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Forecasting the acceleration of slow landslides to the point of catastrophic failure is crucial. It follows the 
Voight power-law model with the power exponent α, which is typically close to 2 but can be significantly 
smaller. Understanding the underlying mechanisms may improve landslide warnings. A previous study 
applied a rate- and state-dependent friction (RSF) law in the form of the aging law to the creep behavior 
of an underlying shear zone of landslides, and showed an α value of 2. The aging law is one of the 
conventional forms of RSF law, and we extended the analysis to other representative laws: the slip 
law, Perrin-Rice-Zheng (PRZ) law, composite law, and Nagata law. We showed that the acceleration is 
expressed in terms of the slip rate using the state-evolution equation. As the slip rate increases, α
decays to 2, regardless of the frictional parameters, following a power law for the aging and Nagata 
laws and logarithmically for the slip and the composite laws. For the PRZ law, the asymptotic value of α
is between 2 and 3 and depends on frictional parameters. In typical RSF laws, the logarithm of the slip 
rate is proportional to the friction coefficient or normalized shear stress f minus frictional strength �. 
The logarithmic direct effect and a linear increase with slip in f − � independent of the slip rate, which 
is a characteristic of aging and Nagata laws under constant stress conditions, leads to α = 2. By contrast, 
a purely time-dependent increase in f − � would lead to α = 1. If these two effects coexist, α increases 
from 1 to 2 with acceleration. In laboratory experiments of investigation of RSF law, constant-load creep 
tests in the tertiary-creep stage have been rarely conducted, but they could provide new insights on the 
form of the state-evolution equation and deserve future study.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Slow landslides can accelerate to catastrophic failure (e.g., 
Lacroix et al., 2020) and cause disasters [e.g., 1963 Vaiont landslide 
(Müller, 1964; Hendron and Patton, 1985), 1983 Sale Mountain 
landslide (Zhang et al., 2002), 2012 Preonzo landslide (Loew et al., 
2017), and 2017 Maoxian landslide (Intrieri et al., 2018)]. Predic-
tion of future behavior of a slow landslide is crucial. Fukuzono 
(1985) proposed an empirical power-law relationship based on 
meters-scale slope-failure experiments between deformation rate 
�̇ and its acceleration �̈,

�̈ = A�̇α, (1)
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where the dot represents the derivative with respect to time t , 
� is the measurable deformation such as surface displacement or 
opening of surface fractures, and A and α are empirical parame-
ters. This law was subsequently applied to other phenomena such 
as volcanic eruptions (Voight, 1988) and failures in experiments 
for rate-dependent material (Voight, 1989), and is now referred to 
as the Voight model of failure-time forecast (Federico et al., 2012; 
Intrieri et al., 2019). The values of α for many landslides were es-
timated. Segalini et al. (2018) analyzed 26 cases and reported α
from 1.53 to 2.15 with only 3 cases with α < 1.9. Intrieri et al. 
(2019) reported a greater variation including cases with α < 1. 
Bozzano et al. (2014) analyzed landslides involving cut slopes with 
and without artificial reinforcement, and obtained a minimum α
of 0.62. In addition, α can differ for various acceleration events 
in the same location (e.g., Crosta and Agliardi, 2003). It is likely 
that α depends on the material and mechanism dominating the 
acceleration, and its understanding may lead to improved landslide 
warnings.

In laboratory constant-load creep tests (hereafter just “creep 
test”) for soil (e.g., Saito and Uezawa, 1961), the strain rate firstly 
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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Fig. 1. Typical creep experiment. Axial strain (a black line) and strain rate (dots) 
during a triaxial creep test for sandstone by Brantut et al. (2014), showing pri-
mary, secondary, and tertiary creep behaviors. Modified from Fig. 1 in Brantut et al. 
(2014).

decays to an approximately constant level, and then increases to-
wards failure. The behaviors in the deceleration, constant, and ac-
celeration stages are called the primary, secondary, and tertiary 
creep, respectively. Voight (1989) found α ≈ 2 for the tertiary 
creep in laboratory experiments for soils, as well as for alloys 
and metals. Triaxial creep tests for sandstone (e.g., Yang and Jiang, 
2010; Brantut et al., 2014) also shows the tertiary creep behav-
ior. Fig. 1 is an example experimental data (Brantut et al., 2014), 
showing the three-stages behavior during a creep test. In the brit-
tle regime, the tertiary creep behavior is typically associated with 
localization of deformation or faulting.

