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Stationary martingale solution for the 2D stochastic

Gross-Pitaevskii equation

By

Anne de Bouard∗, Arnaud Debussche∗∗ and Reika Fukuizumi∗∗∗

Abstract

In this short report we give a proof of the existence of a stationary solution to the Gross-

Pitaevskii equation in 2d driven by a space-time white noise.

§ 1. Introduction

In this short report we give a proof of the existence of a stationary solution to the

following Gross-Pitaevskii equation in 2d driven by a space-time white noise:

(1.1) dX = (γ1 + iγ2)(HX − |X|2X)dt+
√

2γ1dW, t > 0, x ∈ R2,

where H = ∆ − |x|2, γ1 > 0, and γ2 ∈ R. The unknown function X is a complex

valued random field on a probability space (Ω,F ,P) endowed with a standard filtration

(Ft)t≥0. This equation is used as a model for Bose-Einstein condensates in the presence

of temperature effects. There are some studies in the physics literature using this model

[1, 6, 7, 14]. We are interested in this equation from a mathematical point of view,

and we have studied the 1d case in [2] in particular the properties of the statistical

equilibrium.
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As is the case for the stochastic quantization equations [4], the use of renormaliza-

tion is necessary in order to give a meaning to the solutions of (1.1), as the Gaussian

measure generated by the linear equation is only supported in W−s,q, with s > 0, q ≥ 2,

and sq > 2, where for 1 ≤ p ≤ +∞, σ ∈ R,

Wσ,p(R2) = {v ∈ S ′(R2), |v|Wσ,p(R2) := |(−H)σ/2v|Lp(R2) < +∞},

denote the Sobolev space associated with the operator H.

Renormalization procedures, using Wick products, have been by now widely used

in the context of singular stochastic partial differential equations, in particular for

parabolic equations based on gradient flows (see for example [4, 13] for the 2d case).

The complex Ginzburg-Landau equation driven by space-time white noise, i.e. (1.1)

without the harmonic potential, posed on the three-dimensional torus, was studied in

[8] and for the two-dimensional torus in [10, 12]. The main difference in our case is the

presence of the harmonic potential |x|2.

The proof in this report will not be published anywhere, nore in [3] where the

existence of strong global solution for (1.1), i.e., much stronger result is established. In

fact, the proof of this report was our first try for ensuring the existence of a solution

to (1.1) for any dissipation parameter γ1: indeed, if γ1 is sufficiently large we may

use simply as in the purely parabolic case [13] an Lp energy estimate to globalize the

solution. The small γ1 case was later solved by using ideas inspired by the bootstrap

arguments used in [10] (although the proof in [10] does not directly applies to the present

case), and the proof for any γ1 is written in [3]. However, we think it is interesting to

present this first proof in this report, with some precisions about the dependence of

estimates of stationary solutions on the dissipation parameters.

§ 2. notation and main result

In what follows, we will use the following notation: Let {hk}k∈N2 be the orthonor-

mal basis of L2(R2,R), consisting of eigenfunctions of −H with corresponding eigenval-

ues {λ2
k}k∈N2 , i.e. −Hhk = λ2

khk, λ
2
k = 2|k| + 2. We take {hk, ihk}k∈N2 as a complete

orthonormal system in L2(R2,C), and we may write the cylindrical Wiener process in

(1.1) as

(2.1) W (t, x) =
∑
k∈N2

(βk,R(t) + iβk,I(t))hk(x).

Here, (βk,R(t))t≥0 and (βk,I(t))t≥0 are sequences of independent real-valued Brown-

ian motions on the stochastic basis (Ω,F ,P, (Ft)t≥0). The notation E stands for the

expectation with respect to P.
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We will use an approximation by finite dimensional objects. To verify the con-

vergence properties of a function series of the form u =
∑

k∈N2 ckhk, we define, for

any N ∈ N fixed, for any p ∈ [1,∞], and s ∈ R, a smooth projection operator

SN : L2(R2,C) → EC
N := span{hk}|k|≤N by

(2.2) SN

[ ∑
k∈N2

ckhk

]
:=
∑
k∈N2

χ
[ λ2

k

λ2
N

]
ckhk = χ

[−H

λ2
N

][ ∑
k∈N2

ckhk

]
,

where χ ≥ 0 is a cut-off function such that χ ∈ C∞
0 (−1, 1), χ = 1 on [− 1

2 ,
1
2 ]. Note that

here and in what follows, we denote by λN the value λ(N,0), for simplicity. The operator

SN , which is self-adjoint and commutes with H, may be extended by duality to any

Sobolev space Ws,2(R2;C), with s ∈ R, and thus by Sobolev embeddings, to any space

Ws,p(R2;C), with p ≥ 1. A simple modification of Theorem 1.1 of [9] implies that SN

is a bounded operator from Lp to Lp, uniformly in N , for any p ∈ [1,∞]. We denote

the usual spectral projector by

ΠN

[ ∑
k∈N2

ckhk

]
:=

∑
k∈N2,|k|≤N

ckhk,

which is uniformly bounded only in L2.

