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1. PRELIMINARIES

1.1. Localization of a monoidal category via right braiders. In this subsection
we recall the localization of a monoidal category via a real commuting family of right
braiders following [5, Section 2]. Since in [5, Section 2| the localization via the left
braiders is studied in detail and the case for the right braiders is similar, we recall the
right braiders case without proofs.

Let k be a commutative ring, A an abelian group, and (7,®) a k-linear monoidal
category with a unit object 1 (see [6, Section 1.5] for the definition of monoidal cat-
egories and related notions). Assume that there is a direct sum decomposition of the
category T = ,.,Tx such that ® induces a bifunctor 7y X T, — Tyy, for A, p € A
and 1 € Tg. We call T a A-graded monoidal category. Let g be an invertible central
object in T5. We write ¢* (n € Z) for ¢®" for the sake of simplicity.

Definition 1.1. A graded right braider in T is a triple (C,R{., ¢) of an object C, a
Z-linear map ¢: A — Z, and a morphism functorial in X € T,

RLX): X®C—q¢ Vel X

such that the following diagrams commute for any X € 7, and Y € 7,: (¢ is the
degree of R". Please check necessary changes according to this change.)
(1.1)

X®RE(Y) Re(1)

7" RXQCRY 10C C®1

” ®
“ C.

N XY,

XQYel

A graded right braider (C, R, ¢) is called a central object if Ry, (X)) is an isomorphism
for any X € T.

Let us denote the category of graded right braiders by 7,". Note that 7, is a monoidal
category and there is a canonical faithful monoidal functor 7, — T.
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Definition 1.2. Let I be an index set. A family of graded right braiders {(C;, R, ¢:) }ie 1|l
is called a real commuting family of graded right braiders in T if

(a) C; € Ty, for some \; € A, and ¢;(\;) + ¢;(N\;) = 0 for any i,j € I,
(b) RrCZ(Cz) € k* idci®ci for any ¢ € I,
(c) RE,(Ci) o RE,(C)) € k™ ideec; for any i, j € 1.

Define a Z-linear map
¢: Z¥ x A — Z given by (e;, A) = ¢5(\),
where {e;}ic; denotes the standard basis of Z%!. We denote by ¢, the Z-linear map
b = d(a,—): A = Z for each a € Z%.
Note that one can choose a Z-bilinear map H: Z%' x Z®' — 7Z such that
¢i(N;) = H(ej,e;) — H(e;,ej) forany i,j€ 1.
Then we have
oo, L(B)) = H(B,0) — H(a, ) forany a,f € 2%/,
where L: Z®! — A be the Z-linear map given by e; — \; for i € 1.

Lemma 1.3 ([6, Lemma 2.3, Lemma 1.16]). Let {(C;, Rg,, ¢:) }ier be a real commuting
family of right graded braiders in T .

(1) There exists a family {n;;}ijer of elements in k™ such that

Re, (Ci) = mi idewc;,
Re, (Ci) o R, (C5) = mijnyi idc;ec,
foralli,jel.
(i) There exist a graded right braider C* = (C Riw, ¢a) for each o € ZL], and an

isomorphism &u5: C @ CF — qH@B) @ C*8 in T for a, B € ZE} such that
(a) C°=1 and C% =C; forie I,
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(b) the diagram in T,

ey
Cc®C8eC ’ g1 @) g Cotb @ O

(12) Ca@&&wl lga%@ﬁ

G106 @ o @ OO+ S (H(a ) HH ) +H(B0) @ CatBy

commutes for any o, 3,7y € Z%
(c) the diagrams in T,

(1.3)
é ) Rr (Ca) —() [o'R
000 20 o Cce @ CP L gD g 0f g O
ie I "
191 —— 1 H(oB) g cots "D Moot pap) o) ks
’ q a, ® COé q «, ® COé

commute for any i,7 € I and o, 3,7 € Z>0, where

(1.4) n(a, B) := H nngj ek* fora= Zaiei and B = ijej in 797,

(S iel jeI
Define a partial order < on Z®! by
a=<pB fora, B e Z% with f—a € ZE],
and set
Dos:={6€Z¥ |a+6,B+0¢c 7%}

for o, 8 € Z%1.
For X € 7,,Y €7, and 0 € D, 3, we set

(15) H§r((X7 CY), <Y7 ﬁ)) HomT(X ® C5+a H(f—a,6)+¢(5+8,p) ® C’é+,3 ® Y)
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For 9,8’ € Dy p with§ < ¢ and f € HY (X, @), (Y, B)), we define (5 5(f) € H3 (X, @), (Y, 5))|}
to be the morphism such that the following diagram commutes:

) focd' = )
X ®@ C%ta g 090 qH(Bfa,6)+¢(6+ﬁ,/i) QCTPRY @ Y0
ercél(; (Y)
E5tas—5 | qH(B—a,é)+¢(6’+B,M) QO RO QY
2 \Lgﬁ»ﬁ,&’é
g =D s (1) /
qH(6+a,5’—5) X O+ ’ qH(ﬁ—a,5)+¢(6 +8,1)+H(5+5,6'—6) QP RY.

Then, (5 5 is a map from HF (X, «), (Y, 8)) to Hy (X, «), (Y, 8)) and (5 505 5 = (5 s
for § < ¢ = 6", so that {C§ s}s5ep, , forms an inductive system indexed by the set
Do,

Define

Ob(T) := Ob(T) x Z%!
and for X € 7, and Y € 7, define

Homz((X,a), (Y,8)):=  lm  HF (X, a),(¥,5)).
MLL8)

Let X € T,,Y € T,and Z € T,. For f € HY' ((X, ), (Y,0)) and g € HE((Y, 5), (Z,7)) B
we define

VS (f,9) :=n(0+B,8—7) VE(f,9),

where @%;( f,g) is the morphism such that the following diagram commutes:

X ® o+ ® OB ! °® Cth RY ® (letB
|s
Esvacts |1 FCHCTMRZ
_—— Zlfé-kﬁ,e-m
‘I’tsfe g

qH(e+ﬁ,6+a) ® X ® Cotetbta ¢ CStetbtr @ Z,
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where
a=H(B-ad)+¢(0+6,p), b=a+H(ly—p5¢)+ole+,v),
c=b+H0+B,e+7).
We have
c—H(+a,e+0)=H(y—a,B+e+0)+ 00 +e+S+7,v)
so that

\I]ire(fv g) S H%:-e—f—ﬁ((Xa a)? (27 7))

It follows that
U5 o (Grs(f), GG (9) = Grospsrers(Wself, 9)),
which yields the composition in T
Homz((X, ), (Y, 8)) x Hom((Y; ), (Z,7)) = Homa((X, a), (Z,7))

Because this composition in 7 is associative, 7 becomes a category. By the con-
struction, we have the decomposition

T=@7.,  where T, :={(X,0)| X € Tr, \+L(a) = u}.

