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ABSTRACT

Background and aims: Problematic mobile phone use can disrupt social interaction and well-being,
potentially influencing cognitive processes. This study investigated whether mobile phone use problem
severity is associated with alterations in the topological organization of brain networks. Methods: Rs-fMRI
and DTI data were collected from 81 healthy participants. Graph theory analyses were applied. The Mobile
Phone Problem Use Scale-10 (MPPUS-10) was used to assess mobile phone use problem severity. Corre-
lation analyses were conducted between each graph metric and questionnaire scores. Results: MPPUS-10
scores correlated with global fMRI metrics: higher scores linked to longer shortest path length (reduced
integration) and lower global efficiency (reduced information transfer). Conversely, higher MPPUS-10
scores were correlated with a greater clustering coefficient and higher local efficiency, which reflect increased
local connectivity. Furthermore, higher MPPUS-10 scores were associated with a higher sigma value from
DTI, indicating altered structural network properties. Some specific brain regions also showed significant
correlations with MPPUS-10 scores. Discussion and conclusion: These findings indicate that higher mobile
phone use problem severity is associated with decreased integration and increased segregation of functional
networks, alongside enhanced small-worldness in structural networks. Reduced integration aligns with
addiction theories suggesting digital overload worsens network dysfunction, disrupting brain connectivity.
Additionally, higher severity was correlated with altered connectivity in multiple regions, such as the pre-
central gyrus, supplementary motor area, and postcentral gyrus. These regions are associated with motor
control, sensorimotor processing, and memory function. Further research is needed to explore whether these
findings reflect shifts in the integration and integrity of brain information-processing modules.
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INTRODUCTION

The term “problematic mobile phone use” (PMPU) was first
proposed in 2012 to describe situations wherein individuals
struggle to control their mobile phone use, leading to
negative impacts on their daily lives (Billieux, 2012). With
the rapid proliferation of smartphones, the majority of
mobile phones today are smartphones; in today’s society, the
two are nearly synonymous (Matthes, Thomas, Stevic, &
Schmuck, 2021). The psychological and behavioral depen-
dence caused by PMPU can lead individuals to excessively
use their phones, exhibiting core symptoms similar to
addiction.

In related studies (Bianchi & Phillips, 2005; Foerster,
Roser, Schoeni, & Röösli, 2015), scales assessing PMPU were
commonly used to measure the mobile phone use problem
severity. Given the significant differences in average scores
across samples from different countries (Kalaitzaki et al.,
2024) and considering that these scales are not diagnostic
tools (Demkow-Jania et al., 2021), such variations may not
only reflect limitations of the scale (e.g., lack of a standard
cut-off) but also cultural or environmental differences.
Nevertheless, many studies despite various recommenda-
tions on threshold cut-offs continue to focus on the impact
of the severity of mobile phone use problems. For example,
research on the association between different personality
traits and the mobile phone use problem severity has found
that individuals with high neuroticism are more likely to be
associated with more severe mobile phone use issues, while
those with high conscientiousness are more likely to avoid
this (Marengo, Poletti, & Settanni, 2020; Marengo, Sinder-
mann, et al., 2020). PMPU has been linked to a wide range
of negative effects on mood, physical health, occupational
performance, and social performance (Cheng et al., 2024;
Kalaitzaki et al., 2024; Wacks & Weinstein, 2021). Notably,
the root cause of mobile phone-related issues is not the
device itself but the multitude of functions it offers (Jeong,
Kim, Yum, & Hwang, 2016). The constant influx of infor-
mation and the uninterrupted access provided by mobile
phones often result in “fragmented information” and lead to
a “fragmentation of daily life” (Dai, Tai, & Ni, 2021;
Matthes, Karsay, Schmuck, & Stevic, 2020). The over-
whelming stream of fragmented information exceeds in-
dividuals’ limited cognitive resources for encoding, storing,
and retrieving information (Lang, 2000). This imbalance
between environmental demands and cognitive resources
(Lee, Son, & Kim, 2016) can impair cognitive functions such
as memory, judgment, and decision-making (Primack
et al., 2017).

