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Abstract

The Volterra lattice, when imposing non-zero constant boundary values, admits the struc-

ture of a completely integrable Hamiltonian system if the system size is sufficiently small. Such

a Volterra lattice can be regarded as an epidemic model known as the SIR model with vaccina-

tion, which extends the celebrated SIR model to account for vaccination. Upon the introduction

of an appropriate variable transformation, the SIR model with vaccination reduces to an Abel

equation of the first kind, which corresponds to an exact differential equation. The equipoten-

tial curve of the exact differential equation is the Lambert curve. Thus, the general solution

to the initial value problem of the SIR model with vaccination, or the Volterra lattice with

constant boundary values, is implicitly provided by using the Lambert W function.

§ 1. Introduction

The Volterra lattice is a simultaneous system of infinitely many first-order differ-

ential equations that pertain to the nodes on a one-dimensional infinite lattice [1, 2, 3].

By imposing an appropriate boundary condition, the Volterra lattice reduces to a com-

pletely integrable Hamiltonian flow on a finite-dimensional Poisson manifold. Signifi-

cant boundary conditions that contribute to complete integrability include the periodic

boundary and the open-end boundary. When the Volterra lattice imposes either the

periodic or the open-end boundary, it admits a bi-Hamiltonian structure on the Poisson

manifold, thereby providing a sufficient number of conserved quantities [4, 5, 6] .

In this article, we consider another boundary condition that contributes to the

complete integrability of the Volterra lattice: the boundary nodes are assigned constant
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values, which are not necessarily zero. Although such a Volterra lattice has a Poisson

structure, and hence, is a Hamiltonian flow on a finite-dimensional Poisson manifold,

it does not admit a bi-Hamiltonian structure. Thus, the Volterra lattice with constant

boundary values is, in general, not a completely integrable Hamiltonian system. Nev-

ertheless, if the system size is sufficiently small, the Volterra lattice exhibits complete

integrability because a sufficient number of conserved quantities immediately follow from

the Hamiltonian. If the system size is two, the Volterra lattice with constant boundary

values reduces to an integrable epidemic model called the SIR model with vaccination

[7], which is an extension of the SIR model [8] under the influence of vaccination and is

abbreviated to the SIRv model. If the system size is three, the Volterra lattice with con-

stant boundary values also exhibits the complete integrability; however, its significance

as an epidemic model is unclear.

Upon the introduction of an appropriate variable transformation, the SIRv model

is transformed into an exact differential equation via a first-order nonlinear differential

equation of degree three called Abel’s equation of the first kind [9, 10]. The exact

differential equation thus obtained possesses the potential arising from the symplectic

structure of the Volterra lattice. Moreover, the invariant curve of the SIRv model, or

the equipotential curve of Abel’s equation, is the Lambert curve. Hence, the general

solution to the SIRv model, or the Volterra lattice with constant boundary values, is

implicitly provided in terms of the Lambert W function [11]. In addition, an integrable

discretization of the SIRv model, possessing exactly the same conserved quantity as the

continuous model, is achieved through a geometric construction utilizing the Lambert

curve [12].

This article is organized as follows. In §2, we introduce the Volterra lattice and

briefly review its Poisson structure. Then we show that the Volterra lattice with constant

boundary values is a completely integrable Hamiltonian flow on the Poisson manifold

if the system size is either two or three. We moreover show that the two-dimensional

Volterra lattice can be regarded as an epidemic model called the SIRv model. In §3,
we investigate Abel’s equation of the first kind and show that it reduces to an exact

differential equation if some conditions are satisfied. We also show that Abel’s equation

can be related with the SIRv model. The equipotential curve of the exact differential

equation is the Lambert curve, thereby the general solution to the initial value problems

of the SIRv model, or the two-dimensional Volterra lattice with constant boundary

values, is implicitly provided in terms of the Lambert W function. We provide the

concluding remarks in §4.
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§ 2. The Volterra lattice

Let p be a natural number. The following simultaneous system of infinitely many

first-order differential equations that pertain to the nodes on a one-dimensional infinite

lattice is called the Volterra lattice or the Lotka-Volterra system [1, 2, 3, 4, 5]

ȧi = ai

 p∑
j=1

ai+j −
p∑

j=1

ai−j

 (i ∈ Z),(2.1)

where ai = ai(t) is a differentiable function in t assigned to the i-th node, and “ ˙ ”

denotes the derivative with respect to t. Throughout this article, we assume p = 1,

which achieves the simplification of (2.1):

ȧi = ai (ai+1 − ai−1) (i ∈ Z).(2.2)

§ 2.1. Boundary conditions

Let us consider the differentiable L-dimensional manifold

V = RL(a1, a2, . . . , aL),

where (a1, a2, . . . , aL) stands for the local, and hence, the global coordinates. The

Volterra lattices equipped with the following two boundary conditions are known as

completely integrable Hamiltonian systems on the phase space V [4, 5, 6].

