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Abstract Pulse-like ruptures arise spontaneously in many elastodynamic rupture simulations and
seem to be the dominant rupture mode along crustal faults. Pulse-like ruptures propagating under steady
state conditions can be efficiently analyzed theoretically, but it remains unclear how they can arise and
how they evolve if perturbed. Using thermal pressurization as a representative constitutive law, we
conduct elastodynamic simulations of pulse-like ruptures and determine the spatiotemporal evolution of
slip, slip rate, and pulse width perturbations induced by infinitesimal perturbations in background stress.
These simulations indicate that steady state pulses driven by thermal pressurization are unstable. If the
initial stress perturbation is negative, ruptures stop; conversely, if the perturbation is positive, ruptures
grow and transition to either self-similar pulses (at low background stress) or expanding cracks (at elevated
background stress). Based on a dynamic dislocation model, we develop an elastodynamic equation of
motion for slip pulses and demonstrate that steady state slip pulses are unstable if their accrued slip b is a
decreasing function of the uniform background stress ;. This condition is satisfied by slip pulses driven
by thermal pressurization. The equation of motion also predicts quantitatively the growth rate of
perturbations and provides a generic tool to analyze the propagation of slip pulses. The unstable character
of steady state slip pulses implies that this rupture mode is a key one determining the minimum stress
conditions for sustainable ruptures along faults, that is, their “strength.” Furthermore, slip pulse
instabilities can produce a remarkable complexity of rupture dynamics, even under uniform background
stress conditions and material properties.

1. Introduction

The propagation of earthquakes is generally classified into two main modes: crack-like ruptures, where fault
slip occurs throughout the duration of propagation, and pulse-like ruptures, where only a small portion of
the fault inside a ruptured area is sliding at a given time during rupture. The observation that local slip
duration is often much shorter than the time required for stopping phases to propagate from fault boundaries
led Heaton (1990) to suggest that most crustal earthquakes may propagate as pulse-like ruptures. A number
of detailed kinematic and dynamic inversions of earthquake slip (Beroza & Ellsworth, 1996; Day et al., 1998;
Galetzka et al., 2015; Olsen et al., 1997; Wald & Heaton, 1994) have confirmed the pulse-like nature of large
crustal earthquakes, highlighting the importance of this rupture mode in the physics of faults.

The physical origin and dynamics of pulse-like ruptures have been studied extensively in theoretical mod-
els. Slip events have been shown to propagate as narrow, self-similar slip pulses in simplified discrete spring
block models (e.g., Carlson & Langer, 1989; Elbanna & Heaton, 2012). Fully dynamic rupture simulations
have revealed the key role of velocity-weakening friction (e.g., Cochard & Madariaga, 1994; Heaton, 1990;
Perrin et al., 1995; Zheng & Rice, 1998) and boundary conditions (e.g., Johnson, 1990, 1992) in the spon-
taneous generation of slip pulses. Specifically, elastodynamic simulations with velocity-dependent friction
show that the existence and evolution of the dynamic pulse-like ruptures are strongly controlled by both the
ambient background stress and the nucleation conditions on the fault (Gabriel et al., 2012; Zheng & Rice,
1998). For a given nucleation condition, an increase in background stress results in a sequential transition
from arresting pulses to growing pulses and then growing crack-like ruptures. Therefore, the mode of rup-
ture and its evolution are the signature of the background stress acting on the fault prior to the earthquake.
Of critical importance here is the stress level at the transition from arresting to growing pulses, which pro-
vides the threshold below which sustained fault slip is precluded. The rupture mode at the transition is that
of a “steady state” slip pulse, for which the tip and tail of the slipping patch propagate at the same speed.
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strength, T,

background
stress, T,

rupture speed, v,

—

shear stress, T These steady state solutions are therefore key to understanding the stress

level required for earthquake propagation and the dynamics of faults.

Steady state solutions of the elastodynamic fault problem can be obtained
using analytical or simple numerical methods so that they can be stud-
ied efficiently without resorting to computationally expensive numerical
treatment. Several pulse-like rupture solutions have been obtained for
simple models of faults with a constant or slip-dependent friction law
(e.g., Broberg, 1978; Dunham & Archuleta, 2005; Freund, 1979; Rice et al.,
2005), but without specific regard to the processes allowing for strength
recovery and “healing” (i.e., cessation of slip) at the tail of the pulse.
Steady state pulse solutions fully consistent with both elastodynamics and

T~ locked

Figure 1. Schematic of the stress evolution along a pulse-like rupture
shown in the coordinate frame X moving with the rupture front. Far from

L

T position, X a specific friction law have been determined by Perrin et al. (1995) in the
sliding locked context of rate-and-state friction and more recently by Garagash (2012)
and Platt et al. (2015) in the context of dynamic weakening by thermal
(or chemical) pressurization of pore fluids within the fault zone. These

the slipping patch, the shear stress is constant and equal to 7,,. Near the solutions provide unique insights into the relationships between rupture
rupture tip (X = 0), the stress increases up to the local strength 7, and then  properties, such as pulse width or rupture velocity at a given background
evolves according to a constitutive law, in agreement with elastodynamic stress, and key parameters of the friction law, such as rate-and-state

equilibrium. Behind the patch (X = L), the stress increases again back to

the background stress.

parameters (Perrin et al., 1995) or thermohydraulic properties of the fault
core (Garagash, 2012; Platt et al., 2015). Despite the (relative) simplicity
and efficiency of those steady state pulse solutions, it remains to be confirmed how they can be generated
and how they evolve in response to perturbations in loading conditions or frictional properties. In other
words, the key question here is to determine how self-consistent steady state solutions (i.e., satisfying elas-
todynamics and all the features of a specific friction law) can be compared to possibly transient rupture
dynamics observed on natural faults.

Regarding this issue, the numerical simulations provided by Gabriel et al. (2012) and Brener et al. (2018)
using velocity-dependent friction, or by Noda et al. (2009) in the context of weakening by thermal pressur-
ization of pore fluids within the fault, seem to indicate that such steady state solutions are not stable: They
either grow (to form self-similar pulses) or decay and stop. The goal of this paper is to analyze in detail how
steady state pulses respond to perturbations and to determine a clear stability condition depending on the
characteristics of the friction law. Building on the work by Garagash (2012), we examine specifically the case
of pulses driven by thermal pressurization of pore fluids and first solve the nonlinear perturbation problem
numerically (section 2). We then examine more generally the conditions under which stable pulses can exist
based on an approximate equation of motion for moving dislocations (section 3). The significance of steady
state pulse solutions and some implications for the dynamics of earthquakes are examined in section 4.

2. Slip Pulses Driven by Thermal Pressurization of Pore Fluids

In this section, we present a detailed analysis of the evolution of pulses driven by thermal pressurization. We
choose to focus specifically on thermal pressurization as the governing process by which faults weaken (and
restrengthen), since it has a firm physical background and has been shown to be consistent with a number
of seismological observations (Rice, 2006; Viesca & Garagash, 2015). Beyond this specific choice for the fault
constitutive behavior, we stress that the method of analysis developed here is quite general and can be used
to include other friction laws.

We first briefly summarize the results of Garagash (2012) regarding steady state solutions and perform a
stability analysis by solving for the evolution of perturbations from the steady state solution.

2.1. Model and Steady State Solution

2.1.1. Elastodynamics of Steadily Propagating Pulse

We consider a planar fault embedded in an infinite, homogeneous elastic medium of shear modulus u. The
fault is assumed to be of infinite extent in one of its planar dimensions, so that we restrict our attention
to a two-dimensional problem. The fault is loaded by a uniform background shear stress, denoted z,. For
simplicity, we assume that the loading is in mode III (out of plane) geometry. Fault slip is assumed to occur
over a patch of finite length L, which propagates at a constant speed v, along spatial coordinate x, as shown in
Figure 1. Under steady state conditions (i.e., constant rupture speed), it is convenient to introduce a reference
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frame (X, y) that moves with the rupture tip, so that the shear stress = and slip rate V along the fault (in the
plane y = 0) are functions of the coordinate X = v,t — x only. The elastodynamic equilibrium requires that
(e.g., Weertman, 1969)

it ve,
27v, Jo X—¢&

where i is an apparent shear modulus given by ji = u X F(v,/c,). The function F of the ratio of rupture speed

TX) =1, - g (€]

and shear wave speed c; is equal to F(v,/c;) = 4/1 —v2/c2 (e.g., Rice, 1980), so that the apparent modulus
approaches 0 as the rupture speed approaches the shear wave speed. In equation (1), it is understood that
the slip rate is given by
ds
VX)= Vi 2
where § is the slip.