HEA

The category T is a monoidal category with the following tensor product. For
a, B, el, XeT\, X' €Ty,Y e€T,and Y' € T, we define

MH (X,a)® (Y, 8) = (¢ * D) @ X @Y, a+f),
and, for f € HE'((X,a), (X’,a’)) and g € HE((Y, §), (Y', 3)), we define

MH TE(f,9) :=n(6, 5 — 8) TE(f.9).
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where f&gi( f,g) is the morphism such that the following diagram commutes:

XRCH* Y @ Cth 189 PRCHY @ X' @CHF QY
R! (Y)T er (X7)
cota cet+B
q*¢>(5+0mu) RXRY ® Co+a ® OB ‘@ o+ ® Ctp QX' QY
£5+a,e+ﬁ l Z B 2 \LE(SJFQIYCJFB/
gr
qa RXRY ® Cé+e+a+,8 T5.(9) qd ® C§+e+a’+ﬁ’ RX'® YI,
for some a, b, c,d € 7Z such that MH

d—a=—¢(,p) +H(,3) — (=d(a, p) + H(ev, B))
+H +8 —a—08,0+€) + (0 +e+a + 8N+ u).
Thus we have
T5(f.9) € HEL (X, ) @ (Y, 8), (X', ) @ (Y, 3)).

Then we have

TE (1) C50) = oy [TE(f.9)) for 8 = 6 and & = e

That is, the map T}, is compatible with the inductive system and hence it induces a
well-defined map

(1.6) f®g € Homz((X,a) ® (Y, ), (X', a') @ (Y, 5))
for f € Homy((X, ), (X',a")) and g € Homz((Y, 8), (Y", ).
Moreover, we have
\Ij5l+52,61+62 (T51,52 (fla f2)> T61762 (glv 92)) = T51+61+51752+62+B2 (\1151161 (fh 91)7 \1152762 <f27 92))

where fi € Hs, (Xk, ax), (Yi, Br)) and g, € He, ((Yx, Bk), (Zk, k) for k = 1,2 (see [6,
Proposition 2.5]). N o
It follows that the map ® on T defines a bifunctor ®: T x T — T.

Theorem 1.4. Let {C; = (Cy, Rg,, ¢i) bier be a real commuting family of graded right
braiders in T. Then the category T defined above becomes a monoidal category. There
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exists a monoidal functor T: T — T and a real commuting family of graded right
braiders {€; = (¢;, R, ®i) yier in T satisfy the following properties:

(i) fori € I, Y(C}) is isomorphic to C; and it is invertible in (T ) s,
(ii) fori € I and X € Ty, the diagram

~

T(X ©C) T(X)®C;
T(Rg, (X)) J{Z RE (T(X)) iz
T(*MRCeX) —>¢@Me e TX)
commutes.

Moreover, the functor T satisfies the following universal property:

(iii) If there are another A-graded monoidal category T' with an invertible central object
q € Ty with and a A-graded monoidal functor Y': T — T such that
(a) Y’ sends the central object q € Ty to q € Ty,
(b) Y'(C;) is invertible in T' for any i € I and
(c) foranyi €I and X € T, T(RL, (X)): T (X ® C;) = Y(¢*WN ® C; @ X) is

an isomorphism,

then there exists a monoidal functor F, which is unique up to a unique isomor-
phism, such that the diagram

commutes.

We denote by T[C®~! | i € I] the localization 7 in Theorem 1.4. If T is an abelian
monoidal category with exact tensor product, then so is T[CZ™' | i € I], and the
functor T: T — T[C¥! | i € I] is an exact monoidal functor.

MH Note that

MH (X,a+p8)~ ("X e cv ), 1,8 1,-8)~q¢ 1@ 1,0)

for « € ZE§ and B € Z%L.
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Remark 1.5. Recall that a graded left braider in T is a triple (C,RL, ¢) of an object
C, a Z-linear map ¢: A — Z, and a morphism functorial in X € T,

RLX): Co X = ¢ YXeC

with analogous conditions to (1.1). The materials in this subsection, containing the
above theorem, are proved in [6, Section 2] for the localization via a real commuting
family of graded left braiders.

1.2. Quiver Hecke algebras. A Cartan datum (C, P, IL ITY, (-, )) is a quintuple of
a generalized Cartan matrix, C, a free abelian group P , the set of simple roots, Il =
{a; | i € I} C P, set of simple coroots IV = {h; | i € [} C P¥:=Hom(P, Z) , and a
Q-valued symmetric bilinear form (-,-) on P such that
(1) C= ((hi, ))ijer,
(2) (a4, ;) € 2Z~ for any i € I,
(3) (i) = 29N e Tand e P,
(ai, ;)
(4) for each i € I, there exists A; € P such that (h;, A;) = ;; for any j € I.
Let Q:= @, ,Za; and Q; = @P,_; Z>oa; be the root lattice and the positive root
lattice of the symmetrizable Kac-Moody algebra g(C), respectively.
Let W be the Weyl group of g(C), the subgroup of Aut(P) generated by the simple
reflections {s; }ic; where s;(\) = XA — (h;, \)oy; for A € P.

Let (Q;(u,v) € k[u, v]); jer be a family of polynomials such that
tijpqufv? it i # j,
(17) Qi j(u, v) = { Plesedtalaga)=—2(aia;)
0 if i = j,
where t; j, ;0 € kK* and Q; j(u,v) = Q;;(v,u) for alli,j € I. We set
Ia) ~Qij(u,v) — Qi i(w,v)

. = ck .
Qw(u,v,w) p— [u, v, w]

For 3 € Q4, the set ]ﬁ::{u = (y,...,0,) €17 } Y op Q= B} is stable under the
the symmetric group &, = (s; | k =1,...,n — 1) action given by place permutations.
The height of 3 =3, bia; € Q is given by ht(5) := > ., |bil.
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Definition 1.6. Let 5 € Q, with ht(3) = n. The quiver Hecke algebra R(f3) associated
with the Cartan datum (C, I, P, 11V, (-, )) and the family of polynomials (Q; j(u, v)); jer
1s the k-algebra generated by

{ew) |v eI}, {z|1<k<n}, and{n|1<I<n—1}
subject to the defining relations:

e(v)e(V') = o, .e(v), Z e(v) =1, xre(v) = e(v)xy, xpx; = 1108,
velb
7'[6(1/) = €(SI(V))T1, TeT] = TiTk Zf |k’ — l‘ > 1,

Tl? = Z Quk,uk+1(l’k,xk+1)e(y)7

velb

Tt — T 0T = (0L =k+1) =01 =k) D eW),

velP, vp=vi

Tk-1TkTh+1 — TeTre+1Tk = E ka,yk+1(37ka$k+17$k+2)€(V)~
velP, vp=vp4o

The algebra R(f) is equipped with the Z-grading given by

(1.8)  deg(e(v)) =0,  deg(are(v)) = (quy, aw,),  deg(ne(r)) = —(au,; ayy, ).