Daily experiences require the processing of external
signals and internal information retrieved from memory.
PMPU can lead to an information burden and a heavy
reliance on external sources for daily decisions and behav-
iours (Cataldo, Billieux, Esposito, & Corazza, 2022; Fineberg
et al., 2022). For example, reliance on health apps for health
management may cause individuals to neglect bodily signals
in favor of meeting predefined metrics, leading to anxiety

and stress when targets are unmet. Research suggests that
excessive dependence on external information can shift
mental activity away from internal reflection toward out-
ward exploration, potentially making cognitive and
emotional processing more vulnerable (Cataldo et al., 2022;
Fineberg et al., 2022). This may result in decreased inte-
gration of internal information-processing modules in the
brain (Tei et al., 2020; Toker & Sommer, 2019); the decrease
is caused by increased transparency or blurred distinctions
between external information sources and internal process-
ing modules (Verschooren, Schindler, De Raedt, & Pourtois,
2019; Vonitsanos, Grivokostopoulou, Moustaka, & Kanavos,
2023). Graph theory can be utilized to evaluate this hy-
pothesis by analyzing the topological properties of func-
tional and structural brain networks, quantifying brain
network integration (how interconnected different parts of
the brain are) and segregation (the extent to which different
parts of the brain are independent; Mheich, Wendling, &
Hassan, 2020).

The human brain’s networks may be optimised to bal-
ance minimising wiring costs (neuronal connections) and
maximising adaptive value, thereby ensuring robust and
efficient brain network organization (Bullmore & Sporns,
2012). Adaptive behaviours, such as information processing
capacity and robustness to adverse perturbations, are likely
linked to topological properties (Achard & Bullmore, 2007).
The topological organization of brain networks significantly
impacts their function, performance, and behaviour
(Bashan, Bartsch, Kantelhardt, Havlin, & Ivanov, 2012).
Concurrent high local and global efficiency is thought to
enhance information processing and mental representations
(Bullmore & Sporns, 2009). In graph theory, the brain is
modelled as a network of nodes (brain regions) and edges
(connections) (Liao, Vasilakos, He, & Reviews, 2017), with
the complete set of pairwise connections defining the graph’s
topological organization (Sporns, 2018). Nodal metrics (e.g.,
degree centrality and betweenness centrality) and global
metrics (e.g., small-worldness and clustering coefficient) are
commonly utilized to assess these topological properties
(Rubinov & Sporns, 2010; Sporns, 2018). Prior research has
exhibited that the topological organization of functional
networks is closely linked to cognitive performance varia-
tions (Lynall et al., 2010; Zhang et al., 2021). Structural
networks, characterised by physical connections like neural
fibre tracts, are crucial for understanding inter-regional
connectivity and illustrate the spatial economy of the brain’s
layout (Chklovskii, Schikorski, & Stevens, 2002). However,
the specific brain network changes that underlie PMPU
remain unclear. A multimodal approach, incorporating both
functional and structural network analyses, may provide a
more comprehensive understanding of PMPU.

Based on the above, we hypothesised that as the mobile
phone use problem severity increases, clusters of brain in-
formation-processing modules will strengthen their links
with external information sources while weakening global
internal connectivity among these modules. More
specifically, we predicted that mobile phone use problem
severity is associated with a shift in the balance between
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network-integration and network-segregation among infor-
mation-processing modules, shifting in the direction of
more segregation. This study aimed to investigate this hy-
pothesis by examining changes in the topological organiza-
tion of brain networks resulting from mobile phone use
problem severity, utilising graph theory analysis. To test this
hypothesis, we obtained scores on mobile phone use prob-
lem severity and structural and functional MRI data from
participants, and graph theory analysis was conducted on
the brain images. We explored the issue of behavioral
addiction related to PMPU by investigating how topological
metrics correlate with the severity of mobile phone use
problem severity; the findings provide a more nuanced un-
derstanding of its relationship with brain network
organization.

METHODS

Participants

This study recruited 82 participants through advertisements
and individual contact, including word-of-mouth and per-
sonal referrals from researchers’ acquaintances. Participants
were recruited without requiring self-reported mobile phone
use problems, and no specific criteria or cutoff scores were
used to determine eligibility based on problematic mobile
phone use. As a result, individuals with and without such
issues could be included. The participants were enrolled
from July 2017 to February 2019. Data were collected at the
Kyoto University Hospital in Japan. All participants were
free from prior psychiatric disorders or severe medical
conditions, as confirmed by two licensed psychiatrists
through the Structured Clinical Interview for DSM Disor-
ders, Non-Patient Edition.