Let us recall known facts before mentioning precisely our results. Writing the

solution of (1.1) as X = u+ Zγ1,γ2
∞ with

(2.3) Zγ1,γ2
∞ (t) =

√
2γ1

∫ t

−∞
e(t−τ)(γ1+iγ2)HdW (τ),

which is the stationary solution for the linear stochastic equation

(2.4) dZ = (γ1 + iγ2)HZdt+
√
2γ1dW,

we find out the following random partial differential equation for u:

(2.5) ∂tu = (γ1+iγ2)(Hu−|u+Zγ1,γ2
∞ |2(u+Zγ1,γ2

∞ )), u(0) = u0 := X(0)−Zγ1,γ2
∞ (0).

We are therefore required to solve this random partial differential equation. However,

using standard arguments, it is not difficult to see that the best regularity we may

expect for Zγ1,γ2
∞ is almost surely : Zγ1,γ2

∞ ∈ W−s,q(R2) for s > 0, q ≥ 2, sq > 2 as

follows.

Lemma 2.1. Fix any T > 0. Let γ1 > 0, γ2 ∈ R, s > 0, q ≥ 2, sq > 2 and

0 < α < 1
2 [(s −

2
q ) ∧ 1]. The stationary solution Zγ1,γ2

∞ of (2.4) has a modification in

Cα([0, T ],W−s,q). Moreover, there exists a positive constant CT such that

E

[
sup

t∈[0,T ]

|Zγ1,γ2
∞ (t)|W−s,q

]
≤ CT .
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Thus, to give a sense to the nonlinearity in (2.5), we need a renormalization and

we will consider in place the renormalized equation of (2.5) :

(2.6)

∂tu = (γ1 + iγ2)(Hu− : |u+ Zγ1,γ2
∞ |2(u+ Zγ1,γ2

∞ ) :), u(0) = u0 := X(0)− Zγ1,γ2
∞ (0),

where : : in the nonlinear part, using the notation ZR,∞ = Re (Zγ1,γ2
∞ ), ZI,∞ =

Im (Zγ1,γ2
∞ ), uR = Reu, and uI = Imu, means

(2.7) : |u+ Zγ1,γ2
∞ |2(u+ Zγ1,γ2

∞ ) := F
(
u, (: Zl

∞ :)1≤l≤3

)
= F0 + F1 + F2 + F3

with F0 = |u|2u, and

F1 =Z∞|u|2 + 2ZR,∞uRu+ 2ZI,∞uIu,

F2 = : Z2
R,∞ : (3uR + iuI)+ : Z2

I,∞ : (uR + 3iuI) + 2 : ZR,∞ZI,∞ : (uI + iuR),

F3 = : Z3
R,∞ : + i : Z3

I,∞ : + : ZR,∞Z2
I,∞ : + i : Z2

R,∞ZI,∞ : .

Here, for any k, l ∈ N, the Wick products : (ZR,∞)k(ZI,∞)l : are defined as follows.

Recall that the Hermite polynomials Hn(x), n ∈ N are defined by

(2.8) Hn(x) =
(−1)n√

n!
e

x2

2
dn

dxn
(e−

x2

2 ), n ≥ 1

and H0(x) = 1.

The notation : (SNz)n : (x) for n ∈ N, N ∈ N, x ∈ R2, with a real-valued centered

Gaussian white noise z, means

: (SNz)n : (x) = ρN (x)n
√
n!Hn

[
1

ρN (x)
SNz(x)

]
, x ∈ R2

with

ρN (x) =

[∑
k∈N2

χ2

(
λ2
k

λ2
N

)
1

λ2
k

(hk(x))
2

] 1
2

.

It is known (see [2]) that the law L(Zγ1,γ2
∞ ) equals the complex Gaussian measure

µ = NC(0, 2(−H)−1).

Proposition 2.2. ([3]) For any k, l ∈ N, the sequence {: (SNZR,∞)k :: (SNZI,∞)l :

}N∈N is a Cauchy sequence in Lq(Ω,W−s,q(R2)), for q > 2, s > 0 with qs > 2.