(I) Periodic boundary (ai = aL+i).

a1 = aL+1 a2 aL−1 aL = a0

(II) Open-end boundary (a0 = aL = 0).

a1 aL−1 aL = 0a0 = 0

The exterior nodes a−1, a−2, . . . and aL+1, aL+2, . . . are not uniquely determined,

even when the values of the inner nodes a0, a1, . . . , aL are assigned. Actually, since

0 = ȧ0 = a0 (a1 − a−1) = 0 (a1 − a−1) ,

0 = ȧL = aL (aL+1 − aL−1) = 0 (aL+1 − aL−1)
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holds, the nodes a−1 and aL+1 are arbitrary, thereby we inductively arrive at the

claim. Since a0 = aL = 0 and the exterior nodes are arbitrary, the Volterra lattice

with the open-end boundary is a Hamiltonian system on the phase space V = RL−1,

making it a subsystem of the one with the periodic boundary (I) on V = RL.

In this article, we consider the third boundary condition with which the Volterra

lattice (2.2) is completely integrable Hamiltonian system on V = RM for certain system

sizes M :

(III) Constant boundary (a0 = α, aM+1 = β, α, β ∈ R\{0}).

a1 aM aM+1 = βa0 = α

Contrary to (II), the exterior nodes a−1, a−2, . . . and aM+2, aM+3, . . . are uniquely

determined as rational functions of the inner nodes a0, a1, . . . , aM+1 via (2.2):

ai−1 = ai+1 −
ȧi
ai

(i < 0),

ai+1 = ai−1 +
ȧi
ai

(i > M + 1).

In particular, the nearest exterior nodes are reflective with respect to the boundary

nodes a0 and aM+1,

a−1 = a1 and aM+2 = aM ,

since a0 ̸= 0, aM+1 ̸= 0 and ȧ0 = ȧM+1 = 0. Hence, the system with the constant

boundary is not a subsystem of the one with the periodic boundary (I).

Numerical examination implies that the Volterra lattice (2.2) with the constant

boundary (III) is, in general, not completely integrable. Nevertheless, the Volterra lattice

with the constant boundary (III) exhibits the complete integrability if the system size

M is sufficiently small, since it has a Poisson structure on V = RM for any M .

§ 2.2. Poisson structures

Before reviewing the Poisson structure, we introduce the two-field form of the

Volterra lattice. Let a2k = xk and a2k−1 = yk. Then the Volterra lattice (2.2) reduces

to the system of first-order ODEs called the two-field form

ẋk = xk (yk+1 − yk) ,(2.3)

ẏk = yk (xk − xk−1)(2.4)
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for k ∈ Z.
First remark the bi-Hamiltonian structure of the Volterra lattice (2.3–2.4) on the

2N -dimensional phase space

V = R2N (x1, . . . , xN , y1, . . . , yN )

with the periodic boundary (I). We adopt the following convention: the Poisson brack-

ets are defined by writing down all non-vanishing brackets between the coordinate func-

tions. We say that two Poisson brackets on V are compatible if their arbitrary linear

combination is also a Poisson bracket on V .

Proposition 2.1 ([6]). Suppose the periodic boundary condition (I). The rela-

tions

{xk, yk}2 = xkyk,

{xk, yk+1}2 = −xkyk+1

define a quadratic Poisson bracket {·, ·}2 on V . The flow (2.3–2.4) is a Hamiltonian

system on (V, {·, ·}2) with the Hamiltonian function

H1(x, y) :=

N∑
k=1

(xk + yk).

Also the relations

{xk, yk}3 = xkyk(xk + yk),

{xk, yk+1}3 = −xkyk+1(xk + yk+1),

{xk, xk+1}3 = −xkyk+1xk+1,

{yk, yk+1}3 = −ykxkyk+1

define a cubic Poisson bracket {·, ·}3 on V compatible with {·, ·}2. The flow (2.3–2.4)

is a Hamiltonian system on (V, {·, ·}3) with the Hamiltonian function

H0(x, y) :=
1

2

N∑
k=1

(log xk + log yk) .

These Poisson structures are also valid for the open-end boundary (II).

Let F(V ) be the set of smooth real-valued functions on the M -dimensional manifold

V . For F,G ∈ F(V ) and a Poisson bracket {·, ·} on V , we have

{F,G} =
M∑

i,j=1

Aij
∂F

∂ai

∂G

∂aj
,
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where Aij = {ai, aj} forms the skew-symmetric M ×M matrix as a coordinate repre-

sentation of the Poisson tensor.

The assertion in Proposition 2.1 can be confirmed as follows. For the cubic Poisson

bracket { , }3, we have

{H0, xk}3 =
1

2
({log xk−1, xk}3 + {log xk+1, xk}3 + {log yk, xk}3 + {log yk+1, xk}3)

=
1

2

(
−xk−1ykxk

xk−1
+

xkyk+1xk+1

xk+1
− xkyk(xk + yk)

yk
+

xkyk+1(xk + yk+1)

yk+1

)
= xk (yk+1 − yk) .

For the quadratic bracket { , }2, we also have

{H1, xk}2 = {yk, xk}2 + {yk+1, xk}2 = xk (yk+1 − yk) .

We similarly obtain

{H0, yk}3 = {H1, yk}2 = yk(xk − xk−1).

Thus (2.3–2.4) defines two compatible Hamiltonian flows on V = R2N :

ẋk = {H1, xk}2 = {H0, xk}3 ,
ẏk = {H1, yk}2 = {H0, yk}3 .