Measured surface deformation in the field involves non-locali-
zed deformation within the landslide mass and the localized slip 
beneath. In the initial stage of a landslide, the through-going slip 
surface may not have developed, and � may be dominated by 
the former. Slip propagation beneath the landslide mass has been 
observed prior to catastrophic failures (e.g., Cooper et al., 1998; 
Petley et al., 2002, 2005). After a through-going shear zone is de-
veloped, the surface deformation may be dominated by the slip, 
and the slip rate V can be regarded as the rate of measured defor-
mation � in Eq. (1),

V̇ = AV α; (2)

α is then expressed as

α = V

V̇

dV̇

dV
. (3)

Among many possible mechanisms, Helmstetter et al. (2004)
analyzed acceleration of a frictional surface governed by a rate-
and state-dependent friction (RSF) law in the form of the aging 
law (Dieterich, 1979; Ruina, 1983) under a constant stress state, 
revealing an α = 2 regardless of the frictional parameters for a 
rate-weakening shear zone. It should be noted that the aging law 
is one of the most conventional RSF laws and many other laws 
have been published. The aim of this paper is to extend the study 
to different RSF laws and to observe the variability of α. In particu-
lar, if α depends on frictional parameters that can be measured in 
the laboratory, then we may be able to better determine the fate 
of slow landslides.

The RSF law can express not only the instantaneous relation-
ship between the friction coefficient [shear stress / effective nor-
mal stress (Terzaghi, 1950)] f and the slip rate V , but also the 
evolution of the frictional strength (Dieterich, 1979). The instanta-
neous effect is often called the direct effect. The functional form 
of the RSF law, however, has been long debated and many differ-
ent versions have been published for the evolution of the frictional 
strength. The aging law can reproduce laboratory-observed loga-
rithmic time-dependent strengthening (Dieterich, 1972) in a limit 
of V → 0 (log-t healing, Nakatani and Mochizuki, 1996), but yields 
non-symmetric decays of the friction coefficient f to its steady-
state value fss after positive and negative steps of V (Marone, 
2

1998). Another conventional law, the slip law, shows symmetric 
exponential decays of f to fss as a function of slip displacement 
that agree with laboratory experiments, it but lacks log-t healing 
(Beeler et al., 1994). Marone (1998) stated that the Perrin-Rice-
Zheng (PRZ) law (Perrin et al., 1995) includes both log-t healing 
and symmetric decays but Nakatani (2001) has pointed out that 
the weakening from static friction is too rapid in the initial phase, 
compared with the laboratory result of exponential decay with 
slip. Subsequently, Kato and Tullis (2001) proposed a composite 
law by introducing a log-t healing term with a cut-off slip rate 
V c into the slip law, but the composite law has a drawback that 
steady-state friction below V c is significantly higher than obser-
vation. Nagata et al. (2012) formulated a state-evolution equation 
based on monitoring of the transmissibility of a high-frequency 
elastic wave across a sliding surface and improved the aging law 
to yield more symmetric decays but the asymmetry is still evident 
for larger velocity steps (Bhattacharya et al., 2015). These friction 
laws are studied here.

Note that more recently, Bhattacharya et al. (2017, 2022)
showed that the slip law reproduces not only the velocity-step 
tests, but also typical slide-hold-slide (SHS) tests without control-
ling f during the hold period, arguing that the experimentally 
observed healing during the hold time is due to slow slip then 
caused by finite shear stress. On the other hand, Nakatani and 
Mochizuki (1996) showed the log-t healing by SHS tests with al-
most zero f during the hold period. In addition, the log-t healing 
is consistent with the time-dependent growth of real area of con-
tact during stationary normal loading without shear stress directly 
observed by Dieterich and Kilgore (1994).

In the next section, we briefly explain the framework of the RSF 
law, the circumstances for acceleration to occur, and the expression 
of acceleration commonly applicable to different state-evolution 
equations. Following this, we report results of investigations of the 
different RSF laws listed above. It appeared that α was dependent 
on the form of the state-evolution equation and was insensitive to 
the frictional parameters for all laws except the PRZ law. Discus-
sions on the underlying mechanism of α = 2, which is representa-
tive for some state-evolution equations, implications for different 
loading conditions, and future study toward improvement of the 
friction law follows.

