# Activity of Iron Oxide in Slag with Nepheline Syenite Added as a Flux

Yusaku SAKAMOTO,<sup>1)</sup> Keijiro SAITO<sup>2)</sup> o and Masakatsu HASEGAWA<sup>2)\*</sup> o

1) Graduate Student, Kyoto University. Now at TAKADA, TAKAHASHI & PARTNERS, 12-22, Tsukiji 1-chome, Chuo-ku, Tokyo, 104-0045 Japan.

2) Department of Energy Science and Technology, Kyoto University, Yoshida-hon-machi, Sakyo-ku, Kyoto, 606-8501 Japan.

(Received November 20, 2023; Accepted February 6, 2024; Advance online published February 15, 2024; Published April 15, 2024)

Although fluorspar has been widely used as a flux for steelmaking slag, there is a strong incentive to explore alternatives. As one of the candidates for such substances, "nepheline syenite" has been investigated in terms of slag fluidity and lime dissolution rate. The present study aimed at clarifying the homogeneous liquid region and Fe<sub>x</sub>O activities in the CaO–Fe<sub>x</sub>O slags with nepheline syenite added at 1 673 K. When the molar ratio of nepheline syenite/CaO was below 0.658, the substitution of CaO with nepheline syenite raised the Fe<sub>x</sub>O activity as well as CaF<sub>2</sub>. The effect of the nepheline syenite addition on slag basicity was discussed by means of the reduction-oxidation reaction of Fe<sup>3+</sup>/Fe<sup>2+</sup>.

KEY WORDS: nepheline syenite; phase diagram; FeO activity; reduction-oxidation reaction.

### 1. Introduction

A typical harmful impurity in steel, phosphorus, is removed from hot metal by the following oxidation reaction in the steelmaking processes.

$$2 [P]_{Fe} + 5 (FeO)_{slag} = (P_2O_5)_{slag} + 5 Fe(liquid) \dots (1)$$

$$\log K(1) = \log a_{P_2O_5} - 5\log a_{FeO} - 2\log(f_P \cdot [mass\%P]_{Fe})$$
  
= 12730/(T/K)-20.0<sup>1</sup>) ... (2)

, where [P]<sub>Fe</sub> and [*mass*%P]<sub>Fe</sub> represent phosphorus and its mass% content in molten iron, respectively.  $a_i$  denotes the activity of component *i* in slag and  $f_P$  is the Henrian activity coefficient of phosphorus in molten iron. According to Le Chatelier's principle, the thermochemical conditions for effective dephosphorization are low temperature, high  $a_{FeO}$ , and high  $f_P$ . In Fe–C–P liquid alloy,  $f_P$  can be expressed by

$$\log f_{\rm P} = e_{\rm P}^{\rm P}[mass\%{\rm P}]_{\rm Fe} + e_{\rm P}^{\rm C}[mass\%{\rm C}]_{\rm Fe} \dots \dots \dots (3)$$

, where  $e_{\rm P}^{j}$  is the first-order interaction coefficient in liquid iron. When iron ore is reduced by carbon, carbon dissolved in pig iron not only decreases the liquidus temperature but also increases the value for  $f_{\rm P}$  ( $e_{\rm P}^{\rm C}=0.126>0^{1}$ ), both of which are advantageous to phosphorus removal.

Regarding hydrogen reduction aiming at carbon-neutral refining, it was reported that phosphorus would present as an impurity in hydrogen-reduced iron to the same extent as the carbon-reduced iron,<sup>2)</sup> although phosphorus was not easily removed from liquid iron without carbon as already described. The contents of other impurities, silicon and manganese, in hydrogen-reduced iron were estimated to be less than those in carbon-reduced iron,<sup>2)</sup> and most of sulfur would come from coal as a carbon source. Therefore, it could be mentioned here that dephosphorization would be the most significant issue in the hydrogen-reduced iron refining process. In addition, it would be difficult for CaO as a dephosphorization agent to dissolve in slags with low SiO<sub>2</sub> and MnO contents. In such unfavorable situations, it is necessary to improve slag fluidity while ensuring high FeO activity in the slag for dephosphorization.

In steelmaking processes, some fluxes are used to decrease slag viscosities, lower temperatures at which liquid phase forms, and increase dissolution rates of lime into slags. Although fluorspar, CaF<sub>2</sub>, has been widely used as such a flux, there is a strong need for alternatives to fluorspar, which causes the emission of hazardous fluoride species. Nepheline and/or nepheline syenite is one of the promising candidates for fluoride-free fluxes. As seen in **Fig. 1**(a), which is the pseudo-binary phase diagram of NaAlSiO<sub>4</sub>– KAlSiO<sub>4</sub>,<sup>3)</sup> "nepheline" corresponds to the solid solution between NaAlSiO<sub>4</sub> and KAlSiO<sub>4</sub> and has the lowest liquidus temperature at a particular composition of (Na<sub>3/4</sub>K<sub>1/4</sub>)AlSiO<sub>4</sub>. "Nepheline syenite" is the natural resource containing nepheline together with albite (NaAlSi<sub>3</sub>O<sub>8</sub>) and potash feldspar (KAlSi<sub>3</sub>O<sub>8</sub>).