In the slipping part of the fault (0 < X < L), the stress 7(X) must be equal to the fault strength 7z, which is
given by a constitutive law (see below). Furthermore, at the tail of the pulse (X > L), we need to ensure that
the strength remains higher than the elastic stress 7(X) (otherwise slip would continue, which would be in
contradiction with the pulse width being equal to L). Garagash (2012) determined that the stress gradient at
the tail of the pulse is singular, of the form dz/dX « k; /4/X — L, where

4 L X dr
ke ”ﬁfo X ax 3
The gradient in fault strength remains continuous, so that the condition for cessation of slip 7(X) < 7;
imposes that the elastic stress gradient remains bounded; that is, k;, = 0. This equality ensures the consis-
tency of the assumption that slip only occurs where 7; = 7(X) and provides a constraint on the pulse length
L (which would otherwise be a free parameter of the problem).
2.1.2. Fault Strength
The strength of the fault z; is assumed to be governed by a friction law:

7= fo' = f x (o, — D), C))

where f is a friction coefficient and ¢’ is the Terzaghi effective stress, equal to the difference between the
fault normal stress o, and the pore fluid pressure p inside the fault core. Here, we assume a constant friction
coefficient throughout the slip process. Since we are primarily concerned here with dynamic slip, the con-
stant value of f should be representative of the high velocity “dry” friction coefficient, which is typically of
the order of 0.1 (e.g., Di Toro et al., 2011). The pore fluid pressure p is governed by the competition between
fluid diffusion and thermal expansion due to shear heating. The fluid pressure evolution is coupled to the
temperature © through the following equations (e.g., Rice, 2006):

op _ 00 o’p

— =A—+o,—, 5

ot~ Vor Ty ©)

00 %y 9’0

i E‘Fatha—yz, (6)

where A is a thermoporoelastic coupling factor expressing the increase in fluid pressure per unit increase
in temperature; ay,, and ay, are hydraulic and thermal diffusivities, respectively; 7 is the shear strain rate;
and pc is the heat capacity of the fault rock. In a fault core of finite width, pore pressure is not homoge-
neous across the fault, which can lead to shear strain localization (Platt et al., 2014; Rice et al., 2014). Here,
we do not explicitly account for this effect, which requires the introduction of further parameters such as
rate-hardening properties of the sheared gouge. We follow Garagash (2012) and consider a Gaussian shear
strain rate distribution across the fault with a characteristic width h,

7.0y = LD o, ™)

h

and use the pore pressure at the center of the fault (where it is maximum) to compute the strength in
equation (4).
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1.2 4 X =T Equations 5 and (6) can be solved to arrive at the integral representation
for fault strength (Rice, 2006) given here in the form of (Garagash, 2012)
1.0 slip rate trenotl t o
2 e T =Tg— e / (VK (%, ﬂ) dr, ®
~S 0.8 5c 0 T ®th
s Stress -7 , o
o) where 7, = fo,,) is the initial strength of the fault (at p(y = 0,t = 0) = p,),
g 0.6 and
IS
~ 2
& 0.4 6.=2n and T"= h— )
*> fA 4o
= 0.2 1 temperature where a = (y/ay, + \/a_hy)z, are characteristic slip weakening distance
0.0 and diffusion time, respectively. The convolution kernel K is given in
' T . r Appendix A.
-1 1 2 2.1.3. Steady State Pulse Solution
X/L* For a given background stress 7,/7, and diffusivity ratio ayg/ay,,

Figure 2. Example solution of a steady state pulse driven by thermal

equations (1) and (8), under the condition (3), have been solved for slip

pressurization. Vertical dashed lines indicate the beginning and end of the rate V and strength 7, by Garagash (2012). Here, we reproduce these com-
slipping patch. The background stress is 7, = 0.7, and the diffusivity ratiois  putations using a more efficient quadrature method given by Viesca and
dpy/aw = 1. Using h/hgyn, = 1, the resulting pulse speed is v /c; = 0.894,  Garagash (2018; see Appendix B1 for more details). To keep the solutions

length is L/L" = 1.485, duration is T/T" = 1.661, and total slip is

as general as possible, we normalize the stresses by 7, slip by 6, time by

b/é. =0.974.
/b T", and slip rate and distance by
V*=6,/T* and L*= ub /1, (10)
In the determination of the solution, we constrain not only the distribution of stress and slip rate along the
pulse but also its duration T/T" and length L/L". The rupture speed is given by v, = L/T, so that its ratio
relative to the shear wave speed is v, /c, = (L/L")(T"/T)/(c,T"/L"). Following Garagash (2012, section 7.1),
we define a characteristic thickness hy,,,, such that h/hy,, = ¢, T"/L’, that is,
u pc da
= # PC 3 11
g fA ¢ (1)
so that constraining the fault core thickness through the ratio h/hyy,,, implies that the rupture velocity v, /¢,
is also constrained (v, /c; = (L/L)(T"/ T)(hgyna /).
A representative example is shown in Figure 2, where we chose 7, /7, = 0.7 and ayy/ay, = 1. For com-
pleteness, we also show the evolution of stress = and strength 7; outside the pulse, and we indeed observe
(a) (b) (c)
1.0
1.5 1 |
*i Q 103 % 0.9 -
3 2 =Y
£ 1.0 A . 3
S & 0 9
3 = 10 @
— o)
2 g E 0.8 1
£ 0.5 1 3 g
10 3
0.7
0.0 r r r
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
background stress, 14/ 70 background stress, 1y, /70 background stress, 1,/

Figure 3. Pulse width (a), total slip (b), and rupture speed (c) as functions of the background stress for steady state pulses driven by thermal pressurization,

assuming ayy /g = 1.
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(a) Stress /7. Negative perturbation.

L/3

(b) Slip rate V/V*. Negative perturbation.

'\7‘ 10.01

A N
e e
~n/ V7
S — A‘(’}/

-5 -10 -15 -20 -10 -15 -20
x/L* x/L*
(c) Stress /7. Positive perturbation. (d) Slip rate V/V*. Positive perturbation.
/L Jo.o1 v
2L
/. e e
——— o\
———— -
— [0 S Tao
AL+
I T 1 1 I 1 T 1
-5 -10 -15 -20 -25 -5 -10 -15 -20 -25
x/L* x/L*

Figure 4. Snapshots of shear stress and slip rate profiles for a slip pulse propagating from left to right across a negative (a, b) or positive (c, d) background stress
perturbation. The initial steady state pulse is generated with a background stress zy, /7, = 0.7, diffusivity ratio a,y/ay, = 1, and h/hgyn, = 1. The perturbation
amplitude is |Azy| /7y = 1072, with a half-sinusoidal shape of width L/3 (see insets in panels a and c), centered at x/L" = =10 (dotted line). In all the plots,
thick lines mark the positions where slip rate is nonzero. Snapshots are shown at regular time intervals of ~ 1.03T". Oblique dashed lines in panels (b) and (d)
show the virtual position of the steady state rupture tip without perturbation (i.e., rupture speed v, ).

that ¢ < 7; behind the tail. This pulse is therefore fully consistent with elastodynamics and the fault
constitutive law.

Some key properties of steady state pulses driven by thermal pressurization can be determined from a sys-
tematic exploration of the numerical solutions. Of particular interest here are the pulse width (L/L"), total
slip (b/é,), and rupture speed (v, /c,), which are shown in Figure 3 as a function of the background stress
(7p/70)- In all these plots, we chose again ay, /ay, = 1, knowing that this parameter has only a minor
quantitative effect on the results (Garagash, 2012).

With increasing background stress, the slip and rupture speed decrease, while the pulse width increases.
However, the relationships depicted in Figure 3 have been derived from independent steady state solutions
and therefore may not correspond to the actual evolution of the width, slip, and rupture speed of a single pulse
propagating along a fault with varying background stresses, pore pressure, or fault constitutive parameters
(friction, etc). In order to compute such an evolution, and determine whether a given steady state solution
is stable against perturbations in background stress, we need to compute the full elastodynamic solution for
a propagating pulse in a perturbed stress state.