2. RSF laws and Voight’s model

In the typical form of RSF laws, the friction coefficient or nor-
malized shear stress by the effective normal stress f is expressed 
as

f (V , θ) = f∗ + a ln

(
V

V∗

)
+ b ln

(
θ

θ∗

)
, (4)

where a and b are nondimensional parameters indicating the 
amount of the direct and evolution effects, respectively, and θ

represents the state of the frictional surface which evolves. Note 
that in creep tests, both the shear and normal stresses, and thus 
f are kept constant. The parameters with a subscript ∗ are val-
ues at a reference state, which we can arbitrarily select as long 
as f (V∗, θ∗) = f∗ agrees with the property of the modeled shear 
zone. Alternatively, f can be expressed as

f = a ln

(
V

V∗

)
+ �, (5)

where � is referred to as frictional strength, which is the instan-
taneous normalized shear stress required to slip the shear zone at 
the reference slip rate V∗ (Nakatani, 2001). The definition of the 
strength depends on the selection of V∗ because the RSF law gen-
erally yields a mathematically non-zero slip rate and the “stop” 
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Fig. 2. Behavior of RSF shear zones under a constant f . (a) Rate-weakening shear zones, and (b) rate-strengthening shear zones. Thin black lines indicate a steady-state 
friction coefficient fss (V ), and gray dashed lines are contours of the constant θ , representing instantaneous response of the shear zones with a change in f . Gray arrows 
indicate the direction of the state evolution. Horizontal thick black lines and related arrows show trajectories during creep tests.
state cannot be naturally defined. The logarithmic functions in 
Eq. (4) are sometimes regularized either by using a sinh−1 func-
tion (Rice et al., 2001) or adding 1 to their arguments (Shibazaki 
and Shimamoto, 2007) based on considerations of elementary pro-
cesses and the avoidance of divergence at V = 0. More than 1 state 
variable may be required to fit an RSF law to experimental results 
(e.g., Blanpied et al., 1998). In experiments for a logarithmically 
wide range of V values, the frictional parameters often show de-
pendency on V (e.g., Dieterich, 1978), which can be implemented 
by writing expressing a and b as functions of V and θ , respectively 
(Noda et al., 2017). Despite these complexities, we will use Eq. (4)
in this study for simplicity. a is always positive (Rice et al., 2001), 
and b is typically positive in the brittle regime. A negative value of 
b occurs in the plastic and transitional regimes and for clayey ma-
terial in the term for the second state variable (e.g., Blanpied et al., 
1998; Noda and Shimamoto, 2009, 2010). The focus of this study is 
the acceleration associated with a rate-weakening shear zone and 
therefore it is assumed that b > 0.

The state-evolution equation expresses the time derivative of θ
in terms of V and θ (Ruina, 1983),

θ̇ = g (V , θ; L) , (6)

where L is the characteristic slip displacement of the state evolu-
tion. Existence of the steady state is usually postulated;

g (V , θss (V ) ; L) = 0, (7)

fss (V ) = f (V , θss (V )) . (8)

The value of f approaches fss (V ) when V is fixed. Positive and 
negative d fss/dln (V ) correspond to rate-strengthening and rate-
weakening shear zones, respectively. As mentioned in Introduction, 
various functional forms of g have been proposed. We discuss and 
analyze consequence of each formula of g .

This study mainly considers the behavior of the shear zone un-
der a constant stress state. This condition is artificially realized in 
the creep test and may be applicable to the acceleration of some 
landslides. The effect of temporal changes in the loading condition 
is discussed in later sections. We selected the constant normalized 
shear stress as f∗ and the corresponding steady-state slip rate as 
V∗ . Usually, V∗ is first chosen arbitrarily, and then f∗ is set as 
fss (V∗). In this way, f during a creep test, in general, differs from 
f∗ , and the mathematics presented in the present study becomes 
involved by much. The choice of f∗ adopted here causes no loss of 
generality and makes equations simpler. Therefore,

f∗ = fss (V∗) , θ∗ = θss (V∗) . (9)