Meanwhile, suppose the Volterra lattice (2.3–2.4) to have the constant boundary

(III). If we consider the phase space

V = R2N (x1, . . . , xN , y1, . . . , yN )

of 2N -dimension then (2.3–2.4) reduces to

ẏ1 = y1(x1 − α),(2.5)

ẋk = xk (yk+1 − yk) for k = 1, 2, . . . , N − 1,(2.6)

ẏk = yk (xk − xk−1) for k = 2, 3, . . . , N,(2.7)

ẋN = xN (β − yN ).(2.8)

Whereas, if the phase space is of (2N − 1)-dimension,

V = R2N−1(x1, . . . , xN−1, y1, . . . , yN ),

then

ẏ1 = y1(x1 − α),(2.9)

ẋk = xk (yk+1 − yk) for k = 1, 2, . . . , N − 1,(2.10)

ẏk = yk (xk − xk−1) for k = 2, 3, . . . , N − 1,(2.11)

ẏN = yN (β − xN−1).(2.12)
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Let us consider the following function H01(x, y) in xk and yk

H01(x, y) :=
N∑

k=1

(xk + yk)− α
N∑

k=1

log xk − β
N∑

k=1

log yk.(2.13)

If M = 2N then the boundaries are x0 = α and yN+1 = β, and the derivative of H01

with respect to t always vanishes

Ḣ01(x, y) =
N∑

k=1

(xkyk+1 − xk−1yk)− α
N∑

k=1

(yk+1 − yk)− β
N∑

k=1

(xk − xk−1)

=βxN − αy1 − α(β − y1)− β(xN − α) = 0.

Therefore, H01 is a conserved quantity of the system (2.5–2.8) for arbitrary α, β.

If M = 2N − 1 then the boundaries are x0 = α and xN = β, but H01 is, in general,

not a conserved quantity; the derivative of H01 with respect to t does not vanish:

Ḣ01(x, y) =xN−1yN − αy1 + yN (β − xN−1)− α(yN − y1)− β(β − α)

=(yN − β)(β − α).

However, this computation suggests that if α = β then H01 is still a conserved quantity.

Moreover, it implies that H01 is divided into two conserved quantities G1 and G2 as

H01 = G1 − αG2 if α = β, where

G1(x, y) :=
N∑

k=1

(xk + yk)− α
N∑

k=1

log xk,

G2(x, y) :=

N∑
k=1

log yk.

Now, investigate the Poisson structure of the Volterra lattice (2.3–2.4) equipped

with the constant boundary (III), or (2.5–2.8) and (2.9–2.12). We easily see that the

Hamiltonians H0 and H1 in Proposition 2.1 are no longer conserved when the constant

boundary condition (III) is imposed. However, we know that the function H01 (see

(2.13)) is still a conserved quantity of (2.5–2.8) for arbitrary α, β, and is of (2.9–2.12)

when α = β. We then obtain the following proposition concerning the Poisson structure

of the Volterra lattice with the constant boundary (III).

Proposition 2.2. Suppose the constant boundary condition (III). If V = R2N ,

the flow (2.5–2.8) is the Hamiltonian system on the Poisson manifold (V, {·, ·}2) with

the Hamiltonian function H01 for any α, β. Similarly, if V = R2N−1 and α = β, the

flow (2.9–2.12) is also the Hamiltonian system on (V, {·, ·}2) with H01.
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Proof. We have

{H01, log xk}2 =− xkyk
xk

+
xkyk+1

xk
+ β

xkyk
xkyk

− β
xkyk+1

xkyk+1
= yk+1 − yk,

{H01, log yk}2 =
xkyk
yk

− xk−1yk
yk

− α
xkyk
xkyk

+ α
xk−1yk
xk−1yk

= xk − xk−1

for non-boundary nodes xk and yk. If V = R2N , these are also valid for the boundary

nodes y1 and xN for any boundary values α, β, since we have

{H01, log y1}2 =
x1y1
y1

− α
x1y1
x1y1

= x1 − α,

{H01, log xN}2 =− xNyN
xN

+ β
xNyN
xNyN

= β − yN .

Whereas, if V = R2N−1 and α = β, at the boundary, we also have {H01, log y1}2 = x1−α

and

{H01, log yN}2 =− xN−1yN
yN

+ α
xN−1yN
xN−1yN

= α− xN−1 = β − xN−1.

Hence the Hamiltonian flow

d

dt
log xk = {H01, log xk}2 = yk+1 − yk,

d

dt
log yk = {H01, log yk}2 = xk − xk−1

is equivalent to the Volterra lattice (2.3–2.4) for both V = R2N with arbitrary α, β and

V = R2N−1 with α = β.

Remark. In the limit as α, β → 0, the constant boundary condition (III) reduces

to the open-end one (II), and H01 consistently approaches H1, the Hamiltonian of the

Volterra lattice with the open-end boundary (II) with respect to the Poisson bracket

{ , }2.

For the Poisson bracket { , }2 on the 2N -dimensional phase space

V = R2N (x1, . . . , xN , y1, . . . , yN ),

we have the skew-symmetric 2N × 2N matrix A = (Aij) of the Poisson tensor that

possesses the following non-zero entries

A2k−1,2k = −xkyk and A2k,2k−1 = xkyk for k = 1, 2, . . . , N,

A2k,2k+1 = −xkyk+1 and A2k+1,2k = xkyk+1 for k = 1, 2, . . . , N − 1.