We denote by Modg(R(S)) the category of graded modules over R(/). The full
subcategory of Modg(R(f)) consisting of the objects which are finite-dimensional over
k is denoted by R(5)-gmod. For M € R-gmod, the space M*:=Homy (M, k) is an R(5)-
module via the graded k-algebra antiautomorphism of R(() which fixes the generators
e(v), xy, and 7’s. We say that M is self-dual if M ~ M* in R-gmod. For each simple
module M in R-gmod, there exists m € 7Z such that ¢™M is self-dual.

For a, 5 € Q,, we set

el ) = 2. ) eR@+p)
velrots
Z},;t:(‘ll) Oy =0, Zii’f) Vg ht(a) =6
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Then there is an injective k-algebra homomorphism R(«) ® R(y) — e(«, 5)R(« +
B)e(a, B) and hence we can define the convolution product by

Mo N := R(a + 5)6(&76) ®R(a)®R(ﬁ) (M ® N)

for M € Modg(R(a)) and N € Mod(R(p)).
Then the categories

Modg(R) := @5€Q+Modg(R(B)) and R-gmod = @6€Q+R(6)—gmod

are Q -graded monoidal categories.
For M, N € R-gmod, we denote by M V N the head of M o N and by M A N the
socle of M o N.

A simple module M is called real if M o M is simple.

1.3. R-matrices. Let 8 € Q, with m = ht(8). For k=1,...,m — 1 and v € I®, the
intertwiner ¢y € R(B) is defined by

(1.9) ore(v) = (Tk(zr — zps1) + De(v)  if vy 'Vk+1,
Tre(v) otherwise.
For m,n € Zxo, we set w|m,n] to be the element of &,,, such that

{k—i—n if 1 <k<m,

wlm, nj(k) = k—m ifm<k<m+n.

Let M € Modg(R(f) and N € Modg(R(v)) and define the R(S) ® R(y)-linear map
M® N — N o M by

UV Puni(y) b)) (0 B w).
Then it extends to an R(f + 7)-module homomorphism (neglecting a grading shift)

RiyfN: Mo N — No M.
For 5 € Q4 and i € I, let p; 3 be an element in the center Z(R(3)) of R(B)
(1.10) po=>( II we)elw) € Z(R()).

velf  ae{l,..ht(B)}, va=t
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Assume that M is a simple module in R(f)-gmod, and there exists an R(5)-module
M with an endomorphism zy of M with degree dy € Z-~o such that

(i) M/zmM ~ M,
(1.11) (ii) M is a finitely generated free module over the polynomial ring k[zu],
(ili) p; sM # 0 for all ¢ € 1.

We call (M, zm) an affinization of M.
Let M be an affinization of a simple R-module M, and let N be a non-zero R-module.
We define a homomorphism (up to a grading shift)

MN = 2M ‘,i,rl“X, MoN-—NoM
where s is the largest integer such that Rmy(M o N) C zm®(N o M). Then the
homomorphism (up to a grading shift)
rM7N:MoN—>NoM

induced from Ry by specializing at zm = 0 never vanishes. We call Ty N the r-matriz
between M and N. Let

A(M, N) := deg(r), ),

and define

A(M,N) := %(A(M, N) + (wt(M),wt(N))), o(M,N):= %(A(M, N) + A(N, M)).

Note that d(M, N) and A(M, N) € Z=, are non-negative integers (|6, Lemma 3.11]).

A real simple module which admits an affinization is called affreal. The following
result is used frequently throughout the paper.

Proposition 1.7 ([2, Theorem 3.2], [4, Proposition 3.2.9]). Let M and N be simple

modules in R-gmod. Assume that one of them is affreal. Then, the convolution M o N

has a simple head and a simple socle. Moreover, we have
dim HoMp gmoa(M o NN o M) =1

and

MV N ~Im(r

MN) ~ NAM upto grading shifts.
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1.4. Partial order on the weight lattice. We define the partial order < on P as
follows: A < p for A\, u € P if there exists a sequence of positive real roots fi,..., 3,
such that (B, s, 58, -Sg.i) > 0 forall 1 <k < rand A = sg,53,---55.1. We
have p — A € Q4 if A < pu. Hence < is a partial order on P.

Lemma 1.8. Let A < o and « be a simple root satisfying (o, \) < 0. Then we have

(i) if (a, ) = 0, then we have suA <X 1,
(i) if (o, p) <0, then we have s\ X Saft.

Proof. Let 1, ..., B, be asequence of positive real roots such that (S, ss,,, 58, - 55.1) ||}
Oforall 1 <k <rand A=s5353," 53/

If r =0, then A = ;1 and hence the assertion is trivial.

Let r > 0.

(a) Assume that « = ;. Then we have s, A < p. Hence we may assume that (o, 1) < 0.
Then we have s,A < 0 <X Safi-

(b) Assume that o # By Set X :=s5 )\ = 55, 5p, 4t < pt. Then s, A = s(5,8,)(5aN).
Since 0 < (B1,N) = (Saf1, o) we have soA < so A If (a, ) > 0, then we have
Sa = SaN =< p, and if (o, ) < 0, then we have suA X o\ X Safit. O

Lemma 1.9. Let w,v € W. Then the following conditions are equivalent.
(a) w > v,
(b) wA g vA for any A € P,

%
(c) wA; K vA; foralli € 1.