Moreover, defining then, for any k, l ∈ N, for any fixed t,

: (ZR,∞)k(ZI,∞)l : := lim
N→∞

: (SNZR,∞)k :: (SNZI,∞)l :, in Lq(Ω,W−s,q(R2)),

where s > 0, q > 2 and sq > 2, there exists a constant Ms,q,k,l such that

(2.9) E
[
| : (ZR,∞)k(ZI,∞)l : |qW−s,q

]
≤ Ms,q,k,l.
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Remark that higher order moments may also be estimated thanks to Nelson for-

mula: Let s > 0, m > q > 2 and sq > 2. Then there is a constant Ms,q,k,l,m such

that

(2.10) E
[
| : (ZR,∞)k(ZI,∞)l : |mW−s,q

]
≤ Ms,q,k,l,m.

Note that if we consider the equation (2.6) in terms of X, then

(2.11) dX = (γ1 + iγ2)(HX− : |X|2X :)dt+
√

2γ1dW, t > 0, x ∈ R2.

In [3], we constructed a measure ρ as a weak limit of the family of finite dimensional

Gibbs measure of the form :

dρ̃N (y) = ΓNe−H̃N (SNy)dy, y ∈ EC
N ,

where Γ−1
N =

∫
e−H̃N (SNy)dy, and

H̃N (y) =
1

2
|∇y|2L2 +

1

2
|xy|2L2 +

∫
R2

[
1

4
|y(x)|4 − 2ρ2N (x)|y(x)|2 + 2ρ4N (x)

]
dx.

Note that

H̃N (y) =
1

2
|∇y|2L2 +

1

2
|xy|2L2 +

1

4

∫
R2

: |y(x)|4 : dx,

and ∇yH̃N (y) = −Hy+ : |y|2y :.

Proposition 2.3. ([3]) The family of finite dimensional Gibbs measures (ρ̃N )N

is tight in W−s,q for any s > 0, q ≥ 2 and sq > 2.

Note that ρ̃N does not depend on γ1 or γ2. It is an invariant measure for the case

of γ1 = 0 and γ2 ̸= 0 or for the case of γ1 > 0 and γ2 = 0, for the case of γ1 > 0 and

γ2 ̸= 0 to the finite dimensional equation:

(2.12)

dX = (γ1+iγ2)(HX−SN (: |SNX|2SNX :))dt+
√

2γ1ΠNdW, t > 0, x ∈ R2, X(0) ∈ EC
N .

The global existence of the solution XN of this finite dimensional equation is ensured

by the standard fixed point methods, and an energy estimate as in [2] (see also (2.16)

below). Remark that the invariant measure ρ̃N is unique if γ1 > 0 and γ2 = 0. Eq.(2.12)

gives the Galerkin approximation of X satisfying (2.11).

Finally we deduce the following main result for the equation (2.11):
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Theorem 2.4. Let γ1 > 0 and γ2 ∈ R, and let 0 < s < 1, q > 2 such that sq > 2.

Then there exists a stationary martingale solution X of (2.11) having trajectories in

C(R+,W−s,q), and L(X(t)) = ρ for all t ∈ R.

The proof of Theorem 2.4 will be given in Section 3.

The tightness of the family of measures (ρ̃N )N in Proposition 2.3 was proved in [3]

considering the coupled evolution on EC
N given by

(2.13)


du

dt
= (γ1 + iγ2)

[
Hu− SN

(
: |SN (u+ Z)|2SN (u+ Z) :

)]
dZ = (γ1 + iγ2)HZdt+

√
2γ1ΠNdW,

one may easily prove, using e.g. similar estimates as in the proof of Proposition 2.5

below, together with the Gaussianity of Z, and a Krylov-Bogolyubov argument, that

(2.13) has an invariant measure νN on EC
N × EC

N . Moreover, by uniqueness of the

invariant measure of (2.12) in case of γ2 = 0, we necessarily have for any bounded

continuous function φ on EC
N :∫

EC
N

φ(x)ρ̃N (dx) =

∫ ∫
EC

N×EC
N

φ(u+ z)νN (du, dz).

Proposition 2.5. Let γ1 > 0 and γ2 ∈ R. Let (uN , ZN ) ∈ C(R+;E
C
N × EC

N ) be

a stationary solution of (2.13). Then, for any m > 0, there is a constant Cm,γ1,γ2
> 0

independent of t and N , such that

(2.14) E(|(−H)
1

2muN |2mL2 ) ≤ Cm,γ1,γ2
.

Remark.

