. Consistency between the KS and ExKS models 

It is easily seen that by taking the limit as a --+ oo in Eq. (18), the KS equation is written 

as follows: 

The same equation is also obtained by taking the limit (3 --+ 0 in Eq. (22). This can be seen 

as follows: 

When taking the limit (3 --+ 0 at Eq. (22), we have the equation as follows: 

8m [(Mo - m)ho] = 0. 

Thus, the solution ho at (3 --+ 0 is written as follows: 

ho(t, x, m) = Po(t, x)b"(Mo - m), (23) 
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where o(m) is the Dirac delta function. 

On the other hand, by integrating Eq. (22) with respect to m, we obtain the equation as 

follows: 

OtPO - 'V X • ]1 = 0, (24) 

where 

(25) 

and B1 is defined as Eq. (A.16b). 

By substituting Eq. (23) into Eq. (A.16b), we obtain the equation as follows: 

B _ _ µ 'V ( Po6(Mo - m) ) 
1 - A(M0 -m) x µ+A(Mo-m) 

µo(Mo - m)'VxPo µpo'VxMo [ o'(Mo - m) A'(Mo - m)o(Mo - m)] 
= - A(Mo - m)(µ + A(Mo - m)) - A(Mo - m) µ + A(Mo - m) - (µ + A(Mo - m)) 2 • 

(26) 

Thus, the flux j 1 (Eq. (25)) at (3 ➔ 0 is written as follows: 

By using A(O) = 1 and v = µ-1 , it is seen that Eq. (24) with Eq. (27) provides the KS model 

at ex ➔ oo. Due to this consistency, we can say that the ExKS model (22) is an extension 

of the standard KS model to involve the effects of the internal adaptation dynamics at the 

large adaptation-time scaling. 

IV. NUMERICAL RESULTS 

The kinetic transport equation (9) is numerically solved by the Monte Carlo method, 

which was developed in Refs. [26-28] (see, for example, appendix B in Ref. [28]). In the 

MC simulations, the two-dimensional periodic square domain x E [0, L] x [0, L] is divided 

into I x I square lattice cells with I = 50 and, on average, two-thousand MC particles are 

distributed in each lattice cell (i.e., the total number of MC particles N = 5 x 106). The 

concentration of chemical cue S is calculated by a standard finite-volume method over the 

lattice mesh system. The time-step size is set as fl.t = 2 x 10-4 _ 
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We note that in the MC method, the characteristic time te is fixed as te = Le/ve, which 

reads a = 1 at Eq. (9), while the time period of the MC simulation is varied according to 

the value of c as 0 ::; t ::; T;'2 , where T = 4 is used unless otherwise stated. This large-time 

simulation allows comparing the MC results with the continuum-limit equations obtained 

at the diffusive scaling a = E. The MC results are also time-averaged over the time period 

6t = 0.1£2 • 
f; 

As the initial condition, we consider the equilibrium solution of Eqs. (9) and (14), which 

is described as 

f(o ) = µ8(m - M(S)) 
,x,v,m 1 , +µ 

(0 ) _ 8(m - M(S)) 
g ,x,m - 1 , +µ S(O, x) = 1. 

More specifically, at time t = 0, the positions and velocities of MC particles are uniformly 

randomly distributed while their internal states are fixed as m = 0, which corresponds to 

the local equilibrium of the internal state described by Eq. ( 4) with S = 1. 

Numerical simulations are performed for various values of the adaptation time T, mean 

run length E, stiffness 8, and modulation amplitude X, while the spatial extent L = 10 and 

the relative tumbling duration µ-1 = 0.3 are fixed. 

A. Instability Diagram 

Figure 1 shows the instability diagrams with respect to the relative adaptation time T / E 

and the stiffness x/8 at different values of c. Here, the two parameters TjE and x/8 are 

chosen in the instability diagram since it is found in our previous studies [27, 28] that they 

are involved in the linear stability condition of the Keller-Segel (KS) model [12, 13] derived 

by the asymptotic analysis of the kinetic transport model (9) at the small adaptation-time 

scaling T = O(s). The linear stability condition of the KS model is written as 

X 1 +a 2 

8 ::; -a-(1 + Dsk ), (28) 

where CY = T / E represents the relative adaptation time to the mean tumbling time and k 

is the Fourier mode of the density perturbation. The derivation of the above condition can 

be referred in Ref. [28]. In the diagram, the linear stability condition of the KS model is 

shown by the dashed lines in each figure. 