Helmstetter et al. (2004) classified the behavior in the creep test 
into 4 cases, as combinations of rate weakening or rate strength-
3

ening and acceleration or deceleration (Fig. 2). Since θ positively 
correlates with frictional strength, θ̇ has the opposite sign to 
f − fss (V ) (Fig. 3 in Ruina, 1983). As f is constrained at f∗ , 
the steady-state solution V = V∗ is unstable for a rate-weakening 
shear zone (Fig. 2a) and stable for a rate-strengthening shear zone 
(Fig. 2b). The acceleration for a rate-strengthening shear zone ap-
proaches zero as V approaches V∗ . The tertiary creep behavior and 
the acceleration of a landslide leading to catastrophic failure cor-
respond to the acceleration for a rate-weakening fault. Note that 
the simple RSFs investigated here cannot produce non-monotonic 
evolution in V under constant f . Therefore, structural evolution 
during a creep test is a key to understanding the series of primary, 
secondary, and tertiary creeps (Fig. 1). The focus of the present 
study is put on the behavior of the shear zone in the tertiary creep.

Among laboratory studies on RSF, creep tests have been only 
rarely conducted. Dieterich (1981) reported creep tests for granite 
gouge and demonstrated the transition between acceleration and 
deceleration depending on the applied shear stress which is kept 
constant. A special kind of slide-hold-slide (SHS) tests where f is 
kept constant during a hold period (e.g., Nakatani and Mochizuki, 
1996; Nakatani, 2001) can be regarded as creep tests. However, the 
main purpose of the SHS tests so far was to examine the strength-
ening of the fault during a hold period so that f∗ was smaller than 
fss in the preceding slide period. Then slip necessarily decelerates 
during the hold period (Fig. 2a). The tertiary creep is expected af-
ter an increment in f from fss. Note that conventional SHS tests 
that realize a hold period by halting the actuator cannot constitute 
a creep test because f during a hold period keeps decreasing as 
the continuing slow slip of the sample causes elastic relaxation of 
the loading system.

In the creep tests, where f is held at f∗ , Eq. (4) becomes

v = φ−β, (10)

after nondimensionalization and normalization, with v as the 
nondimensional slip rate V /V∗ , φ the normalized state variable 
θ/θ∗ , and β = b/a. Note that β is close to one in many experi-
ments but can be as low as 0.1 or so (antigorite gouge studied by 
Reinen et al. (1992). Eq. (10) means v increases as the strength 
decreases. The state-evolution equation (Eq. (6)) is nondimension-
alized to

dφ

ds
= γ (v, φ) =

(
L

θ∗V∗

)
g (V , θ; L) , (11)

where s is nondimensional time tV∗/L. Therefore, nondimensional 
acceleration is expressed as

dv = −βφ−β−1 dφ
. (12)
ds ds
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Fig. 3. Nondimensional acceleration as a function of nondimensional slip rate for various RSF laws. (a) Aging law, (b) Slip law, (c) PRZ law, (d) Composite law, and (e) Nagata 
law. Blue, orange, and green lines indicate (a-d) 1/β or (e) 1/βN of 0.1, 0.5, and 0.9, respectively.
Using Eq. (11), we can denote the acceleration in terms of v as

dv

ds
= −βv1+ 1

β γ
(

v, v−1/β
)
. (13)

A comparison of Eqs. (2) and (13) or Eq. (3) indicates that α gen-
erally depends on β and the functional form of γ . The variation 
of the tertiary creep behavior for different RSF laws is analyzed in 
the following subsections.

2.1. Aging law

Helmstetter et al. (2004) showed α = 2 for the aging law by 
solving the system of equations for the slip rate as a function of 
time. Our Eq. (13) presents the same results. In the aging law, θ̇ is 
expressed as (Ruina, 1983)

g (V , θ; L) = 1 − V θ

L
, (14)

and thus

θ∗ = L

V∗
, (15)

and

fss = f∗ + (a − b) ln

(
V

V∗

)
. (16)

Ruina (1983) has shown that the state variable θ represents recent 
slowness; therefore, this law is also called the slowness law (Beeler 
et al., 1994). Nondimensionalization leads to
4

γ (v, φ) = 1 − vφ, (17)

and Eq. (13) becomes

dv

ds
= βv2

(
1 − v− β−1

β

)
. (18)

The aging law is rate-weakening if β > 1. In this case, dv/ds > 0
for v > 1. The acceleration is approximated as dv/ds ≈ βv2 at v �
1, and thus α ≈ 2 regardless of β as shown in Fig. 3a. A in Voight’s 
model is expected to be proportional to β . Evaluation of α (Eq. (3)) 
results in

α = 2 + β − 1

β
v− β−1

β

(
1 − v− β−1

β

)−1

. (19)

Here, α is larger than 2, and it decays following a power law in 
terms of v because β > 1.

