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Abstract 

The time-dependent viscoelastic deformation of host rocks is important when considering the dynamics of fault 
behavior, specifically in brittle–ductile transitional regions or shallow subduction zones, because it relaxes stress 
heterogeneity and affects loading to the fault. For a rate-and-state fault embedded in a Maxwell viscoelastic medium, 
a previous study discovered a transition from repeated earthquakes to the permanent stuck of a rate-weakening 
patch (EQ–ST transition) with decreased viscoelastic relaxation time tc . This transition differs from the well-known 
seismic–aseismic transition explained by the Hopf bifurcation at the critical stiffness of an elastic system. To bet-
ter understand the EQ–ST transition, quantifying the effect of heterogeneous frictional strength is important, 
because this effect is characteristic to the viscoelastic medium and is absent in the elastic limit. Previous experimental 
studies suggest a potential contrast in frictional strength �f∗ in such a way that a rate-weakening patch is stronger 
than a rate-strengthening region containing clay minerals. Here, we conducted two-dimensional, fully dynamic 
earthquake sequence simulations for a fault in a Maxwell viscoelastic medium; we investigated the EQ–ST transition 
in the two-dimensional parameter space of tc and �f∗ . With �f∗ = 0.3 , the EQ–ST transition occurred at about 1 order 
of magnitude larger tc than in the case with �f∗ = 0 . We constructed a coarse-grained model with only two degrees 
of freedom based on the spatial average. Consequently, the coarse-grained model behaves remarkably similar 
to the continuum model, and the EQ–ST transition is associated with a homoclinic bifurcation. The EQ–ST bound-
ary in the parameter space can be quantitatively explained by considering elastic loading due to creep in the rate-
strengthening region and unloading by viscoelastic relaxation of the stress heterogeneity comparable to �f∗ . A larger 
rate-weakening patch is anticipated to become aseismic earlier as tc decreases, because the elastic loading rate 
is inversely correlated with the patch size. This may be qualitatively consistent with the change in the size distribu-
tion of events around the brittle–ductile transition in observations and laboratory experiments; however, further 
investigations on, for example, the interactions of events and changes in frictional parameters with depth are required 
for quantitative discussion.
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Graphical abstract

1 Introduction
Investigating the effects of inelastic deformation of the 
host rocks of an active fault is of great importance for 
understanding the dynamics of fault motion. Inelastic 
deformation plays an important role at different time-
scales in various ways. In the coseismic timescale, the 
stress concentration around a dynamically propagating 
rupture front may cause failure of the host rock (off-fault 
plasticity), which contributes to the fracture energy and 
prevents the rupture speed from approaching the termi-
nal value (e.g., Andrews 2005). The localization of plas-
tic deformation leads to the geometrical complexity of a 
fault system (Ando and Yamashita 2007; Templeton and 
Rice 2008; Okubo et  al. 2019). Over a longer timescale, 
time-dependent viscous deformation causes relaxation of 
the deviatoric stress (viscoelastic relaxation, VR), which 
can be observed as post-seismic deformation (e.g., Sav-
age and Prescott 1978; Thatcher and Rundle 1984; Moore 
et  al. 2017; Johnson and Tebo 2018). Interseismically, it 
affects the loading process of the active fault (Iio et  al. 
2002) and the seismic cycle behavior (Wang et al. 2012). 
This study focused on the long-timescale effect modeled 
by the viscoelasticity of the host rock.

The slow earthquakes have timescales (e.g., duration 
and recurrence interval) between the above-mentioned 
endmember timescales and have been observed world-
wide in many seismic–aseismic transitional regions 
(e.g., Obara and Kato 2016 for subduction, Shelly 
2009 for a strike–slip fault). They are often explained 
by the frictional properties of the fault, such as mod-
estly smaller elastic stiffness or larger patch size than 
the critical value (e.g., Kato 2003; Liu and Rice 2007), 

supercritical Hopf bifurcation in simplified spring–
slider models (e.g., Gu et al. 1984), and changes in the 
signature of the rate dependency of shear resistance 
due to various mechanisms (e.g., Segall and Rice 1995; 
Shibazaki and Shimamoto 2007; Segall et  al. 2010; 
Noda et al. 2017). Another potential factor dictating the 
mode of fault motion is viscous deformation. This may 
be important in the brittle–ductile transitional region 
where diffused deformation coexists with fault slip and 
in very shallow subduction zones where incohesive sed-
iments undergo diagenesis. Previous simulation studies 
have revealed that viscoelastic deformation in the vicin-
ity of a fault is important in determining the behavior 
of the fault among repeating earthquakes (EQ), repeat-
ing aseismic transients (AT), steady-state slip (SS), 
and permanent stuck (ST) (Allison and Dunham 2018; 
Goswami and Barbot; 2018; Miyake and Noda 2019). 
Miyake and Noda (2019) developed a methodology for 
a fully dynamic earthquake sequence simulation (ESS) 
accounting for interseismic VR in a Maxwell linear vis-
coelastic medium for anti-plane problems and investi-
gated the transition among these behaviors. In addition 
to an increase in the characteristic length in the friction 
law, VR stabilizes the fault behavior from the EQ to the 
SS via AT only if the nucleation size in the elastic limit 
is slightly smaller than the patch size. A more brittle 
patch transitioned from EQ to ST, in which the slip rate 
of the rate-weakening patch asymptotically decreases 
to zero. The transition between AT and SS owing to VR 
was explained by the Hopf bifurcation of a simplified 
system (Miyake and Noda 2019); however, the transi-
tion between EQ and ST remains to be explained.
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In the ESS conducted by Miyake and Noda (2019), 
using a rate- and state-dependent friction law, they 
assumed a uniform steady-state frictional strength f∗ at 
a reference slip rate V∗ = 10−9m/s for simplicity. This 
assumption is not relevant for ESS with a linear elastic 
medium. For an elastic medium, a static solution always 
exists for an arbitrary traction distribution on a fault. If 
normal stress times the frictional strength σ f∗ is hetero-
geneous, the result of ESS for a linearly elastic medium 
can be constructed by superposing the corresponding 
static solution to the result of uniform σ f∗ . This super-
position does not change the spatiotemporal distribution 
of the slip rate V  and thus the fault behavior. However, 
heterogeneous traction on a planar fault relaxes in a vis-
coelastic medium. Subsequently, a static, time-invariant 
solution of heterogeneous traction does not exist, and we 
cannot obtain the result of ESS for heterogeneous σ f∗ by 
the simple superposition. Hence, the distribution of σ f∗ 
affects the fault behavior.

Clay minerals are known to have a much smaller fric-
tion coefficient than Byerlee’s law (e.g., Byerlee 1978), and 
often show rate-strengthening properties (e.g., Saffer and 
Marone 2003) although the frictional properties depend 
on experimental conditions such as the slip rate, amount 
of slip, and internal structure (e.g., Beeler et  al. 1996; 
Collettini et al. 2009; den Hartog et al. 2012; Sawai et al. 
2016). Ikari et al. (2011) conducted friction experiments 
for various minerals, and concluded that the friction 
coefficient ranges from 0.5 to 0.7 for rate-weakening min-
erals and from 0.2 to 0.7 for rate-strengthening minerals. 
This argument might be too simplistic given the complex 
dependency of the frictional properties of the fault gouge 
under a wide range of deformation conditions; however, 
a contrast likely exists in the frictional strength between 
the rate-weakening and rate-strengthening regions. The 
effect of strength contrast on fault behavior remains 
unexplored in the context of an ESS for a viscoelastic 
medium. Note that the quantification and explanation of 
the effect of strength contrast are key to understanding 
the effect of VR, because it is characteristic of the viscoe-
lastic system and absent in the elastic limit.