Measures

The Mobile Phone Problem Use Scale-10 (MPPUS-10) was
utilized to assess mobile phone use problem severity. This
scale is a simplified version of the MPPUS-27 developed by
Foerster et al. (2015). It comprises 10 items rated on a Likert
scale from 1 (“not true at all”) to 10 (“extremely true”). Total
scores range from 10 to 100, with higher scores indicating
more severe issues with mobile phone utilisation. While
previous studies, such as Nahas, Hlais, Saberian, and Antoun
(2018), have established a cut-off score of 59 on the Mobile
Phone Problem Use Scale-10 (MPPUS-10) to define PMPU
in a Lebanese sample, it is unclear whether this threshold is
universally applicable across diverse cultural contexts.
Therefore, in this study, we focus on the concept of ‘mobile
phone use problem severity’ rather than adhering strictly to
predefined cut-off scores for problematic use. We followed
the translation process outlined by Fujiwara et al. (2018) to
create a Japanese version of the questionnaire to ensure that
participants fully understood each item. This process
involved a qualified clinical psychiatrist and a cognitive
science researcher experienced in translating psychological
measures. Both were fluent in Japanese and English.

Discrepancies in translation were resolved by a psychometric
expert to ensure linguistic and functional equivalence. The
draft was back-translated by two bilingual pairs, each
comprising one native Japanese speaker and one native
English speaker. A psychiatrist and cognitive science
researcher then compared the original and back-translated
versions to resolve any semantic discrepancies, making mi-
nor adjustments as needed. The reliability of the Japanese
version of the MPPUS-10 was confirmed by calculating
split-half and internal reliabilities. In this study, the
Spearman-Brown coefficient for split-half reliability was
0.820, and Cronbach’s α for internal consistency was 0.828.

MRI acquisition

Participants were instructed to visually focus on a fixation
cross in the centre of a screen while remaining still, relaxed,
awake and avoiding any specific thoughts during the scan-
ning session. Foam rubber pads were utilized within a head
coil to minimize head movement.

Structural MRI data were acquired utilizing three-
dimensional magnetization-prepared rapid gradient-echo
(3D-MPRAGE) sequences. Resting-state data, lasting
10 min, were collected using a single-shot gradient-echo
planar imaging pulse sequence on a 3-Tesla MRI unit
(Tim-Trio; Siemens, Erlangen, Germany) equipped with a
40-mT/m gradient and a 32-channel phased-array head coil.

The parameters for the 3D-MPRAGE images were as
follows: echo time (TE), 3.4 ms; repetition time (TR), 2000
ms; inversion time, 990 ms; field of view (FOV), 2253 240
mm; matrix size, 2403 256; resolution, 0.93753 0.93753
1.0 mm; and 208 total axial sections with no intersection
gaps. The resting-state parameters were: TE, 30 ms; TR,
2,500 ms; flip angle, 808; FOV, 2123 212 mm; matrix size,
643 64; in-plane spatial resolution, 3.3125 mm3 3.3125
mm; 40 total axial slices; and slice thickness, 3.2 mm with
0.8-mm gaps in ascending order. A dual-echo gradient echo
dataset for B0-field mapping was acquired to correct for
distortions. A high-resolution T1 image was routinely
examined by an engineer to identify structural anomalies.
According to visual assessments by radiologists and psy-
chiatrists, no significant lesions were observed in either the
white or grey matter of any participant’s T1 images.

MRI data pre-processing and connectivity matrix

Resting-state functional magnetic resonance imaging
(rs-fMRI) data were pre-processed utilizing the CONN
Functional Connectivity Toolbox in MATLAB R2018b
software (The MathWorks Inc.). Initially, slice-timing and
head-motion corrections were applied to each participant’s
fMRI data. Participants with excessive head movement
(≥3 mm or 38) were excluded from further analysis. The
T1-weighted image was then co-registered with the mean
motion-corrected fMRI image and normalised to MNI space
at 23 23 2 mm3 resolution. Spatial smoothing was con-
ducted utilising a 6-mm FWHM Gaussian kernel to enhance
the signal-to-noise ratio. To minimise potential confounding
factors, regression was employed to mitigate global mean
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signals, Friston’s 24-parameter motion model, and signals
from the cerebrospinal fluid and white matter. Linear
detrending and bandpass filtering (0.01–0.1 Hz) were also
applied to reduce low-frequency drift and high-frequency
noise. Functional connectivity was then assessed utilizing the
GRETNA toolbox (Wang et al., 2015) by computing Pear-
son’s correlation coefficient (r) between the mean BOLD
time series from pairs of 90 brain regions (utilizing the AAL
atlas). These correlation coefficients were converted to
z-scores through Fisher’s r-to-z transformation.