The usefulness of nepheline and nepheline syenite has



© 2024 The Iron and Steel Institute of Japan. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

<sup>\*</sup> Corresponding author: E-mail: hasegawa.masakatsu.7r@kyoto-u.ac.jp

been discussed by several studies in terms of slag fluidity and lime dissolution rate.<sup>4–8)</sup> Amini *et al.*<sup>6)</sup> investigated the static dissolutions of CaO into CaO–SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub> slags with fluxing agents. Without fluxing agents, the dissolution of lime was prevented by the formation of the Ca<sub>2</sub>SiO<sub>4</sub> layer on solid CaO particles, while the Ca<sub>2</sub>SiO<sub>4</sub> layer could not be observed with the addition of nepheline syenite as well as CaF<sub>2</sub>. They concluded that such fluxes might prevent the formation Ca<sub>2</sub>SiO<sub>4</sub> layer with the net effect of an increased lime dissolution rate. Kingston and Caley<sup>4)</sup> measured the viscosities of calcium aluminate slags with the addition of



Fig. 1. (a) Phase diagram of NaAlSiO<sub>4</sub>–KAlSiO<sub>4</sub> pseudo-binary system.<sup>1)</sup> (b) Phase diagram of NaAlSiO<sub>4</sub>–KAlSiO<sub>4</sub>–SiO<sub>2</sub> pseudo-ternary system.<sup>11)</sup>

 $CaF_2$  and/or nepheline syenite. Based on their experimental results, nepheline syenite fluidized slag was found to exhibit a similar rheological behavior to  $CaF_2$  fluidized slag. There was also the possibility that nepheline syenite stabilized fluorspar by forming an alkali low melting point compound, thereby enhancing the capability of fluorspar as a fluidizer.

From a thermodynamic point of view, it is known that  $CaF_2$  increases the activities of iron oxide in slags resulting in promoting the oxidation reactions of impurities in molten iron.<sup>9)</sup> Ozawa *et al.*<sup>10)</sup> measured the Fe<sub>x</sub>O activities in the CaO–Fe<sub>x</sub>O slags with (Na<sub>3/4</sub>K<sub>1/4</sub>)AlSiO<sub>4</sub> added, which was synthesized as a typical composition of nepheline. The present study was expended to determine the effect of adding natural resource "nepheline syenite" on the Fe<sub>x</sub>O activities in the CaO-based slags while clarifying the composition range where the homogeneous liquid phase occurs. In order to directly compare the Fe<sub>x</sub>O activity in nepheline syenite-added slag with that in CaF<sub>2</sub>-containing slag, the present experiments were conducted at 1 673 K, the same temperature as the literature on the CaO–CaF<sub>2</sub>–Fe<sub>x</sub>O ternary system.<sup>9)</sup>

Hereafter the following abbreviations are used.

 $C_2S = 2\text{CaO}\cdot\text{SiO}_2 = \text{Ca}_2\text{SiO}_4$   $C_3S = 3\text{CaO}\cdot\text{SiO}_2 = \text{Ca}_3\text{SiO}_5$   $C_2AS = 2\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot\text{SiO}_2 = \text{Ca}_2\text{Al}_2\text{SiO}_7$  NS = nepheline syeniteL = liquid phase

## 2. Experimental Aspects

Nepheline syenite (*NS*) used in this study was occurred naturally and from Ontario, Canada. The composition of *NS* is given in **Table 1** and is plotted on the phase diagram of the NaAlSiO<sub>4</sub>–KAlSiO<sub>4</sub>–SiO<sub>2</sub> pseudo-ternary system shown in Fig. 1(b).<sup>11)</sup> The X-ray diffraction pattern of *NS* given in **Fig. 2** confirms that *NS* consists of NaAlSi<sub>3</sub>O<sub>8</sub>–KAlSi<sub>3</sub>O<sub>8</sub> solid solution and KAlSi<sub>2</sub>O<sub>6</sub>; this is consistent with the phase diagram. As seen in Table 1, *NS* could be regarded

Table 1. Composition of nepheline syenite.

|               | $\operatorname{SiO}_2$ | $Al_2O_3$ | Na <sub>2</sub> O | $K_2O$ | others |
|---------------|------------------------|-----------|-------------------|--------|--------|
| mass%         | 60.7                   | 23.3      | 9.8               | 4.6    | 1.6    |
| mole fraction | 0.70                   | 0.16      | 0.11              | 0.03   | _      |



Fig. 2. X-ray diffraction pattern of nepheline syenite occurred naturally.

to be a Na<sub>2</sub>O–K<sub>2</sub>O–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> quaternary compound since the concentration of the other components is only 1.6 mass%. Table 1 also shows the mole fractions of the quaternary components in *NS*, and in this study the number of moles of *NS*,  $n_{NS}$ , is defined by Eq. (4).

$$n_{\rm NS} \equiv n_{\rm Na_2O} + n_{\rm K_2O} + n_{\rm Al_2O_3} + n_{\rm SiO_2} \ \dots \ (4)$$

, where  $n_i$  is the number of moles of component *i*.

Reagent-grade Fe, Fe<sub>3</sub>O<sub>4</sub> and CaCO<sub>3</sub> were obtained from Nacalai Tesque, Inc., Kyoto, Japan. In order to obtain Fe<sub>x</sub>O, Fe and Fe<sub>3</sub>O<sub>4</sub> were mixed at a mole ratio of 1:1 and heated at 1 447 K under a stream of argon for 24 hours. X-ray diffraction (XRD) analysis was performed on the resulting compound to confirm the expected oxide phase only. CaO was prepared by decomposing CaCO<sub>3</sub> at 1 273 K. Obtained CaO was mixed with powdery *NS* at molar ratios  $n_{CaO}/n_{NS}$ of 0.117, 0.520, 1.05, 2.79 and 11.5, and pressed into a steel die to form pellets.