The present study was designed to address these two 
questions. The first is what the EQ–ST transition is. A 
continuum model has many degrees of freedom, and 
finding a rigorous explanation is not always easy. There-
fore, we conducted additional simulations of a simpli-
fied coarse-grained model and compared the results. 
The continuum and simplified models were comparable 
in terms of averaged behavior inside a rate-weakening 
patch. In addition, the condition for the EQ–ST transi-
tion were qualitatively similar. Hence, we argue that 
the simplified model, which can be understood rigor-
ously from the nonlinear dynamics perspective, explains 

the continuum model. The second question is how the 
strength contrast affects the fault behavior. This was 
investigated by conducting parameter studies regarding 
the strength contrast and relaxation time and deriving a 
formula predicting the EQ–ST boundary in the param-
eter space. This formula illuminates the physical role of 
VR in the EQ–ST transition.

2  Continuum model
2.1  Formulation
2.1.1  SBIEM for a Maxwell–viscoelastic medium
For an elastic medium, the shear traction on the fault τ 
can be expressed as

where x represents the position along the fault, t is time, 
τ0 is the shear traction that would be realized if there 
were no slip on the fault, η is given by µ/2cs , µ is the 
shear modulus, cs is the shear-wave speed, and V  is the 
slip rate. In the present study, we assumed uniform τ0 , 
µ = 30GPa , and cs = 3km/s . The last term represents the 
impedance effect, referred to as the radiation-damping 
effect (Rice 1993). φEL[V ] is a functional of previous slip 
rate expressed by spatio-temporal convolution. φEL can 
be split to static and dynamic terms:

φ
EL
st  is spatial convolution of the current slip and the static 

Green’s function:

where δ is the slip, Kst is the elastostatic Green’s function, 
F  is Fourier transformation with respect to x , k is the 
angular wavenumber, and D is the Fourier transform of δ . 
φ
EL
dy  is, by definition, the difference between the static and 

dynamic solutions minus the radiation-damping effect 
and expressed as spatio-temporal convolution of previ-
ous V  and a dynamic kernel (e.g., Rice and Ben-Zion 
1996). Because contribution of old V  to φEL

dy  becomes 
negligible as the relative time increases, the temporal 
convolution for φEL

dy  can be truncated and thus ESS is pos-
sible for a finite memory requirement. Lapusta et  al. 
(2000) used a time window of 1–4 times the duration for 
a shear wave to travel the system length. We adopted a 
normalized time window of 3 after confirming some sim-
ulation results by comparing the cases with a halved time 
window. In previous studies (e.g., Rice and Ben-Zion 
1996; Lapusta et al. 2000) δ , V  , and φ were expressed in 

(1)τ (x, t) = τ0 + φ
EL
[V ](x, t)− ηV (x, t),

(2)φ
EL

= φ
EL
st + φ

EL
dy .

(3)φ
EL
st = Kst ∗ δ = F

−1

[
−

µ

∣∣k
∣∣

2
D

]
,
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terms of Fourier basis, a Fast Fourier Transform tech-
nique was used for efficient numerical simulation.

Miyake and Noda (2019) modified the elastic ESS to 
implement interseismic VR in a Maxwell viscoelastic 
medium for anti-plane problems. Because a viscoelastic 
material reacts to instantaneous loading in the same man-
ner as an elastic material, the radiation-damping effect 
must remain unchanged. Subsequently, the traction on the 
fault is written as

where φ is traction change due to previous fault motion. 
τ0 is the shear stress that would be realized if the fault 
were glued up and VR were neglected. Similar to the elas-
tic case φ was split into quasistatic effect φst and the dif-
ference from it φdy:

 Because the coseismic timescale was too short that the 
viscoelastic effect was negligible, the dynamic part was 
assumed to be identical to that in the elastic case:

The quasistatic part can be expressed by spatio-temporal 
convolution; however, Miyake and Noda (2019) went 
around the temporal convolution by using a memory var-
iable, effective slip δeff:

where the dots on top of variables represent time deriva-
tive, Deff was Fourier transform of δeff , and tc was the 
relaxation time of the Maxwell viscoelastic material. 
Equation  (8) can be easily integrated at each time step. 
This study uses almost the same numerical method 
as Miyake and Noda (2019). The only difference is that 

(4)τ = τ0 + φ[V ]− ηV ,

(5)φ = φst + φdy.

(6)φdy = φ
EL
dy .

(7)φst = Kst ∗ δeff = F
−1

[
−

µ

∣∣k
∣∣

2
Deff

]
.

(8)Ḋeff = Ḋ −

Deff

tc
.

Eq. (8) is integrated using an exponential time-differenc-
ing method based on a constant V  or Ḋ , similar to the 
state variable in the friction law (e.g., Noda and Lapusta 
2010).

2.1.2  Friction law
Similar to Miyake and Noda (2019), we adopt an aging law 
(Dieterich 1979; Ruina 1983):

where σ is the normal stress assumed to be 100 MPa , f∗ 
is friction coefficient at a reference V = V∗ = 10−9m/s , 
a and b are nondimensional parameters representing 
the direct and evolutionary effects, respectively, θ is the 
state variable and L is the characteristic slip of the state 
evolution. The steady-state friction coefficient changes 
by a− b for an e-fold increase in V  . Therefore, a point 
on the fault is called a rate strengthening or rate weak-
ening if a− b > 0 and a− b < 0 , respectively. We set up 
a rate-weakening patch embedded in the rate-strength-
ening region. For the rate-weakening patch, we assumed 
frictional parameters a = aw = 0.016 , b = bw = 0.02 
comparable to granite under seismogenic conditions 
(Blanpied et al. 1998), which obeys Byerlee’s law. For the 
rate-strengthening region, we selected a = as = 0.005 , 
b = bs = 0 , motivated by the extremely small evolution-
ary effect of the clay material (e.g., Ikari et al. 2009). Note 
that small amounts of non-clay (e.g., quartz) clasts yield 
a significant b comparable to a (e.g., Saffer and Marone 
(2003)). Still, the simplification of bs = 0 decreased the 
degree of freedom of the system and was very useful in 
interpreting nonlinear dynamics. The reference friction 
was set f∗ = f w

∗
= 0.6 inside and f∗ = f s

∗
= 0.6−�f∗ 

outside the rate-weakening patch. We refer �f∗(> 0) as 
the frictional strength contrast hereafter. a , b , and f∗ were 
given by using a smoothed boxcar function (e.g., Noda 
and Lapusta 2010):

(9)

τ = σ

(
f∗ + aln

(
V

V∗

)
+ bln(θ)

)
, θ̇ =

V

L

(
V∗

V
− θ

)
,

(10)a = as +
(
aw − as

)
B(x, 0.9R, 0.2R),

(11)b = bs +
(
bw − bs

)
B(x, 0.9R, 0.2R),

(12)f∗ = f s
∗
+�f∗B(x, 0.9R, 0.2R),

(13)B(x,W ,w) =





1 |x| < W
1
2 −

1
2 tanh

�
w

|x|−W−w +
w

|x|−W

�
W ≤ |x| ≤ W + w

0 W + w < |x|

.
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where R is approximately half the length of the rate-
weakening patch (Fig.  1) and periodic boundaries were 
assumed every 4R . L was set as uniform, and its value 
was selected by specifying the nucleation size (Rubin and 
Ampuero 2005):

The corresponding length scale of the process zone 
(Lapusta and Liu 2009) is as follows: 

 We used 400 spatial grid points, so that 

 This indicates the good spatial resolution of the present 
simulations (Day et al 2005).

The geophysically relevant stress scales (e.g., stress 
drop and rock stiffness) and speed (e.g., wave speeds 
and plate convergence rate) are relatively well con-
strained. In contrast, the scale of length, the remaining 
independent dimension, may vary by orders of magni-
tude, as indicated by the Gutenberg–Richter law in the 
size distribution of earthquakes. When visualizing the 
slip distribution on the fault, we chose a specific scale 
of 2R = 1km for a presentational purpose.

2.2  Methodology
2.2.1  Boundary and initial conditions
In the present study, we conducted parameter studies in 
a parameter space 

(
tc,�f∗

)
 . We adopted a boundary con-

dition similar to that used by Miyake and Noda (2019). 
As mentioned in the previous section, periodic bounda-
ries were assumed every 4R . A positive rate dependency 

(14)Rc =
1

π

bw

(bw − aw)2
µL

σ
= 0.4R.

(15)�0 =
9π

32

µL

bwσ
≈ 0.0444R.