2.2. Elastodynamic Stability Analysis: Method

The elastodynamic stress equilibrium can be expressed as

T(x, ) = 7,(X) — %V(x, £+ o[V1, (12)
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(a) Negative perturbation (b) Positive perturbation
40

30 1 a
arrest

— Vr,ss)

Vr,ss)

(x—vsst)/L* (x —vpsst)/L*

Figure 5. Slip pulse shape in transformed coordinates ((x =V D)/L*, t/ T*) for a negative (a) and positive (b)
perturbation. The initial background stress is 7}, /7, = 0.7, and the perturbation amplitude is |Azy|/7, = 1072. Black
contours mark where slip rate is 0 (i.e., delimit the pulse tip and tail positions). Gray lines are slip rate contours, spaced
by 0.25V" increments. Black dot marks the position of the perturbation, and dotted lines highlight the shear wave
fronts emitted from the perturbation. The normalizing speed is given by v = L"/T".

where ¢[V] is a linear functional of slip rate that corresponds to the stress redistribution due to slip and
elastic waves. In equation (12), an explicit space dependency has been written for the background stress,
7,,(X), to account for the introduction of local perturbations. Direct solutions of equation (12) can be obtained
numerically but require somewhat arbitrary rupture initiation conditions, which would be incompatible
with our objective of studying small perturbations around a steadily propagating rupture, regardless of how
this rupture originated. Here, we circumvent the rupture nucleation problem and only solve for stress and
slip rate perturbations from a preexisting steady state pulse solution.

Let us denote 7 (x, ), 6,(x, £), and V(x, ) the stress, slip, and slip rate associated with a steady state pulse
propagating along a fault under a uniform background stress 7, ;. By construction, 7, 6, and Vg are solu-
tions of equation (12) with 7, = 7, ;. Now if we introduce a perturbation in background stress Az, (x), the
resulting perturbations Az(x, £), Ad(x, t), and AV(x, t) in stress, slip, and slip rate, respectively, satisfy

At(x, ) = Aty (x) — %AV(x, £+ PAV], (13)

where we made use of the linearity of the functional ¢. The strength evolution due to thermal pressurization
is given in equation (8), which is rewritten in terms of strength and slip rate perturbations as

t
Azp(x, t) = -1 / (Trss O AV (X, ) + AT (6, 1)V (x, 1)
50 0 ’
(14)

, ’ t—1t Ony ’

+A7 (e, AV (X, 1)) K | ——:; — ) dr’,

T " ay,

where 7, (x, t) is the strength along the steady state pulse and Ar; is the strength perturbation. The govern-
ing equation (14) for the strength perturbation is not linear and therefore requires the specific knowledge
of the steady state strength and slip rate profiles, 7;4(x, f) and V(x, f). These profiles correspond to the

solutions of the steady state problem stated in the previous section.

Our solution strategy therefore consists in first solving a steady state problem (see previous section) and
then solving the full elastodynamic problem for perturbations to this solution arising from variations in
background stress. In practice, we use the spectral boundary integral method of Perrin et al. (1995), Lapusta
et al. (2000), and Noda and Lapusta (2010) to compute the dynamic stress distribution functional ¢[AV] (see
Appendix B2) and a predictor-corrector method for time integration. The details of the algorithm are given
in Appendix B3.

2.3. Elastodynamic Stability Analysis: Results
Two representative examples of slip pulse propagating across either a positive or a negative perturbation in
background stress are shown in Figure 4. The initial background stress is 7, /7, = 0.7, and the diffusivity
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(a) Negative perturbation (b) Positive perturbation
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slip rate
slip

|AD| /8¢, |ALI/L*, |AVimax]/V*

_.
< |

0 10 20 0 400 10 20 30 40
(t —tpert) /T* (t—tpert) /T

w2

Figure 6. Time evolution of perturbations in pulse width (JAL| /L", black dots), peak slip rate (|AV pax!/ v, gray lines),
and net slip (|Ab|/§,, black lines) in the case of a negative (a) and positive (b) perturbation. The initial background
stress is 7y, /7o = 0.7, and the perturbation amplitude is |A7y| /7, = 1073. The onset time of the perturbation is denoted
tpert- The evolution in pulse width is initially not smooth due to the spatial discretization of the numerical solution,
which allows only for approximate determination of the pulse tip and tail positions.

ratio is 1. In both cases, the perturbation was a half-sine of (1/3)L/L" in width and Az, /7, = 102 in ampli-
tude. When crossing a negative perturbation (Figures 4a and 4b), the slip pulse continues to propagate over
a distance of the order of 10L" while both the dynamic stress drop and slip rate progressively reduce, until
rupture arrests. Conversely, a positive perturbation (Figures 4c and 4d) amplifies the dynamic stress drop
and slip rate and also results in a progressive increase in pulse width.

The evolution of the pulse shape is best observed in the coordinate system that moves with the pulse
tip at its reference speed v, .
((x — VD) /L7t T*) for the two simulations presented in Figure 4. When the perturbation is negative
(Figure 5a), the pulse width reduction is initially driven by an acceleration of the trailing edge (healing front)
and subsequently by a deceleration of the tip. The acceleration of the healing front initiates when the shear
wave emitted from the pulse tip at the location of the perturbation reaches the trailing edge of the pulse. The
overall pulse width reduces in a nonlinear manner over time, and the pulse arrests abruptly. When the per-
turbation is positive (Figure 5b), an acceleration of the pulse tip is first observed, followed by a deceleration
of the trailing edge. The pulse tip speed gradually approaches the shear wave speed. After a critical time of

Figure 5 shows contours of slip rate in the transformed coordinate system

|ADI/oc
=)
‘ W
EEEET] il L
<
~—_3
\\O
Iy
W
(=]
o =N
W
W
normalised growth rate
(=] (=} (=}
ES [=)) o0
1 1

j=3
~
(Y
j=1
[\S}
1

/79 = 0.4
107 T T T (@) 0.0 T T T (b)
0 10 20 30 40 0.4 0.6 0.8 1.0

(¢ —tpert) /T* /70

Figure 7. (a) Time evolution of slip perturbations following a negative background stress perturbation, for a range of
reference background stresses 7}, /7. (b) Exponential growth rate of the slip perturbations as a function of the
reference stress. The growth rate was computed using a least squares fit to a straight line of the data subset highlighted
in black on the left panel.
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Figure 8. Snapshots of shear stress (a) and slip rate (b) profiles for a slip pulse propagating across a positive background stress perturbation. The initial steady
state pulse is generated with a background stress 7, /7o = 0.9, diffusivity ratio apy/ay, = 1, and h/hgyn, = 1. The perturbation amplitude is 0.0017,, with a
half-sinusoidal shape of width L/3 centered at x = 0 (dotted line). In all the plots, thick lines mark the positions where slip rate is nonzero. Snapshots are
shown at regular time intervals of ~ 0.9T".

the order of ~ 20T, the trailing edge accelerates again and further propagates at a speed greater than the
initial v, ¢ but less than the tip speed. The slip pulse then begins expanding.

The time evolution of perturbations in normalized pulse width, peak slip rate, and slip is given in Figure 6.
Regardless of the sign of the perturbation in background stress, all the perturbed quantities appear to grow
exponentially with time since the perturbation onset ¢, at which the pulse tip enters the perturbed region,
until either the complete arrest of the pulse (Figure 6a) or the transition to an expanding pulse (Figure 6b, at
(= tyerr)/ T* 2 25). The amplitude of all the normalized variables is initially of the same order of magnitude
as the perturbation in background stress, and all grow at approximately the same exponential rate. As shown
in Figure C1, the amplitude of the perturbation impacts only the initial jump in the perturbed variables but
does not modify the growth rate itself.

The growth rate of slip perturbations following a negative stress perturbation is explored as a function of
reference background stress in Figure 7. Reasonably accurate simulations can only be performed for 7, /7, 2
0.4, because at lower stress levels the reference rupture speeds become too close to the shear wave speed
(see Figure 3c). A clear trend of increasing growth rate with increasing reference shear stress is observed.
This trend is not linear (Figure 7b): The growth rate approaches 0 at low stress and increases dramatically
at high stress. In reference to Figure 3c, the overall trend implies that slow pulses with little net slip arrest
more rapidly than faster ones.