It is seen that under the linear stability condition of the KS model, no pattern formations 

are observed both at E =0.1 and E = 1. Moreover, the linear stability condition of the KS 



127

102 102 E=l 

' .... .... ' .... ■ ' ' ' ' ' ' ' ' ' ' ' ' ' ' 10' ' 101 ' ' ' (,Q T ' .... (,Q T ' .6.. T -- ' -- ' ;,,: ' ;,,: ' .. .. .. .. .. .. .. .... - .. .. .. -
10° 10° 

10·1 
10\ /E 1 o' 102 10·' 

10\ /E 
102 

(a) (b) 

FIG. 1: Instability diagrams with respect to the relative adaptation time T / E and the stiffness x/ oat 

c = 0.1 [in (a)] and c = 1.0 [in (b)]. (Reprinted from Fig. 1 in Ref. [29].) The modulation amplitude 

x = 0. 7 is fixed. The closed downward triangles ~ show the stability, where the maximum of the 

power spectra of total population density is smaller than 0.1, i.e., maxk,z 1Pk,ZI/I2 < 0.1, where Pk,l 

is the discrete Fourier Transform of the total population density. The dashed line shows the linear 

stability condition of the Keller-Segel (KS) equation at the wave length L (i.e., Eq. (35) in Ref. [27] 

with k = 21r/L). The closed and open upward triangles,• and 6 show, respectively, the unimodal 

and volcano aggregation. The closed and open squares, ■ and D show the standing and traveling 

band, respectively. 

model is sharp at the small adaptation-time regime T ~ O(c:), where the KS model is indeed 

relevant to the asymptotic solution of the kinetic transport equation (9). On the other 

hand, at the large adaptation-time regime T = 0(1/c:), instead of the usual KS model, an 

extended KS (ExKS) model (i.e., Eq. (17) in Ref. [28]) is obtained by the asymptotic analysis 

of Eq. (9) at the continuum limit E ---+ 0. The linear stability condition of the ExKS model 

has yet to be uncovered. 

Importantly, the volcano effect is observed at the large adaptation-time regime T 

0(1/c:) when the stiffness is sufficiently large. The parameter regime and scaling for the 

volcano effect to take place under a given background chemical concentration was identified 

in the previous study [28]. The present result confirms that the same scaling property holds 

for the volcano effect even in the self-organized aggregation. 

Furthermore, it is also uncovered that the variety of self-organized pattern formation 

occurs at large adaptation times when E is moderate. More specifically, at E = 1 [in Fig. 1 (b)], 
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the standing and traveling bands are newly discovered at, respectively, T = 10 and T = 100. 

In the following subsections, we put more focus on the volcano effect and the standing and 

traveling bands. 

B. Volcano Effect 

z 

)-y z 

J_y 
X 

(a) (b) 

z 

)-y 
z 

fa--y 
X 

FIG. 2: Spatial distributions of the total population density p [in (a)], the population density 

of the running cells Pt [in (b)], the population density of the tumbling cells pg [in (c)], and the 

concentration of chemical cue S [in (d)] at E = 0.1, T = 10, i5 = 0.01, and x = 0.9. (Reprinted from 

Fig. 2 in Ref. [29].) The volcano effects are observed in p and pg while Pt and S are unimodal. 

The intersections shown by solid lines are also shown in Fig. 4. 



129

z 

)-y 

(c) (d) 

PJ 

s 3 
2.5 
2 
1.5 
1 
0.5 
0 

FIG. 3: Spatial distributions of the total population density p [in (a)], the population density 

of the running cells Pt [in (b)], the population density of the tumbling cells Pg [in (c)], and the 

concentration of chemical cue S [in (d)] at c = 1, T = 1, <5 = 0.01, and x = 0.9. (Reprinted from 

Fig. 3 in Ref. [29].) The volcano effects are observed in p, Pf, and Pg while S is unimodal. The 

intersections shown by solid lines are also shown in Fig. 4 

In the previous study [28], it was clarified that the volcano effect occurs under a given 

unimodal distribution of the chemical cue at the large adaptation-time scaling T = 0(1/c:). 