The experimental apparatus and procedure have been described in detail elsewhere,<sup>12)</sup> hence only a brief description is given here. **Figure 3** schematically shows the experimental apparatus. An iron crucible of 35 mm o.d., 25 mm i.d., and 100 mm height was charged with pure silver (99.99% pure), and heated under a stream of purified argon inside a SiC resistance furnace. The gas purification train consisted of silica gel, phosphorous pentoxide, and magnesium chips held at 823 K to remove moisture and oxygen remaining in argon. The oxygen probe consisted of a zirconia tube closed at one end as the solid electrolyte and a two-phase mixture of Mo + MoO<sub>2</sub> as the reference electrode. The zirconia tube

was obtained from Nikkato Corp., Japan and stabilized by 9 mol% of MgO and had 6 mm o.d., 4 mm i.d., and 50 mm length. A molybdenum rod was used as an electrical contact to the reference electrode, while the electrical contact to the outer electrode of the cell was made by the liquid silver and a steel rod soldered to the iron crucible. The oxygen content in liquid silver, which was not determined, would be the equilibrium value corresponding to the oxygen potential between pure solid iron and FeO in slag. Temperature was measured with a Pt-PtRh13 thermocouple and controlled within  $\pm 1$  K of the target value by using a PID-type temperature regulator.

When the temperature reached 1 673 K, CaO + NS pellets and powdery FeO were added to the crucible. About two hours later, an electrochemical oxygen probe was immersed into the liquid silver. The generated cell voltages were monitored on a chart recorder of 1 M $\Omega$  internal impedance and simultaneously read by a digital voltmeter of 100 M $\Omega$ input resistance with an accuracy of  $\pm 0.01$  mV. When the values for electromotive force (emf) remained stable, the oxygen probe was replaced with another one to confirm the repeatability of the emf measurements. Subsequently, the oxide sample was withdrawn by dipping an iron rod into the slag and cooled rapidly in the air. The collected samples were then submitted to XRD and wet chemical analyses. The detailed procedures of analyses were described below. In order to change the slag compositions, CaO + NS pellets with the same mixing ratio as the initial one or powdery Fe<sub>x</sub>O were added to the slag. During a single experimental run, emf reading, sampling, and addition procedures were



Fig. 3. Experimental apparatus. (A) Pt-PtRh13 thermocouple, (B) Alumina sheath, (C) Mullite reaction tube, (D) Slag, (E) Liquid Ag, (F) Iron crucible, (G) Rubber stopper, (H) Gas outlet, (I) Water-cooled brass flange, (J) Steel rod, (K) Mo rod, (L) Zirconia cement, (M) Mo+MoO<sub>2</sub> reference electrode, (N) ZrO<sub>2</sub>(9 mol%MgO) solid electrolyte tube, (O) Alumina pedestal, (P) Gas inlet.





repeated at a fixed CaO/NS ratio. **Figure 4** schematically illustrates the (CaO+Na<sub>2</sub>O+K<sub>2</sub>O)-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-Fe<sub>x</sub>O pseudo-quaternary field. The left-side and bottom surfaces of this tetrahedron correspond to the iso-thermal sections of the ternary phase diagrams of CaO–SiO<sub>2</sub>–Fe<sub>x</sub>O and CaO– SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub> systems,<sup>13)</sup> respectively. The experimental compositions of slags were changed along the five solid lines passing through the Fe<sub>x</sub>O apex shown in Fig. 4.

Concentrations of ferrous iron in slags were determined by dissolving the samples in HCl under a stream of purified argon to avoid oxidation of  $Fe^{2+}$  to  $Fe^{3+}$ , and titrating with standard potassium dichromate.<sup>14)</sup> To measure the contents of total iron in slags, the slag samples were dissolved into HCl and submitted to an inductively coupled plasma spectrometer. It can be considered that iron oxide in slags contacting with metallic iron is one component of  $Fe_xO$ , and stoichiometric FeO and FeO<sub>1.5</sub> form Fe<sub>x</sub>O.

From stoichiometric relations for iron and oxygen in Eq. (5), the following equations can be obtained, respectively.

$$n_{\rm FeO} + 1.5 n_{\rm FeO_{15}} = n_{\rm Fe_xO} \dots (7)$$

The concentrations of the other components were calculated from the fixed CaO/NS ratios. Considering NS as a Na<sub>2</sub>O– K<sub>2</sub>O–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> quaternary compound, the mole fraction of Fe<sub>x</sub>O,  $X_{Fe_xO}$ , in CaO–Na<sub>2</sub>O–K<sub>2</sub>O–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>–Fe<sub>x</sub>O slags and x could be expressed by

$$X_{\text{Fe}_{x}\text{O}} = \frac{n_{\text{Fe}_{x}\text{O}}}{n_{\text{CaO}} + n_{\text{Na}_{2}\text{O}} + n_{\text{K}_{2}\text{O}} + n_{\text{Al}_{2}\text{O}_{3}} + n_{\text{SiO}_{2}} + n_{\text{Fe}_{x}\text{O}}} \dots (8)$$
$$x = \frac{n_{\text{FeO}} + n_{\text{FeO}_{1,5}}}{n_{\text{FeO}} + 1.5n_{\text{FeO}_{1,5}}} \dots (9)$$

## 3. Experimental Results and Discussion

#### 3.1. XRD Studies

**Figure 5** shows the typical XRD patterns of quenched slag samples. In Fig. 5(a), only a broad peak was observed except for the Fe<sub>x</sub>O peaks. Since the experimental temperature 1 673 K was higher than the melting point of Fe<sub>x</sub>O, it

could be considered that Fe<sub>x</sub>O crystallized during cooling and Sample 2-1 was homogeneous liquid at 1 673 K. On the other hand, Fig. 5(b) confirmed that liquid slag coexisted with the two solid phases of  $C_2S$  and  $C_2AS$  in the composition of Sample 3-2. The results of the XRD studies are summarized in **Table 2**.