At elevated background stress (7, /7, 2 0.79), the pulse response to positive perturbations is qualitatively
different from that shown in Figures 4c, 4d, and 5b. Figure 8 shows a series of snapshots of shear stress
and slip rate for a pulse propagating under a background stress 7, /7, = 0.9 and perturbed at x = 0 with
a half-sine of width (1/3)L/L" and amplitude Az, /7, = 1073. The tip of the pulse accelerates, and the tail
decelerates and starts propagating in the negative x direction, leaving an expanding region of nonzero slip
rates across the crack line. The pulse-like rupture effectively transitions to a crack-like rupture.

At intermediate background stress (zy,/7, ~ 0.78 for ay,/ay, = 1 and h/hgy,, = 1), a positive stress per-
turbation produces a complex rupture pattern, shown in Figure 9. The slip pulse initially transitions to a
self-similar expanding pulse. At later times, a new crack-like rupture appears near the location where this
transition occurred (Figure 9a). A plot of the shear stress and strength profiles (Figure 9b) reveals that the
secondary nucleation is driven by the combination of a reduced strength in the wake of the pulse (although
offset by strength recovery driven by pore fluid diffusion) and an increased backstress due to the expan-
sion of the pulse. The net slip due to the expanding pulse increases approximately linearly with increasing
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Figure 9. Effect of a positive background stress perturbation (|Az,|/7, = 1073, starting at x = xpm) on a slip pulse propagating under an intermediate initial
background stress 7y, /7 = 0.783. (a) Slip rate contours. Black line delineates the slipping patch (i.e., the V = 0 contour), and gray lines are iso-V contours
logarithmically spaced between V/V" = 0.01 and 10. (b) Shear stress (solid line) and strength (dotted line) profiles at t/T" = 40 (see dotted line in panel a).
Thick black lines mark where slip rate is nonzero, and black dots mark the edges slipping patches.

propagation distance, so that the shear stress around the transition point from steady state to expanding
pulse is expected to increase logarithmically with time, and secondary nucleation ensues.

The process by which secondary nucleation might proceed is illustrated in detail in Figure 10, which shows
(a) the stress profiles and (b) the maximum stress perturbation behind the pulse (as well as the net slip per-
turbation) as a function of time for a simulation with positive stress perturbation and an initial background
stress 7y, /7, = 0.77. Although secondary nucleation was not observed within the time frame of that simula-
tion, a clear progressive increase in stress is observed around the location of the transition from steady state
to expanding pulse (see stress profiles inside the box in Figure 10a). A similar mechanism for the secondary
rupture nucleation in the wake of expanding primary pulse, pulse, or crack, depending on the background
stress level, has been described by Gabriel et al. (2012) for a fault with a velocity-weakening friction. This
increase slows with increasing time and propagation distance (Figure 10b) but does not stabilize. This log-
arithmic increase in stress is expected if the net slip behind the pulse increases linearly with propagation
distance, which seems to be the case here.

In summary, the numerical results presented above indicate that pulse-like ruptures driven by thermal pres-
surization of pore fluids are unstable to infinitesimal perturbations. The growth of slip rate, slip, and pulse
width perturbations is initially exponential and of the same sign as the initial stress perturbation. When that
perturbation is negative, the slip pulse eventually stops and does so abruptly. When the perturbation is posi-
tive, depending on the initial uniform background stress, the slip pulse grows and transitions to a self-similar
expanding pulse (at low stress) or an expanding crack-like rupture (at high stress). Because expanding pulses
lead to an increasing net slip with increasing propagation distance, secondary nucleation is observed at the
location of the perturbation at intermediate background stress.

3. General Stability Criterion

The numerical results clearly indicate that steady state slip pulses driven by thermal pressurization are
unstable. How general is this result? In this section, an approximate equation of motion for dynamic
pulse-like ruptures is established and utilized to determine a general stability criterion for steady state slip
pulses.

3.1. Slip Pulse Elastodynamics
In the elastodynamic equilibrium equation

o0 =1, — %V(x, £+ ¢(x, 0), (15)
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Figure 10. Stress buildup due to the transition to an expanding pulse. Simulation run using 7, /7, = 0.77, and a positive stress perturbation located at x = 0. (a)

Snapshots of stress profiles. Thick lines highlight the slipping patch. Box highlights the stress buildup around the transition point. (b) Evolution of the
maximum stress perturbation behind the pulse and maximum slip perturbation as a function of time.

the stress redistribution functional has a form (Cochard & Rice, 1997)

x—x 05/oxX'xX' .ty .,
poen) = 27 ax// (cs(t—t’)> t—t dedr.

The kernel M(u) assumes a simple form for anti-plane deformation:

M®w) =HA - u?)V1-u?,

where H is the Heaviside function.

(16)

17)

Consider a rupture in a form of a slip pulse of length L(¢) and total accumulated slip (dislocation) b(¢), the
motion of which is specified by the coordinate of its tip, x = &(f), advancing at generally nonuniform speed

v(t) = &(). On spatial scales much larger than L, the pulse is seen as a singular dislocation

Ix =& > L@ 6(x,1) = bE@)HE®) —x)

@(x, 1) = =b(0(x)) Opjra (£(F) — X)

db(e(x))
o —— H(®) —x),

(18)

(19)

where 0(x) is the arrival time of the pulse at the position x (i.e., £(6(x)) = x). Substituting this into (15) and

(16), moving d/0x under the integral in (16) yields after some manipulations (Appendix D)

(%, 1) — 7, = P(x, 1) — —v (D) DO(X)) Opyipac (E(E) — (20)
where
¢(x’ t) = ¢Dirac(x’ t) + ¢H(x’ t)’ (21)
_u " dM@) b(t)dr
Poince D=0 | Tdw a=vp @2)
dr
bu(x, t)———/ dt,x 0 (23)
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with

— &t
n= X0 (24)
c(t—1t)
Terms ¢, and ¢ in the stress transfer functional ¢ = ¢y, + ¢y correspond to the singular (Dirac) and
the nonsingular (step function H) terms in the slip gradient (equation 19), respectively.

Since the region of applicability of “dislocation approximation” (20), |x — £(t)| > L(t), excludes x = &(%), the
singular (6p;.,.) term in (20) is of no consequence and will be dropped in the foregoing, that is,

[x =@ > L) : (1) — 1, = DX, 0). (25)

3.2. Intermediate Field of Pulse
Let us introduce the coordinate frame moving with the dislocation (or the advancing front of the pulse),

X = &) - x.

In the case of a steady (steady state) pulse motion, b= v, =0, one finds that &t = v, /¢, — X /¢ (t — '), and, in
the case of anti-plane slip, (17), one recovers from (20) and (22) Weertman's (1980) solution for a subsonic

dislocation,
Hyf1—V2/c? b

T(X, 1) — 7, = P (X5, b) = X (26)
In the general (nonsteady) case, Weertman's solution (26) with instantaneous values of b(f) and v,(f) gives
the leading order term in the near field of a dislocation (e.g., Eshelby, 1953; Markenscoff, 1980; Pellegrini,
2010). This near field can be defined by distances X that are much smaller than a length scale L, which
characterizes the unsteady motion of the pulse. For instance, if a dislocation accelerates or decelerates over
a time scale T, (e.g., v, /V, or b/b), the associated length scale would be L, = v,T,,,. When considering a
slip pulse, the approximation to a dislocation (equation (20)) only holds at distances much larger than the
pulse length L, so that the near field of a dislocation corresponds to an intermediate field (L < |X| < L)
for a pulse, as long as the pulse “inner” length scale L and the “outer” length scale L, are separable,

L < Lyy,. (27)

Furthermore, as shown by Eshelby (1953) on a particular example of accelerating dislocation motion, and
by Markenscoff (1980), Callias and Markenscoff (1988), and Ni and Markenscoff (2009) in the case of gen-
eral motion &(¢) of a dislocation of invariant strength b(f) = constant, the next order term in the near-field
expansion of a nonuniformly moving dislocation is logarithmically singular. An extension of the results of
Ni and Markenscoff (2009) for the ¢, expansion to the general case with arbitrary time dependencies &(f)
and b(¢) yields (see Appendices E and F for details)