(1) The constant Cm,γ1,γ2 in the RHS does not depend on γ1 when γ2 = 0, and if

γ2 ̸= 0, then Cm,γ1,γ2
depends on the ratio |γ2|

γ1
. Let s with 0 < s < 1 and q > 2

such that sq > 2. Using this remark, applying Proposition 2.5 with m = 1 and

γ2 = 0, we deduce that for some positive constant C not depending on N, γ1, and

for any t ≥ 0,

E
(
|uN (t)|2W−s,q

)
≲ E

(
|uN (t)|2Lq

)
≲ E

(
|(−H)

1
2uN |2L2

)
≲ C,

where we have used the embedding W1,2 ⊂ Lq, for any q < +∞. Thus,∫
W−s,q

|x|2W−s,q ρ̃N (dx) =

∫∫
(W−s,q)2

|u+ z|2W−s,qνN (du, dz)

≤ 2E
(
|uN (t)|2W−s,q + |ZN (t)|2W−s,q

)
,
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and the right hand side above is bounded indepently of N , γ1 and t, since the law

of ZN converges to a Gaussian measure µ (which is independent of γ1) on W−s,q.

We see thus that the tightness is independent of the parameters γ1, γ2, which is

consistent with the fact that ρ̃N is independent of γ1 and γ2.

(2) Unfortunately, the bound (2.14) does not provide higher moment bounds on the

measures ρ̃N , preventing us to obtain ρ-a.s. initial data global existence of solution

by the method in [5].

For the proof of Proposition 2.5, we will use the following interpolation estimates:

Let α ≥ 0.

|fg|Wα,q ≤ C(|f |Lq1 |g|Wα,q̄1 + |f |Wα,q2 |g|Lq̄2 ),(2.15)

where 1 < q < ∞, q1, q2 ∈ (1,∞], q̄1, q̄2 ∈ [1,∞) with 1
q = 1

q1
+ 1

q̄1
= 1

q2
+ 1

q̄2
.

Proof of Proposition 2.5. Taking the L2-inner product of the first equation in (2.13)

with uN yields

1

2

d

dt
|uN (t)|2L2 + γ1|(−H)

1
2uN (t)|2L2 + γ1|SNuN (t)|4L4 = −Re(γ1 + iγ2)

∫
R2

[F1(SNuN , SNZN )

+F2(SNuN , SNZN ) + F3(SNZN )]SNuN (t)dx.(2.16)

We first estimate the term containing F3 in the right hand side above. Thanks to

Proposition 2.2, taking 0 < s < 1 and q > 2 such that sq > 2, we may bound∣∣∣∣∫
R2

F3(SNZN )SNuNdx

∣∣∣∣ ≲ |F3(SNZN )|W−s,q |SNuN |Ws,q′

with 1
q + 1

q′ = 1. Interpolating then Ws,q′between Lr and W1,2, with 1
q′ =

s
2 + 1−s

r , we

get

|SNuN |Ws,q′ ≲ |(−H)
1
2SNuN |sL2 |SNuN |1−s

Lr .

On the other hand, noticing that r ∈ (1, 2), we have for any v ∈ W1,2:∫
|x|≥1

|v(x)|rdx≤

[∫
|x|≥1

|x|2|v(x)|2dx

] r
2
[∫

|x|≥1

|x|−
2r

2−r dx

] 2−r
2r

≲ |(−H)
1
2 v|rL2 ,

so that |v|Lr ≲ |(−H)
1
2 v|L2 . It follows that∣∣∣∣∫

R2

F3(SNZN )SNuNdx

∣∣∣∣≲ |F3(SNZN )|W−s,q |(−H)
1
2SNuN |L2

≤ 4(γ1 + |γ2|)
γ1

|F3(SNZN )|2W−s,q

+
γ1

4(γ1 + |γ2|)
|(−H)

1
2SNuN |2L2 .(2.17)
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Next, we consider the term containing F2 in the right hand side of (2.16). First,

by (2.7) and (2.15),∣∣∣∣∫
R2

F2(SNuN , SNZN )SNuNdx

∣∣∣∣≲ 2∑
l=0

| : SNZl
N,RSNZ2−l

N,I : |W−s,q |(SNuN )2|Ws,q′

≲
2∑

l=0

| : SNZl
N,RZ

2−l
N,I : |W−s,q |SNuN |L4 |SNuN |Ws,p

with 1
q′ =

1
4 + 1

p . Note that p ∈ (1, 2) and we may use the same procedure as before to

obtain

|SNuN |Ws,p ≲ |(−H)
1
2SNuN |L2 ,

so that ∣∣∣∣∫
R2

F2(SNuN , SNZN )SNuN

∣∣∣∣
≤ 1

2

(
4(γ1 + |γ2|)

γ1

)3 2∑
l=0

| : SNZl
N,RSNZ2−l

N,I : |4W−s,q +
γ1

2(γ1 + |γ2|)
|SNuN |4L4(2.18)

+
γ1

4(γ1 + |γ2|)
|(−H)

1
2SNuN |2L2 .