In order to compare the phase relations determined in this study with the reported phase diagrams, Fig. 4 illustrates the experimental compositions with the XRD results in the tetrahedron of (CaO+Na<sub>2</sub>O+K<sub>2</sub>O)-SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>-FeO pseudo-quaternary field. The hatched areas on the left-side and bottom correspond to homogeneous liquid regions. The oxides of  $n_{CaO}/n_{NS} = 0.520$  form homogeneous liquids down to relatively low Fe<sub>x</sub>O concentrations, while the slags of  $n_{CaO}/n_{NS} = 1.05$  and 2.79 become the two-phase assemblage of  $C_2S + L$  in the wide Fe<sub>x</sub>O concentration ranges. Such present results are consistent with the phase relations in the CaO-SiO2-FexO ternary system at 1 673 K<sup>13)</sup> illustrated on the left-side of the tetrahedron. The estimated liquidus curve coexisting with  $C_2S$  is drawn by a broken curve on the CaO-NS-FexO pseudo-ternary field, as shown in Fig. 6.

#### 3.2. Activity Measurements

The equilibrium oxygen partial pressure between pure solid Fe and Fe<sub>x</sub>O in slag,  $P_{O_2}$ , can be calculated by the following formula.<sup>15)</sup>

, where *emf* is the electromotive force of the cell, R is the gas constant, T is temperature, F is the Faraday constant,  $E_t$  is the thermo-*emf* between Mo(positive) and Fe(negative),  $P_e$  is the oxygen partial pressure at which the ionic and the *n*-type electronic conductivities are equal. Values for  $E_t$  and  $P_e$  have been reported as

$$\log[P_e / atm] = 20.40 - 64500 / (T / K)^{16}$$
 ...... (11)

$$E_t / mV = -14.69 + 0.0227 (T / K)^{17}$$
 .....(12)

The oxygen partial pressure at the reference electrode,  $P_{O_2}$  (*ref.*), is given by

$$\log[P_{O_2}(ref.) / atm] = 8.84 - 30100 / (T / K)^{18} ... (13)$$



Fig. 5. X-ray diffraction patterns of slag samples.