¢Dirac(X’ t) = ¢ss(X; vr(t)1 b(t))

X (28)

L

In

LM 4 bz(t)—vr(t)/ &
Ame.b() dt W

Note that we nondimensionalized X under the logarithm with outer length scale L, but could have used
other similar length for this purpose. This is due to the fact that any such scaling length contributes only to
the high order terms, O(X°), in the expansion. Admittedly, it would be advantageous to include these higher
order terms to improve the approximation provided by this expansion (especially in view of the equation
of motion discussed in the forthcoming). However, the actual expression for the O(X°) correction is very
cumbersome and appears to depend on the history of slip (Callias & Markenscoff, 1988; Ni & Markenscoff,
2008), and, consequently, it is not included in (28).

out

To find the near-field expansion for ¢, (equation (23)), we first write

t
X, 0) = / (0 (x, 1)/ on)dt, (29)
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where

Oy (x, t ! i) db/di’
Py (x, 1) __H dM_(u) / r. (30)
ot 2reg J_o di (t—1)?
with @ defined in (24). Exploiting the similarity between the integrals in expressions for ¢y, (equation (22))
and d¢y /0t (equation (30)) and in view of the ¢p;,. expansion (equation 28), the leading term in the
expansion for d¢y; /ot is given by

I . db
T = d)ss <X’ vr(t)’ dt) . (31)

Integrating, we have

X
n_
L

out

/1 -2 2
u 1 vr(t)/cS@l

Pule) = o7 v.(t) dt ’ (32)

where, once again, the choice of normalizing length scale under the logarithm (L,,,) is, apart from the order
of magnitude considerations, somewhat arbitrary.

Combining (28) and (32), and simplifying, the near-field expansion of the stress perturbation due to a moving
dislocation takes the form

Px, 1) = Py (X5 (D), b(D))

s 1 d [ b(t) ] I
27 v (A = V2 /cHV* dE [ (A =v2(t)/c2)/4

X (33)

n_
L

out

3.3. Equation of Motion of a Moving Dislocation

In view of (27), the stress z(x, ) at intermediate distances from the pulse is approximately given by that of
the steady state dislocation with instantaneous strength b(f), moving, as dictated by the steady state pulse
solution, at v, ~ v, ((b(#)) within the “transient” background stress field, 7}, (b(?)), that is,

L<|X| < Loy @ 70 1) = 7,5(b(1) = ds(X;51,.55(b(2)), B(D)). (34)

This type of approximation of the intermediate field of the unsteady dislocation appears to have been first
suggested by Eshelby (1953, p. 251) when treating the particular example of a constant-strength dislocation
accelerating from rest. Comparing (34) to (25) with (33) leads to an ordinary differential equation describing
the evolution of total slip b(f) accrued in an unsteadily propagating pulse:

H 1 d b L
il sl In|—], 35
2m (1= vZ /)4, dt[(l—Vi/c@l/‘*] H[Lom] (35)

Ty — Tb,ss(b(t)) ==

where v, = v, (b(f)) and L = L (b(?)) are the steady state pulse velocity and width, respectively. In arriving
to the form (35), the slowly space-varying In | X /L. | term in (34) was approximated by its value at distances
of few L away from the trailing edge of the pulse. Equation (35) can be regarded as an “equation of motion”
of an unsteady pulse, since once its solution b = b(t) is known, the corresponding pulse trajectory follows
by integration of d§/dt = v, (b(?)).

In summary, the derived equation of motion relies on separation of spatial scales associated with the slip
development within the pulse (L) and the evolution of the pulse net characteristics (L), respectively, (L <
L) This scale separation allows to approximate unsteady pulse solution at a given instant of time by the
steady state solution (for a steadily propagating pulse) corresponding to the instantaneous value of total
accrued slip b(f), and other net pulse characteristics uniquely defined by the value of b (i.e., v, = v, (b),
L = L(b), etc.). The evolution of the pulse “state variable” b(¢) is specified by the equation of motion (35).
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3.4. Stability of Steady State Pulse

Equation (35) allows to address easily the question of stability of a steady state pulse solution (i.e., a solution
of (35) with db/dt = 0). If the rupture velocity of a steady state pulse monotonically increases with total
slip, dv,/db > 0 and limited by c, (see, e.g., Garagash, 2012, for steady rupture pulses driven by thermal
pressurization of pore fluid, and our Figures 3b and 3c), and in view of L, > L, the right-hand side of (35)
is a positive multiple of db/dt. It then follows from (35) that the sign of db/dt is set by that of 7, — 7}, (b),
and, thus, a steady state solution with b(tf) = b, is stable to small perturbations if and only if the steady
state value of the background stress increases with slip, (dz, 4 /db) ,—, > 0. (Interestingly, a similar stability
condition was cited by Rosakis, 2001, without a proof).

For faults that dynamically weaken with slip, smaller levels of background stress are not inconsistent with
larger required slip (and more pronounced weakening that comes with it) to drive a pulse rupture. We,
therefore, expect the condition

dr,/db <0 (36)

to be satisfied for a number of realistic constitutive laws (such as weakening by thermal pressurization,
as shown in Figure 7b) and thus inherently unstable steady state pulse solutions. Indeed, initially steadily
propagating slip pulses in a number of numerical studies utilizing different models for the fault strength
(e.g., Beeler & Tullis, 1996; Gabriel et al., 2012; Noda et al., 2009; Perrin et al., 1995; Zheng & Rice, 1998)
eventually become unsteady, either growing (accelerating and accruing increasing levels of slip with distance
traveled) or dying (shrinking and decelerating).

3.5. Perturbation Growth Rate
Let us write the equation of motion (35) in a shorthanded form 7, — 7, (b) = p'¥(b) db/dx, where

1 1 d b Lout
YO = e v/ db [(1 - v%/cé)““] ; [ L ] 7

and, as before, v, = v, ((b) and L = Ly(b). Nondimensional function ¥(b) is positive when, for example, the
steady state rupture velocity is increasing with increasing net slip, as in the case of steady state pulses driven
by thermal pressurization. Regardless of the sign of ¥(b), any small perturbation Ab;; = (b — by);,; from the
steady state pulse propagation with b = b, will initially evolve with the propagated distance x as

1 dr,
Ab = Ab,; exp <_M_‘P db“x) . (38)
where ¥ and dr,, s /db are evaluated at the baseline state b = b,. The exponential form (38) is qualita-
tively consistent with the numerical simulation using thermal pressurization as a weakening mechanism
(Figures 6 and 7a).

In the event when the slip perturbation is seeded by a background stress perturbation Az, localized in space
over the dimension Ax, as is the case in our numerical simulations, the corresponding level of equivalent

“initial” slip perturbation Ab;,; (that will persist and evolve according to (38) for x > Ax) can be estimated as

ini
At
Aby; ~ M—TAx, (39)

The perturbation exponential growth rate, given by

vr dTbss
L 40
=N Td (40)

is therefore expected to be independent of the (small) perturbation amplitude. These general observations
are consistent with the numerical simulations, which show a linear scaling between the perturbation in
stress and the resulting slip perturbation, and the independence of the growth rate on the stress perturbation
amplitude (Appendix C and Figure C1).

The steady state solutions presented in section 2 provide the relationships between 7y, , v, , and slip b (see
Figure 3) required to compute a theoretical estimate of the growth rate using equation (40), leaving only the
ratio L., /L as an unconstrained parameter. Using L,,,/L = 10 or a constant L,,/L" = 10 and the steady
state pulse width L = L produces the results shown in Figure 11 (dotted and solid lines, respectively), where
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growth rate

|theory, Loy /L* = 10

the growth rates estimated from numerical simulations are also displayed
®  simulations for comparison. The agreement between theoretical and numerical esti-
o mates with either choice for L, is very satisfactory and illustrates the
applicability of the pulse equation of motion (35). Since the ratio L, /L
only appears in the logarithmic term, the resulting growth rate is not very
sensitive to the specific choice for this unconstrained quantity. It appears
that choosing L, to be several times larger than L produces reasonable
predictions, consistent with the assumption (27).