Proof. (a)=(b) If w > v, then there exists a sequence of positive real roots £, ..., S,
such that (55k+135k+2~--55rv)715k € Ay forall 1 <k <randw = sgsg,: - 5372.
Then

-1
<5k’ SBry15Bk42 " SﬁTUA> = <(85k+185k+2 T Sﬁrv) 51@7 A) = 0.
(b)=>(c) is trivial. Let us show (c¢)=-(a) by induction on ¢(w). If £(w) = 0, then w = id

so that A; < vA; for all ¢ € I. Since vA; < A;, we have vA; = A; for all i € I so that
v =id.
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Assume that ¢(w) > 0. Take a € I such that s,w < w. Then w'a, € A_ and
hence (ag,, wA;) < 0 for all ¢ € I. By the assumption and Lemma 1.8, we have either
Sqwh; X VA, (g, vA; ) 0 or s,wA; X S,vA;, (g, vA;) < 0.

If s,u > v, then v, € A, so that (ag, vA;) = 0 for all i € I. Hence s,wA; < vA;
for all i € I. By induction on ¢(w), s,w > v so that w > s,w > v.

If s,v < v, then v e, € A_ so that (g, vA;) < 0foralli € I. Hence sqwl; < s,vA;
for all ¢ € I. By induction on {(w), s,w > s,v and hence w > v, as desired. O

Corollary 1.10. Let i € I. If w > v, ws; > w, vs; > v, and ws;\; X vs;\;, then
WS; = VS;.

Proof. 1f j # 4, then ws;\; = wA; and vs;A; = vA; so that ws;A; < vs;A;. Hence the
assertion follows from the lemma above. O

1.5. Categories 4, and %,,. In this subsection, we recall the categories %, €.,
and %, , defined in [5].
For M € Modg(R(3)) we define

W(M) :={y€Q:N(B—Qs)|ely,8—7)M # 0},

W (M) :={y € Q: N (B—Q4) [ e(B—~,7)M #0}.
For w,v € W, we define the full monoidal subcategories of R-gmod by

€, :={M € R-gmod | W (M) C Q: N wQ_},
(1.12) €. :={M € R-gmod | W*(M) C Q. N vQ,},
Cuwp = Cw N Crp.
An ordered pair (M, N) of R-modules is called unmized if
W*(M)NW(N) c {0}.

Assume that A\, u € WA for some A € P, and A < p. Then there exists an object
M(A, 1) in R(pn — A)-gmod, called the determinantial module. (See [6, Section 3.3] for
the precise definition and more properties of them.) Note that M(, i) is an affreal ([6,
Theorem 3.26]). For A € P, and w,v € W with v < w we have

M(wA,A) € €, M(wA,vA) € €y
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1.6. Localizations of %, and %, , via left braiders. In this subsection we recall
the localizations of the categories €, 6, via left braiders studied in [6, 7].

Let L(i) denote the one-dimensional graded self-dual simple module of R(«;). For
any simple module M € R-gmod, there exists a graded left braider (M, R}, ¢xs) in
R-gmod which is non-degenerate, that is, R, (L(i)) # 0 for all ¢ € I ([6, Proposition
4.1]). Such a non-degenerate braider is unique up to a constant multiple ([6, Lemma
4.3]).

Let w € W with [, = I, where {i € I | wA; # A;}. The family of graded left braiders
in R-gmod

({M(wA, As), RMgwn, ) OMwasay) Yier

is a real commuting family ([6, Proposition 5.1]). Moreover it is a family of central
objects in the category %,. Note that

(1.13) PM(wAsA,) = —(WA; + Ay, B) for any € Q.

Hence there exist localizations of R-gmod and %, via the above real commuting
family of graded left braiders and we denote them by (R-gmod)[M(wA;, A;)°" ;i € ]

and ‘62, = Cu[M(wA;, A;)° ;4 € I, respectively. We have a commutative diagram of

functors
% - R-gmod
| o]
Gy e e -~ = == (R-gmod) [M(wA;, A;)°~;i € 1]

where ®,, and (),, denote the localization functors, and 7, is the induced functor from
the inclusion functor ¢,,.

Theorem 1.11 ([6, Theorem 5.9, Theorem 5.11], [7, Theorem 3.9]).
(a) The functor Tp: G, — (R-gmod) [M(wA;, A;)°~';i € I] is an equivalence of cate-
gories.

(b) The monoidal category CKNU) 15 rigid, that is, every object of‘gw has a left dual and
a right dual.
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Let v € W such that v < w. In [7, Section 4], it is shown that there exists a real
commuting family of graded left braiders

{(M(wAi, wh;), R}\/I(wAi,vAiﬁ (bfu,v,Ai) Yier-

in the category @, ,. Moreover it is a family of central objects in the category €, ,. If
v = id, then R}\A(MAMAi) is the same with the non-degenerate braider R}\/I(wAi,Ai) so that
this abuse of notation is justified. Note that

(1.14) ¢ = —(wA; +vA;, 5) forany [ € Q.

ww,A; T

Let us denote by %, [M(wA;, vA,)° i € 1] and G = oo [M(wAy, vA;)° i € 1],
the localizations of €, , and €, ,, respectively. Then we have the commutative diagram
of functors

ng,v s Cg*ﬂ,
<I>w,vi Qij,vl
G — == === - = = (Ba) M(why, A € T

where @, and Q,, , denote the localization functors, and 7, is the induced functor
from ¢, which is the inclusion functor.

Theorem 1.12 ([7, Theorem 4.5]). The functor T, ,: %%M — (Cow) IM(wA;, Ay)°7 Y50 €
I] is an equivalence of categories.

2. €y AS THE RIGHT LOCALIZATION OF 6,

For 7, 3 € Q4, denote the functor Res, 5: Modg(R(n + 8)) — Modg(R(n) ® R(B))
simply by Res, g. Then for any V,W € R-gmod, we have ([1, Theorem 2.1])

V o Res. (W) = Res,5(V o W) and Res,z(V o W) = ¢ W)Res, 5(V) o W.

The following lemma follows from +

eraduationsin [1, Theorem 2.1].
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Lemma 2.1. For X,Y,Z € Modg(R) and 5 € Q4, the diagram below is commutative.

X o Res,3(Y o Z) Res.3(X oY o 2)

i i

qPvUEDX o Res,5(Y) 0 Z = q»"UZ)Res, 3(X 0 V) o Z.

Let w € W with I, = I and v < w.

Proposition 2.2. For any A € P, there exists a morphism in €,
R]lr\/l(wA,vA)(X): X o M(wA’ UA) - q_(wt(X)7wA+vA)M(wA7UA) o X

functorial in X € €,,. Moreover, if X belongs to €., then the morphism Rf\,l(wAwA)(X)
s an isomorphism.