2.2. Slip law

In the slip raw (Ruina, 1983), θ̇ is expressed as

g (V , θ; L) = − V θ

L
ln

(
V θ

L

)
. (20)

Therefore, Eqs. (15) and (16) hold similarly to the aging law. 
Nondimensionalization leads to

γ (v, φ) = −vφ ln (vφ) , (21)
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and Eq. (13) becomes

dv

ds
= (β − 1) v2 ln (v) . (22)

In a rate-weakening case (β > 1), acceleration is positive if v >
1. Fig. 3b indicates that α ≈ 2.2 if 1 < v < 106. Comparison with 
Eq. (2) suggests that A is proportional to β − 1. Eq. (3) yields

α = 2 + 1

ln (v)
. (23)

Here, α is larger than 2, and it decays slowly (∼ 1/ln (v)) as v
increases.

2.3. PRZ law

In the Perrin-Rice-Zheng (PRZ) law (Perrin et al., 1995), θ̇ is 
expressed as

g (V , θ; L) = 1 −
(

V θ

2L

)2

. (24)

The steady-state value of θ at V = V∗ is

θ∗ = 2L

V∗
. (25)

The steady-state value of θ differs from Eq. (15) by a constant fac-
tor, and Eq. (16) holds. Nondimensionalization and normalization 
lead to

γ (v, φ) = 1

2

(
1 − v2φ2

)
, (26)

and Eq. (13) becomes

dv

ds
= β

2
v3− 1

β

(
1 − v−2 β−1

β

)
. (27)

In a rate-weakening case (β > 1), acceleration is positive if v > 1. 
A comparison with Eq. (2) indicates that α ≈ 3 − 1/β > 2 at v � 1
as shown in Fig. 3c, and A is proportional to β . Eq. (3) yields

α =
(

3 − 1

β

)
+ 2

β − 1

β
v

−2
(

β−1
β

) (
1 − v

−2
(

β−1
β

))−1

. (28)

Here, α is larger than 3 −1/β , and it decays following a power law 
in terms of v; α at a large v depends on β in the PRZ law.

2.4. Composite law

In the composite law (Kato and Tullis, 2001), θ̇ is expressed as

g (V , θ; L) = exp

(
− V

V c

)
− V θ

L
ln

(
V θ

L

)
, (29)

where V c is the cut-off slip rate of log-t healing. The steady-state 
value of θ at V = V∗ is

θ∗ = L

V∗
exp

(
W

(
exp

(
− V∗

V c

)))
, (30)

where W is the Lambert Omega function. fss is expressed as

fss = f∗ + (a − b) ln

(
V

V∗

)
+ b [W (exp (−ξ))]ξ=V /V c

ξ=V∗/V c
. (31)

Note that d fss/d ln (V ) significantly differs from a − b near V =
V c (Fig. 5 and 6 in Kato and Tullis, 2001). We are interested in 
runaway behavior of a landslide; therefore, we assume a − b < 0
(β > 1), whereby fss becomes a monotonically decreasing function 
of V . Nondimensionalization and normalization lead to
5

γ (v, φ) = exp (−Wc)exp

(
− v

vc

)
− vφ [ln (vφ) + Wc] , (32)

where vc = V c/V∗ and Wc = W (exp (−1/vc)). If V c � V∗ < V , 
then Wc ≈ 0 and v/vc � 1. In this limit, Eq. (32) becomes identi-
cal to the nondimensionalized state-evolution equation for the slip 
law (Eq. (21)). Using Eq. (32) in Eq. (13), we obtain

dv

ds
= (β − 1) v2 ln (v) + βv2Wc − β exp (−Wc) v1+ 1

β

× exp

(
− v

vc

)
. (33)

The leading term is (β − 1) v2 ln (v), which is identical to dv/ds
for the slip law (Eq. (22)). Fig. 3d shows dv/ds for small (10−3) 
and large (103) values of vc . The case with vc = 10−3 is indistin-
guishable from that with the slip law, and vc affects the accelera-
tion behavior only modestly.