3.6. Validity of Equation of Motion

The key underlying assumption in our derivation of the approximate
theory, Lout/L = 10 equation of motion for the slip pulse (equation (35)) is that the pulse is
in “quasi steady state,” that is, its characteristics (accrued slip b, length

10 L

Figure 11. Comparison of perturbation growth rates from numerical
simulations (dots) and theoretical estimates based on the slip pulse
equation of motion (solid and dotted lines). The latter are computed using

1
0.6 0.8 1.0

' L, and speed v,) change slowly on the timescale of slip. This assumption

can be translated in terms of propagation distance, since b, L, and v, do
not vary appreciably over propagation distances of the order of the pulse
length L: The quasi steady state approximation is then valid as long as
|d(b/6c)/d(x/L*)| < 1, that is, (u/7,)|db/dx| <« 1. This assumption can

T/ 70

the relationships 7y ¢(b), ;.¢(b) shown in Figure 3 and equation (40), with be validated from the equation of motion itself: indeed, using the notation
either Ly, /L" = 10 and L = L (solid line) or Ly, /L = 10 (dotted line). introduced in equation (37),

@ _ Ty — Tb,ss(b)7 (41)

dx u¥(b)
which is a function of slip b and stress 7, plotted in Figure 12. For elevated background stresses, around
7,/7, = 0.9, the normalized slip gradient (u/7,)(db/dx) remains significantly less than unity. This is also
the case throughout the regime of growing pulses (i.e., when 7, > 7, ). We therefore expect the equation
of motion to provide an adequate description of the pulse dynamics under those conditions. For arresting
pulses, the assumption of quasi steady state becomes invalid as slip decreases, with the magnitude of the slip
gradient rapidly becoming of the order of unity, notably under low background stresses. This can be under-
stood by considering that steady state pulses associated with small slip correspond to elevated background
stresses and low rupture speeds (Figures 3b and 3c): The regime of arresting pulses under very low stresses
Ty, <K Ty, 1S therefore too far from steady state, and the pulse is expected to arrest quickly compared to the
duration of slip.

4. Discussion and Implications

The pulse equation of motion and stability analysis demonstrate that steady state pulses are unstable if, for
example, dzy, /db < 0 and dv,/db > 0 or more generally if the exponential growth rate is positive, which,
in view of (40) and (37), corresponds to

dTb,ss

A/ v /] S <0 (42)

This condition is satisfied for pulses driven by thermal pressurization, and the numerical simulations con-
firm qualitatively and quantitatively this instability. In the light of these results, two key questions arise:
What do steady state pulse solutions tell us about the dynamics of rupture in general? What does the
existence of unstable slip pulses imply for earthquake dynamics and strength of faults?

4.1. Significance of Steady State Pulse Solutions

Steady state slip pulses arise spontaneously in fully dynamic rupture simulations when the nucleation and
background stress conditions are at the transition between arresting and growing ruptures (Gabriel et al.,
2012; Noda et al., 2009; Schmitt et al., 2011). Therefore, the conditions leading to the existence of steady state
solutions coincide with those allowing for the existence of sustained ruptures. In other words, steady state
pulse solutions inform us about the overall “strength” of an interface, in the sense that they provide us with
the critical conditions required for ruptures to propagate beyond their nucleation patch.

Our results complement the framework provided by Zheng and Rice (1998), who determined the critical

background stress level (z,,,,) separating the regime of exclusively pulse-like ruptures under low stress
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1.0

conditions and the regime where both crack and pulse rupture modes

0.5 1

(u/70)(db/dx)

are possible under high stress conditions. Here we show both theoreti-
cally and numerically (for the case of thermal pressurization) that the
pulse mode of rupture exists within the entire range of background
stress (low and high), while the dynamics of the pulse (spontaneous
decay leading to arrest or spontaneous growth leading to either tran-
sition into crack-like rupture or nucleation of a secondary rupture in
the pulse wake) can be extracted from a steady state pulse analysis, like
that conducted by Garagash (2012) and summarized in section 2.1 for
the case of thermal pressurization. Although we do not establish condi-
tions for prevalence of the pulse-like mode for ruptures driven by thermal
pressurization (such as the = threshold of Zheng and Rice (1998)

growing]

arresting

pulse

-1.0 » T Y for velocity-weakening friction case), we suspect that the 7, . thresh-
10 10 10 old in this case would correspond to the minimum level of background
b/éc stress at which the secondary rupture nucleated in the wake of grow-

Figure 12. Scaled slip gradient as a function of slip (normalized by 6,) fora  ing primary pulse is crack-like. Therefore, the solution to the steady state
range of background stresses, computed from the approximate equation of ~ pulse problem associated with a particular constitutive behavior provides

motion (equation (35)), using thermal pressurization-driven steady state a tool to determine the exact conditions (notably in terms of back-

pulse characteristics with h/hgy,, = 1. In the computation of ¥(b)
(equation (37)), a constant L, /L = 10 was used.

ground stress) leading to the existence of sustained ruptures. Our analysis
on the role of unstable slip pulses in controlling the growth of large
scale ruptures is consistent with recent theoretical results from Brener
et al. (2018), who analyzed numerically the stability of slip pulses driven by a nonlinear rate-dependent
friction law. Numerical simulations indicate that such slip pulses are also unstable to small perturba-
tions, and Brener et al. (2018) argue that such instabilities can be viewed as the nucleation process of
large ruptures.

In the case of thermal pressurization, the minimum dynamic strength is 0 and thus there is no lower stress
limit for the existence of dynamic steady state slip pulses. Therefore, faults governed by thermal pressur-
ization have theoretically no strength: Thermal pressurization allows for large enough pulses to propagate
regardless of the initial background stress. However, theoretical slip pulses propagating under very low stress
conditions bear large slip and slip rate and require nucleation conditions characterized by either very high
local stresses or large nucleation region (with modestly elevated stress). The question of the minimum stress
required for ruptures to grow is therefore linked to the nucleation conditions of those ruptures. This was
illustrated by Gabriel et al. (2012) in the context of a slip rate-dependent constitutive law, who showed that
the threshold background stress between arresting and growing pulses (i.e., the steady state pulse regime)
scales with the size of the nucleation patch used in their simulations. The nucleation conditions probably
enforce the selection of a specific characteristic pulse width, stress drop, and slip rate, and the background
stress level outside the nucleation patch selects whether the rupture will become crack-like or an expanding
pulse or decaying pulse, the boundary between the latter two regimes being determined by the steady state
stress for that pulse.

4.2. Complexity of Earthquake Ruptures

Our results show that unstable slip pulses can produce remarkably complex rupture events, even when the
background stress and conditions are uniform (except for an infinitesimal perturbation). Rupture complexity
is thus not systematically linked to complexity or heterogeneity in stress or strength conditions but arises
spontaneously when ruptures propagate as slip pulses.

A notable feature observed for pulses arresting due to negative stress perturbations is that the arrest is abrupt.
Negative perturbations in slip, slip rate, and pulse width grow exponentially over time until the rupture
stops. This is best illustrated by computing the (one-dimensional) moment rate,

L
M) = p / VX, DX, (43)
0

which is shown in Figure 13 for a pulse propagating at 7, /7, = 0.7 and arresting due to a small negative
perturbation. The moment rate is initially constant, corresponding to the steadily propagating pulse solution.
Upon encountering the stress perturbation, moment rate decreases exponentially and drops abruptly to
0. Such rapid variations in moment rate are responsible for the radiation of high frequency waves in the
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far field, and we confirm here that such high frequencies associated

0.8 1

0.6 1

0.4 1

Mo/(uV*L*)

0.2 41, /179 =0.7
apy/apm =1
h/hdyna =1

T

I = Ipert

with sudden rupture arrest can arise without strong stress or strength
heterogeneities on the fault plane. Similar conclusions were established
by Cochard and Madariaga (1994, 1996) and Gabriel et al. (2012) in
simulations using strong velocity weakening friction.

Another key feature associated with the slip pulse instability is the transi-
tion from pulse-like to crack-like rupture due to positive stress perturba-
tions under high uniform background stress (Figures 8 and 9). Here again,
we observe a remarkable complexity that emerges spontaneously in the
absence of any preexisting fault heterogeneities. Above a critical back-
ground stress (here 7, /7, 2 0.79), the slip pulse transitions directly to an
expanding crack. Under low stress conditions, numerical results indicate

0.0
5 10

15 20 25
t/T*

that growing ruptures become expanding pulses. One important conse-
quence of the transition to expanding pulse is that as the pulse further
propagates, the accrued slip grows approximately linearly with propaga-

Figure 13. Normalized moment rate as a function of time for aslip pulse  tjon distance, and therefore we expect a logarithmic stress buildup near

arresting due to a small negative stress perturbation centered at t = fpe;

(Aty /7o = —1073).

the starting point of growth. This is observed in our simulations when the
background shear stress is close to the threshold for the direct transition
into crack-like rupture (see Figures 9 and 10).