Diffusion tensor imaging (DTI) data were pre-processed
utilising the PANDA toolbox (Cui, Zhong, Xu, He, & Gong,
2013). Motion and eddy current distortions were corrected,
and non-brain tissues were removed from the DTI images.
Fractional anisotropy (FA) maps were computed for each
voxel, and FA images were co-registered with the corre-
sponding T1-weighted anatomical images. Probabilistic
tractography was then conducted utilizing ProbtrackX in
FSL with the following parameters: fibres 5 2, weight 5 1,
burning period 5 1,000, and overall pathway distance
(OPD) selected for probabilistic tracking type. AAL brain
parcellation was nonlinearly transformed into each partici-
pant’s native space through the utilisation of inverse nor-
malisation and co-registration transformations. Each brain
region, as defined by the parcellation, was treated as a node
in the brain network. A 90 3 90 structural connectivity
matrix was generated by quantifying the number of
streamlines connecting each pair of brain parcels, providing
a representation of the brain’s structural connectivity pat-
terns. In the structural connectivity matrix, each edge rep-
resents the connection strength between two nodes (i.e.,
brain regions). Higher correlation values suggest stronger
structural connectivity between brain regions, while lower
values indicate weaker connectivity. Based on the OPD
matrix from the AAL90 template, a 903 90 undirected and
weighted matrix was created for network analysis after
ensuring symmetry.

Network analysis

Graph theory analysis was conducted utilizing GRETNA
(Wang et al., 2015) to calculate both global network and
regional node parameters for rs-fMRI and DTI data. Key
topological indices were calculated across a sparsity range of
10–50% (in 1% steps) to avoid bias from the selection of a
specific threshold. The area under the curve within this
sparsity range was then computed for statistical analysis.

The global network parameters included global efficiency
(Eg), which measures the efficiency of information transfer
across the network, clustering coefficients (Cp), which
quantify the local inter-connectivity, and local efficiency
(Eloc), reflecting the efficiency of information transfer at the
local level. The shortest path length (Lp) was utilized to
assess network integration, and sigma (σ) indicated the
small-worldness of the network. Regional node parameters
include degree centrality (Dc), representing the number of
direct connections to a node, and betweenness centrality
(Bc), reflecting the influence of a node on information flow

between all other nodes. Nodal efficiency (Ne), nodal local
efficiency (Nle), and nodal clustering coefficient (NCp) were
also calculated in line with global network metrics. The re-
sults were visualized using BrainNet Viewer (Xia, Wang, &
He, 2013).

Statistical analysis

Statistical analyses were conducted utilizing SPSS (version
24.0; SPSS Inc., Chicago, IL, USA). Descriptive statistics for
the MPPUS-10 scale were calculated, followed by correla-
tional analysis. Pearson’s correlation coefficient was utilized
for variables with a normal distribution, while Spearman’s
rank-order correlation was applied to variables with a
skewed distribution. Normality was assessed utilizing the
Kolmogorov-Smirnov test, with statistical significance set at
p < 0.05 (two-tailed).

To explore the correlation between changes in topolog-
ical organization and mobile phone use problem severity,
partial correlation analysis was performed utilizing R Soft-
ware version 4.2.3 (downloaded from URL: http://www.r-
project.org). The two variables include the MPPUS-10
scores as well as global and nodal parameters from the graph
theory analysis, with age and sex as covariates. Bonferroni
correction was applied to account for multiple comparisons.

Ethics

This study adhered to the principles of the Declaration of
Helsinki and received approval from the Institutional Re-
view Board of Kyoto University. All participants were fully
informed about the study’s purpose and procedures and
provided written informed consent prior to participation.

RESULTS

Descriptive statistics

One participant’s data was excluded due to an incomplete
questionnaire, resulting in a final sample of 81 participants
with a mean age of 21.77 ± 1.84 years. The MPPUS-10
scores of the participants are shown in Table 1. An inde-
pendent samples t-test was conducted to compare the mean

Table 1. MPPUS-10 scores of the participants

MPPUS-10 Total

Sex

Male
(n 5 42)

Female
(n 5 39)

Mean ± SD 36.20 ±
14.03

33.88 ± 12.93 38.69 ± 14.88

Range Min 12 12 15
Max 72 67 72

Percentiles 25% 24.00 23.75 24.00
50% 34.00 33.00 39.00
75% 47.00 42.50 50.00

rho 5 �0.17, p 5 0.13 Correlation of Age
t 5 �1.56, p 5 0.12 T-test of sex
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MPPUS-10 scores between our study (M 5 36.20,
SD 5 14.03, n 5 81) and those reported by Foerster et al.
(2015) (M 5 28.2, SD 5 15.6, n 5 412). The results showed
a statistically significant difference (t 5 4.60, p < 0.001),
indicating that the severity of the mobile phone use problem
in our sample was notably higher.

