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Remark on blow-up of the threshold solutions to the

nonlinear Schrödinger equation with the repulsive

Dirac delta potential

By

Takahisa Inui ∗

Abstract

We consider the focusing L2-supercritical nonlinear Schrödinger equation with the repul-

sive Dirac delta potential. The global dynamics below the ground state standing waves was

obtained by Ikeda and the author [18]. Recently, Ardila and the author [3] gave a sufficient

condition for the threshold solutions to scatter. In the present paper, we are interested in a

sufficient condition for the threshold solutions to blow up.

§ 1. Introduction

§ 1.1. Motivation

The following type equation appears in a wide variety of physical models with a

point defect on the line (see [15] and references therein).

i∂tu+ ∂2
xu+ γδ0u+ κ|u|p−1u = 0, (t, x) ∈ R× R,(1.1)

where γ ∈ R, δ0 denotes the Dirac delta with mass at the origin, κ = ±1, and p > 1.

The operator Hγ := −∂2
x − γδ0 is defined by

D(Hγ) := {f ∈ H1(R) ∩H2(R \ {0}) : ∂xf(0+)− ∂xf(0−) = −γf(0)},
Hγf := −∂2

xf, f ∈ D(Hγ).

Received October 13, 2021. Revised August 10, 2022.
2020 Mathematics Subject Classification(s): 35Q55
Key Words: nonlinear Schrödinger equation, delta potential, global dynamics, threshold, blow-up
Supported by JSPS, JP18K13444

∗Primary: Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka,
Osaka 560-0043, Japan. e-mail: inui@math.sci.osaka-u.ac.jp
Secondary: Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2,
Canada. e-mail: inui@math.ubc.ca

© 2024 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



112 T. Inui

Then, it is known that the operator Hγ is self-adjoint on L2(R) (see [2]) and thus the

Schrödinger evolution group e−itHγ is well defined. The operator Hγ satisfies σp(Hγ) =

∅ if γ ≤ 0 and σp(Hγ) = {−γ2

4 } if γ > 0. Thus, the potential is called repulsive if γ < 0

and attractive if γ > 0.

When γ = 0, which means the equation (1.1) is just the nonlinear Schrödinger

equation without linear potential, the equation is invariant under the scaling: uα(t, x) :=

α
2

p−1u(α2t, αx) for α > 0. That is, uα is a solution if and only if u is a solution. This

scaling does not change Ḣsc(R)-norm where sc = 1/2 − 2/(p − 1). Indeed, we have

∥α
2

p−1u(0, α·)∥Ḣsc = ∥u(0, ·)∥Ḣsc . If p > 5, then sc > 0 and thus the condition is called

L2-supercritical (or mass-supercritical). On the other hand, it is called L2-subcritical if

p < 5 and L2-critical if p = 5. Even if γ ̸= 0, we use these notions.

The equation (1.1) has a Hamiltonian form: i∂tu = H′(u), whereH(u) := 1
2∥∂xu∥

2
L2−

γ
2 |u(0)|

2 − κ
p+1∥u∥

p+1
Lp+1 . If κ = −1, then the nonlinearity of the Hamiltonian H is posi-

tive and thus its case is called defocusing. On the other hand, if κ = 1, it is a negative

term and thus it is called focusing.

In the present paper, we are interested in the global behavior of the solutions to

the focusing L2-supercritical nonlinear Schrödinger equation with the repulsive Dirac

delta potential: i∂tu+ ∂2
xu+ γδ0u+ |u|p−1u = 0, (t, x) ∈ R× R,

u(0, x) = u0(x), x ∈ R,
(δNLS)

where γ < 0 and p > 5.

It is known (see [14, Section 2], [7, Theorem 3.7.1]) that the equation (δNLS) is

locally well-posed in H1(R) and it conserves the following quantities:

M(u(t)) :=
1

2
∥u(t)∥2L2 ,(Mass)

Eγ(u(t)) :=
1

2
∥∂xu(t)∥2L2 −

γ

2
|u(t, 0)|2 − 1

p+ 1
∥u(t)∥p+1

Lp+1 .(Energy)

In the previous paper [18], we investigated the global dynamics of the solutions

below the standing wave solutions. Before stating the previous result, let us recall the

definitions of scattering and blow-up. Let u be a solution to (δNLS) on the maximal

existence time interval (−T−, T+).