What this transition illustrates is that unstable steady state pulses evolve toward the most stable rupture
mode, either self-similar pulse or expanding crack, according to the current background stress level. How-
ever, a peculiarity exhibited by our results is that rupture arrest is also a strong attractor (when perturbations
are negative), so that a nascent slip pulse propagating in an overall high stress regime might arrest on its
own if negative stress perturbations are encountered.

5. Conclusions

We performed numerical simulations and a theoretical analysis that demonstrate that steady state slip pulses
are unstable if the accrued slip (“dislocation”) is a decreasing function of the background stress, that is,
dr,/db < 0. This instability condition is satisfied for slip pulses driven by thermal pressurization of pore
fluids. During instability, slip, slip rate, and pulse width perturbations grow exponentially. If the initial stress
perturbation leading to instability is negative, ruptures eventually arrest in an abrupt manner; conversely, if
the stress perturbation is positive, rupture mode changes and transitions to a growing pulse (at low stress)
or an expanding crack (at high stress). The growth rate of perturbations is predicted quantitatively by an
approximate equation of motion for a dislocation with variable net slip (equation (35)).

The regime of steady state pulse solutions appears naturally in dynamic rupture simulations at the transi-
tion between spontaneously expanding ruptures (growing pulses) and spontaneously arresting ruptures, at
a stress level that depends on the nucleation conditions. Once nucleation conditions are established, the
steady state pulse solution provides a stress limit below which ruptures will spontaneously stop, which is
best considered as the strength of the interface (e.g., Lapusta & Rice, 2003; Noda et al., 2009; Rubinstein
et al., 2004).

The unstable character of steady state slip pulses generates a remarkable complexity of ruptures, includ-
ing abrupt arrest, pulse to crack transitions, and secondary rupture nucleation in the wake of a propagating
pulse, even though stress and material parameters are homogeneous (nonwithstanding an infinitesimal per-
turbation) along the fault. Pulse-like ruptures seem to be the main rupture mode for many crustal faults
(Heaton, 1990), and it is therefore expected that earthquake dynamics along these faults is driven at least
in part by spontaneous instabilities. One key consequence is that abrupt arrest of ruptures may not be the
signature of strong preexisting stress of strength heterogeneities along faults. At this stage, it remains to be
explored how slip pulse instabilities evolve along heterogeneous faults, and further work in this direction
is currently conducted. Preliminary simulations suggest that transient pulses (i.e., nonsteady state) contin-
uously grow or shrink as they cross regions of high and low stress, respectively, their eventual arrest being
dictated by finite amplitude stress perturbations.
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Appendix A: Convolution Kernels for Fault Strength and Temperature
The convolution kernel K is given by (Garagash, 2012; Rice, 2006)
XAR/A+1/4/0)) — Az/(1 + )2
Kz x) = VX R (A1)
r—1
if y # 1, or by the limit of that expression as y — 1 if y = 1. The function .A depends on the spatial
distribution of strain rate across the fault, and for our choice of a Gaussian distribution we have
1
AR) = ——. (A2)
Vrz+1
The pore pressure and temperature evolution on the fault plane (y = 0) can be computed from the strength
evolution as
p0.0)=py + (05— 7 ¢/ f), (A3)
and
tl
0(0,t) = 0O, + —/ V() A < )dt'. (A4)
0 h2 [ (4ay,)
Appendix B: Numerical Methods
B1. Steady State Problem
The method of solution for the steady state pulse is the same as that employed by Platt et al. (2015) in a
more complex case (including thermal decomposition in addition to thermal pressurization) and reviewed
by Viesca and Garagash (2018). For completeness, we provide here a description of the technique in the
simple case of a finite pulse driven by thermal pressurization only.
Normalizing the slip by ., time by T', stresses by z,,, distances by jié./z,, and slip rate by §./T, we rewrite
the governing equations 1 and (8) as
L
fen 1 - dé
X) = + — Vi b —— Bl
O G (B1)
and
- b e ot o emr. o 4
{ZX) =1~ | HE-7 (OVOK(X-OT/L; x) T (B2)
0
where normalized variables are denoted by a tilde, M is the Heaviside function, and y = ap/ay,. In
equation (B2), we changed the integration variable from time to space by noting that f = ¥T/L. The inte-
grals in (B1) and (B2) are further normalized using the transformed space coordinate y = 2%/L — 1, which
results in
1
- . 1 - dy
T0) =%+ — / V() -, (B3)
L J_4 y =y
1 ~
() =1- / H(y = Y7 {OHVOHK((y = Y)T/25 )dy'. (B4)
-1
The condition (3) is similarly rewritten as
/ 1+ydr dy=0. (BS)
The idea now is to approximate the above integrals with Gauss-Chebyshev quadratures (Viesca & Garagash,
2018). Because we expect the slip rate V() to behave as 4/1 + y near y ¥ 1 (i.e., square root behavior of the
slip profile near the rupture tip and tail), we introduce the function v(y) as
V() =v»v1-y2, (B6)
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which becomes the unknown (regular) function we are looking to approximate. Using the approximations
1 n
/ V1= f(Y - ydy~ ijf(Yi = (B7)
-1 =
with
y; =cos (;—:1) ,
= z2j-1
v, =cos(532).
— 2\ _T
w; = - yf)ﬁ’
fori=1,...,n,j=1,...,n+1,and
1 n
1+y
— dy~ ) w , B8
/_1\/1_yf(y)y ; oS () (BS)
with
Yp =COS <ﬂ(zij:1l) ) ’
_ 2z(14yp)
P ol
forp =1, ..., n, the governing equations become a linear system:
n
.. 1 w; .
L= +—) ———v, i=1,...,n+1, (B9)
e nL;ﬂ(yj -Y)’
n
f=1- Y HY, - y)Ev, KT, = y)/2 0w, i=1,...,n+1, (B10)
j=1
n d~
T
0= prd—y|p, (B11)
p=1
where 7, = #(Y)), ¥, = %(y;), and v; = v(y)). In the system above, the normalized stress 7 needs to be
differentiated with respect to y and evaluated at both sets of points y; and Y;. Given the knowledge of the set
of 7;, we use barycentric interpolation and Chebyshev differentiation matrices to compute
7, = L% (B12)
d7 -
d_ylP =D,L;T, (B13)
where L;; is an interpolation matrix (Viesca & Garagash, 2018) and D,; is a Chebyshev differentiation matrix
(Trefethen, 2000), and we sum over repeated indices. In summary, we arrive at the following linear system:
% =% —-K,v,/L, (B14)
£, =1-S,(Ly5v,), (B15)
0=w,D, L%, (B16)
where K;; = w;/(z(Y; —y))) and S;; = w;H(Y; — y))K((Y; — y)T/2; x). Equating (B14) and (B15), we obtain a
total of n + 2 equations, with n + 2 unknowns that arev; j = 1, ..., n), L, and T. This system is solved using
the Newton-Raphson iterative algorithm.
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B2. Expression of Stress Transfer Functional

Consider a spatial domain of length A. Let Dp(t) and Dp(t) denote the spatial discrete Fourier transform
coefficients of the slip and slip rate perturbations, respectively, where indices p correspond to wavenumbers
k, = 2zp/A. The discrete Fourier transform coefficients of the stress transfer functional ¢ are given by
(Perrin et al., 1995)

Hlkp| Hl
S Dp® +

k| rt
» .
3 /0 W(lky,lest)D,(t — tdt', (B17)

Fy(t) = -
where W(u) = /Ow (J1 x) /x) dx, and J; is the Bessel function of the first kind of order 1. An inverse Fourier
transform of F,,(t) provides the value of ¢ in the space-time domain.

B3. Dynamic Problem

The technique employed to solve the elastodynamic problem is essentially following the spectral boundary
integral method of Lapusta et al. (2000), adapted to our specific choice of constitutive behavior (thermal
pressurization with constant friction coefficient). In this method, the dynamic stress transfer functional
is evaluated in the Fourier domain, taking advantage of the efficiency of fast Fourier transform (FFT)
algorithm.