The matrix A is non-degenerate, thereby we also have a symplectic structure on V .
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In order to capture the symplectic structure, we introduce new coordinate variables

xk = log y1 + log y2 + · · ·+ log yk,

pk = log xk

for k = 1, 2, . . . , N . Then we have

{pk, xk}2 = {log xk, log yk}2 = 1

for k = 1, 2, . . . , N and

{pk, xk+1}2 = {log xk, log yk}2 + {log xk, log yk+1}2 = 0

for k = 1, 2, . . . , N − 1. Hence x1, . . . , xN , p1, . . . , pN form canonically conjugate coordi-

nates on the symplectic manifold (V = R2N ,Ω) possessing the symplectic form

Ω =
N∑

k=1

dpk ∧ dxk =
N∑

k=1

k∑
ℓ=1

dxk ∧ dyℓ
xkyℓ

.(2.14)

The symplectic manifold (V,Ω) is called the canonical phase space of the Hamiltonian

flow (2.5–2.8).

In these canonical coordinates, the Hamiltonian H01 is represented by

H01(p, x) =

N∑
k=1

epk +

N∑
k=1

exk−xk−1 − α

N∑
k=1

pk − βxN ,

where we assume x0 = 0. Hence we have

∂H01

∂pk
= epk − α = xk − α,

∂H01

∂xk
= exk−xk−1 − exk+1−xk = yk − yk+1,

ẋk =
k∑

ℓ=1

ẏℓ
yℓ

=
k∑

ℓ=1

(xℓ − xℓ−1) = xk − α,

ṗk =
ẋk

xk
= yk+1 − yk.

Therefore, the Volterra lattice (2.5–2.8) is canonically represented by the Hamilton

equations

ẋk =
∂H01

∂pk
,(2.15)

ṗk = −∂H01

∂xk
(2.16)

for k = 1, 2, . . . , N .

Thus, we obtain:
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Proposition 2.3. Suppose the constant boundary condition (III). The flow (2.5–

2.8) is a Hamiltonian system on the symplectic manifold (V = R2N ,Ω) with the Hamil-

tonian function H01 with respect to the symplectic form Ω given by (2.14).

For the Poisson bracket { , }2 on the (2N − 1)-dimensional phase space

V = R2N−1(x1, . . . , xN−1, y1, . . . , yN ),

the skew-symmetric (2N − 1) × (2N − 1) matrix of the Poisson tensor is degenerate,

thereby it does not define a symplectic structure on V .

It should be remarked that the Hamiltonian H01 and the functions Gi ∈ F(V )

(i = 1, 2) are in involution with respect to the Poisson bracket { , }2 on V = R2N−1,

{H01, G1}2 = {H01, G2}2 = 0.

Indeed, we have H01 = G1 − αG2 and

{G1, G2}2 =

N∑
k=1

{xk − α log xk, log yk}2 +
N−1∑
k=1

{xk − α log xk, log yk+1}2

=
N∑

k=1

(xk − α)−
N−1∑
k=1

(xk − α)

=xN − α = 0,

where we use the assumption xN = β = α. Thus, if α = β, there exist at least two

functionally independent conserved quantities for the Hamiltonian flow (2.9–2.12) on

the Poisson manifold (V = R2N−1, { , }2).

§ 2.3. Complete integrability

By virtue of the above observation, we easily find two completely integrable Hamil-

tonian systems equipped with the constant boundary (III).

The first one is the case where M = 2N and N = 1. The Hamiltonian H01 achieves

a sufficient number of conserved quantities since the phase space V is of two-dimension.

The Hamiltonian flow (2.5–2.8) then reduces to

ẋ1 = x1 (β − y1) ,(2.17)

ẏ1 = y1 (x1 − α) ,(2.18)

and the Hamiltonian

H01(x1, y1) = x1 + y1 − α log x1 − β log y1
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to the conserved quantity.

If α > 0 and as β → 0, (2.17–2.18) is nothing but the SIR epidemic model [8], which

is known as an integrable dynamical system crucial for mathematical analysis on the

spread of infectious diseases. Moreover, if α > 0 and β < 0, (2.17–2.18) is an integrable

extension of the SIR model under the influence of vaccination, called the SIRv model

[7]. In the next section, we will investigate (2.17–2.18) precisely, and reveal the relation

with an exact differential equation via Abel’s equation of the first kind. We further

provide the general solution to the initial value problem of (2.17–2.18) in terms of the

Lambert W function.

As mentioned earlier, the symplectic structure of (2.17–2.18) is provided as

Ω = dp ∧ dx =
dx1 ∧ dy1

x1y1
,(2.19)

where the canonically conjugate coordinates x and p are given by

x = log y1 and p = log x1.

The Hamiltonian in the canonically conjugate coordinates,

H01(p, x) = ep + ex − αp− βx,

solves Hamilton’s canonical equations (2.15–2.16) of motion with N = 1.