(16)�x = 0.01R ≈ 4.44�0,

on average prevents system-spanning ruptures (e.g., 
Dublanchet et al. 2013). The fault motion was driven by 
applying constant far-field shear stress τ0 , the selection of 
which shall be explained below. The initial conditions of 
the simulations were specified by giving θini(x) and τ0.

Miyake and Noda (2019) reported that the fault behav-
ior (EQ, AT, SS, or ST) depends on the initial conditions 
(see Fig.  10, in their paper). For a systematic parameter 
study, we started the simulations from a point close to 
steady-state solutions, which we numerically calculated 
for all sets of 

(
tc,�f∗

)
 . For a fixed value of tc , we set a 

regular mesh of an interval �f i
∗
−�f i−1

∗
= 0.0125 with 

�f 0
∗
= 0 . For the cases with �f∗ = 0 , there is a trivial uni-

form steady-state solution:

regardless of tc . It leads to the initial condition:

including the inevitable numerical round-off errors. An 
increase in �f∗ led to overall weakening of the fault so 
that the driving force τ0 was decreased accordingly to 
keep the simulations comparable:

Given an approximate steady-state solution for 
�f∗ = �f i−1

∗
 , that for �f∗ = �f i

∗
 was calculated with 

a stabilized ESS by increasing L by a factor of 10 from 
Eq.  (14). Owing to the linearity of the medium, Eq.  (4) 
can be rewritten as follows: 

(17)V = V 0
ss = V∗, θ = θ

0
ss = 1, τ = τ

0
ss = σ f w

∗
,

(18)θ
0
ini(x) = θ

0
ss = 1, τ 00 = τ

0
ss + ηV 0

ss = σ f w
∗

+ ηV∗

(19)τ
i
0 = σ f w

∗
−

σ�f i
∗

2
+ ηV∗.

(20)
τ = τ0 + φ[Vref +�V ]− η(Vref +�V )

= τref + φ[�V ]− η�V ,

Fig. 1 Distribution of frictional properties. a Rate-dependency parameters, b friction coefficient at a reference V∗ = 10
−9

m/s . �f∗ is the frictional 
strength contrast
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 where the subscript “ref” indicates a reference solution

and �V  is the difference in the slip rate from the refer-
ence. A simulation code was set up to calculate Eq. (20) 
rather than Eq.  (4) to enable simulations under poten-
tially complex loading conditions. To clarify, Vref is a 
reference in a linear viscoelastic solution and is differ-
ent from the reference in rate- and state-dependent fric-
tion, V∗ . The reference solution does not need to satisfy 
the friction law. The reformulation of Eqs. (4)–(20) is just 
reselection of a reference from which the displacement is 
measured, being called “back-slip formulation” in some 
circumstances. In computing the steady-state solution 
for �f∗ = �f i

∗
 with the stabilized ESS, we adopted V i−1

ss  
as Vref

and θ i−1
ss  as the initial value of θ . If the steady-state solu-

tion is continuous with respect to �f∗ , the initial condi-
tion is close to the steady state and the stabilized ESS is 
expected to decay to it quickly.

In many cases, the variables decayed towards the steady 
state, at which V̇ = 0 , θ̇ = 0 , φ̇ = 0, and τ̇ = 0 . From Eqs. 
(4) and (9), we have two constraints:

Therefore, we checked only V̇  and θ̇ to terminate the 
stabilized ESS. Because η ≪ aσ/V  in the interseismic 
processes and the steady-state solutions of our inter-
est here, we halted the stabilized ESS when both 

∣∣V̇ /V
∣∣ 

and b/a
∣∣θ̇/θ

∣∣ becomes smaller than 10−6s−1 . θ in the final 
snapshot was regarded as the steady-state values θ iss and 
used to specify the initial condition:

For large values of �f  , the condition for steady state 
failed to be satisfied before t = 10,000yr . At this point, 
we halted the simulation and gave up a parameter study, 
classifying the remaining cases as “No steady state 
obtained” (NoSS). Although the criterion for a steady 
state adopted here is artificial, the simulations in the pre-
sent study appear reasonable.

(21)τref = τ0 + φ[Vref]− ηVref,

(22)
τref = τ

i
0 + φ

[
V i−1
ss

]
− ηV i−1

ss = τ
i−1
ss − σ

�f i
∗
−�f i−1

∗

2
,

(23)τ̇ = φ̇ − ηV̇ ,

(24)τ̇ = aσ
V̇

V
+ bσ

θ̇

θ
.

(25)θ
i
ini(x) = θ

i
ss(x).

2.2.2  Procedure of parameter study
For �f∗ , we covered a range from 0 to 0.3 correspond-
ing to fs from 0.6 to 0.3. For tc , Miyake and Noda (2019) 
defined a non-dimensional relaxation time by comparing 
tc with the time scale of elastic loading by a surrounding 
creeping rate-strengthening region:

In this expression, the creep rate was assumed to be 
V∗ , which may be reasonable for �f∗ = 0 , because the 
steady-state solution with V = V∗ exists (Eq.  17). How-
ever, the creep rate may be significantly higher in the 
present study, because the rate-strengthening region is 
weaker. The redefinition of the non-dimensional relaxa-
tion time is one of the goals of this study; however, tc 
for the parameter study is specified in Eq. (26). We con-
ducted a parameter study for 40 ≤ t̃c ≤ 610 with 25 reg-
ularly spaced grid points. This range was determined to 
capture the EQ–ST boundary in the range of �f∗ studied.

Earthquake ruptures were defined by a threshold of 
the spatial maximum V  of 0.1m/s . Ti denotes the inter-
val between the ith and (i − 1) th earthquakes, and we 
stopped the simulation when |Ti/Ti−1 − 1| < 10−3 , 
classifying the case as EQ and defining the recurrence 
interval Tr = Ti . Otherwise, we stopped the simula-
tion when the spatial minimum V  became smaller than 
10−5V∗ = 10−14m/s , classifying the case as ST.

2.3  Simulation results
Figure  2 shows the result of the parameter study. The 
recurrence interval Tr normalized by that in the elastic 

(26)t̃c =
tcµV∗

2Rσaw
.

Fig. 2 Result of parameter study for the continuum model. Colors 
indicate the recurrence interval Tr normalized by in the elastic 
limit. Black crosses and open circles represent permanent stuck 
and no steady-state solution, respectively. Cases with red squares are 
plotted in Fig. 3
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limit is colored for EQ; ST and NoSS are indicated by 
black crosses and open circles, respectively. The bound-
ary between ST and NoSS is not defined by the simulation 
behavior, but by the failure of finding the unstable steady-
state solution used as the initial condition (Sect.  2.1.1.). 
Similar to efficient VR, the strength contrast increases Tr 
and promotes the permanent stuck of the rate-weakening 
patch. The case with �f∗ = 0.3 shows the EQ–ST transi-
tion at about one order of magnitude larger t̃c than the 
case without the strength contrast. One of the goals of 
the present study was to understand the apparent linear 
boundary between EQ and ST.

A pair of EQ and ST cases just across the boundary 
with �f∗ = 0.1875 indicated by red squares in Fig. 2 are 
shown in Fig. 3. In the EQ case (Fig. 3a), the rate-weak-
ening patch repeatedly generated earthquake ruptures. 
The dashed parallelogram shows that the long-term slip 
rate was lower in the rate-weakening patch. In the ST 
case (Fig.  3b), the patch eventually stopped slipping. 

Figure  3c, d shows the trajectories of the shear stress 
versus the slip rate at the center of the patch. In both 
cases, as soon as the simulation began, a minor accel-
eration event occurred before the second acceleration 
towards the coseismic slip rate. The almost linear trends 
in acceleration shown in Fig. 3c, d indicate rapid stress-
ing in front of the rupture and creep fronts. Indeed, 
the nucleation of the first earthquake rupture occurred 
slightly off-center. In the EQ case, after the first rup-
ture, V  decreased to a minimum value of approximately 
10−2V∗ during the interseismic period, followed by an 
acceleration towards the second rupture. The trajectory 
quickly settled to the limit cycle and the simulation 
was halted after the fourth rupture. In the ST case, the 
behavior is quite similar before V  reaches about 10−2V∗ 
after the earthquake rupture. From this point, V  further 
decreased with decreasing τ and reached 10−5V∗ where 
the simulation was halted. The trajectories in Fig.  3c, 
d intersect with itself; hence, explaining such detailed 
behavior requires more than three degrees of freedom.