| No.  | $n_{\rm CaO}/n_{NS}$                                   | mass%Fe <sup>2+</sup> | mass%Fe <sup>total</sup> | $X_{\rm Fe_xO}$ | <i>emf</i> /mV | $\log(P_{\rm O_2}/\rm{atm})$ | $a_{\rm Fe_xO}$ | Phase              |
|------|--------------------------------------------------------|-----------------------|--------------------------|-----------------|----------------|------------------------------|-----------------|--------------------|
| 1-1  |                                                        | 27.5                  | 30.0                     | 0.380           | 97.05          | -10.05                       | 0.638           | L                  |
| 1-2  | 0.117                                                  | 37.2                  | 40.5                     | 0.515           | 85.63          | -9.91                        | 0.749           | L                  |
| 1-3  |                                                        | 38.3                  | 42.2                     | 0.538           | 85.01          | -9.90                        | 0.755           | L                  |
| 1-4  |                                                        | 42.8                  | 50.8                     | 0.662           | 79.83          | -9.84                        | 0.812           | L                  |
| 2-1  | 2-1<br>2-2<br>2-3<br>2-4<br>2-5<br>2-6<br>2-7<br>0.520 | 17.7                  | 19.6                     | 0.240           | 119.50         | -10.32                       | 0.466           | L                  |
| 2-2  |                                                        | 26.6                  | 31.1                     | 0.392           | 91.13          | -9.98                        | 0.693           | L                  |
| 2-3  |                                                        | 33.2                  | 36.0                     | 0.446           | 86.10          | -9.91                        | 0.744           | L                  |
| 2-4  |                                                        | 35.6                  | 40.1                     | 0.503           | 82.23          | -9.87                        | 0.785           | L                  |
| 2-5  |                                                        | 22.8                  | 25.9                     | 0.321           | 97.43          | -10.05                       | 0.635           | L                  |
| 2-6  |                                                        | 28.4                  | 32.6                     | 0.409           | 87.91          | -9.94                        | 0.725           | L                  |
| 2-7  |                                                        | 33.2                  | 37.0                     | 0.462           | 84.97          | -9.90                        | 0.756           | L                  |
| 2-8  |                                                        | 35.0                  | 39.4                     | 0.495           | 82.64          | -9.87                        | 0.781           | L                  |
| 2-9  |                                                        | 36.7                  | 40.9                     | 0.512           | 81.05          | -9.85                        | 0.798           | L                  |
| 2-10 |                                                        | 35.9                  | 39.3                     | 0.490           | 86.40          | -9.92                        | 0.741           | L                  |
| 2-11 |                                                        | 35.8                  | 40.3                     | 0.506           | 85.60          | -9.91                        | 0.749           | L                  |
| 2-12 |                                                        | 39.1                  | 42.1                     | 0.525           | 82.32          | -9.87                        | 0.784           | L                  |
| 3-1  |                                                        | 12.6                  | 14.0                     | 0.167           | 124.84         | -10.39                       | 0.432           | $C_2S+C_2AS+L$     |
| 3-2  |                                                        | 17.4                  | 18.1                     | 0.211           | 112.22         | -10.23                       | 0.516           | $C_2S+C_2AS+L$     |
| 3-3  |                                                        | 20.5                  | 24.3                     | 0.299           | 94.82          | -10.02                       | 0.658           | $C_2S+C_2AS+L$     |
| 3-4  |                                                        | 20.3                  | 21.5                     | 0.254           | 100.97         | -10.09                       | 0.604           | $C_2S+C_2AS+L$     |
| 3-5  |                                                        | 22.1                  | 25.3                     | 0.308           | 91.63          | -9.98                        | 0.688           | $C_2S + C_2AS + L$ |
| 3-6  |                                                        | 23.5                  | 28.0                     | 0.346           | 90.82          | -9.97                        | 0.696           | $C_2S+C_2AS+L$     |
| 3-7  |                                                        | 20.7                  | 24.6                     | 0.303           | 99.10          | -10.07                       | 0.620           | $C_2S + C_2AS + L$ |
| 3-8  |                                                        | 22.6                  | 27.4                     | 0.340           | 94.07          | -10.01                       | 0.665           | $C_2S + C_2AS + L$ |
| 3-9  | 1.05                                                   | 25.9                  | 30.4                     | 0.376           | 88.61          | -9.94                        | 0.718           | $C_2S+C_2AS+L$     |
| 3-10 |                                                        | 34.5                  | 43.5                     | 0.554           | 89.30          | -9.95                        | 0.711           | $C_2S+L$           |
| 3-11 |                                                        | 38.3                  | 47.7                     | 0.610           | 83.30          | -9.88                        | 0.773           | $C_2S+L$           |
| 3-12 |                                                        | 39.5                  | 51.2                     | 0.660           | 81.95          | -9.86                        | 0.788           | $C_2S+L$           |
| 3-13 |                                                        | 39.9                  | 50.0                     | 0.641           | 80.90          | -9.85                        | 0.800           | $C_2S+L$           |
| 3-14 |                                                        | 43.7                  | 54.1                     | 0.695           | 79.30          | -9.83                        | 0.818           | L                  |
| 3-15 |                                                        | 46.4                  | 56.7                     | 0.728           | 78.10          | -9.82                        | 0.832           | L                  |
| 3-16 |                                                        | 48.7                  | 60.3                     | 0.779           | 78.56          | -9.82                        | 0.826           | <br>L              |
| 4-1  |                                                        | 14.2                  | 21.9                     | 0.279           | 129.29         | -10.44                       | 0.406           | $C_2S+C_3S+L$      |
| 4-2  |                                                        | 17.5                  | 27.7                     | 0.357           | 121.66         | -10.35                       | 0.452           | $C_2S+L$           |
| 4-3  |                                                        | 24.8                  | 34.7                     | 0.439           | 103.46         | -10.13                       | 0.583           | $C_2S+L$           |
| 4-4  |                                                        | 37.1                  | 45.8                     | 0.572           | 86.27          | -9.92                        | 0.742           | $C_2S+L$           |
| 4-5  |                                                        | 29.5                  | 40.1                     | 0.506           | 100.04         | -10.08                       | 0.612           | $C_2S+L$           |
| 4-6  | 2.79                                                   | 30.9                  | 45.1                     | 0.581           | 89.72          | -9.96                        | 0.707           | $C_2S+L$           |
| 4-7  |                                                        | 32.1                  | 43.9                     | 0.559           | 100.59         | -10.09                       | 0.607           | $C_2S+L$           |
| 4-8  |                                                        | 36.2                  | 47.6                     | 0.603           | 84.36          | -9.89                        | 0.762           | $C_2S+L$           |
| 4-9  |                                                        | 36.7                  | 47.1                     | 0.595           | 88.92          | -9.95                        | 0.715           | $C_2S+L$           |
| 4-10 |                                                        | 39.6                  | 51.1                     | 0.650           | 83.06          | -9.88                        | 0.776           | $C_2S+L$           |
| 4-11 |                                                        | 39.9                  | 51.6                     | 0.655           | 79.03          | -9.83                        | 0.821           | L                  |
| 4-12 |                                                        | 41.9                  | 52.4                     | 0.664           | 77.46          | -9.81                        | 0.839           | L                  |
| 5-1  |                                                        | 34.0                  | 47.7                     | 0.603           | 121.32         | -10.34                       | 0.454           | L                  |
| 5-2  |                                                        | 35.5                  | 51.4                     | 0.657           | 109.38         | -10.20                       | 0.537           | L                  |
| 5-3  |                                                        | 33.4                  | 47.6                     | 0.603           | 121.78         | -10.35                       | 0.451           | L                  |
| 5-4  |                                                        | 40.0                  | 53.5                     | 0.677           | 103.68         | -10.13                       | 0.581           | L                  |
| 5-5  | 11.5                                                   | 41.2                  | 53.5                     | 0.675           | 107.83         | -10.18                       | 0.549           | L                  |
| 5-6  |                                                        | 33.9                  | 48.6                     | 0.617           | 115.87         | -10.28                       | 0.490           | L                  |
| 5-7  |                                                        | 48.1                  | 60.6                     | 0.771           | 85.69          | -9.91                        | 0.748           | L                  |
| 5-8  |                                                        | 51.4                  | 59.0                     | 0.736           | 84.00          | -9.89                        | 0.766           | L                  |
| 5-9  |                                                        | 50.7                  | 61.2                     | 0.775           | 81.47          | -9.86                        | 0.793           | L                  |
| 5-10 |                                                        | 52.9                  | 62.9                     | 0.798           | 81.48          | -9.86                        | 0.793           | L                  |

Table 2.Experimental results at 1 673 K.