2.5. Nagata law

Nagata et al. (2012) proposed a friction law based on monitor-
ing of the transmissivity of a high-frequency elastic wave across 
a frictional interface, which correlates with frictional strength. Na-
gata law reads as

f = aN ln

(
V

V∗

)
+ �N, (34)

d�N

dt
= bN V∗

LN
exp

(
−�N − f∗

bN

)
− bN V

LN
− c

d f

dt
. (35)

Here, aN is the increase in f with an e-fold increase in V under 
a fixed �N, aN − bN is ∂ fss/∂ ln (V ), LN is a length scale of the 
state evolution, and c represents the amount of the reduction of 
�N due to shear stress change. Nagata et al. (2012) reported an 
optimum value of c of 2 in their rock-on-rock friction experiments 
for granite. This law is identical to the aging law if c = 0. It should 
be noted that if θN is defined in the same manner with Eqs. (4)
and (5),

�N = f∗ + bN ln

(
θN

θN∗

)
, (36)

then the time derivative of θN cannot be expressed as a function 
only of V and θN. This is the reason for adding subscripts N to 
the values for Eqs. (34) and (35) to distinguish them from those of 
Eqs. (4) and (6).

If we redefine a state variable as

θ = exp

(
�N − f∗ + ca ln (V /V∗)

b

)
, (37)

then Nagata law can be expressed by Eq. (4) and

g (V , θ; L) = V

L

[(
V

V∗

) ca
b −1

− θ

]
, (38)

where

a = aN

1 + c
, b = bN, and L = (1 + c) LN. (39)

θ defined by Eq. (37) is nondimensional, while it has the dimen-
sion of time in the other RSFs studied in the present study. The 
apparent amount of the direct effect a is smaller than aN by a fac-
tor of 1 + c as reported by Nagata et al. (2012). Also, the larger L
than LN by a factor of 1 + c can be anticipated from the expression 
of critical stiffness derived by Kame et al. (2013). A rate-weakening 
shear zone corresponds to a βN = bN/aN > 1 and thus β > 1 + c. 
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Eq. (38) matches what Ruina (1983) proposed as an example of the 
state variable representing a recent slip rate to a power different 
from −1. The steady-state value of θ at V = V∗ is

θ∗ = 1. (40)

Nondimensionalization leads to

γ (v, φ) = v
c
β − vφ, (41)

and the nondimensionalized acceleration (Eq. (13)) becomes

dv

ds
= βv2

(
1 − v− β−(1+c)

β

)
, (42)

which is similar to that for the aging law (Eq. (18)). The value of 
α is approximately 2 regardless of β (Fig. 3e), and A is expected 
to be proportional to β = (1 + c)βN. α is expressed as (Eq. (3))

α = 2 + β − (1 + c)

β
v− β−(1+c)

β

(
1 − v− β−(1+c)

β

)−1

. (43)

Here, α is larger than 2, and it decays following a power law in 
terms of v .

3. Discussion

3.1. Limitation of the present model

In this study, behavior of a shear zone governed by various RSF 
laws was investigated under a constant stress state. This is a highly 
idealized system with only one degree of freedom, while the be-
havior of real landslides is more complex and thus applicability of 
the present model should be considered. For example, landslides 
can spread laterally with overall extensions (e.g., Varnes, 1978). In 
such a landslide, the slip on the underlying shear zone is not uni-
form so that a system with only one degree of freedom may be 
insufficient. In addition, internal inelastic deformation of the land-
slide may contribute significantly to �. If this is the case, observed 
behavior should be compared with a model of flow of the landslide 
mass so that the present model is not applicable. Even if the land-
slide does not spread, rupture propagation along the shear zone 
may occur in the preparation process (e.g., Cooper et al., 1998; 
Petley et al., 2002, 2005). In this case, the present model is applica-
ble when the rupture has spanned the entire shear zone and block 
motion relative to the footwall becomes dominant. Even before this 
point, acceleration of the surface displacement may occur due to 
quasistatic crack growth, but its interpretation using the present 
model would lead to significant error. Quasistatic rupture propa-
gation and concurrent slip acceleration have been studied in the 
context of earthquake nucleation process and were shown to de-
pend on the form of the RSF law (e.g., Ampuero and Rubin, 2008). 
Investigation of the dynamics of heterogeneous slip evolution (e.g., 
Handwerger et al., 2016) and comparison of different RSF laws in 
system settings that are more relevant to the landslide preparation 
process deserve future study.