We took spatial average of the shear stress τ and the 
slip rate V  over the rate-weakening patch −R < x < R ( τ  
and V  ). Subsequently, the trajectories were significantly 
simplified (Fig. 3e, f ). The sharp increases and decreases 
in τ before the 1st rupture disappeared, which reflected 
small-scale behavior interior of the patch. In addition, the 
self-intersections of the trajectories were minimized. We 
adopted these trajectories as the coarse-grained behavior 
of the system. We attempted to reproduce them using a 
simpler system with two degrees of freedom to draw a 
physical understanding of the combined effect of VR and 
strength contrast.

3  Coarse‑grained model
3.1  Formulation
The continuum model has infinite degrees of freedom; 
thus, a rigorous mathematical discussion is difficult. A 
simplified system was used for comparison to interpret 
the results of the continuum model.

Averaging of Eq.  (4) inside and outside the rate-weak-
ening patch yields

where the superscripts w and s represent the average 
values in the rate-weakening and rate-strength regions, 
respectively. Because the integral of φ over the infinite 
fault plane is zero, we simplify the notation using

(27)τ
w
= τ0 + φ

w
− ηVw,

(28)τ
s
= τ0 + φ

s
− ηV s.

(29)ψ = φ
w
= −φ

s.
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In the continuum model described in the last section, 
ψ includes contributions not only from φst , but also from 
φdy . In the simplified model, we ignored the latter con-
tribution. It may be significant during dynamic events; 
however, they are most likely negligible during the inter-
seismic period, in which deceleration towards the stuck 
state was observed.

We assumed that the fault motion can be divided into 
two parts:

where �w and �s are characteristic shape functions of slip 
rate distribution in the rate-weakening and rate-strength-
ening regions, respectively, satisfying

The effective slip in the space domain evolves as (Eq. 8)

Because this is a linear equation, the same shape func-
tions can be naturally used for δeff

hence, the averaged effective slips evolve as

Equation (7) can be written as

Note that K̃st is different from Kst in Eq. (7) in that peri-
odic replication of the source with an interval 4R was 
assumed. It satisfies

Averaging Eq. (35) inside and outside the rate-weakening 
patch, we obtain:

(30)V (x) = Vw
�w(x)+ V s

�s(x),

(31)�w(x)+�s(x) = 1.

(32)δ̇eff = V −

δeff

tc
.

(33)δeff(x) = δ
w
eff�w(x)+ δ

s
eff�s(x)

(34)δ̇
w
eff = Vw

−

δ
w
eff

tc
, δ̇seff = V s

−

δ
s
eff

tc
.

(35)

φst(x) =
2R∫

−2R

K̃st
(
x − x′

)
δeff

(
x′
)
dx′

= δweff

2R∫

−2R

K̃st
(
x − x′

)
�w(x)dx′

+ δseff

2R∫

−2R

K̃st
(
x − x′

)
�s(x)dx′.

(36)K̃st(x) = K̃st(x + 4R),

2R∫

−2R

K̃st(x)dx = 0,

where

First

because of Eq. (36). Second, Eqs. (31) and (36) yield

Therefore, only one stiffness parameter exists

ψ can then be written as

and its evolution, as

(37)
φ
w
= ψ = δ

w
effK

w
w + δ

s
effK

w
s ,φ

s
= −ψ = δ

w
effK

s
w + δ

s
effK

s
s

Kw
w =

1

2R

R∫

−R

dx

2R∫

−2R

Kst

(
x − x′

)
�w(x)dx

′

Kw
s =

1

2R

R∫

−R

dx

2R∫

−2R

Kst

(
x − x′

)
�s(x)dx

′

K s
w =

1

2R




2R�

−2R

dx −

R�

−R

dx




2R�

−2R

Kst

�
x − x′

�
�w(x)dx

′

(38)

K s
s =

1

2R




2R�

−2R

dx −

R�

−R

dx




2R�

−2R

Kst

�
x − x′

�
�s(x)dx

′

Kw
w + K s

w =

1

2R

2R∫

−2R

dx

2R∫

−2R

Kst

(
x − x′

)
�w(x)dx

′
= 0

(39)

Kw
s + K s

s =

1

2R

R∫

−R

dx

2R∫

−2R

Kst

(
x − x′

)
�s(x)dx

′
= 0

Kw
w + Kw

s =

1

2R

R∫

−R

dx

2R∫

−2R

Kst

(
x − x′

)
dx′ = 0

(40)

K s
w + K s

s =

1

2R




2R�

−2R

dx −

R�

−R

dx




2R�

−2R

Kst

�
x − x′

�
dx′ = 0

(41)κ = Kw
s = −Kw

w = K s
w = −K s

s .

(42)ψ = κ
(
δ
s
eff − δ

w
eff

)
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Equations (27), (28), (29) yield

These equations and Eq.  (43) can be regarded as a 
spring–slider–dashpot system (Fig.  4), which is identi-
cal to the system studied by Miyake and Noda (2019) in 
terms of the stability of steady-state solutions. Stiffness κ 
should be expressed as

where γ is a geometrical factor around 1 and depends on 
�w and �s . These shape functions are approximations 
of the actual distribution of V  in the continuum model 
under certain circumstances, such as during coseismic 
or inter-seismic periods, and are difficult to determine. 
Miyake and Noda (2019) quantitatively explain the stabil-
ity change of the steady-state solution by γ = 0.97 , which 
was adopted in the present study.

For the friction law, we assumed that the aging law 
holds for the averaged traction and slip rates:

If we give ψ and θw , then we can solve Eqs. (44) and (47) 
for τw and Vw , and Eqs. (45) and (48) for τ s and V s . There-
fore, the dynamical system has two degrees of freedom 
and can be completely visualized in a two-dimensional 
phase space (plane).

(43)ψ̇ = κ
(
V s

− Vw
)
−

ψ

tc
.

(44)τ
w
= τ0 + ψ − ηVw,

(45)τ
s
= τ0 − ψ − ηV s.

(46)κ = γ
µ

2R
.

(47)

τ
w
= σ

(
f w
∗

+ awln
Vw

V∗

+ bwlnθw
)
, θ̇w =

Vw

L

(
V∗

Vw
− θ

w

)
,

(48)

τ
s
= σ

(
f s
∗
+ asln

V s

V∗

)
= σ

(
f w
∗

+�f∗ + asln
V s

V0

)
.

3.2  Methodology
The system of Eqs. (43–45), (Eq.  47), and (Eq.  48) are 
solved numerically. We chose � = ln(θw) and ψ as the 
independent set of variables for time integration. ψ and � 
evolves as Eq. (43) and

respectively. Vw and V s can be expressed in terms of 
these variables by solving Eqs. (44), (45), (47), and (48) 
using the Lambert W function. The time integration was 
executed using scipy.integrate.solve_ivp with ’Radau’ 
method, a fifth-order implicit Runge–Kutta method with 
a third-order numerical error control. We used relative 
tolerance of 10−9 . For a parameter study comparable to 
the continuum model, the initial condition was selected 
to be close to a steady-state solution, which must be esti-
mated, as explained below.

At steady state, Eqs. (43), (47), (48) yield

where v = V /V∗ , f = τ/σ , and superscripts w and s indi-
cate spatial average inside and outside the rate-weaken-
ing patch, respectively. Equations  (19), (26), (44), (46), 
(50) and (51) yield

Equations (19), (26), (45), (47), (50), and (52) yield

(49)
d�

dt
=

V∗

L
exp(−�)+

Vw

L
,

(50)ψ = κtcV∗

(
vs − vw

)

(51)f w = f w
∗

+

(
aw − bw

)
lnvw,

(52)f s = f w
∗

−�f∗ + aslnvs,

(53)

vs
(
vw

)
= vw +

aw − bw

γ t̃caw
lnvw +

ηV∗

γ t̃cawσ

(
vw − 1

)
+

�f∗

2γ t̃caw
.