When the standard state for  $Fe_xO$  is taken as pure nonstoichiometric liquid  $Fe_xO$  in equilibrium with pure solid iron, the activities of  $Fe_xO$  in slags,  $a_{Fe,O}$ , can be obtained by

$$a_{\text{Fe},\Omega} = (P_{\Omega_2} / P_{\Omega_2}^{\circ})^{1/2} \dots (14)$$

, where  $P_{O_2}^{\circ}$  is the equilibrium oxygen partial pressure for the mixture of pure solid Fe + pure non-stoichiometric liquid Fe<sub>x</sub>O.

$$\log[P_{0_2}^{\circ} / \text{atm}] = 4.39 - 23500 / (T / \text{K})^{19}$$
 ...... (15)

The  $Fe_xO$  activities determined at 1 673 K are summarized together with the slag compositions in Table 2 and are



Fig. 6. Liquidus curve coexisting with Ca<sub>2</sub>SiO<sub>4</sub> and iso-activity curve of Fe<sub>x</sub>O at 1 673 K.

shown in Fig. 7.

The slags of  $n_{\text{CaO}}/n_{NS} = 0.117$ , 0.520 and 11.5 occur homogeneous liquids in the experimental composition ranges, and  $a_{\text{Fe}_x\text{O}}$  in their slags are plotted against  $X_{\text{Fe}_x\text{O}}$  in Fig. 7(a). As seen in this figure, the Fe<sub>x</sub>O activities in the slags of  $n_{\text{CaO}}/n_{NS} = 11.5$  exhibited negative deviation from Raoult's law and were very close to the reported values for CaO–Fe<sub>x</sub>O system.<sup>12,20)</sup> On the other hand, the activities in the slags of  $n_{\text{CaO}}/n_{NS} = 0.117$  and 0.520 deviated positively from Raoult's law, and the smooth curves could be drawn passing through the experimental data points.

The relations between  $a_{Fe_xO}$  and  $X_{Fe_xO}$  for the slags of  $n_{CaO}/n_{NS} = 1.05$  and 2.79 are shown in Figs. 7(b) and 7(c), respectively. For the slags of these ratios, there are the twophase region of  $C_2S + L$  and the three-phase regions of  $C_2S + C_2AS + L$  or  $C_2S + C_3S + L$  together with the homogeneous liquid region according to the results of the XRD studies given in Table 2. On the activity-composition curves for such heterogeneous slags, inflections would be observed at the phase boundaries,<sup>21)</sup> although one smooth curve can be drawn in homogeneous liquid slag. Figures7(b) and 7(c) present the activity curves which inflect at the phase boundary compositions estimated tentatively in this study.

Based on the relations between  $a_{\text{Fe}_x\text{O}}$  and  $X_{\text{Fe}_x\text{O}}$  in Fig. 7, the iso-activity curves in the homogeneous liquid region at 1 673 K can be illustrated on the CaO–*NS*–Fe<sub>x</sub>O pseudoternary field, as seen in Fig. 6. As mentioned previously, it has been reported that the addition of CaF<sub>2</sub> increases the activities of Fe<sub>x</sub>O.<sup>9</sup> The comparison of the effects of *NS* and CaF<sub>2</sub> on  $a_{\text{Fe}_x\text{O}}$  is conducted in **Fig. 8**. This figure shows the relation between the activity coefficient of Fe<sub>x</sub>O,  $\gamma_{\text{Fe}_x\text{O}} \equiv a_{\text{Fe}_x\text{O}} / X_{\text{Fe}_x\text{O}}$ ), at a fixed mole fraction of Fe<sub>x</sub>O, *i.e.*,  $X_{\text{Fe}_x\text{O}} = 0.6$ , and the ratio to substitute CaO with *NS* or CaF<sub>2</sub>. At the substitution ratios below 0.658, the replacement of CaO with *NS* increased the Fe<sub>x</sub>O activity coefficient



Fig. 7. Fe<sub>x</sub>O activity plotted against Fe<sub>x</sub>O mole fraction at 1 673 K.



Fig. 8. Activity coefficient of  $Fe_xO$  in the CaO-nepheline synite-Fe<sub>x</sub>O and CaO-CaF<sub>2</sub>-Fe<sub>x</sub>O pseudo-ternary systems at 1 673 K.

as well as CaF<sub>2</sub>,<sup>9)</sup> while  $\gamma_{Fe_xO}$  decreased if the amount of *NS* substituted for CaO was excessive. Similar behaviors that the Fe<sub>x</sub>O activity coefficients had maxima were reported in the other basic oxide-acidic oxide-Fe<sub>x</sub>O systems, *e.g.* CaO–SiO<sub>2</sub>–Fe<sub>x</sub>O,<sup>22–27)</sup> Na<sub>2</sub>O–SiO<sub>2</sub>–Fe<sub>x</sub>O,<sup>28)</sup> and Na<sub>2</sub>O-(SiO<sub>2</sub>+Al<sub>2</sub>O<sub>3</sub>)-Fe<sub>x</sub>O<sup>29)</sup> systems, and were often interpreted as an amphoteric property of iron oxide, as follows.<sup>23)</sup> At very acidic solutions iron oxide formed iron silicate, while at basic systems it formed ferrite; the activities were lowered in both cases, and hence there was a maximum at the intermediate region. Since *NS* used in this study contained 60.7 mass% SiO<sub>2</sub> as given in Table 1, *NS* would be acidic in slags. The effect of the *NS* addition on the slag basicity would be discussed in the next section.