Graph theory analysis

Global network metrics. Within the specified threshold
range, both rs-fMRI and DTI data demonstrated typical
small-worldness (normalized clustering coefficient: γ > 1,
normalized path length: λ 5 1, small-world characteristics:
σ > 1). As exhibited in Fig. 1, MPPUS-10 scores were
significantly correlated with several global network metrics.
The rs-fMRI exhibited significant correlations with Lp
(partial rho 5 0.26, p 5 0.0008), Eg (partial rho 5 �0.26,
p 5 0.0010), Cp (partial rho 5 0.27 p 5 0.0005), and Eloc
(partial rho 5 0.27 p 5 0.0005). DTI exhibited significant
correlations with σ (partial rho 5 0.21 p 5 0.0064).

Nodal network metrics. The node results (p < 0.05, Bon-
ferroni-corrected) from rs-fMRI and DTI, correlating with
MPPUS-10 scores, are presented in Table 2.

As exhibited in Fig. 2, for the rs-fMRI data, higher
MPPUS-10 scores were associated with a significant decrease
in Dc in the right orbital inferior frontal gyrus; decreased Ne
in the right middle orbitofrontal cortex, right inferior orbi-
tofrontal cortex, and left medial superior frontal gyrus;
increased Nle in the bilateral precentral gyrus, left supple-
mentary motor area, bilateral fusiform gyrus, and bilateral
postcentral gyrus; NCp was increased in the bilateral pre-
central gyrus, bilateral supplementary motor area, left su-
perior occipital gyrus, right inferior occipital gyrus, bilateral
fusiform gyrus, and bilateral postcentral gyrus.

For the DTI data, as exhibited in Fig. 3, higher MPPUS-10
scores were associated with decreased Dc, Bc, and Ne in the
right postcentral gyrus, increased Bc in the right anterior
cingulate gyrus, and decreased NCp in the left postcentral
gyrus.

DISCUSSION

In the current study, we focused on mobile phone use
problem severity and examined its impact by analyzing the
correlation between MPPUS-10 scores and functional as well
as structural topological organization changes in healthy
Japanese participants. The study reveals novel and signifi-
cant findings. First, at the global brain level, increased mo-
bile phone use problem severity was associated with
decreased integration and increased segregation of func-
tional networks, while structural networks maintained high
local clustering and efficient information transmission.
Second, at the nodal level, several brain regions involved in
emotional regulation and cognitive function exhibited al-
terations in their topological properties. Notably, the topo-
logical organization of the left postcentral gyrus was affected

by mobile phone use problem severity in both functional
and structural networks, though the trends differed. These
findings support and expand upon previous observations of
PMPU at the global brain level.

Global network metrics

Participants with higher mobile phone use problem severity
exhibited increased Lp, Cp, and Eloc and decreased Eg in
their functional networks. The Lp and Eg metrics reflect the
ease of information integration across distributed brain re-
gions (Xu et al., 2019), with higher Lp and lower Eg indi-
cating weaker integration potential (Rubinov & Sporns,
2010). The Cp and Eloc metrics measure network segrega-
tion and indicate the network’s ability for specialized pro-
cessing, with higher values suggesting enhanced local
processing within densely interconnected brain regions
(Lucas et al., 2023).

Our results suggest that, as mobile phone use problem
severity increases, the distance for information transmission
between brain regions grows, weakening the potential for
global integration of specialized information while
enhancing specialized processing within densely connected
brain regions. Similar patterns of reduced long-distance
functional connectivity and increased local information
processing have been observed in patients with Alzheimer’s
disease (Sanz-Arigita et al., 2010), characterised by lower
global integration and higher local segregation (Kabbara
et al., 2018). This implies that PMPU may lead to functional
network topologies similar to those observed in Alzheimer’s
disease, potentially impacting cognitive functions.