The case where M = 2N − 1 and N = 2 includes the second completely inte-

grable system. In this three-dimensional system, we further assume α = β. Then the

Hamiltonian flow (2.9–2.12) reduces to the system

ẏ1 = y1 (x1 − α) ,(2.20)

ẋ1 = x1 (y2 − y1) ,(2.21)

ẏ2 = y2 (α− x1) ,(2.22)

which possesses two conserved quantities:

G1(x1, y1, y2) = y1 + x1 + y2 − α log x1,

G2(x1, y1, y2) = log y1 + log y2.

However, having these conserved quantities is sufficient for (2.20–2.22) to exhibit com-

plete integrability, since the phase space V is of three-dimension.

We can eliminate y2 from (2.20–2.22) by employing the conserved quantity G2. Let

G2 be a constant log ℓ (ℓ > 0). Then we have y1y2 = ℓ. By replacing y2 with ℓ/y1,

(2.20–2.21) and G1 respectively reduce to

ẏ1 = y1(x1 − α),

ẋ1 = x1

(
ℓ

y1
− y1

)
,
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and

G1(x1, y1) = y1 + x1 +
ℓ

y1
− α log x1.

This is a two-dimensional completely integrable system possessing the conserved quan-

tity G1, but it differs slightly from (2.17–2.18), or the SIRv model. In the limit as

ℓ → 0, it approaches the SIR model. However, its significance as an epidemic model has

remained unclear.

§ 3. Abel’s equation of the first kind and the SIRv model

In the previous section, we observed that the SIRv model is a completely integrable

Hamiltonian system on the symplectic manifold (V = R2,Ω), where Ω is the symplectic

form (2.19). Meanwhile, in this section, we investigate the SIRv model from another

perspective on integrability through a first-order nonlinear differential equation of degree

three known as Abel’s equation of the first kind [10]. Abel’s equation of the first kind is

a generalization of the Riccati equation, and similarly to the Riccati equation, it admits

complete integrability under certain conditions.

§ 3.1. Abel’s equation of the first kind

Let us consider the following first-order nonlinear ODE of degree three pertaining

to ϕ = ϕ(x)

dϕ

dx
= f0 + f1ϕ+ f2ϕ

2 + f3ϕ
3,(3.1)

where f0, f1, f2 and f3 are meromorphic functions in x. The equation (3.1) is called

Abel’s equation of the first kind if f3 ̸≡ 0, whereas the Riccati equation if f3 ≡ 0 and

f2 ̸≡ 0.

Hereafter we assume f3 ̸≡ 0, which makes (3.1) Abel’s equation of the first kind.

We have the following lemma [10].

Lemma 3.1. If f0, f1, f2 and f3 satisfy

f0 ≡0,(3.2)

d

dx
log

f2
f3

=f1,(3.3)

then (3.1) reduces to an exact differential equation.

Proof. First introduce a new dependent variable φ = φ(x) such that

ϕφ = exp

(∫
f1dx

)
=: F (x).
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If f0 ≡ 0, (3.1) reduces to the following ODE concerning φ:

φ
dφ

dx
+ f2Fφ+ f3F

2 = 0.(3.4)

Next consider a function ϖ in x and φ:

ϖ(x, φ) = e−(1+kφ)−kG,

where

G(x) :=

∫
f2Fdx =

∫
f2 exp

(∫
f1dx

)
dx

and k is the integration constant of (3.3):

k =
f2
f3F

.

By multiplying the integrating factor ϖ, (3.4) reduces to the exact differential equation

dΨ(x, φ) = 0(3.5)

possessing the potential

Ψ(x, φ) = (1 + kφ)ϖ(x, φ).

Indeed, we compute

dΨ(x, φ) = −k2ϖ
[(
f2Fφ+ f3F

2
)
dx+ φdφ

]
,

which asserts the equivalence of (3.4) and (3.5).

The solution to the exact differential equation (3.5) is provided by using the Lam-

bert W function W (z). Through the relationship w = W (z), this function parametrizes

the following non-algebraic curve on the (z, w)-plane, known as the Lambert curve [11]:

(wew − z = 0) .

The Lambert W function W (z) is single-real-valued on [0,∞), while it is double-

real-valued on [−e−1, 0) and is not defined on (−∞,−e−1) as a real function. We denote

the brach such that −1 ≤ W (z) < 0 by W0(z), and the one such that W (z) < −1 by

W−1(z). Hence the function

W (z) =

W0(z) (−e−1 ≤ z < 0),

W (z) (z ≥ 0)
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is real analytic on [−e−1,∞). The Taylor series of W (z) about 0 is

∞∑
n=0

(−1)n+1n
n−1

n!
zn

with the radius e−1 of convergence.

Proposition 3.2. Let

φ(x) = −1

k

[
W

(
−Ψ0ekG

)
+ 1

]
(3.6)

using the Lambert W function, where Ψ0 is the initial value of the potential Ψ. Then φ

solves the initial value problem of the exact differential equation (3.5), which is equivalent

to (3.4) with imposing (3.3).

Proof. First note that, given initial value x0 of x, the solution curve, or the equipo-

tential curve, of the exact differential equation (3.5) is given by

Ψ(x, φ) = (1 + kφ)ϖ(x, φ) = Ψ(x0, φ(x0)) = Ψ0.(3.7)

Since ϖ(x, φ) = e−(1+kφ)−kG, we have

−(1 + kφ)e−(1+kφ) = −Ψ0ekG.(3.8)

The solution curve is the Lambert curve on the (z, w)-plane by imposing

z = −Ψ0ekG and w = −(1 + kφ).