Proof. Let (M(wA, A), RlM(w a.ay) be the non-degenerate left braider in R-gmod associ-
ated with M(wA, A). Then we have an isomorphism
¢*X o M(wA, A) ~ M(wA, A) o X

Rll\/l(wA,A) x)~!

functorial in X € %, where A = (wA + A, wt(X)) (see (1.13)).

Let f = A — vA. Recall that Res, sM(wA, A) ~ M(wA,vA) ® M(vA, A) (including
the grading shift). Let @« = vA — wA, and v = —wt(X). Then we have a morphism in
(R(y + a) @ R(B))-gmod

(X o M(wA,vA)) @ M(vA, A) =~ ¢* X o Res. g(M(wA, A))

A ~ .
1) g Res (X 0 M A)) g Res, (M A) 0 X)
— ¢~ Res, s(M(wA, A)) 0 X ~ ¢~ BN (M(wA, vA) o X) @ M(vA, A).
By applying the functor Homp(g)-gmod(M(vA, A), —) we obtain a morphism in €,
Mwawn) (X): X 0 M(wA, vA) — ¢t WA NM(wA vA) o X

which is functorial in X € €,,,.
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If an R(y)-module X belongs to €. ,, then by [7, Lemma 4.1], we have isomorphisms
(2.2) X o Res, g(M(wA, A)) ~ Res, 5(X o M(wA,A)) and

(2.3) Res, s(M(wA, A) o X) =~ ¢~ @ (M(wA,vA) o X) @ M(vA, A).

Hence the composition (2.1) is an isomorphism so that the morphism Rjy 5 ,4)(X) is
an isomorphism for any X € 4, ., as desired. O

By [5, Theorem 4.12], for any A, A’ € P, we have
AM(wA;vA"), M(wA, vA)) = (Wt(M(wA', vA")), wA + vA) = (wA" — oA JwA + vA).
The following corollary is a direct consequence of this and Proposition 2.2.

Corollary 2.3. Let ¢, , ,(7) == (v, wA; +vA;) for v € Q. Then the family

{(M ('lUA“ UAi)’ RR/I(wAi,vAi)J qbrw,U,Ai) }iel
1s a real commuting family of right graded braiders in the category €,. It is also a
family of central objects in Cy,p.

Note that
r V4

ww, Ay T T Yww, Ay

The following theorem gives a characterization of € ,.

Theorem 2.4. A simple module M in R-gmod belongs to €., if and only if

AM,M(vA,A) =0 forall A € P_.
Proof. It M € €., then (M,M(vA, A)) is unmixed and hence A(M, M(vA, A)) = 0.
Assume that A(M,M(vA,A)) =0 for all A € P,. By [5, Proposition 1.24] and [18,
Theorem 2.19], there exist simple modules X € €., and Y € €, such that M ~ X VY.
Hence we have

0 = A(M,M(vA, A)) > A(Y, M(vA, A)) = (wt(Y), vA)

for any A € P, where the seecend inequality follows from [7, Theorem 2.11 (ii)] and

the last equality from [6, Theorem 5.2]. (We need some comments.) It follows that
(v 'wt(Y),A) = 0 for all A € P, so that wt(Y) = 0. It follows that M ~ X V1= X
and hence M belongs to €., as desired. O
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Corollary 2.5. A simple module X in €, belongs to €, if and only if X commutes
with M(wA,vA) and A(X, M(wA,vA)) = (wt(X), wA + vA) for all A € P,.

Proof. The “only if” part follows from Proposition 2.2. Let us prove the “if” part.
Assume that X commutes with M(wA, vA) and A(X, M(wA,vA)) = (wt(X), wA +
vA) for all A € P,.

Then, we have
A(X, M(wA, A)) = —A(M(wA, A), X) = (wh + A, wt(X)),

where the first equality comes from the fact that X € %, so that X commutes with
M(wA, A), and the second comes from [6, Corollary 5.10].
Since M(wA,A) = M(wA,vA) V M(vA, A) and X commutes with M(wA, vA), we
have A(X, M(wA, A)) = A(X, M(wA,vA)) + A(X, M(vA, A)). Hence we have
A(X,M(vA,A)) = A(X, M(wA, A)) — A(X, M(wA, vA))
= (WA + A, wt(X)) — (wA + vA, wt(X)) = —(vA — A, wt(X)).

It follows that A(X,M(vA,A)) = 0 and hence X belongs to Gw, by Theorem 2.4. O

Corollary 2.6. A simple module X in €., belongs to €, if and only if X commutes
with M(wA, vA) and AM(wA,vA), X) = —(wt(X),wA + vA) for all A € P,.

Proof. Simce the “only if” part is obvious, let us prove the “if” part.
Assume that a simple X in %, commutes with M(wA, vA) and A(M(wA,vA), X) =
—(wt(X),wA + vA) for all A € P,. Then we have
A(X, M(wA, A)) = A(X, M(wA,vA) V M(vA, A))
= A(X, M(wA,vA)) + A(X, M(vA, A))
= (wt(X),wA +vA) — (wt(X),vA — A) = (wt(X), wA + A).

Hence we have

b(X, M(wA, A))

A(X, M(wA, A)) + A(M(wA, A), X)
= (wt(X), wA + A) + A(M(wA, A), X)
(wt(X),wA + A) — (wt(X),wA + A) =0,

VAN
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where the inequality is [6, Proposition 4.4]. Hence we have A(M(wA, A), X)) = —(wt(X), u,'A—i—l

A), and RIM(MA’A)(X) does not vanish by [6, Proposition 4.4]. Since X commutes with
M(wA, A), RlM(wA,A)(X) is an isomorphism. Then [6, Corollary 5.10] implies that X
belongs to %,. O

By Corollary 2.3, we have localizations
G — Co[M(wA;, vA)° i €] and Gy — G [M(wA;, vA)° i € ).

Let us denote €, ,[M(wA;, vA;)°"1;4 € I] by (ém,. By the definition of localization, the
embedding ¢y, ,: G — €, induces a fully faithful functor

lww: Cuww = CuoM(wA;, vA;)° 0 € 1] — Gu[M(wAy, vA)° i € 1.

Note that the subcategory %ZW is closed by taking subquotients and extensions in
Cow[M(wA;, vA;)° 14 € I] ([6, Proposition 2.10]).

Theorem 2.7. The functor iy,: ‘éﬂ,v — Co[M(wA;, vA;)°7 i € 1) is an equivalence
of monoidal categories.