This study confirms that the volcano effect occurs even in the self-organized aggregation at 

the large adaptation-time scaling. 

Figures. 2 and 3 show the spatial distributions of the total population density p, the 

population density of running cells Pt, the population density of tumbling cells pg, and the 
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concentration of the chemical cue S at T = 1/E at, respectively, E = 0.1 and E = 1. The 

distributions at the cross sections shown by the solid black lines in each figure are also shown 

in Fig. 4. 

It is seen that the volcano effect is observed in the total population density and the 

population density of the tumbling cells even though the concentration of the chemical cue 

is unimodal. From the comparison between the results with E = 0.1 [Fig. 2] and E = 1 

[Fig. 3], it is seen that the volcano effect becomes more evident when E becomes large. 

Moreover, the volcano effect is observed even in the population density of running cells PJ 

at E = 1. We note that the volcano effect is never observed in PJ in MC simulations when 

E is small, say E ~ 0.2, although the volcano effect remains in p and pg at the continuum 

limit at the large adaptation-time scaling. This observation is consistent with the numerical 

result obtained by the ExKS model, which is obtained by the asymptotic analysis of Eq. (9) 

at the continuum limit E --+ 0 (see also Fig. 4). To understand the enhancement of the 

volcano effect at moderate E, the higher-order asymptotic analysis may be an important 

future study. 

In Fig. 4, the intersections of the two-dimensional distributions of p, pf, pg, and S obtained 

at the large adaptation-time scaling T = 1/E at different values of E are compared. Here, the 

result at the continuum limit E --+ 0 is obtained by the finite volume scheme of the ExKS 

model, which is the continuum-limit model derived by the asymptotic analysis of Eq. (9) at 

the large adaptation-time scaling T = 0(1/i::). It is seen that the volcano effect occurs in p 

and pg while Sis always unimodal. The results obtained at E = 0.1 are well approximated 

by the ExKS model. These features are consistent with the results in the previous study. 

C. Standing and Traveling Bands 

The standing and traveling bands shown in the instability diagram at E = 1 [Fig. 1 (b)] 

are shown in, respectively, Figs. 5 and 6. In the figures, the flux J is calculated as 

J(t, x) = l < vf > (t, x, m)dm. 

In Fig. 5 (a), it is seen that the local flux is almost zero, IJI c::=: 0, so that both of the 

population density p and the concentration of chemical cue S are in the stationary state. It 

is also seen from Fig. 5 (b) that there is no phase difference between the bands of population 
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FIG. 4: Comparison of the total population density p [in (a)], the population density of running 

cells PJ [in (b)], the population density of tumbling cells pg [in (c)], and the concentration of 

chemical cue S [in (d)] at different values of cat the large adaptation time scaling T = (3/i:: with 

(3 = l. (Reprinted from Fig. 4 in Ref. [29].) The spatial distributions of the quantities at the 

intersections shown by solid lines in Figs. 2 and 3 are shown. 

density p and concentration of chemical cue S. 

On the other hand, in Fig. 6, a significant flux is observed on the band of the population 

density. The flow direction is perpendicular to the population band; that is, the traveling 

population band is created. Interestingly, in Fig. 6(b ), a small phase difference is observed 

between the bands of population density p and concentration of chemical cue S. Moreover, 

the band of S is followed by the band of p. This result was unexpected because the chemical 

cue is produced by the bacteria, so that it seems to be natural that the band of chemical cue 

is followed by the population band. In this proceedings, we just report this interesting self­

organized phenomena. To understand the mechanism of the self-organized traveling band a 
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FIG. 5: Standing band observed at c = 1, T = 10, x = 0.7, and J = 0.01. (Reprinted from Fig. 5 

in Ref. [29].) Figure (a) shows the spatial distributions of the total population density p and the 

flux J. Figure (b) shows the distributions of p, S, PJ, and pg at the intersection y = 5 in figure (a). 

10 

8 

6 

~ 

4 

Traveling Band 
~~ 

2 4 X 6 8 10 

(a) 

Distributions along x + y = 10 

1.06 t.,:i 1 
Q. 