It immediately follows

−(1 + kφ) = W
(
−Ψ0ekG

)
(3.9)

from (3.8). Thus the solution to the exact differential equation (3.5) is given by (3.6).

Corollary 3.3. Let

ϕ(x) =
F

φ
= − kF

W (−Ψ0ekG) + 1
.(3.10)

Then ϕ solves the initial value problem of Abel’s equation (3.1) of the first kind with

imposing (3.2) and (3.3).

Remark that the real-valued Lambert W function W (z) is defined only for z ∈
[−e−1,∞) ⊂ R. Moreover, W (z) is double-valued and has the branch point only at

z = −e−1. Given initial value x0 of x, the initial value Ψ0 of the potential Ψ(x, φ) at
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(x0, φ(x0)) is uniquely determined. Therefore, the solutions (3.6) and (3.10) potentially

possess the branch point only at x that satisfies

Ψ0 = e−kG(x)−1.(3.11)

The branches of W (z) in (3.6) and (3.10) are uniquely determined as follows.

(1) If Ψ0 > 0 then the solution curve φ = φ(x) is restricted to the region

S := {(x, φ) | kφ > −1}

on the (x, φ)-plane, since ϖ is always positive (see (3.7)). In this case, W takes negative

value (see (3.9)), therefore, we have Ψ0 ≤ e−kG−1, since W (z) is defined only on z ≥
−e−1. Thus Ψ0 obeys

0 < Ψ0 ≤ e−kG−1.

Moreover, there may exist branch points x satisfying (3.11). Hence, φ(x) may be

double-valued on S. Let

S− := {(x, φ) | − 1 < kφ ≤ 0} ⊂ S.

Since φ(x) is given by (3.6), we choose the branch W0 such thatW0 ≥ −1 for (x, φ) ∈ S−

to give the solution (3.6). Whereas, we choose another branch W−1 such that W−1 < −1

for (x, φ) ∈ S+ to give (3.6), where we let

S+ := S\S− = {(x, φ) | kφ > 0} .

(2) If Ψ0 < 0 then the solution curve is contained in

T := {(x, φ) | kφ < −1} .

For such an initial value Ψ0 of Ψ, W in (3.6) necessarily takes positive value. This is

consistent with the positivity of the independent variable −Ψ0ekG(x) of W , because W

is positive-valued on the positive real axis. Hence, for (x, φ) ∈ T , the solution (3.6) is

uniquely given by the single-valued W defined on [0,∞).

(3) Finally, if Ψ0 = 0 then (x, φ) is on the boundary between S and T . Hence,

kφ(x) ≡ −1, thereby Ψ ≡ 0. This gives a constant solution to (3.4), which is a special

solution contained in (3.6).

Above discussion is summarized into the following:

Proposition 3.4. Assume (3.2) and (3.3) to be satisfied in order that Abel’s

equation (3.4) of the first kind reduces to the exact differential equation (3.5). Let Ψ0

be the initial value of the potential Ψ to (3.5).
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(1) If Ψ0 > 0, the Lambert W function W in the solution (3.6) to (3.4) is either

(a) the branch W0 for (x, φ) ∈ S− or

(b) the branch W−1 for (x, φ) ∈ S+,

both of which are defined on [−e−1, 0).

(2) If Ψ0 ≤ 0 then W in (3.6) is the single-valued W function defined on [0,∞).

§ 3.2. The SIRv model and its general solution

Now, we relate Abel’s equation (3.1) of the first kind to the SIRv model (2.17—

2.18), following the approach of [9]. Introduce a new variable t = t(x) as an antideriva-

tive of ϕ(x):

t =

∫
ϕ(x)dx.

Then we find

dx

dt
=

1

dt

dx

=
1

ϕ
and

d2x

dt2
=

d

dt

1

ϕ
= − 1

ϕ2

dx

dt

dϕ

dx
= − 1

ϕ3

dϕ

dx
.

It follows that we have

ϕ =
1

x′ and
dϕ

dx
= − x′′

(x′)
3 ,

where we denote the derivative with respect to t by ′ for simplicity.

Then Abel’s equation (3.1) of the first kind reduces to the second order ODE

x′′ + f0 (x
′)
3
+ f1 (x

′)
2
+ f2x

′ + f3 = 0.

Dividing by x, we obtain

(log x)
′′
+ f2 (log x)

′
+

f0
x

(x′)
3
+

xf1 + 1

x2
(x′)

2
+

f3
x

= 0.(3.12)

Let us consider the following system of first-order ODEs

x′ = −xy + ax+ b,(3.13)

y′ = xy + cy + d,(3.14)
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where a, b, c, d ∈ R. From the first equation (3.13), we have

y = a+
b

x
− (log x)

′
.

By substituting this into the second equation (3.14), we get

(log x)
′′ − c (log x)

′ − x (log x)
′
+

bx′

x2
+ a (x+ c) +

b

x
(x+ c) + d = 0.

Comparing this with (3.12), we see that, if

b = 0, f0 = 0, f1 = − 1

x
, f2 = −x− c, and

f3 = a(x+ c)x+ dx,

the system (3.13–3.14) of ODEs reduces to Abel’s equation (3.1) of the first kind, which

satisfies (3.2). Moreover, if d = 0, the condition (3.3) is also satisfied:

d

dx
log

f2
f3

=
d

dx
log

1

−ax
= − 1

x
= f1,

thereby (3.13–3.14) reduces to the exact differential equation (3.5).