Proof. In the course of the proof, we omit the grading shifts. Let () denote the lo-
calization functor €, — €,[M(wA;,vA;)°"1; i € I]. It remains to show that for any
X € €., the object Q(X) belongs to €, .-

(a) Assume first that X is simple in %, such that Q(X) # 0 and X commutes with
M(wA,vA) for all A € P,. Since Q(X) % 0, we have
IM(MA,UA) (X) 7é 0 forall A € P_|_.

Since M(wA, vA) is affreal, we have Ry, ,4)(X) = Ty M(waa) P TO @ constant mul-

tiple and hence

A(X,M(wA,vA)) = @) A (wt(X)) = (wt(X), wA +vA) forall AeP,.

w,v,A

Hence X belongs to 6, ,, by Corollary 2.5. Thus Q(X) belongs to CKNw,v.

(b) Assume that X is simple in %, such that Q(X) % 0. If 5(X, M(wA,vA)) > 0
for A € P4, then we have d(X V M(wA,vA), M(wA,vA)) < o(X, M(wA,vA)) by [6,
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Corollary 3.18]. Hence by taking large enough A € P, we may assume that d(X V
M(wA, vA), M(wA,vA)) = 0 for any A € P... Since Rjy, ,»)(X) is decomposed into
X o M(wA,vA) = X V M(wA, vA) — M(wA,v\) o X

and Q(Rjy(,x ) (X)) is an isomorphism, we have

Q(X VM(wA, v))) =~ Q(X) o M(wA, v)).
Hence the object Q(X) ~ Q(X V M(wA, v\)) o M(w\,vA)°~! belongs to ‘gw,v by (a).

(c) Since the subcategory ‘éu,v of €u[M(A;, A;)°" Y0 € I is closed under extension,
every object Q(X) for X in %, belongs to €., as desired. O

Let Q, , denote the composition of functors
(2.4) QL.,: G — CuM(wh;, vA,)° i € 1) 5 G,

In the following two propositions, we characterize the kernels of Q}M: Cev — CJZM
and Qg ,: G — Cuwpw -

Proposition 2.8. Let X be a simple object of G..,. Then, QL ,(X) 2 0 if and only if

w,v

AM(wA, vA), X) = —(wt(X), wA + vA)

)

for any A € P,.

Proof. ”Only if” part is obvious. Let us show the “if” part.
There exists p € P, such that M(wpu,vp) V X commutes with M(wA, vA) for any
A € P,. Then we have

AM(w, vA), M(wp, vp) V X) = A(M(wA, vA), M(wp, vp)) + A(M(w), v)), X)
= — (WA + v\, wt(M(wp, vp) V X))
for any A € P,.. Hence, Corollary 2.6 implies that M(wp, vp) VX € €, ..

Then
wo(M(wp, vp)) © Qy, (X)) = Qu(M(wp, ) V X)) 20,

w,v w,v w,v

implies that Q,, ,(X) # 0. O
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Proposition 2.9. LetX be a simple object of €,,. Then, Q.

r
w,v

(X) 20 if and only if
A(X, M(wA, vX)) = (wt(X), wA + vA)
for any A € P,.

Proof. The proof is similar to the one of the preceding proposition by using Corol-
lary 2.5 instead of Corollary 2.6. 0

3. PROPERTIES OF %,

3.1. Right rigidity. Asan application of Theorem 2.7, we will prove the right rigidity
of G-

Theorem 3.1. The category %%M 1s Tight rigid, i.e., every object has a right dual.

Proof. In the course of the proof, we omit the grading shifts. Let X € €,,. Since
CGwy C 6y C €, and the category €, is right rigid, there exists Y € 4,,, A € P, and
morphisms in %,

X oY 5 MwA,A), MwAA) Y oX
such that the composition

X®n e®X
X oMuwAA) — XY ®X —— M(wA,A) o X

is an isomorphism.
Recall that M(wA, A) ~ M(wA,vA) V M(vA,A). Let = A —vA € Qp and v =
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We have the following commutative diagram:

X o (Res,gM(wA,A)) —— X o Res, 3(Y o X)

i: (2.2)
Res. g(X o M(wA, A)) e, Res,3(X oY o X) LA Res. g(M(wA,A) o X)

i: (2.3)
Res, (X oY) o X —— Res, g(M(wA,A)) o X.

Since the composition of the arrows in the middle row is an isomorphism, we have an
isomorphism

X o (Res.g(M(wA, A))) == Res. s(M(wA, A)) o X.

We claim that this isomorphism factors through X o Res, 3(Y) o X. Indeed in the
diagram

X o (Res, s(M(wA,A))) — X o Res. 3(Y o X)

|

X o Res,p(Y) o X

Res, 3(X oY o X)

Res,3(X oY) o X

Res. g(M(wA, A)) o X,

the square is commutative by Lemma 2.1.
Hence we have a sequence of morphisms

X o (Res.g(M(wA,A))) = X o Res,3(Y) o X = Res, sg(M(wA,A)) o X

whose composition is an isomorphism.
Applying the functor Hompg gmea(M(vA, A), —), we obtain a sequence of morphisms

XOn/ e0X
X o M(wA,vA) —— X oY 0 X —— M(wA,vA) o X
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whose composition is an isomorphism where Y’ = ResM®*" (V) and ResM®@AY) () is
the functor Hompg(g).gmod (M(vA, A), Res, s(—)). Note that the morphisms ¢’ and 7’ are
given by

£: X oY’ = ResM"MM (X 0 V) = ResMPMN (M(wA, A)) ~ M(wA, vA)
and

7': M(wA, vA) =~ ResM@AD (M(wA, A)) — ResM@A M (Y o X) -V o X,
Hence the assertion follows by Proposition 3.2 below. 0J

Proposition 3.2. Let C be an idempotent complete additive monoidal category. If
there exist morphisms

XV 31 and 1-5YeX

such that the composition

X®n e®X nRY Y®e
X— XY ®X —— X (respectively, Y —— Y @X®Y ——Y)

is an isomorphism, then X has a right dual (respectively, left dual) in C.

Proof. Assume that the composition

X®n e®@X
fiX—XQY®X — X
is an isomorphism. Let us show that X has a right dual.
Let g be the inverse of f and let 1 be the composition
! n Yoy
nN:1 —=-YX —Y®X
Then we have a commutative diagram

Xen' e®X

X—XQY®X—X

XQY®g g

XRY®X —X
e®X
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so that the composition of morphisms in the top row is the identity. Hence, by replacing
n with 7/, we may assume from the beginning that f is the identity.
Let p be the composition

nY Y ®e
Y — Y RXQY ——Y.