We finally turn to the term containing F1 in the right hand side of (2.16). We

easily get, thanks again to (2.15),∣∣∣∣∫
R2

F1(SNuN , SNZN )SNuNdx

∣∣∣∣≲ |SNZN |W−s,q |SNuN |2L4 |SNuN |Ws,r

where r > 2 is such that 1
q′ =

1
2 + 1

r . Let m > 2 with 1
r = s

2 + 1−s
m , so that

|SNuN |Ws,r ≲ |(−H)
1
2SNuN |sL2 |SNuN |1−s

Lm .

If m > 4, we interpolate Lm between L4 and L2m, then use the Sobolev embedding

W1,2 ⊂ L2m. If 2 < m ≤ 4, we interpolate Lm between L2 and L4, then use W1,2 ⊂ L2.

In both cases we obtain, using in addition the Poincaré inequality for (−H):

|SNuN |Ws,r ≲ |(−H)
1
2SNuN |αL2 |SNuN |1−α

L4

for some constant α ∈ (0, 1). We deduce that∣∣∣∣∫
R2

F1(SNuN , SNZN )SNuN

∣∣∣∣
≲ |SNZN |W−s,q |SNuN |3−α

L4 |(−H)
1
2SNuN |αL2

≤ 2−
3−α
1−α

(
4(γ1 + |γ2|)

γ1

) 1
2−α (α+

2(3−α)
1−α )

|SNZN |
4

1−α

W−s,q

+
γ1

2(γ1 + |γ2|)

[
|SNuN |4L4 +

1

2
|(−H)

1
2SNuN |2L2

]
,(2.19)
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by Young inequality.

Gathering (2.16)–(2.19), and noticing that |(−H)
1
2SNuN |L2 ≤ |(−H)

1
2uN |L2 , leads

to

d

dt
|uN (t)|2L2 +

γ1
2
|(−H)

1
2uN (t)|2L2 ≲C0

3∑
k+l=1

| : SNZl
N,RSNZk

N,I : |mk,l

W−s,q ,

with

C0 ≤ γ1

(
γ1

4(γ1 + |γ2|)

)−κ

for some integers mk,l and κ = κα > 0.

Now, let m > 0. We multiply by |uN (t)|2m−2
L2 both sides of the above inequality to

get

1

m

d

dt
|uN (t)|2mL2 +

γ1
2
|(−H)

1
2uN (t)|2L2 |uN (t)|2m−2

L2 ≲C0|uN (t)|2m−2
L2

3∑
k+l=1

| : SNZl
N,RSNZk

N,I : |mk,l

W−s,q .

Applying the interpolation inequality

|(−H)
1

2muN |L2 ≤ Cm|(−H)
1
2uN |

1
m

L2 |uN |
m−1
m

L2

to the second term in the left hand side, and using Young inequality in the right hand

side, we obtain

1

m

d

dt
|uN (t)|2mL2 +

γ1
2C2m

m

|(−H)
1

2muN (t)|2mL2 ≲C0ε|uN (t)|2mL2 + C0Cε

3∑
k+l=1

| : SNZl
N,RSNZk

N,I : |m
′
k,l

W−s,q ,

for any ε > 0 and constants Cε > 0 and m′
k,l > 0. We choose C0ε =

γ1λ
2
1

4C2m
m

after using

Poincaré inequality so that the first term of the right hand side is absorbed in the left

hand side,

1

m

d

dt
|uN (t)|2mL2 +

γ1
4C2m

m

|(−H)
1

2muN (t)|2mL2 ≲C0Cε

3∑
k+l=1

| : SNZl
N,RSNZk

N,I : |m
′
k,l

W−s,q .

Integrating in time, taking expectations on both sides and using the stationarity of uN

and of the Wick products, together with (2.10), yields

E
(
|(−H)

1
2muN |2mL2

)
≲m

(
γ1

4(γ1 + |γ2|)

)−κ′ 3∑
k+l=1

Ms,q,k,l,m′
k,l
,

for some κ′ = κ′
α > 0 and the conclusion.



32 Anne de Bouard, Arnaud Debussche and Reika Fukuizumi

§ 3. Proof of Theorem 2.4

We are in position to construct a stationary solution of (2.11) for any values of

γ1 > 0 and γ2 ∈ R. We have seen in the previous section that the system (2.13)

has a stationary solution (uN , ZN ) where ZN = ΠNZγ1,γ2
∞ . Moreover, it is clear that

(uN , Zγ1,γ2
∞ ) is then a stationary solution of

(3.1)


du

dt
= (γ1 + iγ2)

[
Hu− SN

(
: |SN (u+ Z)|2SN (u+ Z) :

)]
dZ = (γ1 + iγ2)HZdt+

√
2γ1dW.

In this section we will denote Zγ1,γ2
∞ by Z for the sake of simplicity. Using Proposi-

tion 2.5, we first prove that the the law of this sequence {(uN , Z)}N∈N is tight in an

appropriate space to construct a martingale solution.