Definition 1.1 (scattering). We say that the solution u to (δNLS) scatters if

and only if T± = ∞ and there exist u± ∈ H1(R) such that ∥u(t) − e−itHγu±∥H1 →
0 as t → ±∞.

Remark 1. By Mizutani [21], if the solution u scatters, then the solution goes

to a free solution. That is, there exist v± ∈ H1(R) such that ∥u(t) − eit∂
2
xv±∥H1 →

0 as t → ±∞.



Blow-up of threshold solutions to NLS with delta potential 113

Definition 1.2 (blow-up). We say that the solution u to (δNLS) blows up in

positive time (resp. negative time) if and only if T+ < ∞ (resp. T− < ∞).

From the view point of the global dynamics, the ground state solution of the non-

linear Schrödinger equation without potential plays an important role. It is denoted by

Q and defined by

Q(x) :=

{
(p+ 1)ω

2
sech2

(
(p− 1)

√
ω

2
|x|

)} 1
p−1

,

which is a unique positive solution of

(1.2) −∂2
xQ+Q = Qp, x ∈ R.

Indeed, Ikeda and the author [18] classified the solutions whose mass-energy is

below the ground state solution Q. To state it, we define some notations:

P (ϕ) = Pγ(ϕ) := ∥∂xϕ∥2L2 −
γ

2
|ϕ(0)|2 − p− 1

2(p+ 1)
∥ϕ∥p+1

Lp+1 ,

and

N+ := {f ∈ H1(R) : Eγ(f)M(f)σ < E0(Q)M(Q)σ, P (f) ≥ 0},
N− := {f ∈ H1(R) : Eγ(f)M(f)σ < E0(Q)M(Q)σ, P (f) < 0},

where σ := (p+ 3)/(p− 5).

Theorem (Ikeda–Inui [18]). Let u be a solution to (δNLS) on (−T−, T+) with

the initial data u0 ∈ H1(R).

1. If the initial data u0 belongs to N+, then the solution u scatters.

2. If the initial data u0 belongs to N−, then one of the following four cases holds.

(a) The solution u blows up in both time directions.

(b) The solution u blows up in a positive time, and u is global toward negative time

and lim supt→−∞ ∥∂xu(t)∥L2 = ∞ holds.

(c) The solution u blows up in a negative time, and u is global toward positive time

and lim supt→∞ ∥∂xu(t)∥L2 = ∞ holds.

(d) The solution u is global in both time directions and lim supt→±∞ ∥∂xu(t)∥L2 =

∞ holds.

Remark 2. In the case γ = 0, the classification below the ground state is obtained

by [16, 10, 17, 13, 1]. They used the argument by Kenig and Merle [19]. See also [8, 9, 4]

for new proofs.
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Remark 3. It is worth mentioning that Q is not the ground state of (δNLS)

when γ < 0. However, E0(Q)M(Q)σ is the threshold to classify the global behavior

into scattering and blow-up (or grow-up). In the radial setting, we can determine the

global behavior of the solutions below the ground state solutions of (δNLS). See [18].

Remark 4. Banica and Visciglia [5] considered the defocusing L2-supercritical

NLS with repulsive delta potential. In the defocusing case, the solution is uniformly

bounded and there is no ground state and indeed they proved all the solutions scatter.

Remark 5. If the initial data u0 belongs toN− and satisfies
∫
R x2|u0(x)|2dx < ∞,

then the solution blows up in both time directions. This follows from the standard virial

argument.

Since eitQ is not a solution of (δNLS), we expect that the threshold solution, i.e

the solution satisfying Eγ(u)M(u)σ < E0(Q)M(Q)σ, scatters or blows up. Recently,

Ardila and the author [3] showed the following scattering result.

Theorem (Ardila–Inui [3]). Let u0 satisfy Eγ(u0)M(u0)
σ = E0(Q)M(Q)σ and

P (u0) ≥ 0. Then the solution u with the initial data u0 scatters.