The space domain is discretized into nodes x; = ih, i = 1, ...,N. Time is discretized into steps ¢,, n =
0, ..., N,,with a constant spacing At. We denote with subscripts i and superscripts n the discretized variables
at node (x;, t,).

We first determine a steady state solution for a uniform background stress and a given diffusivity ratio. The
stress and slip rate distributions, 7, V,, are interpolated onto our regular grid at each node (x;, t,,), so that
7.(t,) and Vg (t,) are precomputed and stored a priori. At time £, we initialize the perturbations in slip

(Aé,), slip rate (AV)), stress (Az;), and strength (Az;) with zeros at all nodes.

Let us consider that all variables are known at a given time step ¢,,, including the entire slip rate perturbation
history (and its Fourier coefficients, for use in the spectral boundary integral algorithm). The computation
of variables at time step ¢,,,; = t, + At is conducted as follows:

1. Make a first estimate of the slip perturbation assuming a slip rate perturbation equal to that at time step ¢,,:
AsY = As + AVAL. (B18)
2. Estimate the perturbation in dissipation rate (denoted A(zV)) for the interval [¢,.¢,,,] as

AV = AVIAT + SAVE, + AV AT

(B19)

+%mﬂ + AHHAVY,

S8,i sS,1

and compute the perturbation in strength as

n
Atl = Y AGV)PR, - b+ AL/2; AL (B20)
k=1

which corresponds to a midpoint approximation of the integral in (14). The computation of (B20) requires
the storage of the full history in A(zV).

3. Compute the Fourier coefficients D7 and D; of the first estimates of slip and slip rate perturbation profiles
at time step ¢, ,,, where subscripts p indicate wavenumber indices. This operation is performed using the
FFT algorithm. Then estimate the stress transfer functional in the Fourier domain as (see equation (B17))

% ‘M|kP| * v n—k 1k
Fy=—>(-Dy+ D Wik At |, (B21)
k=1

where WI’J‘ = W(lk,lcsty) (see section B2). Using an inverse FFT, compute an estimate ¢ of the stress
transfer functional.
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Figure C1. Time evolution of the slip perturbation for a range of amplitudes for the background stress perturbation.
The initial background stress is 7y, /7, = 0.7, and the sign of the perturbation is negative.

4. Compute the total strength 7', = 7;; + Az{, and the total stress 7, ; that would be applied if slip rate
was 0, given by
U
Tstuck,i = 7'-ss,i + ATb(xi) + ¢,* + Evss,i' (B22)
S
Slip rate is nonzero where 7', > 7y, ;- At those nodes, assign Az7 = Azf; and compute the slip rate
perturbation as

Aty(x) + ¢} — A‘rg‘l.
A‘/;}- = El
n/(2c)

Where 7}, < gy j» 8SSIgN AT = Ty — Tosy aDd AV =~V

5. Repeat steps 1 to 4 using (AV;" + AV")/2 and (Arf*,i + Arf’fi) /2 instead of AV" and Arf'fi, respectively. The
convolutions in equations B20 and (B21), which are the most computationally intensive steps, are not
recomputed entirely but simply updated because only the last term has changed. The resulting slip, slip
rate, stress, and strength perturbations are the final predictions at the next time step A&i"“, AV{‘“, Arf’fi“,

n+1 3
and Az, respectively.

(B23)

Appendix C: Perturbation Amplitude

Figure C1 shows the time evolution of slip perturbations following negative perturbations in background
stress of 107, 1073, and 1072 in amplitude. In all simulations the reference background stress is 7, /7, = 0.7
and the diffusivity ratio is ayy/ay, = 1. The growth of the slip perturbation is exponential, and the growth
rate does not depend on the amplitude of the stress perturbation. The initial jump in normalized slip (and
other normalized variables; see Figure 6) is directly proportional to the amplitude of the stress perturbation.

Appendix D: Expression for ¢ (x, t)

The contribution ¢y, to the stress-transfer functional ¢ (equation (16)) from the second term in the expres-
sion for the slip gradient (equation (19)) can be written, after moving d/dx under the integral and substituting
dx' = (do(x')/dx')~'dd, in the following form:

o Y e T (x=EO) db
2 2me, /_oo (t—1')? [OOM <cs(t—t’)> a0 (DL

where M (1) = dM/du. Changing the order of integration in the above double integral

t v t t
/ dt’/ d0=/ dG/ dr’, (D2)
— —o0 —o0 4
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and carrying out the integral in ¢, one finds a single-integral expression for ¢ (x, £). This expression, after
changing the integration variable symbol from 6 for ¢, is given in the main text (equation (23) with 24).

Appendix E: Deduction of Expression (28) for ¢, ... (x, t) Based on the Work of Ni
and Markenscoff (2009)

Equation (28) can be established by accounting for the time dependence of slip b(f) in the derivation of
the results of Ni and Markenscoff (2009; their equation (5.18)), who only considered dislocations with con-
stant slip b. In practice, our equation (28) results from carrying out the time derivative of b(t) from Ni and
Markenscoff's equation (3.15) to obtain a more general form of their equation (3.16) and then equating their
equation (5.16) to the modified equation (3.16).

It appears that Ni and Markenscoff (2009) and other references of Markenscoff and coworkers give a dif-
ferent sign (minus) in front of the logarithmic term compared to the result used here in (28). A negative
sign in front of the logarithmic term is inconsistent with Eshelby's 1953 example (uniform acceleration),
although one should be cautioned that there is a typographical error in the definition of s, used to evalu-
ate the stress expansion (his equation (15)) in Eshelby's paper. It should read s, = |x, — £(t)|/c instead of
Sy = V12 — [x — £(1)]? given directly under his equation (15). This definition of s, has to be corrected in order
to evaluate the logarithmic term in the stress expansion correctly. Markenscoft's negative sign in front of the
logarithmic term is also inconsistent with examples of direct numerical evaluation of ¢p;,,. for prescribed
dislocation evolution functions &(¢) and b(f) (computations performed using Mathematica). Furthermore,
we explicitly derive the In term in the case of constant v, and b = b(t) below (Appendix F), which supports
the sign used here. On the basis of the arguments above, we conclude that there is a typographical sign error
in the work of Markenscoff and coworkers.

Appendix F: Alternative Derivation of ¢, .(x, ) for Particular Case of a Steady
Motion of Dislocation of Variable Strength b = b(¢)

Introducing the coordinate X moving with the crack tip X = &(f) — x and using the following notation
At=t—{ and A& = &) — &), we rewrite ;.. as

u /°° dM (@) b(t — At)dAt
o diu ’

F1
2me, At? (F1)

¢Dirac(x’ t) =-

with

X Aé

+ . F2
c At At (F2)

u=-

The integral in (F1) can be decomposed in that over At within and outside a ¢, window. In the former, the
dynamic quantities (dislocation and rupture velocity) can be approximated using their current rates, that is,

~b_i AS s €
bt-An~mb—bAt = mE-ZAr (A<, (F3)

The part of the integral (F1) for At > ¢, is bounded by O(b/t,).

Thus, we focus on the integral for At < ¢, with expectation that it provides the singular part of the near-field
(X — 0) of ¢pjrac- Furthermore, let us restrict the consideration to steady dislocation motion & = 0, which
simplifies the variable & dependence on At to the following

1 X
a=L (v - X), F4
. Cq (vr At) (F4)

where we have renamed & = v,.

With the above, and changing integration variable to i, that is, At = At(i1), we have

g:;g:lar)(X) - _ H /ue _L <L — £> d—A_tdu (FS)
i 2reg Jy m Ar? At/ du
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and the “lower” bound of integration corresponds to minimum value of At given by At, = —X/(c, — &) for
which the integrand is nonzero, that is, fi(At;) = 1, while the “upper” bound &1, = #(t,). Explicit integration,
expanding in series in small X and retaining the singular (1/X and In | X|) terms, leads to

_ Hyf1—v2/c? .
¢g;:iular)(X) __ - s )2( + zﬂc Vr/Cs bln |X| (F6)
7 7
Sa/1—v/c2
The first in the above corresponds to the steady dislocation with constant strength, while the second is the
correction for variable strength.
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