# **3.3.** Fe<sup>3+</sup>/Fe<sup>2+</sup> Equilibrium Ratio

Iron oxide in slags coexisting with metallic iron has two oxidation states, *i.e.*, FeO and Fe<sub>2</sub>O<sub>3</sub>. Assuming that the complex ion of ferric iron is expressed as  $(FeO_n)^{(2n-3)^-}$  in silicate slags,<sup>30)</sup> FeO and Fe<sub>2</sub>O<sub>3</sub> behave as basic and amphoteric oxides, respectively.

$$FeO = Fe^{2+} + O^{2-}$$
 .....(16)

$$\frac{1}{2} \operatorname{Fe}_2 O_3 + \frac{2n-3}{2} O^{2-} = (\operatorname{FeO}_n)^{(2n-3)-} \quad (1 \le n \le 4)^{30} \dots (17)$$

The chemical reaction between stoichiometric FeO and  $Fe_2O_3$  can be given in Eq. (18).

$$FeO + \frac{1}{4}O_2 = \frac{1}{2}Fe_2O_3$$
 .....(18)

Hence, combining Eqs. (16), (17) and (18), we obtain the following reduction-oxidation reaction.

$$\operatorname{Fe}^{2+} + \frac{1}{4}O_2 + \frac{2n-1}{2}O^{2-} = (\operatorname{FeO}_n)^{(2n-3)-} \dots \dots \dots (19)$$

Equation (19) implies that the ratio of  $Fe^{3+}/Fe^{2+}$  increases with an increase in  $O^{2-}$  activity, *i.e.*, slag basicity. **Figure 9**(a) shows the ratio of  $Fe^{3+}/Fe^{2+}$  plotted against  $Fe_xO$  mole fraction in pseudo-binary systems.<sup>12,20,31)</sup> In this figure, the values for optical basicity,  $\Lambda$ , are added next to



Fig. 9. Relation between Fe<sup>3+</sup>/Fe<sup>2+</sup> ratio and X<sub>FexO</sub> at 1 673 K. (a) Fe<sub>x</sub>O-CaO, Fe<sub>x</sub>O-Al<sub>2</sub>O<sub>3</sub>, Fe<sub>x</sub>O-SiO<sub>2</sub> and Fe<sub>x</sub>O-P<sub>2</sub>O<sub>5</sub> systems, (b) BaO-SiO<sub>2</sub>-Fe<sub>x</sub>O system, (c) CaO-nepheline syenite-Fe<sub>x</sub>O system.

the chemical formulae.<sup>32)</sup> The Fe<sup>3+</sup>/Fe<sup>2+</sup> ratio drastically increased as increasing the content of basic oxide CaO ( $\Lambda$  = 1.00), while the ratio decreased when acidic oxide SiO<sub>2</sub> ( $\Lambda =$ 0.47) or P<sub>2</sub>O<sub>5</sub> ( $\Lambda = 0.36$ ) was added to Fe<sub>x</sub>O and was insensitive to the variation of the concentration of amphoteric oxide Al<sub>2</sub>O<sub>3</sub> ( $\Lambda = 0.66$ ). The Fe<sup>3+</sup>/Fe<sup>2+</sup> ratio in the BaO– SiO<sub>2</sub>-Fe<sub>x</sub>O pseudo-ternary system<sup>33)</sup> seen in Fig. 9(b) also increased with an increase in the optical basicity depending on the BaO/SiO<sub>2</sub> molar ratio. As demonstrated in Fig. 9(c), the behavior of the Fe<sup>3+</sup>/Fe<sup>2+</sup> ratio in the CaO-NS-Fe<sub>x</sub>O pseudo-ternary system investigated in this study was in very good agreement with those reported in the pseudo-binary and ternary systems. Equation (19) indicates that the ratio of  $Fe^{3+}/Fe^{2+}$  depends not only on slag basicity but also on  $P_{\Omega_2}$ . Therefore, more detailed discussions on the relation between Fe<sup>3+</sup>/Fe<sup>2+</sup> ratio and slag basicity along an iso-activity curve of Fe<sub>x</sub>O would be our important future subject.

Based on the present results of the phase relations (Fig. 6), FeO activities (Fig. 8) and basicity (Fig. 9) in CaO–NS–Fe<sub>x</sub>O slags, the amount of NS as a fluidizer added to CaO in actual processes could be suggested as follows; when the CaO/NS mole ratio is less than about 5 at 1 673 K, slag

becomes homogeneous liquid with higher  $Fe_xO$  activity than CaO–Fe<sub>x</sub>O binary system, and the decrease in slag basicity is minimal.

#### 4. Conclusion

To understand the thermochemical properties of CaO-Fe<sub>x</sub>O slags with natural recourse "nepheline syenite" added as a flux, the present study has been aimed at clarifying the phase relations and measuring the Fe<sub>x</sub>O activities at 1 673 K. The Fe<sub>x</sub>O activity-composition relations which inflected at the phase boundaries could be drawn passing through the experimental data points. When the ratio to substitute CaO with nepheline syenite was below 0.658, nepheline syenite had the effect to increase Fe<sub>x</sub>O activities; this trend was very similar to the CaO-CaF2-FexO system. The behavior of the Fe<sup>3+</sup>/Fe<sup>2+</sup> ratio in the CaO-nepheline syenite Fe<sub>x</sub>O pseudoternary system was in good agreement with those reported in the other systems of Fe<sub>x</sub>O with basic, amphoteric or acidic oxides. Based on the experimental results in this study, when nepheline syenite is added to CaO-Fe<sub>x</sub>O slag in the range of 17 atomic% or less at 1 673 K, slag becomes homogeneous liquid with higher Fe<sub>x</sub>O activity than CaO-Fe<sub>x</sub>O binary system, and the decrease in slag basicity is minimal.