We investigated several RSF laws, and found that α was consis-
tently larger than 2, and decayed to 2 with increasing v except for 
under the PRZ law. A typical α from observations of real landslides 
approximates 2 (e.g., Segalini et al., 2018), but can be significantly 
smaller (Bozzano et al., 2014). The list of the studied laws is in-
complete, as there are more recently proposed friction laws (e.g., 
Chen and Spiers, 2016; Li and Rubin, 2017). Investigation of those 
friction laws in terms of the tertiary creep test may be important. 
It is likely that different mechanisms from those studied here are 
dominant in landslides with significantly smaller α values than 2, 
such as the change in the stress state including pore pressure (e.g., 
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Terzaghi, 1950; Hendron and Patton, 1985; Leroueil, 2001), differ-
ent weakening mechanisms such as pore pressure generation by 
compaction (e.g., Iverson et al., 2000) and hydrothermal effects due 
to frictional heating (e.g., Veveakis et al., 2007). These effects on 
behavior of a shear zone governed by the RSF laws are discussed 
in following subsections.

Another possible factor that was not investigated in the present 
study but may cause a smaller α is the development and structural 
evolution of the shear zone and associated change in frictional 
properties. RSF laws are established based on friction experiments 
at a sufficiently long slip displacement for the steady-state friction 
to be recognized. Therefore, structural evolution with less shear 
strain is not considered. Rotary-shear friction experiments capable 
of producing infinitely long slip displacements (Beeler et al., 1996) 
revealed that structural evolution causes the change in the rate de-
pendency in a complex manner. Frictional properties of the shear 
zone under structural evolution deserve future study.

3.2. α = 2 for linearly slip-dependent f − �

Among the RSF laws studied, α decayed to 2 rapidly as v in-
creased for the aging law and Nagata law. These laws are known 
to cause nearly linear slip weakening, in the context of RSF, on 
a positive velocity step by a factor larger than approximately 100 
(Nakatani, 2001; Ampuero and Rubin, 2008; Bhattacharya and Ru-
bin, 2014). If vφ � 1 in the aging law or if vφ � vc/β in Nagata 
law, the first term in the right-hand side of Eqs. (17) and (41) is 
negligible and thus

dφ

dδ
≈ −φ, (44)

where δ is nondimensional slip given by dδ = vds. φ and � are 
then approximated as

φ ≈ φ0 exp (−δ) , and � ≈ f∗ +b ln (φ0)−bδ = �0 −bδ, (45)

where the subscript 0 indicates the initial value. The frictional 
strength � decreases almost linearly with the slip, independent 
of the slip rate when vφ is large. From Eq. (5), the slip rate and 
acceleration are expressed as

v = exp

(
f − �

a

)
, and

dv

ds
=

(
d f

ds
− d�

ds

)
v

a
. (46)

Eq. (45) leads to

dv

ds
=

(
1

a

d f

ds
+ βv

)
v. (47)

This results in the leading term of Eqs. (18) and (42) when f is 
constant. This analysis shows that α = 2 may be a consequence 
of the rate-independent linear slip weakening and a logarithmic 
direct effect. The existence of steady state is no longer relevant.

A similar discussion to this can be made to bulk deformation. 
Brantut et al. (2014) compared a triaxial deformation test at a con-
stant strain rate and a creep test at a constant load, and proposed a 
rate- and strain-dependent constitutive law for a brittle failure. The 
differential stress during a creep test σ cr

d is expressed as (Eq. (2) 
in Brantut et al. (2014))

σ cr
d = σ∗ ln

(
ε̇cr

ε̇str

)
+ σ str

d

(
εcr) , (48)

where εcr and ε̇cr are the strain during the creep test and the 
strain rate, respectively, σ str

d is the differential stress at a constant 
strain rate (ε̇str), and σ∗ is the characteristic activation stress. σ str

d
is a function of strain, and presents strength in the same manner 
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as � in Eq. (5). Solving for ε̇cr and taking a derivative with respect 
to time, we obtain

ε̈cr = −σ str′
d

(
εcr

)
σ∗

ε̇cr2, (49)

if the applied stress σ cr
d is constant. This infers that α = 2 if σ str

d is 
a decreasing function of strain and its derivative does not change 
significantly.