In terms of structural networks, a positive correlation
was found between small-worldness and mobile phone use
problem severity. Small-world networks, characterized by
high clustering coefficients and short path lengths, combine
the advantages of both regular and random networks,
facilitating both local specialization and global information
processing (Liang, Wang, & He, 2010). Healthy brains
typically exhibit small-world properties, indicating a balance
between local and global processing (Bassett & Bullmore,
2006; Y. Li, Wang, et al., 2020). Our findings show that, with
increased mobile phone use problem severity, structural
networks maintain this small-world topology, suggesting a
better balance compared with the lower integration and
higher segregation observed in functional networks. This
differing trend may reflect different regulatory mechanisms:
functional network changes might indicate adaptive adjust-
ments during PMPU, while structural network changes
could signify stable connectivity patterns that support
essential functional connections. This aligns with the
concept of neural compensation, wherein the brain com-
pensates for cognitive decline through increased connectiv-
ity or activity (Behfar et al., 2020). Conversely, this result
suggests that changes in functional networks do not neces-
sarily mirror changes in structural networks (Stam et al.,
2009; Supekar, Menon, Rubin, Musen, & Greicius, 2008;
Yang et al., 2021; Yun, Kim, & Psychiatry, 2021). The
differing trends between structural and functional networks
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Fig. 1. Exploratory correlation analysis between global network metrics and MPPUS-10 scores. The scatter plots and the linear fitting lines
with a 95% confidence interval are shown in the figure. Spearman’s rank-order correlation coefficient [rho] and the significance of the

correlation [p] are indicated; age and sex are treated as covariates

Journal of Behavioral Addictions 14 (2025) 1, 416–429 421

Brought to you by Kyoto University | Unauthenticated | Downloaded 03/31/25 06:35 AM UTC



may reflect distinct regulatory mechanisms, with functional
network changes indicating adjustments during PMPU and
structural network changes supporting stable functional
connections.

Nodal network metrics

At the nodal level, increasing mobile phone use problem
severity was associated with decreased Dc and Ne in several
nodes in the functional network, while Nle and NCp
increased. Dc reflects the number of connections a node has
and signifies its importance within the whole-brain network
(Buckner et al., 2009). As mobile phone use problem severity
increases, the reduction in Dc in the right inferior orbito-
frontal cortex may indicate impaired behavioral inhibition,
potentially leading to impulsivity (Aron, Robbins, & Pol-
drack, 2014). With increased mobile phone use problem
severity, the decreased nodal Ne in the orbitofrontal cortex
aligns with the cortex’s role in sensory integration, visceral
reaction modulation, and decision-making for emotional
and reward-related behaviours (Kringelbach, 2005). The
orbitofrontal cortex is not only capable of integrating

multimodal sensory information and guiding emotion-
related decision-making by evaluating expected outcomes
(Bechara, Damasio, & Damasio, 2000; Sonkusare et al.,
2023), but is also considered a key component of the neural
circuitry underlying the capacity to control patience (Xiao,
Deng, Wei, Huang, & Wang, 2016). The decline in Ne in the
orbitofrontal cortex signifies reduced communication and
integration with other regions, which may impair coordi-
nation capabilities, and potentially indicates that PMPU
represents a form of behavioral addiction (Billieux, 2012).
Increases in Nle and NCp in regions such as the frontal lobe
(PreCG, SMA), temporal lobe (FFG), and occipital lobe
(SOG.L, IOG.R) suggest heightened functional segregation
in these areas. These regions are involved in language pro-
cessing (Silva et al., 2022), motor control (Russo et al., 2020),
high-order visual information (particularly related to faces,
bodies, and stimuli characterised by high spatial frequencies)
(Palejwala et al., 2020), and anxiety processing (Li, Zhang,
et al., 2020). This finding supports the speculation that in-
formation overload caused by PMPU is related to negative
states such as depression and anxiety (Matthes et al., 2020).
Combined with the local result that decreased integration

Table 2. Nodes with significant correlation with MPPUS-10 scores in nodal indicators (p < 0.05, Bonferroni corrected)