Remark 6. The proof of this theorem is based on the idea originated in Duyck-

aerts, Landoulsi, and Roudenko [11], which is applied to NLS with a repulsive potential

by Miao, Murphy, and Zheng [22]. They proved threshold scattering for NLS with gen-

eral potential and NLS with inverse square potential on 3d. In [3], we combine their

result and Campos, Farah, and Roudenko [6], in which they considered global dynamics

of threshold solutions for NLS without potential on general dimensions including 1d.

(see also Duyckaerts and Roudenko [12] for the original work.)

§ 1.2. Main result

In the present paper, we are interested in the case of P (u0) < 0. Next theorem is

the main result of this paper.

Theorem 1.3. Let u0 satisfy
∫
R x2|u0(x)|2dx < ∞, Eγ(u0)M(u0)

σ = E0(Q)M(Q)σ,

and P (u0) < 0. Then the solution u with the initial data u0 blows up in both time di-

rections.

Our proof is based on blow-up argument by Duyckaerts and Roudenko [12] and the

modulation obtained by [3]. The strategy is as follows. Suppose that u is global in the

positive time direction. First, we prove that the solution blows up in the negative time

direction by the finite variance and a virial argument (see Corollary 2.8). Moreover,

then, µ(u(t)) := ∥∂xQ∥2L2 − (∥∂xu(t)∥2L2 − γ|u(t, 0)|2) satisfies
∫∞
t

µ(u(s))ds ≲ e−ct (see
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Proposition 2.7). This ensures a modulation argument. The modulation argument is

obtained in [3]. In the present paper, we additionally show that the time derivative

of the parameter λ is controlled by µ(u(t)) (see Proposition 2.6). This gives us the

convergence of the translation parameter y. However, this derives a contradiction to

the fact that e−2|y(t)|/|y(t)|2 converges to zero (see (2.2)).

Remark 7. In Theorem 1.3, we only consider the solution with finite variance. In

general, it is still an open problem whether the solutions with infinite variance blow up

in finite time. Also, in our setting, it is an open problem that the threshold solutions

with infinite variance blow up or grow up.

Notation. We denote A ≲ B or B ≳ A by A ≤ CB for some positive constant

C. A ∼ B means A ≲ B ≲ A.

We often write Lr(R) to denote the Banach space of functions f : R → C with the

norm

∥f∥Lr =

(∫
R
|f(x)|rdx

) 1
r

.

We also use

⟨f, g⟩ := ℜ
∫
R
f(x)g(x)dx.

We denote the norm derived from H
1/2
γ by

∥f∥2H := ∥H
1
2
γ f∥2L2 = ∥∂xf∥2L2 − γ|f(0)|2.

We define the difference between Q and the solution by

µ(t) = µ(u(t)) := ∥∂xQ∥2L2 − (∥∂xu(t)∥2L2 − γ|u(t, 0)|2).

§ 2. Proof

§ 2.1. Variational setting

We recall the variational properties of the ground state ofQ. We have the Gagliardo–

Nirenberg inequality

∥f∥p+1
Lp+1 ≤ CGN∥∂xf∥

p−1
2

L2 ∥f∥
p+3
2

L2

for f ∈ H1(R), where the optimal constant CGN is attained by Q and thus

C−1
GN =

∥∂xQ∥
p−1
2

L2 ∥Q∥
p+3
2

L2

∥Q∥p+1
Lp+1

.
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By the Pohozaev identity, we have

E0(Q) =
p− 5

2(p+ 3)
∥Q∥2L2 =

p− 5

2(p− 1)
∥∂xQ∥2L2 =

p− 5

4(p+ 1)
∥Q∥p+1

Lp+1 .

It follows from the Gagliardo–Nirenberg inequality that

∥f∥p+1
Lp+1 < CGN

(
∥∂xf∥2L2 − γ|f(0)|2

) p−1
4 ∥f∥

p+3
2

L2(2.1)

for f ∈ H1(R) \ {0}. We emphasize that the equality in (2.1) does not hold since the

constant is not attained.

Lemma 2.1. Let f satisfy Eγ(f)M(f)σ = E0(Q)M(Q)σ, where we recall σ =

(p+ 3)/(p− 5). We have P (f) < 0 if and only if ∥f∥H∥f∥σL2 > ∥∂xQ∥L2∥Q∥σL2 .