Eq. (46) indicates that the difference between f and � is rele-
vant. Therefore, α = 2 is also recovered if the increase in f dom-
inates over the change in � and can be approximated as a linear 
function of slip independently of the slip rate. For example, shear-
induced compaction (e.g., Iverson et al., 2000) or frictional heating 
(e.g., Veveakis et al., 2007) builds up pore fluid pressure, decreas-
ing the effective normal stress and increasing f . If the deformation 
becomes so rapid that transports of fluid and heat are neglected, 
then f can be expressed as a function of the slip. These mecha-
nisms can cause runaway behavior of a landslide even if the shear 
zone is rate strengthening.

3.3. Time-dependent weakening decreases α

It has been shown that α = 2 corresponds to the linear increase 
in f − � with slip independent of the slip rate. The other ex-
treme situation may be purely time-dependent weakening or load-
ing. If linearization is a good approximation, d�/ds or d f /ds can 
be regarded constant and thus Eq. (46) suggests α = 1. Although 
typical observation of α = 2 negates the dominance of the time-
dependent effect in actual landslides, we would like to point out 
that a combination of the slip-dependent and time-dependent ef-
fects may cause values of α between 1 and 2. Eq. (47) suggests that 
α ≈ 1 if v � d f /bds, and it increases with acceleration, and α ≈ 2
if v � d f /bds. The observation of α < 1 (Bozzano et al., 2014) can-
not be explained by the introduction of time-dependent loading or 
weakening. Modification of the direct effect from the logarithmic 
function to, for example, a power law (e.g., Noda and Shimamoto 
(2010) for ductile deformation of NaCl) or implementation of a 
change in the frictional properties associated with structural evo-
lution of the shear zone may be required.

3.4. Future study in refining the RSF law

In investigations of the RSF law using laboratory experiments, 
the velocity-step test and the SHS test are commonly used (e.g., 
Marone, 1998; Bhattacharya et al., 2022), while tertiary creep tests 
(Dieterich, 1981) have been rarely conducted. Creep tests under 
deceleration condition have been conducted in SHS tests during 
the hold periods (e.g., Nakatani and Mochizuki, 1996; Nakatani, 
2001; Nagata et al., 2008). The main application of the RSF law 
has been with regard to modeling of earthquake generation pro-
cesses (e.g., Lapusta et al., 2000). For earthquakes, acceleration of 
slow slip to seismic slip rate has been rarely observed, and ter-
tiary creep tests do not have their counterpart observations for 
direct comparison. Nevertheless, tertiary creep tests are likely use-
ful in constraining the state-evolution equation through the Voight 
model and Eq. (13). Tertiary creep tests for rocks and fault gouges 
would provide new insights into the form of the RSF law.

4. Conclusion

Acceleration of a landslide toward catastrophic failure follows 
the Voight power-law model with the power exponent α, which 
is typically close to 2 but can be significantly smaller. A previous 
study (Helmstetter et al., 2004) showed that α = 2 is realized in 
a behavior of a shear zone under constant f (= shear stress / ef-
fective normal stress) governed by the RSF law in the form of the 
7

aging law. The present study extended the analyses of the creep 
behavior to different forms of the RSF laws. In addition to the aging 
law, the slip, PRZ, composite, and Nagata laws were investigated as 
representative examples. Acceleration was expressed in terms of 
the slip rate using the state-evolution equation. For the aging and 
Nagata laws, α decays to 2 following a power law in terms of the 
nondimensional slip rate v . For the slip and composite laws, α de-
cays to 2 slowly in a manner of 1/ln (v), while for the PRZ law, α
decays to 3 − a/b where a and b are frictional parameters in the 
RSF law.

The aging and Nagata laws are characterized by an almost linear 
slip weakening after a positive velocity step of a large factor. The 
weakening per slip increment is independent of the slip rate. It 
was shown that the combination of the logarithmic direct effect 
and the linear rate-independent slip-weakening or slip-dependent 
increase in f results in α = 2. In the other end-member case, a 
purely time-dependent weakening and, equivalently, a change in f
with time lead to α = 1. Explanations of smaller values of α may 
require a different rate dependency from the standard logarithmic 
direct effect.

Tertiary creep tests have been rarely conducted in laboratory 
rock-friction experiments for investigation of the RSF laws. They 
could provide new insights on the form of the state-evolution 
equation through the Voight model and thus deserve future study.

Studies in humans and animals

The present study does not involve any human subject or ani-
mal experiment.
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