(54)

F
(
vw

)
= lnvs +

γ t̃ca
w

as

(
vs − vw

)
+

ηV∗

asσ

(
vs − 1

)
−

�f∗

2as
= 0,

κ κ/t
cη η

Rate weakeningRate strengthening

ψ
τs

τ
0

τ
0

ψ
τw

Vs Vw

Fig. 4 Schematic diagram of the spring–slider–dashpot system 
expressed by Eqs. (43)–(45)
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where vs in Eq. (54) is a function of vw given by Eq. (53). A 
steady-state solution can be obtained by finding zeros of 
F(vw) . In the elastic limit t̃c → ∞ , F  is given by

which has only one solution vw = 1 , because 
as + aw − bw > 0.

Figure  5 shows F(vw) for various t̃c with �f∗ = 0.3 as 
an example. VR increases F(vw) at small vw . If t̃c is large 
yet finite, two solutions can be made. The larger one is 
close to the elastic solution vw = 1 , and the other is much 
smaller. As t̃c decreases, these two solutions approach 
each other, collide, and disappear at critical t̃c . This was a 
tangent bifurcation. For a sufficiently small t̃c , no steady-
state solution exists. In the simulation of the spring–
slider–dashpot system, the initial condition was selected 
to be very close to the steady state of larger vw.

To obtain the initial condition, we first numerically 
solved F ′

(
vwpeak

)
= 0 using the grid search and bisection 

method with the scipy.optimize.bisect. If F
(
vwpeak

)
> 0 , a 

steady-state solution does not exist; thus, we do not con-
duct a simulation. If F

(
vwpeak

)
< 0 , we search for the 

solution for F
(
vwini

)
= 0 using the grid search and bisec-

tion method again in the region vwini > vwpeak . From vwini , we 
evaluated �ini assuming a steady state, and ψini from Eqs. 
(49) and (50), respectively.

3.3  Simulation results
The results of the parameter study are shown in Fig.  6. 
This result was remarkably similar to that of the con-
tinuum model. The boundary between the EQ and ST, 

(55)
F
(
vw

)
→

as + aw − bw

as
lnvw + 2

ηV∗

σas

(
vw − 1

)
= 0,

as well as the boundary for the existence of a steady-
state solution, lies quantitatively close to those plotted 
in Fig.  2. Figure  7 shows trajectories and the direction 
of time derivative in the phase space for cases with 
�f∗ = 0.1875 and t̃c of ∞ , 610, 372.5, 348.75, 87.5, and 
63.75 from the panel (a) to (f ) together with the steady-
state solutions (fixed points). The cases with finite t̃c 
are indicated by red squares in Fig. 6. In the elastic limit 
(Fig.  7a), only one fixed point exists: an unstable spiral 
point indicated by an orange circle. With a relatively large 
t̃c , the other fixed point lies outside the limit cycle of the 
earthquake cycle (Fig. 7b, c). This fixed point was a sad-
dle point in the simulations conducted in this study. With 
decreasing t̃c , it moved towards the spiral point (Fig. 7c), 
and the limit cycle disappeared at the EQ–ST boundary 
(Fig. 7d). With a further decrease in t̃c , the saddle point 
approaches the spiral point (Fig.  7e), and both fixed 
points disappear together (Fig. 7f ) by a tangent bifurca-
tion (Fig.  5) or a saddle-node bifurcation. The cases in 
Fig. 7e, f are separated by the ST–NoSS boundary. They 
are different in the number of unstable fixed points and 
we did not conduct a simulation in the latter case. Never-
theless, the vector field shown in Fig. 7f indicates that the 
rate-weakening slider gets stuck, and the behavior of the 
two cases are very similar.

When the limit cycle disappears, the saddle point 
touches it and the recurrence interval diverges. This 
bifurcation is called a homoclinic bifurcation, because the 
limit cycle starting from a fixed point and returns to the 
same fixed point is called a homoclinic orbit. The EQ–ST 
boundary in the coarse-grained model constructed in the 
present study has been demonstrated as a homoclinic 
bifurcation, which is qualitatively different from the well-
known seismic–aseismic transition explained by a Hopf 
bifurcation (e.g., Ruina 1983).

4  Discussion
4.1  Comparison of the two models
This study constructed a coarse-grained model from a 
continuum model based on spatial averages. The param-
eter studies on tc and �f∗ were performed for both mod-
els in comparable manners. As a result, we obtained 
extremely similar phase diagrams (Figs. 2 and 6) and tra-
jectories for both the EQ (Figs. 3e and 7c) and ST cases 
(Figs. 3f and 7d). In addition, the boundary between the 
EQ and SS was quantitatively explained in a previous 
study (Miyake and Noda 2019) through a similar com-
parison. Based on these facts, we argue that the behav-
ior of the continuum model can be “understood” using 
a coarse-grained model. However, we did not directly 
demonstrate that a homoclinic bifurcation occurred in 
the continuum model. Miyake and Noda (2019) reported 
that the recurrence interval of earthquakes diverges when 
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plotted in Fig. 7
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approaching the EQ–ST boundary. This provided sup-
porting evidence for a homoclinic orbit at the transition. 
Rigorously speaking, to say that the homoclinic bifurca-
tion is responsible for the EQ–ST transition, we have to 
derive the continuum steady-state solution comparable 
to the saddle point in the coarse-grained mode, and show 
that it touches the limit cycle for repeating earthquakes. 
This is not as straightforward as in the coarse-grained 
model, which has only two degrees of freedom, and 
deserves further study.

The coarse grinding performed in this study worked 
remarkably well. This was probably owing to the rela-
tively small R/Rc = 2.5 (Eq. 14). Using ESS with the aging 
law, Lapusta and Rice (2003) demonstrated that a large 

R/Rc causes small ruptures that break only a part of the 
rate-weakening patch. Barbot (2019) also showed that a 
continuum model with a single rate-weakening patch can 
undergo period-doubling bifurcation using an ESS with 
different rate-and-state friction with a single state vari-
able. Earthquakes of multiple sizes cannot occur in the 
limit cycle of a system with only two degrees of freedom, 
because the trajectory cannot intersect with itself. Coarse 
grinding of systems with such complex behavior requires 
more degrees of freedom. It deserves future study, 
because it could significantly reduce computational costs 
in reproducing and even predicting the behavior of a 
fault hosting repeating earthquake if successful.
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4.2  Enhanced relaxation by strength contrast
The strength contrast �f∗ = 0.3 increases t̃c at the EQ–
ST transition by about one order of magnitude (Fig.  2). 
The effect of the strength contrast can be understood by 
considering the significance of loading to the rate-weak-
ening patch relative to the amount of the direct effect, 
similarly to in Miyake and Noda (2019). Let us consider 
a situation in which the rate-weakening patch is locked, 
the rate-strengthening region has a slip rate Vload , and 
the stress difference between them is comparable to the 
strength contrast. Here, we neglect the rate dependency 
of friction, because it may be a second-order effect com-
pared to the strength contrast. Subsequently, the rate of 
change in the shear stress in the rate-weakening patch 
can be written as

Note that the first and second terms represent elastic 
loading and VR, respectively, and we omit γ (Eq.  46), 
which is close to 1. In general, the stress difference 
between the inside and outside of the rate-weakening 
patch changes with time. If the slip rates inside and 
outside the rate-weakening patch is constant, τ̇ decays 

(56)τ̇ =

µVload

2R
−

σ�f∗

tc
,

to zero with a characteristic time of tc and with the net 
change in the shear stress tcτ̇ . If tcτ̇ is much smaller than 
the rate dependency of the fault, the assumption of con-
stant slip rates is approximately applicable and thus we 
expect no significant acceleration in the locked patch. 
Therefore, the condition for ST can be written as

This condition leads to

Here, t̃STc  is a newly defined nondimensional relaxation 
time.