1.02 

0.98 

0.94 

01 ... -a. 
0.5 

00 2 

(b) 

FIG. 6: Traveling band observed at c = 1, T = 100, x = 0.7, and J = 0.01. (Reprinted from Fig. 6 

in Ref. [29].) Figure (a) shows the spatial distributions of the total population density p and the 

flux J. Figure (b) shows the distributions of p, S, Pf, and pg along the diagonal x + y = 10 in 

figure (a). 
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further investigation is required. 

V. CONCLUDING REMARKS 

The self-organized pattern formation of run-and-tumble chemotactic bacteria in a peri­

odic square domain is numerically investigated by the MC method of the kinetic transport 

equation (9) coupled with the reaction-diffusion equation of the chemical cue (14). The MC 

simulations are performed for a wide range of parameters of the stiffness of chemotactic 

response x/ 8 and the internal adaptation time T at two different values of the mean run 

length E, i.e., E = 0.1 and E = l. 

The results of the pattern formation are summarized in the instability diagram, Fig. 1. 

Under the linear stability condition of the KS model, which is derived by the asymptotic 

analysis of the kinetic transport model at the small adaptation-time scaling T = 0(1:), the 

initial uniform states are always stable at both E = 0.1 and E = l. At E = 0.1, the linear 

stability condition is sharp even at large adaptation times, while at E = l, the self-organized 

aggregation is suppressed at large adaptation times. 

The volcano effect is observed at the large adaptation-time scaling T = (l/1:) when the 

stiffness of the chemotactic response is sufficiently large. The previous study [28] clarified 

that the volcano effect is generated under a given unimodal distribution of the chemical 

cue due to the coupling of diffusion, adaptation, and finite tumbling duration occurring at 

the large adaptation-time scaling. It was also numerically confirmed that the volcano effect 

remains even at the continuum limit E--+ 0 at the large adaptation-time scaling. This study 

confirms that the volcano effect occurs even in the self-organized aggregation, which is more 

relevant to the experimental situation. Furthermore, it is also clarified that the volcano 

effect is enhanced at the moderate value of E (i.e., E = l). 

Unexpectedly, at E = l, different types of pattern formations are discovered; that is, 

the standing and traveling bands are generated at very large adaptation times, i.e., T = 10 

and T = 100, respectively. Remarkably, in the traveling band, the band of chemical cue is 

followed by the band of population density of the bacteria although the chemical cue is pro­

duced by the bacteria. Since we only considered the pattern formation in the (unrealistic) 

periodic square domain in this study, the experimental possibility of the self-organized trav­

eling band may be questionable. We also only considered the uniform equilibrium solution 
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of the kinetic transport model as the initial data. It is not known if the pattern formation 

depends on the initial data. Finally, we remark that the physical relevance and the math­

ematical mechanism of the standing and traveling bands as well as the enhancement of the 

volcano effect, both occurring at moderate E , should be an important topic for future study. 

Appendix A: Derivation of the continuum-limit model 

The continuum-limit models, which are utilized to compared with the MC results in 

the main text, were previously derived in literatures, e.g., Refs. [4, 7, 9, 17, 19, 25]. In this 

appendix, we briefly describe the derivation of the models for the completeness of this paper. 

1. Small adaptation-time scaling 

By following the procedure in Ref. [19], we change the variables of Eq. (17) as follows: 

( M(S0 )-m) f 0 (t,x,v,m) = Pc t,x,v,y = E , ( M(S,:)-m) 
g0 (t,x,m) = q0 t,x,y = E . 

Then, we have 

E28tPc +EV. "ilxPc + ay { (v. Ge; - ;;) Pc}= µqf; -A(Ey)pe;, 

E28tq6 + 8y {-;;qE} = A(cy) < Pc > -µqE, 

(A.la) 

(A.lb) 

where we write G0 = "v xM(S0 ). By integrating the sum of the above equations with respect 

to v and y, we obtain the following conservation law: 

(A.2) 

where p0 is the total population density, i.e., p0 = PPs + pq" with PPs = J < p0 > dy and 

pq" = J q0 y, and the flux j 0 is defined as 

Jc = j < vpE > dy. (A.3) 