Proof. See [3, Lemma 2.6].

Lemma 2.2. If the initial data u0 satisfies Eγ(u0)M(u0)
σ = E0(Q)M(Q)σ and

P (u0) < 0, then the solution u satisfies P (u(t)) < 0 for all existence time.

Proof. We give a proof for reader’s convenience though the proof is well known.

Suppose that there exists a time t0 such that P (u(t0)) ≥ 0. Then, we have

∥u(t0)∥H∥u(t0)∥σL2 ≤ ∥∂xQ∥L2∥Q∥σL2 .

By the continuity of the solution, we may take a time t1 such that ∥u(t1)∥H∥u(t1)∥σL2 =

∥∂xQ∥L2∥Q∥σL2 . The inequality (2.1) implies that

Eγ(f)M(f)σ >
1

2
∥f∥2H∥f∥2σL2 −

CGN

p+ 1
∥f∥

p−1
2

H ∥f∥
p+3
2 +2σ

L2

for any f ∈ H1(R)\{0}. Setting F (a) := 1
2a

2− CGN

p+1 a
p−1
2 , the right hand side is denoted

by F (∥u∥H∥u∥σL2). It holds that F is increasing on (0, a1) and decreasing on (a1,∞),

where a1 = ∥∂xQ∥L2∥Q∥σL2 (see e.g. [13, Lemma 3.1]). We have

F (a1) = F (∥∂xQ∥L2∥Q∥σL2) =
p− 5

2(p− 1)
(∥∂xQ∥L2∥Q∥σL2)2 = E0(Q)M(Q)σ

Therefore, we obtain Eγ(u(t1))M(u(t1))
σ > F (∥u(t1)∥H∥u(t1)∥σL2) = E0(Q)M(Q)σ.

This is a contradiction since the energy and mass are conserved.

§ 2.2. Lemmas

To prove Theorem 1.3, it is enough to show the following proposition.
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Proposition 2.3. Let u0 satisfy
∫
R x2|u0(x)|2dx < ∞, M(u0) = M(Q), Eγ(u0) =

E0(Q), and P (u0) < 0. Then the solution u with the initial data u0 blows up in both

time directions.

Proof of Theorem 1.3 under Proposition 2.3. Suppose that Proposition 2.3 is true

for any γ < 0. Consider u0 ∈ H1(R) such that

Eγ(u0)M(u0)
σ = E0(Q)M(Q)σ and Pγ(u0) < 0.

We set γ∗ = αγ, u0,α(x) = α
2

(p−1)u0(αx) and uα(t, x) = α
2

p−1u(α2t, αx), where α
p−5
p−1 =

M(u0)
M(Q) . Notice that

Eγ∗(u0,α) = α
p+3
p−1Eγ(u0) and Pγ∗(u0,α) = α

p+3
p−1Pγ(u0).

Thus, since α
p+3
p−1 = (M(u0)

M(Q) )
σ, we obtain

Eγ∗(u0,α) = E0(Q), M(u0,α) = M(Q) and Pγ∗(u0,α) < 0.

Then the function uα satisfies

i∂tuα + ∂2
xuα + γ∗δ0uα + |uα|p−1uα = 0.

Thus, uα blow up in both time directions by Proposition 2.3. This means that u also

blows up in both time directions.

The following inequality is one type of the inequality of Claim 5.4 in [12].

Lemma 2.4. Let φ ∈ C1(R;R) and f ∈ H1(R). Assume that
∫
R |∂xφ|2|f |dx <

∞, M(f) = M(Q), and Eγ(f) = E0(Q). Then we have the following inequality.∣∣∣∣ℑ ∫
R
∂xφ(x)∂xf(x)f(x)dx

∣∣∣∣ ≲ |µ(f)|2
∫
R
|∂xφ(x)|2|f(x)|2dx.

Proof. Let λ ∈ R. By (2.1), we have

∥f∥p+1
Lp+1 = ∥eiλφf∥p+1

Lp+1 ≤ CGN∥f∥
p+3
2

L2 (∥(eiλφf)′∥2L2 − γ|f(0)|2)
p−1
4 .