We will use the following lemma (see [3] for the proof).

Lemma 3.1. Let 1 < p < q < +∞, 0 < s < β < 2/p, and m ∈ N\{0}. Suppose

β − s − (m − 1)( 2p − β) > 0, and s +m( 2p − β) < 2(1 − 1
q ). Then, there is a constant

C > 0 such that

|hfm|
W−(s+m( 2

p
−β)),q ≤ C|h|W−s,q |f |mWβ,p .

Lemma 3.2. Let γ1 > 0, γ2 ∈ R, 0 < s < 1, and q > 2 such that qs > 2. Let

also 0 < δ < 1
6 , and let p > max{q, 24, 2

δ }. The sequence (uN , Z)N∈N is bounded in

L2m(Ω, L2m(0, T,H
1
m )) ∩ L

4
3 (Ω,W1, 43 (0, T,W−2,p))× Cα([0, T ],W−s,q ∩W−δ,p)

for any m > 0, and α > 0 satisfying α < min( s2 − 1
q ,

δ
2 − 1

p , 1).

Proof. It suffices to check the bound in L
4
3 (Ω,W1, 43 (0, T,W−2,p)), since the other

bounds follow from Proposition 2.5, the stationarity of uN , and Lemma 2.1 for Z. We

write the equation for uN ;

uN (t) = uN (0) + (γ1 + iγ2)

∫ t

0

HuN (σ)dσ

−(γ1 + iγ2)

∫ t

0

SN (: |SN (uN + ZN )|2SN (uN + ZN ) :)(σ)dσ.

In the right hand side, the first term is constant and clearly bounded in L
4
3 (Ω,W1, 43 (0, T,W−2,p))

by Proposition 2.5 and Hölder inequality. For the second term, we have

E

(∣∣∣∣∫ ·

0

HuN (σ)dσ

∣∣∣∣ 43
W1, 4

3 (0,T,W−2,p)

)
≤CTE

(
|HuN |

4
3

L
4
3 (0,T,W−2,p)

)
≤CTE

(
|uN |2L2(0,T,W1,2)

)
,
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where we have used Sobolev embedding and Hölder inequality in the last inequality. To

estimate the nonlinear terms, we decompose as in (2.7),

SN (: |SN (uN + Z)|2SN (uN + Z) :) = SN (F0(SNuN ) + F1(SNuN , SNZ)

+F2(SNuN , SNZ) + F3(SNZ)).

The terms in F3 are simply estimated thanks to Proposition 2.2 as follows.

E

(∣∣∣∣∫ ·

0

SNF3(s)ds

∣∣∣∣ 43
W1, 4

3 (0,T,W−2,p)

)
≤ CTE(|SNF3|

4
3

L
4
3 (0,T,W−s,p)

) ≤ CTM
4
3
s,p.

For the term F0, using Sobolev embeddings L
4
3 ⊂ W−2,p and W 1

2 ,2 ⊂ L4, we obtain

E(|SNF0|
4
3

L
4
3 (0,T,W−2,p)

) =

∫ T

0

E(||SNuN |2SNuN |
4
3

W−2,p)ds

≤ CTE(||SNuN |2SNuN |
4
3

L
4
3
) = CTE(|SNuN |4L4) ≤ CTE(|uN |4

W
1
2
,2
),

which is bounded independently of N by Proposition 2.5. To estimate the F1-terms, we

fix s′ > 0 such that s′ < 1
12 and s′p > 2, and apply Lemma 3.1 to get

E
(
|SNF1|

4
3

L
4
3 (0,T,W−2,p)

)
≤ CTE

(
|F1|

4
3

W−(s′+14
24

),p

)
≤CTE

(
|SNZ|

4
3

W−s′,p |SNuN |
8
3

W
3
8
,3

)
.

Using then the Sobolev embedding W 17
24 ,2 ⊂ W 3

8 ,3 and Hölder inequality, the right hand

side is majorized by

CTE(|SNZ|24W−s′,p)
1
18 E(|SNuN |

48
17

W
17
24

,2
)

17
18 ,

and is thus bounded independently of N thanks to Propositions 2.2 and 2.5. Finally,

for the terms in F2, we apply again Lemma 3.1:

E
(
|SNF2|

4
3

L
4
3 (0,T,W−2,p)

)
≤ TE

(
|F2|

4
3

W−(s′+1
6
),p

)
≤CTE(

∑
k+l=2

| : (SNZR)
k(SNZI)

l : |
4
3

W−s′,p |SNuN |
4
3

W
1
3
,4
)

≤CT

∑
k+l=2

E(| : (SNZR)
k(SNZI)

l : |3W−s′,p)
4
9 E(|uN |

12
5

W
5
6
,2
)

5
9 ,

which is bounded again by Propositions 2.2 and 2.5. Note that in the last inequality we

have used the Sobolev embedding W 5
6 ,2 ⊂ W 1

3 ,4 and Hölder inequality.