As can be seen below, the KS equation is obtained from Eq. (A.2) at the continuum limit 

(E---+ 0). 
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We assume Ps and q0 are compactly supported with respect toy and A(cy) in Eq. (A.l) 

can be expanded as A(cy) = 1 + cA'(0)y + O(c2). Then, from the leading-order terms of 

Eq. (A.1), we obtain the leading-order equation as follows: 

8y { ( v · Go - ~)Po} = µqo - Po, 

8y {-~qo} =<Po> -µqo, 

(A.4a) 

(A.4b) 

By integrating each of Eqs. (A.4) w.r.t y, we obtain the following relation between the 

leading-order population densities: 

(A.5) 

Furthermore, by taking the moment of the above equation multiplied by v, we obtain the 

flux Jo as follows: 

Jo = J < vpo > dy = 0. 

From the first-order terms of Eq. (A.l), we have the equation as follows: 

v'x · (vpo) + 8y { ( v · Go - ~) P1} + 8y(v · G1po) = µq1 - P1 - A'(O)ypo, 

8y { (-~) q1} =< P1 > -µq1 + A'(0)y <Po>. 

(A.6) 

(A.7a) 

(A.7b) 

By integrating the sum of above equations multiplied by v with respect to v and y, we obtain 

v'x · J < v ® VPo > dy = -J1 -A'(0) J Y < VPo > dy, 

_µ_cdv'xPo = -J1 -A'(0) Jy < VPo > dy, 
1+µ 

where we use Eq. (A.5) and < v ® v >= cdI with cd = 1/d ford= 1, 2, 3. Here, I is the 

identity matrix. The last term of the above equation is obtained by integrating Eq. (A.4a) 

multiplied by vy with respect to v and y: 

-J ya { < V ® VPo > -G - ~ < VPo >} dy = J y < VPo > dy, 

J < v ® vpo > dy · G - ¾ J y < vpo > dy = J y < vpo > dy, 

J y < vpo > dy = _µ ___ a_cdpoG. 
l+µl+a 

Hence, the flux Ji is written as follows: 

J1 = -l~µcd [vxPo+ 1:0:A'(O)Gpo]. 

Thus, by taking the limit E --+ 0 at Eq. (A.2), we obtain the KS equation (18). 

(A.8) 
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2. The Extended Keller-Segel model 

The derivation of Eq. (22) is as follows. In the following, we write the average of fe: over 

the velocity space as Ac:=< fe: >. 

From the leading-order terms of Eq. (21), we can write the leading-order solution as 

follows: 

Jo= Ao(t, x, m), 
A(Mo -m) 

9o = ----'------'-Ao(t, x, m). 
µ 

Here, A0 (t, x, m) is an unknown function independent of the velocity v. 

From the c1 terms of Eq. (21), we obtain 

By taking the sum of the above equations, we obtain the following equation, 

Hence, Ji can be written in the form 

with 
'vxAo 

Bi= - A(Mo - m). 

From Eq. (A.lOb), we can also write g1 as follows: 

Subsequently, from the c2 terms of Eq. (21 ), we obtain the equation as follows: 

atAo + V • 'vx(A1 + V • B1) + am { (Mo; m) Ao}= µg2 -A(Mo - m)h 

-A'(Mo - m)M1(A1 + v · Bi) - ~A"(Mo - m)M2Ao, 

(A.9) 

(A.lOa) 

(A.lOb) 

(A.llb) 

(A.12) 

(A.13a) 

(A.13b) 
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By integrating the sum of the above equations with respect to v, we obtain the equation to 

determine the leading-order solution A0 as follows: 

( 1 + A(M:- m)) OtAo + v' x · (cdB1) + Om { (Mo; m) ( 1 + A(M:- m)) Ao} = 0. 
(A.14) 

When we write the total density of cells with an internal state m as h0 =< Jo > +g0 , 

i.e., from Eq. (A.9), 

( A(Mo -m)) 
h0 (t, x, m) = 1 + µ A0 (t, x, m), (A.15) 

we can rewrite Eq. (A.14) as follows: 

(A.16a) 

with 

A(M01- m) 'vx ( I+ A?:,;-)) . (A.16b) 

Thus, we obtain the ExKS model (22). 
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