#### REFERENCES

- M. Hino and K. Ito, eds.: Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai, (2010), 30.
   Y. Kashiwaya and M. Hasegawa: *ISIJ Int.*, **52** (2012), 1513. https://
- Y. Kashiwaya and M. Hasegawa: *ISIJ Int.*, **52** (2012), 1513. https:// doi.org/10.2355/isijinternational.52.1513
- 3) O. F. Tuttle and J. V. Smith: American Journal of Science, 256 (1958), 571.
- P. W. Kingston and W. F. Caley: *Minerals Engineering*, 2 (1989), 207. https://doi.org/10.1016/0892-6875(89)90041-1
   T. S. Tribe, P. W. Kingston, J. B. MacDonald and W. F. Caley:
- T. S. Tribe, P. W. Kingston, J. B. MacDonald and W. F. Caley Ironmaking Steelmaking, 21 (1994), 145.
- S. Amini, M. Brungs and O. Ostrovski: ISIJ Int., 47 (2007), 32. https://doi.org/10.2355/isijinternational.47.32
- 7) A. F. Yang, A. Karasev and P. G. Jönsson: *Steel Res. Int.*, 87 (2016), 599. https://doi.org/10.1002/srin.201500154
- F. N. H. Schrama, F. Ji, A. Hunt, E. M. Beunder, R. Woolf, A. Tuling, P. Warren, J. Sietsma, R. Boom and Y. Yang: *Ironmaking Steelmak*-

ing, 47 (2020), 464. https://doi.org/10.1080/03019233.2020.1747778
M. Iwase, E. Ichise, N. Yamada and K. Nishida: *Trans. Iron Steel Soc. AIME*, 4 (1984), 47.

- 10) H. Ozawa, M. Hasegawa, Y. Kashiwaya and M. Iwase: Steel Res. Int., 81 (2010), 25. https://doi.org/10.1002/srin.200900099
- 11) J. F. Schairer: J. Geol., 58 (1950), 512.
- 12) M. Iwase, N. Yamada, K. Nishida and E. Ichise: *Trans. Iron Steel Soc. AIME*, 4 (1984), 69.
- A. Muan and E. F. Osborn: Phase Equilibria among Oxides in Steelmaking, Addison-Wesley Publishing Company, Reading, MA, (1965), 90.
- 14) JIS M 8213: 1995, Iron ores Method for determination of acid soluble iron (II) content.
- H. Schmalzreid: Z. Elektrochem., 66 (1962), 572 (in German). https:// doi.org/10.1002/bbpc.19620660710
- 16) M. Iwase, E. Ichise, M. Takeuchi and T. Yamasaki: *Trans. Jpn. Inst. Met.*, **25** (1984), 43. https://doi.org/10.2320/matertrans1960.25.43
- M. Iwase, N. Yamada, E. Ichise and H. Akizuki: *Trans. Iron Steel Soc. AIME*, 5 (1984), 53.
- 18) M. Iwase, M. Yasuda and T. Mori: *Electrochim. Acta*, 24 (1979), 261. https://doi.org/10.1016/0013-4686(79)85043-4
- 19) H. Hoshino and M. Iwase: Metall. Mater. Trans. B, 27 (1996), 375. https://doi.org/10.1007/BF02914900
- 20) S. Ban-ya, A. Chiba and A. Hikosaka: *Tetsu-to-Hagané*, 66 (1980), 1484 (in Japanese). https://doi.org/10.2355/tetsutohagane1955.66.10\_1484
- S. Seetharaman, A. McLean, R. Guthrie and S. Sridhar: Treatise on Process Metallurgy Vol. 1, Elsevier, Oxford, (2014), 551.
- 22) C. R. Taylor and J. Chipman: *Trans. AIME*, **154** (1943), 228.
- 22) C. R. Taylor and J. Chipman. *Trans. Annu.*, 134 (1945), 228.
  23) E. T. Turkdogan and J. Pearson: *J. Iron Steel Inst.*, **173** (1953), 217.
- 24) T. Ogura, R. Fujiwara, R. Mochizuki, Y. Kawamoto, T. Oishi and M. Iwase: *Metall. Trans. B*, 23 (1992), 459. https://doi.org/10.1007/ BF02649665
- 25) M. Kudo, E. Jak, P. Hayes, K. Yamaguchi and Y. Takeda: *Metall. Mater. Trans. B*, **31** (2000), 15. https://doi.org/10.1007/s11663-000-0126-8
- 26) P. Fredriksson and S. Seetharaman: Steel Res. Int., 75 (2004), 357. https://doi.org/10.1002/srin.200405781
- 27) K. Saito, Y. Oshima and M. Hasegawa: ISLJ Int., 61 (2021), 697. https://doi.org/10.2355/isijinternational.ISIJINT-2020-349
- 28) S. Ban-ya, M. Hino and H. Takezoe: *Tetsu-to-Hagané*, 71 (1985), 1765 (in Japanese). https://doi.org/10.2355/tetsutohagane1955.71.15\_1765
- 29) M. Hasegawa, T. Hayashi, T. Sasaki and M. Iwase: *High Temp. Mater. Process.*, **31** (2012), 415. https://doi.org/10.1515/htmp-2012-0076
- 30) K. Morinaga, Y. Suginohara and T. Yanagase: J. Japan Inst. Metals, 40 (1976), 480 (in Japanese). https://doi.org/10.2320/ jinstmet1952.40.5\_480
- 31) S. Ban-ya and T. Watanabe: *Tetsu-to-Hagané*, **63** (1977), 1809 (in Japanese). https://doi.org/10.2355/tetsutohagane1955.63.12\_1809
- 32) T. Nakamura, Y. Ueda and J. M. Toguri: J. Jpn. Inst. Met., 50 (1986), 456 (in Japanese). https://doi.org/10.2320/jinstmet1952.50.5\_456
   23) S. Varaetika, H. Eijinger, E. Lebis, and M. Lucz, Japanese, and Stark
- S. Yamashita, H. Fijiwara, E. Ichise and M. Iwase: Iron and Steelmaker, 19 (1992), September, 57.