Compared with the non-dimensional relaxation time 
t̃c defined by Miyake and Noda (2019) (Eq. 26), the new 
non-dimensional relaxation time t̃STc  involves the effect 
of strength contrast. Miyake and Noda (2019) assumed 
uniform �f∗ = 0 and used V∗ for Vload as an approxima-
tion partly because a steady-state solution with uniform 
V = V∗ exists. However, in the present study, V  in the 
steady-state solution was not necessarily uniform, and 
a simple approximation of Vload was difficult to obtain. 

(57)awσ ≪ tcτ̇ =

µVloadtc

2R
− σ�f∗.

(58)1 ≪

tcµVload

2Rσ
(
aw +�f∗

) = t̃STc .
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Therefore, we adopted for Vload the minimum value of V  
at the center of the rate-strengthening region (minimum 
x ) for the continuum model. The minimum value of V s 
was adopted for the coarse-grained model. Although 
these values cannot be obtained a priori, this study aims 
to evaluate the conditions in Eq.  (58) to validate the 
theory behind it and understand the effect of strength 
contrast.

Figure 8a, b shows the behavior of the continuum and 
coarse-grained models, similar to Figs.  2 and 6, respec-
tively, as a function of the new non-dimensional relaxa-
tion time t̃STc  . The boundary between ST and EQ lies at 
approximately t̃STc = 1 , indicating that Eq.  (58) condi-
tion works remarkably well at the EQ–ST boundary. For 
extremely small strength contrast (say, �f∗ < 0.05 ), the 
boundary shifts in the direction of large t̃STc  and moves 
to around t̃STc = 2 at �f∗ = 0 . In formulating Eq. (56), we 
estimated the effect of VR only from the contribution of 
�f∗ and neglected that from frictional rate dependency. 
Even with �f∗ = 0 , regions with different slip rates such 
as creeping and locked regions have different shear stress. 
The boundary can be straightened by adding a small 
number to �f∗ to account for this effect in the definition 
of t̃STc  (Eq. 58). In Fig. 8c, d, the horizontal axes represent:

At this point, we were confident that the EQ–ST bound-
ary could be explained by the significance of the loading 
rate to the rate-weakening patch, which is the sum of the 
contributions from elastic loading due to creep in the 
rate-strengthening region and from VR. Note that this 
explanation simply interprets the simulation results and 
does not mathematically indicate the condition for the 
homoclinic bifurcation discussed in the previous section.

4.3  Implication to observations
The model shows that a stronger patch favors ST and 
has a lower long-term slip rate, whereas a weaker region 
exhibits a higher long-term slip rate (Fig. 3a, b). The anti-
correlation between the strength and slip rate is a conse-
quence of VR, which causes unloading and loading in the 
stronger and weaker parts of the fault, respectively. The 
heterogeneous long-term slip rate is difficult to observe 
geodetically. Although the slip rate of the stronger patch 
was low, viscous deformation was concentrated around 
it, forming a distributed shear zone. The coexistence of 
localized frictional slip and distributed shear deformation 
is, by definition, a characteristic of the brittle–ductile 
transitional regime. Modeling frictional surfaces embed-
ded in a viscously deformable medium is important for 

(59)t̃ST
′

c =

tcµVload

2Rσ
(
aw +�f∗ + 0.02

) .

understanding geophysically observable phenomena and 
rock textures in the brittle–ductile transition.

Our simulations suggest that a patch with large 
t̃STc ≫ 1 generates repeating earthquakes, while that with 
small t̃STc ≪ 1 is stuck and seismically silent. Because t̃STc  
is inversely proportional to R , it is expected that a larger 
rate-weakening patch will become aseismic earlier than a 
smaller patch as the viscosity of the medium decreases, 
as pointed out by Miyake and Noda (2019). Spada et al. 
(2013) reported the depth variation of the Gutenberg–
Richter (GR) b value for several regions of the world and 
showed that it increases with depth, at least in some 
places below 15  km, which is around the brittle–plastic 
transition (e.g., Sibson 1983; Scholz 1988). A larger GR 
b value indicated a smaller fraction of large earthquakes 
in the set of earthquakes. Yamaguchi et  al. (2011) con-
ducted friction experiments using a silicone gel plate that 
hosted force drop events of various amplitudes in a labo-
ratory experiment. They calculated the power-law decay 
rate of the frequency-size distribution of these events 
and reported that efficient viscoelasticity reduces the 
fraction of large events. The results of the present study 
agree qualitatively with these reports. However, we ana-
lyzed a system with only one rate-weakening patch, and 
seismicity is often clustered (e.g., mainshock–aftershock 
sequences and earthquake swarms). Thus, the interac-
tion of seismogenic patches may be important. Further 
quantitative analyses are required to determine whether 
VR plays an important role in natural seismic–aseismic 
transitions.

5  Conclusion
A previous study (Miyake and Noda 2019) discovered a 
transition between repeating earthquakes (EQ) and per-
manent stuck (ST) for a rate-and-state fault embedded 
in a viscoelastic medium (EQ–ST transition). This differs 
from the well-known transition explained by compar-
ing the critical stiffness and stiffness of the elastic sys-
tem, which is accompanied by Hopf bifurcation (Ruina 
1983). In a viscoelastic medium, the heterogeneous fault 
frictional strength matters, unlike in an elastic medium, 
because the resulting stress heterogeneity relaxes with 
time, causing loading and unloading to weaker and 
stronger regions, respectively. In the present study, we 
performed dynamic earthquake sequence simulations 
for a rate-and-state fault in a viscoelastic medium with 
strength contrast inside and outside a rate-weakening 
patch to better understand the EQ–ST transition, to 
investigate the effect of strength contrast, and to draw a 
physical understanding of system behavior.

Experimental studies have suggested that a rate-weak-
ening patch has a potentially larger frictional resistance 
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than a rate-strengthening patch (e.g., Ikari et al. 2011). A 
parameter study in terms of the frictional strength con-
trast �f∗ and the viscoelastic relaxation time tc showed 
that �f∗ = 0.3 causes the EQ–ST transition at about 
1 order of magnitude larger tc than in the case with 
�f∗ = 0 . Because the continuum model has many degrees 
of freedom, which makes a mathematically rigorous dis-
cussion difficult, we developed a coarse-grained model 
based on spatial averaging and compared the two models. 
The coarse-grained model showed a quantitatively simi-
lar behavior; thus, we investigated the EQ–ST transition 
in this model in detail. We found that the EQ–ST transi-
tion is realized by homoclinic bifurcation, in which a sad-
dle point touches a stable limit cycle. To our knowledge, 
this is the first time to point out the possibility of a seis-
mic–aseismic transition by homoclinic bifurcation.

We also quantitatively explained the EQ–ST boundary by 
comparing loading rate τ̇ to the rate-weakening patch and 
the frictional instantaneous rate dependency. In addition 
to the elastic loading due to creep in the rate-strengthening 
region, the viscoelastic relaxation of stress heterogeneity 
contributes to τ̇ . We defined a nondimensional relaxation 
time t̃STc  , which is proportional to tc , inversely proportional 
to the patch radius R , and correlate negatively with �f∗ , to 
show that the EQ–ST boundary lies around t̃STc = 1 . As 
the viscoelastic relaxation became significant, a large rate-
weakening patch became aseismic before a small patch. 
This behavior is qualitatively consistent with an increase in 
the Gutenberg–Richter b value near the deeper end of the 
seismogenic layer (e.g., Spada et al. 2013), but further inves-
tigations on, for example, the effects of earthquake interac-
tions and changes in frictional parameters with depth are 
required for quantitative discussion.

Abbreviations
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SBIEM  Spectral boundary integral equation method

Acknowledgements
The authors would like to thank the editors and reviewers for useful com-
ments in improving the manuscript.

Author contributions
Hiroyuki Noda developed the method, conceptualized the study, coded 
the simulation program for the continuum model, designed the parameter 
study, contributed to the theoretical analysis, and created the original draft. 
Makoto Yamamoto coded the simulation program for the coarse-grained 
model, adapted the simulation programs for the parameter study, conducted 
the parameter study, analyzed the numerical results, and contributed to the 
theoretical analysis.

Funding
This study was supported by the Ministry of Education, Culture, Sports, Sci-
ence and Technology (MEXT) of Japan under its Third Earthquake and Volcano 
Hazards Observation and Research Program (Earthquake and Volcano Hazard 
Reduction Research) and by JSPS KAKENHI Grant Number 21H05201.