Remark. We note that by Lemma 3.2, (uN )N∈N is bounded in

L3(Ω, L3(0, T,W 2
3 ,2)) ∩ L

4
3 (Ω,W1, 43 (0, T,W−2,p))

⊂ L
4
3 (Ω, L3(0, T,W 2

3 ,2)) ∩ L
4
3 (Ω,W 1

12 ,3(0, T,W−2,p)),
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and L3(0, T,W 2
3 ,2)∩W 1

12 ,3(0, T,W−2,p) is compactly embedded in L3(0, T, L4
x). On the

other hand, (uN )N∈N is also bounded in

L2(Ω, L2(0, T,W1,2)) ∩ L
4
3 (Ω,W1, 43 (0, T,W−2,p))

⊂ L
4
3 (Ω, L2(0, T,W1,2) ∩W 1

12 ,2(0, T,W−2,p)),

and L2(0, T,W1,2) ∩ W 1
12 ,2(0, T,W−2,p) is compactly embedded in L2(0, T,Ws,2) for

any s with 0 ≤ s < 1. In particular, since W 5
6 ,2 ⊂ W 1

3 ,4, the embedding is compact

in L2(0, T,W 1
3 ,4). Finally, we note that W1, 43 (0, T,W−2,p) is compactly embedded in

C([0, T ],W−3,p).

Proof of Theorem 2.4. Let α > 0 satisfy the condition in Lemma 3.2. We deduce

from Lemma 3.2, Remark 3 and Markov inequality that the sequence {(uN , Z)N∈N} is

tight in

(3.2) L3(0, T, L4) ∩ L2(0, T,W 5
6 ,2) ∩ C([0, T ],W−3,p)× Cβ([0, T ],W−s′,q ∩W−δ,p)

for any β < α and s′ > s. Fix such β and s′. By Prokhorov Theorem, there exists

a subsequence, still denoted {(uN , Z)N∈N} which converges in law to a measure ν on

the space (3.2). By Skorokhod Theorem, there exist (Ω̃, F̃ , P̃), (ũN , Z̃N )N∈N and (ũ, Z̃)

taking values in the same space (3.2), satisfying L((uN , Z)) = L((ũN , Z̃N )) for any

N ∈ N, L((ũ, Z̃)) = ν, and ũN converges to ũ, P̃-a.s. in L3(0, T, L4) ∩ L2(0, T,W 5
6 ,2) ∩

C([0, T ],W−3,p), Z̃N converges to Z̃, P̃-a.s. in Cβ([0, T ],W−s′,q ∩ W−δ,p). Moreover,

by diagonal extraction, it can be assumed that this holds for any T > 0. It is easily

seen that (ũ, Z̃) is a stationary process thanks to the convergence of (ũN , Z̃N ) to (ũ, Z̃)

in C([0, T ],W−3,p) × Cβ([0, T ],W−s′,q). This convergence also implies L(Z) = L(Z̃).

Note also that if we extract from the subsequence we took for the weak convergence ρ̃N

to ρ, we have that for each t ∈ R, L(X̃(t)) = L(ũ(t) + Z̃(t)) = ρ.

Write then,

ũN (t)− ũN (0) = (γ1 + iγ2)

∫ t

0

HũN (σ)dσ

−(γ1 + iγ2)

∫ t

0

SN (: |SN (ũN + Z̃N )|2SN (ũN + Z̃N ) :)(σ)dσ.(3.3)

It remains us to show that the right hand side of (3.3) converges, up to a subsequence,

to

(γ1 + iγ2)

∫ t

0

Hũ(σ)dσ − (γ1 + iγ2)

∫ t

0

: |(ũ+ Z̃)|2(ũ+ Z̃) : (σ)dσ,

P̃-a.s. in C([0, T ],W−2,p). This can be checked as follows. First, the convergence of the

linear term follows from the convergence of ũN to ũ in L2(0, T,W 5
6 ,2) ⊂ L1(0, T,W−2,p).
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In order to prove the convergence of nonlinear terms, we again decompose the nonlinear

terms into the four terms F0, . . . , F3 as in (2.7) and estimate them separately, i.e.,

sup
t∈[0,T ]

∣∣∣∣∫ t

0

: |ũ+ Z̃|2(ũ+ Z̃) : (σ)dσ −
∫ t

0

SN (: |SN (ũN + Z̃N )|2SN (ũN + Z̃N ) :)(σ)dσ

∣∣∣∣
W−2,p

≤
3∑

k=0

∫ T

0

|Fk(ũ, Z̃)− SNFk(SN ũN , SN Z̃N )|W−2,pdσ

= IN0 + IN1 + IN2 + IN3 .