x (mm) y (mm) z (mm) rho p

Degree centrality rs-fMRI
ORBinf.R 41.01 32.34 �11.35 �0.282 0.026p

DTI
PoCG.R 41.43 �25.49 52.55 �0.346 0.001ppp

Betweenness centrality DTI
ACG.R 8.46 37.01 15.84 0.278 0.030 p

PoCG.R 40.72 �25.24 52.03 �0.290 0.017p

Nodal efficiency rs-fMRI
ORBmid.R 32.86 52.09 �10.84 �0.277 0.034p

ORBinf.R 41.01 32.34 �11.35 �0.276 0.035p

SFGmed.L �6.08 49.32 31.09 �0.279 0.031p

DTI
PoCG.R 40.72 �25.24 52.03 �0.343 0.001ppp

Nodal local efficiency rs-fMRI
PreCG.L �39.52 �5.69 51.17 0.300 0.010pp

PreCG.R 40.21 �8.38 52.38 0.310 0.010 pp

SMA.L �6.12 4.60 61.02 0.322 0.003pp

FFG.L �32.27 �39.50 �20.54 0.314 0.005pp

FFG.R 32.46 �37.90 �20.90 0.289 0.018p

PoCG.L �43.44 �22.26 48.75 0.270 0.048p

PoCG.R 40.72 �25.24 52.03 0.325 0.002pp

Nodal clustering coefficient rs-fMRI
PreCG.L �39.52 �5.69 51.17 0.322 0.003pp

PreCG.R 40.21 �8.38 52.38 0.292 0.015p

SMA.L �6.12 4.60 61.02 0.381 0.000ppp

SMA.R 7.63 0.11 62.30 0.277 0.034p

SOG.L �17.66 �83.99 28.30 0.270 0.047p

IOG.R 38.16 �81.99 �7.61 0.270 0.047p

FFG.L �31.16 �40.3 �20.23 0.297 0.012p

FFG.R 33.97 �39.1 �20.18 0.288 0.019p

PoCG.L �42.46 �22.63 48.92 0.279 0.030p

PoCG.R 41.43 �25.49 52.55 0.325 0.002pp

DTI
PoCG.L �42.46 �22.63 48.92 �0.277 0.035p

422 Journal of Behavioral Addictions 14 (2025) 1, 416–429

Brought to you by Kyoto University | Unauthenticated | Downloaded 03/31/25 06:35 AM UTC



within the orbitofrontal cortex not only supports the global
metric findings of whole functional brain networks that
PMPU leads to decreased integration and increased segre-
gation, but also highlights specific brain regions affected by
PMPU, which differ from those implicated in neuropsy-
chiatric conditions such as autism. Although previous
studies have found a significantly positive correlation be-
tween autism and PMPU (Zhou, Chen, & Liu, 2024), in
autism, changes in functional connectivity are characterised
by reduced local efficiency and shorter characteristic path
lengths (Keown et al., 2017; Rudie et al., 2013), which differ
from the trends observed in PMPU. Simultaneously, in

nodal metrics, the betweenness centrality in the sensori-
motor network decreases as the severity of autism increases.
However, in this study, we found that the centrality of the
orbitofrontal cortex decreases as the severity of mobile
phone use problems increases. These findings may help
identify neural biomarkers specific to PMPU.

In the structural network, significant changes were pri-
marily observed in the right anterior cingulate gyrus (ACG.R)
and postcentral gyrus (PoCG). The Bc of a brain region re-
flects its influence on information flow within the network
(Rubinov & Sporns, 2010). As the mobile phone use problem
severity increases, the Bc of ACG.R rises, which may partly

Fig. 2. The nodal findings of rs-fMRI correlated with MPPUS-10 scores. As MPPUS-10 scores increase, there is a significant decrease in
degree centrality (Dc) in the right orbital inferior frontal gyrus (ORBinf.R); decrease in nodal efficiency (Ne) in the right middle orbito-
frontal cortex (ORBmid.R), right inferior orbitofrontal cortex (ORBinf.R), and left medial superior frontal gyrus (SFGmed.L); an increase in
nodal local efficiency (Nle) in the precentral gyrus (PreCG), left supplementary motor area (SMA.L), fusiform gyrus (FFG), and postcentral
gyrus (PoCG); and increase in nodal clustering coefficient (NCp) in the PreCG, SMA, left superior occipital gyrus (SOG.L), right inferior

occipital gyrus (IOG.R), FFG, and postcentral gyrus (PoCG)
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compensate for the reduced integration in the functional
network. This suggests that the structural network compen-
sates for changes in neural activity in the context of neuro-
plasticity or network reorganization due to addiction and
associated maladaptive experiences (Marzola, Melzer, Pavesi,
Gil-Mohapel, & Brocardo, 2023). Topological changes related
to mobile phone use problem severity were notably concen-
trated in the PoCG. This region corresponds to the primary
somatosensory cortex, and its topological organization is
referred to as the sensory homunculus, or the “little man”
(DiGuiseppi & Tadi, 2023), which seems to play a role in the
integration of somatosensory stimuli and memory formation
(Chen et al., 2008). The topologically clustered nodes are all
located in the left postcentral gyrus (PoCG.L) in the
anatomical structure, indicating minimised wiring costs in

this area (Bassett & Bullmore, 2017), aligning with the
increased segregation observed in the structural network of
the PoCG.L. Interestingly, Cp in the PoCG.L exhibited
opposing correlations with PMPU in the functional and
structural networks. A decrease in Cp in the structural
network may be compensated by enhanced functional con-
nections (Skouras et al., 2019), indicating that even with
reduced structural connectivity in the PoCG, the functional
network might reconfigure itself (Deco, Jirsa, & McIntosh,
2011) to maintain overall sensory processing and cognitive
function.