Availability of data and materials
Observational data were not used in the present study. The simulation code 
used in the study is available upon reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The author does not have any competing interests.

Author details
1 Disaster Prevention Research Institute, Kyoto University, Gokasho, 
Uji 6110011, Japan. 2 Daikin Industries, Ltd., Osaka 530-0001, Japan. 

Received: 31 July 2024   Accepted: 8 November 2024

References
Allison KL, Dunham EM (2018) Earthquake cycle simulations with rate-and-

state friction and power-law viscoelasticity. Tectonophysics 733:232–256. 
https:// doi. org/ 10. 1016/j. tecto. 2017. 10. 021

Ando R, Yamashita T (2007) Effects of mesoscopic-scale fault structure on 
dynamic earthquake ruptures: dynamic formation of geometrical 
complexity of earthquake faults. J Geophys Res Solid Earth 112:B09303. 
https:// doi. org/ 10. 1029/ 2006J B0046 12

Andrews DJ (2005) Rupture dynamics with energy loss outside the slip zone. 
J Geophys Res Solid Earth 110:B01307. https:// doi. org/ 10. 1029/ 2004J 
B0031 91

Barbot S (2019) Slow-slip, slow earthquakes, period-two cycles, full and partial 
ruptures, and deterministic chaos in a single asperity fault. Tectonophys-
ics 768:228171. https:// doi. org/ 10. 1016/j. tecto. 2019. 228171

Beeler NM, Tullis TE, Blanpied ML, Weeks JD (1996) Frictional behavior of large 
displacement experimental faults. J Geophys Res Solid Earth 101:8697–
8715. https:// doi. org/ 10. 1029/ 96JB0 0411

Blanpied ML, Marone CJ, Lockner DA et al (1998) Quantitative measure of the 
variation in fault rheology due to fluid–rock interactions. J Geophys Res 
Solid Earth 103:9691–9712. https:// doi. org/ 10. 1029/ 98JB0 0162

Byerlee J (1978) Friction of rocks. Pure Appl Geophys 116:615–626. https:// doi. 
org/ 10. 1007/ BF008 76528

Collettini C, Niemeijer A, Viti C, Marone C (2009) Fault zone fabric and fault 
weakness. Nature 462:907–910. https:// doi. org/ 10. 1038/ natur e08585

Day SM, Dalguer LA, Lapusta N, Liu Y (2005) Comparison of finite difference 
and boundary integral solutions to three-dimensional spontaneous 
rupture. J Geophys Res Solid Earth 110:B12307. https:// doi. org/ 10. 1029/ 
2005J B0038 13

den Hartog SAM, Niemeijer AR, Spiers CJ (2012) New constraints on megath-
rust slip stability under subduction zone P-T conditions. Earth Planet Sci 
Lett 353–354:240–252. https:// doi. org/ 10. 1016/j. epsl. 2012. 08. 022

Dieterich JH (1979) Modeling of rock friction: 1. Experimental results and 
constitutive equations. J Geophys Res Solid Earth 84:2161–2168. https:// 
doi. org/ 10. 1029/ JB084 iB05p 02161

Dublanchet P, Bernard P, Favreau P (2013) Interactions and triggering in a 3-D 
rate-and-state asperity model. J Geophys Res Solid Earth 118:2225–2245. 
https:// doi. org/ 10. 1002/ jgrb. 50187

Goswami A, Barbot S (2018) Slow-slip events in semi-brittle serpentinite fault 
zones. Sci Rep 8:6181. https:// doi. org/ 10. 1038/ s41598- 018- 24637-z

Gu J-C, Rice JR, Ruina AL, Tse ST (1984) Slip motion and stability of a single 
degree of freedom elastic system with rate and state dependent friction. 
J Mech Phys Solids 32:167–196. https:// doi. org/ 10. 1016/ 0022- 5096(84) 
90007-3

Iio Y, Sagiya T, Kobayashi Y, Shiozaki I (2002) Water-weakened lower crust and 
its role in the concentrated deformation in the Japanese Islands. Earth 

https://doi.org/10.1016/j.tecto.2017.10.021
https://doi.org/10.1029/2006JB004612
https://doi.org/10.1029/2004JB003191
https://doi.org/10.1029/2004JB003191
https://doi.org/10.1016/j.tecto.2019.228171
https://doi.org/10.1029/96JB00411
https://doi.org/10.1029/98JB00162
https://doi.org/10.1007/BF00876528
https://doi.org/10.1007/BF00876528
https://doi.org/10.1038/nature08585
https://doi.org/10.1029/2005JB003813
https://doi.org/10.1029/2005JB003813
https://doi.org/10.1016/j.epsl.2012.08.022
https://doi.org/10.1029/JB084iB05p02161
https://doi.org/10.1029/JB084iB05p02161
https://doi.org/10.1002/jgrb.50187
https://doi.org/10.1038/s41598-018-24637-z
https://doi.org/10.1016/0022-5096(84)90007-3
https://doi.org/10.1016/0022-5096(84)90007-3


Page 15 of 15Noda and Yamamoto  Earth, Planets and Space          (2024) 76:155  

Planet Sci Lett 203:245–253. https:// doi. org/ 10. 1016/ S0012- 821X(02) 
00879-8

Ikari MJ, Saffer DM, Marone C (2009) Frictional and hydrologic properties of 
clay-rich fault gouge. J Geophys Res Solid Earth 114:B05409. https:// doi. 
org/ 10. 1029/ 2008J B0060 89

Ikari MJ, Marone C, Saffer DM (2011) On the relation between fault strength 
and frictional stability. Geology 39:83–86. https:// doi. org/ 10. 1130/ 
G31416.1

Johnson KM, Tebo D (2018) Capturing 50 years of postseismic mantle flow at 
Nankai subduction zone. J Geophys Res Solid Earth 123:10091–10106. 
https:// doi. org/ 10. 1029/ 2018J B0163 45

Kato N (2003) Repeating slip events at a circular asperity: numerical simulation 
with a rate- and state-dependent friction law. Bull Earthq Res Inst Univ 
Tokyo 78:151–166

Lapusta N, Liu Y (2009) Three-dimensional boundary integral modeling of 
spontaneous earthquake sequences and aseismic slip. J Geophys Res 
Solid Earth 114:B09303. https:// doi. org/ 10. 1029/ 2008J B0059 34

Lapusta N, Rice JR (2003) Nucleation and early seismic propagation of small 
and large events in a crustal earthquake model. J Geophys Res Solid 
Earth 108:2205. https:// doi. org/ 10. 1029/ 2001J B0007 93

Lapusta N, Rice JR, Ben-Zion Y, Zheng G (2000) Elastodynamic analysis for 
slow tectonic loading with spontaneous rupture episodes on faults with 
rate- and state-dependent friction. J Geophys Res Solid Earth 105:23765–
23789. https:// doi. org/ 10. 1029/ 2000J B9002 50

Liu Y, Rice JR (2007) Spontaneous and triggered aseismic deformation tran-
sients in a subduction fault model. J Geophys Res Solid Earth 112:B09404. 
https:// doi. org/ 10. 1029/ 2007J B0049 30

Miyake Y, Noda H (2019) Fully dynamic earthquake sequence simulation 
of a fault in a viscoelastic medium using a spectral boundary inte-
gral equation method: does interseismic stress relaxation promote 
aseismic transients? Earth Planet Space 71:137. https:// doi. org/ 10. 1186/ 
s40623- 019- 1113-8

Moore JDP, Yu H, Tang C-H et al (2017) Imaging the distribution of tran-
sient viscosity after the 2016 Mw 7.1 Kumamoto earthquake. Science 
356:163–167. https:// doi. org/ 10. 1126/ scien ce. aal34 22

Noda H, Lapusta N (2010) Three-dimensional earthquake sequence simula-
tions with evolving temperature and pore pressure due to shear heating: 
effect of heterogeneous hydraulic diffusivity. J Geophys Res Solid Earth 
115:B12314. https:// doi. org/ 10. 1029/ 2010J B0077 80