Now, we have

∥(eiλφf)′∥2L2 = λ2∥φ′f∥2L2 + 2λℑ
∫
R
φ′f ′fdx+ ∥f ′∥2L2 .

Therefore, we obtain

∥f∥p+1
Lp+1 ≤ CGN∥f∥

p+3
2

L2

(
λ2∥φ′f∥2L2 + 2λℑ

∫
R
φ′f ′fdx+ ∥f ′∥2L2 − γ|f(0)|2

) p−1
4

.
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This means that

λ2∥φ′f∥2L2 + 2λℑ
∫
R
φ′f ′fdx+ ∥f ′∥2L2 − γ|f(0)|2 −

 ∥f∥p+1
Lp+1

CGN∥f∥
p+3
2

L2

 4
p−1

≥ 0

This is the inequality related to the quadratic equation for λ. Thus, we obtain

∣∣∣∣ℑ ∫
R
φ′f ′fdx

∣∣∣∣2 ≤ ∥φ′f∥2L2

∥f ′∥2L2 − γ|f(0)|2 −

 ∥f∥p+1
Lp+1

CGN∥f∥
p+3
2

L2

 4
p−1

 .

We calculate

∥f∥2H −

 ∥f∥p+1
Lp+1

CGN∥f∥
p+3
2

L2

 4
p−1

= ∥∂xQ∥2L2 − µ(f)−

 ∥f∥p+1
Lp+1

CGN∥f∥
p+3
2

L2

 4
p−1

.

Now, it holds from Eγ(f) = E0(Q) that ∥f∥p+1
Lp+1 = ∥Q∥p+1

Lp+1 − p+1
2 µ(f) and thus we

obtain

∥∂xQ∥2L2 − µ(f)−

 ∥f∥p+1
Lp+1

CGN∥f∥
p+3
2

L2

 4
p−1

= ∥∂xQ∥2L2 − µ(f)−
(
∥Q∥p+1

Lp+1 −
p+ 1

2
µ(f)

) 4
p−1

(CGN∥Q∥
p+3
2

L2 )−
4

p−1 .

Then, by the Taylor expansion and

(CGN∥Q∥
p+3
2

L2 )−
4

p−1 =
p− 1

2(p+ 1)
∥Q∥

(p−5)(p+1)
p−1

Lp+1 ,

we obtain

∥∂xQ∥2L2 − µ(f)−
(
∥Q∥p+1

Lp+1 −
p+ 1

2
µ(f)

) 4
p−1

(CGN∥Q∥
p+3
2

L2 )−
4

p−1

≤ ∥∂xQ∥2L2 − µ(f)−
(
∥Q∥

4(p+1)
p−1

Lp+1 − 2(p+ 1)

p− 1
∥Q∥−

(p−5)(p+1)
p−1

Lp+1 µ(f)− C|µ(f)|2
)
(CGN∥Q∥

p+3
2

L2 )−
4

p−1

= C ′|µ(f)|2

Combining these estimates, we get

∣∣∣∣ℑ∫
R
φ′f ′fdx

∣∣∣∣2 ≤ ∥φ′f∥2L2

∥f∥2H −

 ∥f∥p+1
Lp+1

CGN∥f∥
p+3
2

L2

 4
p−1


≲ ∥φ′f∥2L2 |µ(f)|2

This completes the proof.
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Corollary 2.5. Under the assumption of Lemma 2.4 with P (f) < 0, we have∣∣∣∣ℑ∫
R
∂xφ(x)∂xf(x)f(x)dx

∣∣∣∣ ≲ |P (f)|2
∫
R
|∂xφ(x)|2|f(x)|2dx.

Proof. We have

P (f) =
p− 1

2
Eγ(f)−

p− 5

4
∥f∥2H +

γ

2
|f(0)|2

≤ p− 1

2
E0(Q)− p− 5

4
∥f∥2H

=
p− 5

4
∥∂xQ∥2L2 −

p− 5

4
∥f∥2H

=
p− 5

4
µ(f).