Thus, we obtain the following proposition that claims a relation between Abel’s

equation of the first kind and the SIRv model, thereby the integrability of the SIRv

model via the exact differential equation.

Proposition 3.5. Let

f0 = 0, f1 = − 1

x
, f2 = γ − x, and f3 = ν (γ − x)x,(3.15)

where γ and ν are real numbers, in particular, ν ̸= 0, since we assume f3 ̸≡ 0. Then,

(3.1) reduces to

dϕ

dx
= − 1

x
ϕ+ (γ − x)ϕ2 + ν (γ − x)xϕ3.(3.16)

Abel’s equation (3.16) of the first kind is equivalent to

x′ = −xy − νx,(3.17)

y′ = xy − γy,(3.18)

which is (3.13–3.14) with imposing

a = −ν, b = 0, c = −γ, and d = 0.

Moreover, (3.17–3.18) attributes to the exact differential equation (3.5).
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Suppose x and y respectively stand for the populations of the susceptible and the

infected of an infectious disease. Also let γ and ν respectively represent the transmission

rate and the vaccination rate. Then the system (3.17–3.18) of ODEs governs the spread

of the infectious diseases under the influence of vaccination, and is called the SIRv

model [7, 12]. Thus, when we call (3.17–3.18) the SIRv model, we assume γ and ν to

be positive, since they respectively represent the rates of transmission and vaccination.

The discussion in the previous section leads to the following proposition concerning

the integrability of the SIRv model on the Poisson manifold.

Proposition 3.6. Let

x0 = α = γ, x1 = x, x2 = β = −ν, and y1 = y.

Then the SIRv model (3.17–3.18) is the completely integrable Volterra lattice (2.17–2.18)

with the constant boundary (III) on the Poisson manifold (V = R2, { , }2) possessing

the Hamiltonian

H01(x, y) = x+ y − γ log x+ ν log y.(3.19)

The SIRv model (3.17–3.18) is also the Hamiltonian flow arising from the symplectic

structure

Ω =
dx ∧ dy

xy

on the symplectic manifold (V,Ω).

Remark. Suppose ν = 0 against our assumption f3 = ν (γ − x)x ̸≡ 0. Then

(3.17–3.18) reduces to the original SIR model. Unfortunately, the discussion above,

based on Abel’s equation of the first kind, is not valid for the SIR model. The SIR

model can be investigated using the Riccati equation instead of Abel’s equation [12].

The SIRv model attributes to Abel’s equation (3.16) of the first kind employing

the coefficients (3.15), which reduces to the exact differential equation (3.5). Hence

the SIRv model (3.17–3.18) and the Volterra lattice (2.17–2.18) are exactly solved as

follows.

We have

F = exp

∫
f1dx =

CF

x
,

G =

∫
f2Fdx = CF (γ log x− x) + CG,

where CF and CG are integration constants. Since eCG acts on ϖ, or Ψ, as a constant

multiplication, it does not affects the exact differential equation dΨ = 0. Hence, we can
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assume CG = 0 without loss of generality. Moreover, since we define the constant k to

be the integration constant

k =
f2
f3F

=
1

νCF
,

we may assume CF = 1 by putting k = 1/ν. Thus we obtain

F =
1

x
, G = γ log x− x, and k =

1

ν
.

Then the equation (3.4) concerning φ reduces to

φ
dφ

dx
+

γ − x

x
φ+ ν

γ − x

x
= 0.(3.20)

This attributes to the exact differential equation

dΨ(x, φ) = d

[(
1 +

1

ν
φ

)
ϖ(x, φ)

]
= 0

with employing the integrating factor

ϖ(x, φ) = exp

[
−
(
1 +

1

ν
φ

)
− 1

ν
(γ log x− x)

]
= x− γ

ν e
x
ν −φ

ν −1.

The potential is

Ψ(x, φ) =

(
1 +

1

ν
φ

)
ϖ(x, φ) = −1

ν
exp

(
H01

ν

)
,(3.21)

where H01 is the Hamiltonian (3.19) and we use (3.17) and x′ = φx. Thus the potential

Ψ is, of course, conserved through the evolution. In addition, the exact differential

equation dΨ = 0 is equivalent to Hamilton’s canonical equation of motion,

dH01(p, x) =
∂H01

∂p
dp+

∂H01

∂x
dx = 0,

on the symplectic manifold (V = R2,Ω).