We begin with the convergence of IN0 .

IN0 =

∫ T

0

|SN (|SN ũN |2SN ũN )− |ũ|2ũ|W−2,pdσ

≤
∫ T

0

||SN ũN |2SN ũN − |ũ|2ũ|
L

4
3
dσ +

∫ T

0

|(SN − I)|ũ|2ũ|
L

4
3
dσ.

Since ũN converges to ũ a.s. in L3(0, T, L4
x), by dominated convergence, the same holds

for SN ũN , thus |SN ũN |2SN ũN converges to |ũ|2ũ a.s. in L
4
3 (0, T, L

4
3 ). Similarly, the

second term converges to zero by dominated convergence, therefore, IN0 converges to 0.

Next, we use Lemma 3.1 to obtain

IN1 ≤
∫ T

0

|F1(ũ, Z̃)− SNF1(SN ũN , SN Z̃N )|
W−(δ+1

3
),pdσ

≲ |Z̃ − SN Z̃N |C([0,T ],W−δ,p)

(
|SN ũN |2

L2(0,T,W
1
3
,4)

+ |ũ|2
L2(0,T,W

1
3
,4)

)
+
(
|SN Z̃N |C([0,T ],W−δ,p) + |Z̃|C([0,T ],W−δ,p)

)(
|SN ũN |

L2(0,T,W
1
3
,4)

+ |ũ|
L2(0,T,W

1
3
,4)

)
×|SN ũN − ũ|

L2(0,T,W
1
3
,4)
.

Hence, IN1 converges to 0 since SN Z̃N converges to Z̃ in C([0, T ],W−δ,p) and, by Remark

3, SN ũN converges to ũ in L2(0, T,W 1
3 ,4). Concerning F2, we proceed as for F1, and

we use Lemma 3.1 in the same way;

IN2 ≲
∑

k+l=2

(| : Z̃k
RZ̃

l
I : |L2(0,T,W−δ,p) + |SN (: (SN Z̃N,R)

k(SN Z̃N,I)
l :)|L2(0,T,W−δ,p))

×|SN ũN − ũ|
L2(0,T,W

1
3
,4)

+
∑

k+l=2

| : Z̃k
RZ̃

l
I : −SN (: (SN Z̃N,R)

k(SN Z̃N,I)
l :)|L2(0,T,W−δ,p)

×
(
|SN ũN |

L2(0,T,W
1
3
,4)

+ |ũ|
L2(0,T,W

1
3
,4)

)
.

Note that Proposition 2.2 implies the convergence to zero of the second term in Lp(Ω),

thus extracting a subsequence, P̃-a.s. The first term goes to 0, too since, again, SN ũN
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converges to ũ in L2(0, T,W 1
3 ,4). The term IN3 can be treated similarly. We deduce

from this convergence result that ũ satisfies

ũ(t)− ũ(0) = (γ1 + iγ2)

∫ t

0

Hũ(σ)dσ − (γ1 + iγ2)

∫ t

0

: |(ũ+ Z̃)|2(ũ+ Z̃) :)(σ)dσ.

Since it is clear that Z̃ satisfies the second equation in (3.1), we easily deduce that

X̃ = ũ + Z̃ is a stationary solution of (2.11) on (Ω̃, F̃ , P̃). Moreover, it is not difficult

to prove that ũ is continuous with values in W−s,q, which ends the proof of Theorem

2.4.
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1969-2001.

[9] A. Jensen and S. Nakamura, “Lp-mapping properties of functions of Schrödinger operators

and their applications to scattering theory,” J. Math. Soc.Japan. 47 (1995) 253-273.

[10] T. Matsuda, “Global well-posedness of the two-dimensional stochastic complex Ginzburg-

Landau equation with cubic nonlinearity,” arXiv: 2003.01569.

[11] M. E. Taylor, “Tools for PDEs,” Pseudodifferential Operators, Paradifferential Operators,

and Layer Potentials, Math. Surveys Monogr., vol. 81, American Mathematical Society,

Providence, RI (2000)

[12] W. J. Trenberth “Global well-posedness for the two-dimensional stochastic complex

Ginzburg-Landau equation” arXiv:1911.09246v1.

[13] P. Tsatsoulis and H. Weber, “Spectral gap for the stochastic quantization equation on

the 2-dimensional torus,” Ann. l’IHP. Probabilités et statistiques 54 (2018) 1204-1249.

[14] C.N. Weiler et al. “Spontaneous vortices in the formation of Bose-Einstein condensates,”

Nature 455 (2008) nature 07334.