Since we have ∥f∥2H∥f∥2σL2 > ∥∂xQ∥2L2∥Q∥2σL2 by Lemma 2.1 and M(f) = M(Q), we

have ∥f∥2H > ∥∂xQ∥2L2 , i.e. µ(f) < 0. Therefore, it holds that |µ(f)|2 ≲ |P (f)|2. This

completes the proof.

§ 2.3. Modulation

Let u be a solution and global in positive time direction. For small µ0 > 0, we

define the set

I0 = {t ∈ [0,∞) : |µ(t)| < µ0} ,

where we recall µ(t) = µ(u(t)) for a solution.

The following proposition is essentially obtained in the previous paper [3, Proposi-

tion 4.1].

Proposition 2.6. There exist µ0 > 0 sufficiently small and functions θ : I0 → R
and y : I0 → R such that we can write

u(t, x) = eiθ(t){g(t) +Q(x− y(t))} for all t ∈ I0,

and the following holds:

(2.2)
e−2|y(t)|

|y(t)|2
+ |y′(t)|+ (−γ|u(t, 0)|2) 1

2 ≲ |µ(t)| ∼ ∥g(t)∥H1 for all t ∈ I0.

Moreover, letting g = λQ(· − y) + h, λ := ⟨g1, Qp(· − y)⟩/⟨Q,Qp⟩, and g = g1 + ig2, we

have

|λ′(t)| ≲ |µ(t)|.
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Proof. We only give the last statement |λ′(t)| ≲ |µ(t)|. The others are proved in

[3]. We have h(t) = e−iθ(t){u(t)− eiθ(t)(1 + λ(t))Q(· − y(t))}. It holds that

i∂th+ ∂2
xh = θ′h+ e−iθ(−γδ0u− |u|p−1u) + θ′(1 + λ)Q(· − y)

(2.3)

− iλ′Q(· − y) + i(1 + λ)y′∂xQ(· − y) + (1 + λ)(−Q(· − y) +Qp(· − y)).

from the equation (δNLS) and (1.2). Letting N (f) := |f |p−1f , we have the following

nonlinear estimate.

|N (u)− (1 + λ)N (Q(· − y))|
= |N (g +Q(· − y))−N (Q(· − y))|+ |λ|N (Q(· − y))

≲ |Q(· − y)|p−1|g|+ |g|p + |λ||Q(· − y)|p

We have e−iθδ0u = δ0(g +Qp(· − y)) and the orthogonality properties (see the proof of

Lemma 4.7 in [3]):

⟨h1, ∂xQ(· − y)⟩ = ⟨h1, Q
p(· − y)⟩ = ⟨h2, Q(· − y)⟩ = 0,

where h = h1+ ih2. By the orthogonality, we also have ⟨∂th1, Q
p(·−y)⟩ = 0. Therefore,

multiplying (2.3) with Qp(· − y) and taking integral and imaginary part, we obtain

|λ′| ≲
∫
R
∂2
xh2Q

p(· − y)dx− γ|g2(t, 0)Qp(−y)|

+

∫
R
|Q(· − y)|2p−1|g|dx+

∫
R
|g|p−1|Qp(· − y)|dx+

∫
R
|λ||Q2p(· − y)|dx

≲ ∥h∥H1 + ∥g∥H1 + |λ|
≲ |µ(t)|,

where we used ∥g∥H1 ∼ ∥h∥H1 ∼ |λ| ∼ |µ(t)| (see the proof of [3, Lemma 4.7]). This

shows that |λ′(t)| ≲ |µ(t)|.

§ 2.4. Proof

Proposition 2.7. We assume the same assumption in Proposition 2.3. Suppose

that u is global in positive time direction. Then we have

ℑ
∫
R
x∂xu(t, x)u(t, x)dx > 0

for all existence time t. Moreover, there exists c > 0 such that∫ ∞

t

|µ(s)|ds ≲ e−ct

for any t > 0.
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Proof. Let J(t) =
∫
R x2|u(t, x)|2dx. Then, it holds by [20, Proposition 10] that

J ′(t) = c1ℑ
∫
R
x∂xuudx, J ′′(t) = c2P (u(t)).