Overload information with PMPU

According to the analysis of brain networks, more severe
mobile phone use problems are associated with decreased

Fig. 3. The nodal results of DTI correlated with MPPUS-10 scores. As MPPUS-10 scores increase, there is a decrease in degree centrality
(Dc), betweenness centrality (Bc), and nodal efficiency (Ne) in the right postcentral gyrus (PoCG.R); increase in Bc in the right anterior

cingulate gyrus (ACG.R); and decrease in nodal clustering coefficient (NCp) in the left postcentral gyrus (PoCG.L)
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brain network integration and increased segregation, which
negatively impacts cognitive function and emotional pro-
cessing. In modern society, mobile phones have become
integral to daily life, making multitasking the “new normal.”
This involves handling more information, solving problems,
and achieving better outcomes. However, attentional re-
sources are limited, necessitating careful allocation to critical
stimuli to effectively process and integrate information
(Fernandez-Duque & Johnson, 2002). Literature indicates
that individuals utilise their mobile phones for at least 2.5 h
per day, often immediately upon waking, during any idle
time (e.g., waiting for elevators, phone calls, driving), before
bed, and even at night (Deng et al., 2019).

Consequently, PMPU results in a continuous influx of
fragmented information, leading to a state of constant
connectivity and dependency on mobile phones (Parry,
2019). This extensive input of information and frequent task
switching increases the demand on attentional resources,
leading to cognitive overload (Aagaard & Sciences, 2015).
PMPU contributes to information overload (Lee et al.,
2016), signalling that the demands for processing environ-
mental information exceed the available capacity. This
overload generates stress, which may be linked to depressive
symptoms (Reinecke et al., 2017). The information overload
associated with PMPU not only demands more attentional
resources but may also affect how these resources are
allocated.

Studies suggest that a unified brain system manages the
switch between internal processes (such as thinking, mem-
ory recall, and problem-solving) and external processes
(such as responding to sensory stimuli). However, shifting
between these modules incurs significant switching costs
(Verschooren et al., 2019). The influx of information from
mobile phone utilisation may allocate more resources to
external processes, reducing the resources available for in-
ternal thought or attention to other tasks (Brinberg et al.,
2023). The findings of this study regarding functional brain
networks support our hypothesis of a shift in the informa-
tion processing module, potentially reflecting cognitive and
emotional disruptions (Das et al., 2018; Morgan, White,
Bullmore, Vértes, & Neuroimaging, 2018). While the
segregation approach effectively localises relevant brain
functions, our integration perspective aligns with recent
observations of addiction and associated maladaptive expe-
riences (Kabbara et al., 2018; Tei, in press), viewing them as
network dysfunctions characterised by disruptions in overall
brain connectivity (Das et al., 2018; Tei et al., 2020). This
dysfunction may worsen owing to digital information
overload, which can alter the interaction between external
information sources and internal processing modules (Tei,
Junya, & Toshiya, 2025; Verschooren et al., 2019).

This study has some limitations. First, being cross-
sectional, it is unclear whether individuals with similar to-
pological structures are more prone to developing PMPU
than not. Future research should employ longitudinal
methods to clarify the direction of the relationship between
PMPU and brain topological organization. Second, the study
recruited 81 participants in their early twenties and focused

solely on the association between brain topological organi-
zation and PMPU in young adults. Future studies should
expand the age range to explore findings across different age
groups. Finally, although Nahas et al. (2018) suggested a cut-
off score of 59 for the MPPUS-10, it remains uncertain
whether cultural differences might influence the determi-
nation of this threshold. Thus, it is unclear whether the score
of 59 can be directly applied to our Japanese sample.
Therefore, our study discusses PMPU in terms of the ‘mobile
phone use problem severity’ reflected by MPPUS-10 scores.
Future research could focus more on exploring whether
there are differences in PMPU across diverse cultural
contexts.

CONCLUSIONS

Although this study has some limitations, it holds impor-
tant theoretical significance. We adopted a multimodal
approach that included analyses of both functional and
structural networks; the observed associations between
mobile phone use problem severity and brain imaging
profiles suggest that PMPU may decrease the integration
between information processing modules in functional
brain networks. This reduced integration could lead to
neural compensation, reflected in enhanced small-world-
ness in structural networks to maintain more stable con-
nectivity patterns. Functional and structural changes may
be driven by PMPU, potentially leading to cognitive system
overload due to excessive information input. This study
enhances our understanding of the neuro-mechanisms
underlying PMPU.
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