Remark that, for any initial values x0, y0 ∈ R, the initial value Ψ0 of the potential

is negative when ν > 0. Hence, if ν > 0, by virtue of Proposition 3.4, the solution (3.6)

to (3.20) is provided by the single-valued Lambert W function W on [0,∞). Explicitly,

we have

φ(x) = −ν

[
W

(
1

ν
x

γ
ν e

1
ν (H0

01−x)

)
+ 1

]
,

where H0
01 := H01(x0, y0). Similarly, the solution (3.10) to Abel’s equation (3.16) of the

first kind is also provided by the single-valued W :

ϕ(x) = − 1

νx

[
W

(
1

ν
x

γ
ν e

1
ν (H0

01−x)

)
+ 1

] .
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Since the independent variable t is the antiderivative of ϕ, the solution to the SIRv

model (3.17–3.18) is implicitly given by

t = −
∫

dx

νx

[
W

(
1

ν
x

γ
ν e

1
ν (H0

01−x)

)
+ 1

] .(3.22)

Moreover, since we have

y = −ν − x′

x

from (3.17), we obtain

y = νW

(
1

ν
x

γ
ν e

1
ν (H0

01−x)

)
,(3.23)

if x satisfies (3.22), where we use x′ = φx, or equivalently x′ = 1/ϕ.

We summarize the discussion above into the following:

Theorem 3.7. The SIRv model (3.17–3.18) reduces to the exact differential

equation dΨ(x, φ) = 0 for the potential (3.21) by introducing φ = (log x)′. The so-

lution to the initial value problem of the SIRv model is implicitly provided by (3.22) and

(3.23), where H0
01 is the initial value of the conserved quantity (3.19). Remark that W

is the single-valued Lambert W function defined on [0,∞), since we assume ν > 0.

For the Volterra lattice (2.17–2.18), we have

k = − 1

β
, φ =

ẋ1

x1
= β − y1, and Ψ =

1

β
exp

(
−H01

β

)
.

Remark that we assume β ̸= 0. We have Ψ0 < 0 if and only if β < 0. Hence, according

to Proposition 3.4, (x1, φ(x1)) = (x1, β − y1) is contained in T , thereby (x1, y1) is in

T̃ := {(x1, y1) | y1 > 0} .

The solution (x1, y1) to the Volterra lattice (2.17–2.18) is given by the single-valued

Lambert W function.

Whereas, we have Ψ0 > 0 if and only if β > 0. Hence, according to Proposition

3.4, (x1, φ(x1)) = (x1, β − y1) is contained in S = S− ∪ S+, thereby (x1, y1) is in

S̃ = S̃− ∪ S̃+,

S̃− := {(x1, y1) | 0 < y1 ≤ β} ,
S̃+ := {(x1, y1) | y1 > β} .

The solution (x1, y1) to the Volterra lattice (2.17–2.18) is given by the branch W0 of

the Lambert W function if (x1, y1) ∈ S̃−, while by the branch W−1 if (x1, y1) ∈ S̃+.

Thus, we obtain:
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Theorem 3.8. The general solution to the initial value problem of the Volterra

lattice (2.17–2.18) is implicitly provided by

t =

∫
dx1

βx1

[
W

(
− 1

β
x
−α

β

1 e
1
β (x1−H0

01)

)
+ 1

] ,
y1 = −βW

(
− 1

β
x
−α

β

1 e
1
β (x1−H0

01)

)
,

where H0
01 is the initial value of the Hamiltonian H01. If β < 0, the function W is the

single-valued Lambert W function, whereas, if β > 0, W is the branch W0 of the Lambert

W function when (x1, y1) ∈ S̃−, and is the branch W−1 when (x1, y1) ∈ S̃+.

§ 4. Concluding remarks

We investigate the complete integrability of the Volterra lattice with imposing the

constant boundary condition (III) in terms of the Poisson structure { , }2 and the

symplectic structure Ω on the phase space V = RM . We then find that the Volterra

lattice has the symplectic structure Ω if M = 2N for any boundary values α, β, and

hence it achieves the complete integrability if M = 2. Such a Volterra lattice is nothing

but the SIRv model, an integrable extension of the SIR epidemic model under the

influence of vaccination. Wheres, if M = 2N − 1 and α = β, the Voltera lattice has the

Poisson structure { , }2, and hence it also admits the complete integrability if M = 3

and α = β. While such a Volterra lattice can also be seen as an integrable extension of

the SIR model, its significance as an epidemic model has not yet been revealed, as far

as the author knows.

Meanwhile, upon the introduction of an appropriate variable transformation, the

SIRv model is transformed into Abel’s equation of the first kind, which attributes to an

exact differential equation. The potential of the exact differential equation is, of course,

the conserved quantity of the SIRv model, i.e., the Hamiltonian H01 of the Volterra

lattice on the symplectic manifold (R2,Ω). Thus, the exact differential equation is

equivalent to the Hamiltonian flow on (R2,Ω) with the Hamiltonian H01. In addition,

the invariant curve of the SIRv model, or the equipotential curve of the exact differential

equation, is provided by the Lambert curve. Thus, we implicitly obtain the general

solution to the initial value problem of the SIRv model, or the Volterra lattice on

(R2,Ω), in terms of the Lambert W function.

The integrable discretization of completely integrable systems has been extensively

studied for several decades. Regarding SIR epidemic models, there has been enthusiastic

investigation into integrable discretization, resulting in the discovery of several discrete
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models that possess complete integrability (see [13, 14, 15, 16]). In particular, an inte-

grable discretization of the SIRv model, which maintains the same conserved quantity

as the continuous model, has been achieved through a geometric construction utilizing

its invariant curve. Although the process of geometric discretization was omitted in this

article due to space limitations, it has been thoroughly documented in [12]. Interested

readers are encouraged to refer to this article for further insight into the geometric

discretization of the SIRv model.
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