Then the following commutative diagram shows that p o p = p:

i T—
neY Y®e
Y//// YXQY \\\\Y
neY l NRYRXQY i nRY L
YRXRnQY YRXRQRY e
YRXQY YRXQYRX®Y YRX®Y |»
YR XKQY Y®e
ooy |
YRX®Y y.

Let Y :=Imp so that p is factored as ¥ —> YV>"+ YV withros= idg. Let € and
71 be the compositions
_ ~ X®s c _ n rX
XY — X®Y —1 and 11 Y X — Y ®X.
Then we have the following commutative diagram

X®7 - X
X XRY®X X

x XreX X@poX X®Rs®@X 4

XY ®X XRY®X

g@%m\s //ﬁégg

XQYQ@XQYeX

T XQY®X®n

X®n

— XY X
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so that the composition in the top row is the identity idx.
The composition of the middle column of the below commutative diagram

neY
Y YRX®Y
J/ YQX®r r@X®p
T /®X®Ti \
Y Y RXQY YV RXRY — YoX®V — Y
nY reXQY YRX®s Y ®e
\X)X@)sl / \
PRX®s SRXQY
YoX®eY - Y
Y®e
is p® X ® p and hence we have
so(Y@&)o(faY)or=(Y®e)o(paX®ponaY)=p,
where the last equality follows from the commutative diagram
Y v YRX®Y X Y X®Y Voo Y
\N m %:f /
Y e YRX®Y Yoo Y.
Hence we have
(YR8 o(f®Y)=ropos=rosoros= idy,
as desired. 0

We conjecture that CKNM is a rigid monoidal category.
3.2. Relations among %ZM. The following is known as T-systems.

Leti e I and w,v € W satisfying w < ws;, and v < vs;. Then we have the following
equalities in A,(n).
g i AwsiAID (A vA)D(wsi Ay, vsi ;)
= qdi+(vSiAi’UAi_wsiAi)D(U}Ai, USZ'AZ‘)D(U}SZ'AZ', UAZ) + D<UJ)\, U)\)
= gdithivsiliwhd D (s Ay vA)D(wA;, vs;iA;) + D(w, vA),
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where A = s;\; + A;.

Proposition 3.4. Let i € I and w,v € W satisfying w > v, w < ws;, and v < vs;.

(a) If w > vs;, then we have a short exact sequence in R-gmod
0 — gditesihivhimwsihoM (A, vs;A;) o M(ws; Ay, vA;)
— ¢*M(wA;, vA;) o M(ws;A;, vs;A;) — M(wA, vA) = 0

where A = (vVA;, vs;\; — ws;\;) = (ws;Aj, wA; — vA;) and X = s;\; + A;.
(b) if w 2 vs;, then wh; £ vs;\; and we have
¢*M(wA;, vA;) o M(ws;A;, vsiA;) ~ M(wA, v\).
Hence in the both cases we have
q(ws"A“wAi’”Ai)M(wAi, vA;) V M(ws; Ay, vs;A;) ~ M(w(A; + s;A;), v(A; + si\y)).

Proof. Since w > v, we have wA; < vA; = vs;A; for all j # 4. If w 2 vs;, then we
get wA; £ vs;A; by Lemma 1.9. Then D(wA;,vs;A;) = 0 and hence Proposition 3.3
implies (b).

Assume that w > vs;. Then g(vsitivAimwsibdM(wA;, vs;A;) o M(ws; Az, vA;) is a simple
module and it is self-dual. Thus Proposition 3.3 and Lemma [4, 3.2.18] implies (a), as
desired. 0J
Theorem 3.5. Let w > v, ws; > w, vs; > v, and \,u € P,. Then

(i) Fither & := X+ s;u € Py or s;§ =sA+pueP..

(ii) We have
GEATMSIOM (wA, v\) V M(ws;pt, vsin) ~ M(wé, v€).
(iii) We have

K(M(W)\a vA), M(ws;p, USiH)) = (WA —vA wsip) = —(vA, wsip — vsip),
A(M(wA, vA), M(ws;p, vsipn)) = (WA — v\, wsip + vsip) = —(WA + v, wsip — vsp).

(iv) If w 2 vs;, then M(w, v\) and M(ws; i, vs;p) commute.
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Proof. (i) For j € I, we have (hj, A+ s;u) = (hj, A+ p) — (hi, p)(h;, ;) so that
(hj, A+ sip) = 0 for j # i. Since (hi, A+ sip) = (hi, A) — (hy, p) and (hy, ;A + p) =
(hi, py — (h;, \) we have either £ € P, or s, € P,.

(ii) In the proof, we omit the grading shifts. Set C) := M(wA,vA) and C', :=
M(ws; e, vs;p). It is enough to show that there is an epimorphism CyoC’,, = M(wé§, v§).

(1) Assume that A = aA; and g = bA; for some a,b € Z-,. We may assume that
a,b > 0. We will proceed by induction on a+b. Set N :=(a—1)A; and p/:= (b—1)A,.
Note that n:=A; + s;A € P, and C, = C’,,. Hence we have

C}\ O C/;U' ~ C)\/ @) CAi (@] CIA,‘ O C//"'/ —» C)\/ O C77 O Clu/
~ C77 ©) C/\/ (@] C/#/ —» Cn O C)\’+,LL' —» CT’+A/+HI’
where the first epimorphism follows from Proposition 3.4 and the second last epimor-
phism follows from the induction hypothesis.

(2) Set A = XN +al;, p = p/ + bA;, and 1 := al\; + bs;A;, where a = (h;, \) and
b= (h;, ). Then we have

C>\ o C,H ~ C)\/ (@] Ca/\i O C/bAi O C/M/ —» C)\/ (@] C"]l (@] C,,u,’-
Since Cyy = C'y and C')y = C,, we have

C)\l+n/+ul ~ C/\+Si,u = M(wf,vf) if 77/ € P+,

C)\/ O C77, (@] C/,LL’ ~ , ; . ,
C NAn/+p! ~ C sidtp = M(w{,v{) if ;1 € P_;'_7

as desired.
(iii) follows from (b) and [4, Lemma 3.1.4].

(iv) Since M(wA,v) is a product of M(wA;,vA;)’s, and M(ws; i, vs;p) is a product
of M(wAg,vAy) (k # 1) together with M(ws;A;, vs;A;), the assertion follows from
Corollary 3.4 (b). O

Recall the functors
110,1;5 Ce — ‘éj’v and QG — ‘JZ,,U.