Noda H, Sawai M, Shibazaki B (2017) Earthquake sequence simulations with 
measured properties for JFAST core samples. Philos Trans A Math Phys 
Eng Sci 375:20160003. https:// doi. org/ 10. 1098/ rsta. 2016. 0003

Obara K, Kato A (2016) Connecting slow earthquakes to huge earthquakes. 
Science 353:253–257. https:// doi. org/ 10. 1126/ scien ce. aaf15 12

Okubo K, Bhat HS, Rougier E et al (2019) Dynamics, radiation, and overall 
energy budget of earthquake rupture with coseismic off-fault damage. J 
Geophys Res Solid Earth 124:11771–11801. https:// doi. org/ 10. 1029/ 2019J 
B0173 04

Rice JR (1993) Spatio-temporal complexity of slip on a fault. J Geophys Res 
Solid Earth 98:9885–9907. https:// doi. org/ 10. 1029/ 93JB0 0191

Rice JR, Ben-Zion Y (1996) Slip complexity in earthquake fault models. Proc 
Natl Acad Sci U S A 93:3811–3818. https:// doi. org/ 10. 1073/ pnas. 93.9. 3811

Rubin AM, Ampuero J-P (2005) Earthquake nucleation on (aging) rate and 
state faults. J Geophys Res Solid Earth 110:B11312. https:// doi. org/ 10. 
1029/ 2005J B0036 86

Ruina A (1983) Slip instability and state variable friction laws. J Geophys Res 
Solid Earth 88:10359–10370. https:// doi. org/ 10. 1029/ JB088 iB12p 10359

Saffer DM, Marone C (2003) Comparison of smectite- and illite-rich gouge 
frictional properties: application to the updip limit of the seismogenic 
zone along subduction megathrusts. Earth Planet Sci Lett 215:219–235. 
https:// doi. org/ 10. 1016/ S0012- 821X(03) 00424-2

Savage JC, Prescott WH (1978) Asthenosphere readjustment and the earth-
quake cycle. J Geophys Res Solid Earth 83:3369–3376. https:// doi. org/ 10. 
1029/ JB083 iB07p 03369

Sawai M, Niemeijer AR, Plümper O et al (2016) Nucleation of frictional instabil-
ity caused by fluid pressurization in subducted blueschist. Geophys Res 
Lett 43:2543–2551. https:// doi. org/ 10. 1002/ 2015G L0675 69

Scholz CH (1988) The brittle-plastic transition and the depth of seismic fault-
ing. Geol Rundsch 77:319–328. https:// doi. org/ 10. 1007/ BF018 48693

Segall P, Rice JR (1995) Dilatancy, compaction, and slip instability of a fluid-
infiltrated fault. J Geophys Res Solid Earth 100:22155–22171. https:// doi. 
org/ 10. 1029/ 95JB0 2403

Segall P, Rubin AM, Bradley AM, Rice JR (2010) Dilatant strengthening as a 
mechanism for slow slip events. J Geophys Res Solid Earth 115:B12305. 
https:// doi. org/ 10. 1029/ 2010J B0074 49

Shelly DR (2009) Possible deep fault slip preceding the 2004 Parkfield earth-
quake, inferred from detailed observations of tectonic tremor. Geophys 
Res Lett 36:L17318. https:// doi. org/ 10. 1029/ 2009G L0395 89

Shibazaki B, Shimamoto T (2007) Modelling of short-interval silent slip events 
in deeper subduction interfaces considering the frictional properties 
at the unstable—stable transition regime. Geophys J Int 171:191–205. 
https:// doi. org/ 10. 1111/j. 1365- 246X. 2007. 03434.x

Sibson RH (1983) Continental fault structure and the shallow earthquake 
source. J Geol Soc Lond 140:741–767. https:// doi. org/ 10. 1144/ gsjgs. 140.5. 
0741

Spada M, Tormann T, Wiemer S, Enescu B (2013) Generic dependence of the 
frequency-size distribution of earthquakes on depth and its relation to 
the strength profile of the crust. Geophys Res Lett 40:709–714. https:// 
doi. org/ 10. 1029/ 2012G L0541 98

Templeton EL, Rice JR (2008) Off-fault plasticity and earthquake rupture 
dynamics: 1. Dry materials or neglect of fluid pressure changes. J Geo-
phys Res Solid Earth 113:B09306. https:// doi. org/ 10. 1029/ 2007J B0055 29

Thatcher W, Rundle JB (1984) A viscoelastic coupling model for the cyclic 
deformation due to periodically repeated Earthquakes at subduction 
zones. J Geophys Res Solid Earth 89:7631–7640. https:// doi. org/ 10. 1029/ 
JB089 iB09p 07631

Wang K, Hu Y, He J (2012) Deformation cycles of subduction earthquakes in 
a viscoelastic Earth. Nature 484:327–332. https:// doi. org/ 10. 1038/ natur 
e11032

Yamaguchi T, Morishita M, Doi M et al (2011) Gutenberg–Richter’s law in slid-
ing friction of gels. J Geophys Res Solid Earth 116:B12306. https:// doi. org/ 
10. 1029/ 2011J B0084 15

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/S0012-821X(02)00879-8
https://doi.org/10.1016/S0012-821X(02)00879-8
https://doi.org/10.1029/2008JB006089
https://doi.org/10.1029/2008JB006089
https://doi.org/10.1130/G31416.1
https://doi.org/10.1130/G31416.1
https://doi.org/10.1029/2018JB016345
https://doi.org/10.1029/2008JB005934
https://doi.org/10.1029/2001JB000793
https://doi.org/10.1029/2000JB900250
https://doi.org/10.1029/2007JB004930
https://doi.org/10.1186/s40623-019-1113-8
https://doi.org/10.1186/s40623-019-1113-8
https://doi.org/10.1126/science.aal3422
https://doi.org/10.1029/2010JB007780
https://doi.org/10.1098/rsta.2016.0003
https://doi.org/10.1126/science.aaf1512
https://doi.org/10.1029/2019JB017304
https://doi.org/10.1029/2019JB017304
https://doi.org/10.1029/93JB00191
https://doi.org/10.1073/pnas.93.9.3811
https://doi.org/10.1029/2005JB003686
https://doi.org/10.1029/2005JB003686
https://doi.org/10.1029/JB088iB12p10359
https://doi.org/10.1016/S0012-821X(03)00424-2
https://doi.org/10.1029/JB083iB07p03369
https://doi.org/10.1029/JB083iB07p03369
https://doi.org/10.1002/2015GL067569
https://doi.org/10.1007/BF01848693
https://doi.org/10.1029/95JB02403
https://doi.org/10.1029/95JB02403
https://doi.org/10.1029/2010JB007449
https://doi.org/10.1029/2009GL039589
https://doi.org/10.1111/j.1365-246X.2007.03434.x
https://doi.org/10.1144/gsjgs.140.5.0741
https://doi.org/10.1144/gsjgs.140.5.0741
https://doi.org/10.1029/2012GL054198
https://doi.org/10.1029/2012GL054198
https://doi.org/10.1029/2007JB005529
https://doi.org/10.1029/JB089iB09p07631
https://doi.org/10.1029/JB089iB09p07631
https://doi.org/10.1038/nature11032
https://doi.org/10.1038/nature11032
https://doi.org/10.1029/2011JB008415
https://doi.org/10.1029/2011JB008415

	Homoclinic bifurcation of a rate-weakening patch in a viscoelastic medium and effect of strength contrast
	Abstract 
	1 Introduction
	2 Continuum model
	2.1 Formulation
	2.1.1 SBIEM for a Maxwell–viscoelastic medium
	2.1.2 Friction law

	2.2 Methodology
	2.2.1 Boundary and initial conditions
	2.2.2 Procedure of parameter study

	2.3 Simulation results

	3 Coarse-grained model
	3.1 Formulation
	3.2 Methodology
	3.3 Simulation results

	4 Discussion
	4.1 Comparison of the two models
	4.2 Enhanced relaxation by strength contrast
	4.3 Implication to observations

	5 Conclusion
	Acknowledgements
	References