We will first show that J ′(t) > 0 for all existence time. If not, there exists t1 such

that J ′(t1) ≤ 0. Since J ′′ < 0 for all existence time, we have

J ′(t2)− J ′(t1) =

∫ t2

t1

J ′′(s)ds = c2

∫ t2

t1

P (u(s))ds < 0

for t2 > t1. Thus, we have J ′(t2) < J ′(t1) ≤ 0. For any t > t2, we also have

J ′(t)− J ′(t2) =

∫ t

t2

J ′′(s)ds = c2

∫ t

t2

P (u(s))ds < 0

and thus J ′(t) < J ′(t2) < 0 for any t > t2. This means there exists t∗ such that

J(t∗) = 0. This is a contradiction to that u is a non-zero forward global solution.

Next, we will show that J ′(t) ≲ e−ct for t ≥ 0. By Corollary 2.5 as φ(x) = x2 and

f(x) = u(t, x), we obtain

|J ′(t)|2 ≲ (J ′′(t))2J(t)

for all existence time t. Since J > 0, J ′ > 0, and J ′′ < 0, we obtain

J ′(t)√
J(t)

≲ −J ′′(t).(2.4)

Integrating this on (0, t), we get√
J(t)−

√
J(0) ≲ −J ′(t) + J ′(0) ≲ J ′(0).

This means that J is bounded on (0,∞). Using this boundedness and (2.4) again, we

have J ′(t) ≲ −J ′′(t). This implies J ′(t) ≲ e−ct for t ≥ 0. We obtain

0 ≤ −
∫ ∞

t

µ(s)ds ≲ −
∫ ∞

t

P (u(s))ds ≈ −
∫ ∞

t

J ′′(s)ds = −[J ′(s)]s=∞
s=t = J ′(t) ≲ e−ct,

where we use −µ ≲ −P (see the proof of Corollary 2.5). This completes the proof.

Corollary 2.8. We assume the assumption of Proposition 2.3 and that the so-

lution is global in positive time, then u blows up in negative time.

Proof. Suppose that u is global in negative time. Set v(t, x) = u(−t, x). Then, v

is a solution of (δNLS) satisfying the above assumption. Thus, it holds that

ℑ
∫
R
x∂xv(t, x)v(t, x)dx > 0
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for all t. We get

0 < ℑ
∫
R
x∂xv(−t, x)v(−t, x)dx = ℑ

∫
R
x∂xu(t, x)u(t, x)dx

= −ℑ
∫
R
x∂xu(t, x)u(t, x)dx < 0

This is a contradiction.

Proof of Proposition 2.3. Suppose that u is global in positive time direction. Then,

by Corollary 2.8, the solution blows up in negative time. We have lim inft→∞ µ(t) = 0

by Proposition 2.7. Thus, there exists a sequence {tn} such that tn → ∞ and µ(tn) → 0

as n → ∞. We will prove that µ(t) → 0 as t → ∞. If not, there exists ε1 ∈ (0, µ0) and

{t′n} such that −µ(t′n) > ε1. We can take a sequence {t′′n} such that

tn < t′′n, −µ(t′′n) = ε1, −µ(t) < ε1 for all t ∈ [tn, t
′′
n).

On the interval [tn, t
′′
n], the parameter λ is well defined. By Proposition 2.6, we have

|λ(t′′n)− λ(tn)| ≤
∫ t′′n

tn

|λ′(t)|dt ≲ e−ctn → 0

as n → ∞. By the definition of tn, we have |λ(tn)| ∼ |µ(tn)| → 0. However, we

have |λ(t′′n)| ∼ |µ(t′′n)| = ε1 > 0 by Proposition 2.6 and the definition of t′′n. This is a

contradiction. This means that µ(t) → 0 as t → ∞.

Therefore, it follows from Proposition 2.6 that

|y(t2)− y(t1)| =
∫ t2

t1

|y′(t)|dt ≲
∫ t2

t1

|µ(t)|dt ≲ e−ct1

for large t2 > t1. This implies that y(t) converges to y∞ ∈ R as t → ∞. However, this

means that

e−2|y(t)|

|y(t)|2
→ e−2|y∞|

|y∞|2
> 0.

This contradicts e−2|y(t)|/|y(t)|2 ≲ |µ(t)| → 0 as t → ∞. As a consequence, the solution

is not global in positive time direction.
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