Corollary 3.6. Let w > v, ws; > w, vs; > v, and \, u € P
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(i) If £ := X+ s;u € Py, then we have
Qo (M(ws;pt, vsip)) = g~ ATAwI=IIM (X w X)L o M(wE, vE).

(i) If n:=s;\A+ pu € Py, then we have
: (M(w, v\)) ~ g~ WSO M (s vsin) © M(wsip, vsi)° L

ws;,US;

Proof. Since the proof is similar, we only prove (i).
By Theorem 3.5 (iii) and Proposition 2.8, we have QL7U<M(ws,~u, vsiu)) % 0. Hence

R}\A(w,\m/\)(M(wsm,vsm)): M(wA, vA) o M(ws;p, vsip) — M(ws;p, vsip) © M(wA, v)

does not vanish. Since it is an isomorphism in (gw,v, its image M(wA, v A)VM(ws; 1, vs; 1) :Jl
M(wé, v€) (in R-gmod) is isomorphic to M(w, vA) o QL ,(M(ws;p, vsip)) in €. O

w,v

Theorem 3.7. Let i € I and w,v € W satisfying v < w, w < ws;, and v < vs;. If
w # vs;, then we have €y = Cuws, s, -

Proof. Set A = s;A; + A; € P,. Note that M(wA,vA) and M(ws;A;,vs;A;) commute
and M(wA,vA) o M(ws; A, vs;A;) ~ M(wA, v\) by Proposition 3.4 (b).

Assume that a simple module X belongs to €,,,. Then we have X € %,,, and hence
(Wt (X), wA + o) = A(X, M(w, v))) = A(X, M(whA;, vA;)) + A(X, M(ws; A, vs;i\;))

= (wt(X), wA; + vA;) + A(X, M(ws; A, vsi\;))

so that

AX, M(ws;Ag,vs:0;)) = (Wi(X), w(A — A) +o(A — Ay)) = (wt(X), ws; i + vsi ;).
Because X € €, we have
0= b(X, M(wA, v)\)) = b(X, M(wA;, vAi)) + b(X, M(ws; A, vsiAi)) = b(X, M(ws;A;, vsiAi)).

Hence by Corollary 2.5, X belongs to €, vs,-

If X is a simple module in €, s;, then X belongs to 6, by the same argument as
the above using Corollary 2.6.

Since the categories 6, , and %, vs; are closed under extensions, we obtain that
Cww = Cuws; vs;, as desired. O
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Theorem 3.8. Ifw > v, ws; > w and vs; > v, then there is an equivalence of monoidal
categories

Proof. Set C = €ys, - Then, €, C C and Gy, vs; C C. In C, there exist a real com-
muting family of left braiders {M(wA;, vA;), Rj, M(wh;,0A,) ,qﬁwvA }jer and a real com-
muting family of right braiders {M(ws;A;, vs;A;), RM(wSiAjVUSiAj)’, Drusywsioh, i€l
Let us denote by

Cl ::%wsw[M(wAj,vAj)o_l;j € ]],

Cr I:ngsi7v[M(wSiAj,USiAj)O_l;j - I]
their localizations. Since the composition of the fully faithful functors

Gy —> C'— G [M(wh;, vA;) L € 1]

is an equivalence, .Z: ngﬂ) — C!is an equivalence of monoidal categories. Similarly,
since the composition of the fully faithful functors

R Crsy s, — C" — Coos, [M(wsi\;, v8;0;)° Y j € 1]

is an equivalence, ‘KNMMSZ, — C" is an equivalence of monoidal categories. Hence it is
enough to show that C' and C" are equivalent as monoidal categories.
In order to see this, we shall prove that

/\

(3.1) & factors as C — Cr
e@
\
(3.2) X factors as C T/Cl e cr.

Since the proof of (3.2) is similar, we shall prove only (3.1). Set C, = M(ws;A, vs;A)
for any p € Py. By Theorem 1.4, it is enough to show that
(a) £(C,) is invertible in C' for any pu € Py,
Z(RE, )
(b) Z(M o CL) BN .L”(C;L o M) is an isomorphism in C' for any p € P, and
M e C.
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(a) follows from Corollary 3.6.

Let us show (b). Let 0 = Z — M o C,, — C,, o M — Z’ — 0 be an exact sequence.
Since %(RTC,H(M)) is an isomorphism, we have Z(Z) ~ Z(Z') ~ 0.

Then Lemma 3.9 below implies that £ (Z) ~ £ (Z') ~ 0 and hence .Z( c (M)) is

an isomorphism.
Thus there exist functors ®: C* — C' and ¥: C' — C!, and it is obvious that they

are quasi-inverse to each other. 0

Lemma 3.9. Assume that w > v, ws; > w, and vs; > v. Let Z € Cups; . If
bsiws, (Z) =0, then Q, (Z) ~ 0.

wWSs; US4

Proof. We may assume that Z is simple.
Assuming that Ql, . (Z) ~ 0 and Q,,,(Z) # 0, we shall derive a contradiction.

Let us denote Cy:=M(wA,vA) and C',:=M(ws;pi, vs;p) for X, p € Po.. Then, Re (Z)
does not vanish for any A € P,.. Hence C, V Z ~ Im(RlCA (Z)) is isomorphic to Cy o Z

is (gw,v, and hence Q), ,(CA V Z) #£ 0.

There exists A9 € P, such that Z':= C,, V Z commutes with C, for any A € P,.
We have QL. ,..(Z') ~ 0 and Q,, ,(Z') # 0. By replacing Z with Z’, we may assume
from the beginning that Z commutes with all Cy for A € P,. By Proposition 2.8
and Q,, ,(Z') # 0, we have A(Cy,Z) = —(wA + v\, wt(Z)) for any X\ € P,. Hence
Corollary 2.6 implies that Z € €,,,. Hence we have

A(Z,Cy) = (wA + v\, wt(Z)) for any A € P.
Since Q. vs,(Z) = 0, Proposition 2.9 implies that there exists 1 € P such that
A(Z,C,) # (wsip+ vsip, wt(Z)).
Let us take A € P, such that £ := A + s, € P4. Then we have a contradiction
(w& +vE, wt(Z)) = AM(Z,C¢) = AM(Z,C VvV C))

=ANZ,C\) +A(Z,C,) = (wA + oA wt(Z)) + A(Z,C)

# (WA + v\, wt(2)) + (ws;p + vs;p, wt(Z))

= (w + vg, wt(Z2)).



32

M. KASHIWARA, M. KIM, S.-J. OH, AND E. PARK

Here the third equality follows from the commutativity of Z and C,. O
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