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A recent topic on rogue wave

By

Yasuhiro Ohta∗

Abstract

Rogue wave type solutions for the self-dual Yang-Mills equation are constructed by using

the Gram type determinant expression of solutions for systems related to toroidal Lie algebra.

§ 1. Introduction

Rogue waves are large and spontaneous waves which are localized in time direction

and usually in space direction also[1]. In these years the mathematical structure of such

localized wave solutions has been intensively studied for various soliton equations in

the KP hierarchies which are associated with the affine Lie algebra symmetry. Other

hierarchies of integrable equations can be generated by the representation theory of

toroidal Lie algebra[2, 3]. The self-dual Yang-Mills (SDYM) equation is one of the

typical examples of equations related with the toroidal Lie algebra symmetry. The

rogue waves for this class of equations have not been studied well and we could expect

different structure of solutions from the case of KP hierarchies. The explicit expressions

for solutions of SDYM equation of SU(2) case are constructed in terms of the Hankel

determinant whose matrix elements are given by an arbitrary function satisfying a linear

dispersion relation[4]. Recently the theory of Cauchy matrix schemes for KP and AKNS

hierarchies is developed to the case of SDYM equation and a broad class of solutions

is explicitly constructed[5, 6]. These kinds of explicit expressions are useful to derive

concrete solutions such as solitons, breathers and rogue waves.

In order to derive the rogue wave type solutions to SDYM equation, we first con-

struct the Gram type determinant solution whose matrix elements contain arbitrary

functions. A direct proof based on the bilinear method is described in an elementary
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way. By taking these arbitrary functions as appropriate polynomials, the Gram type

determinant gives the rogue wave type solutions.

§ 2. Gram type determinant solution for SDYM equation

The SDYM equation in the R gauge of Yang is given as

(2.1) ∂ȳ(J
−1∂yJ) + ∂z̄(J

−1∂zJ) = 0,

with det J = 1, where the gauge field J =
(
Jkl

)
1≤k,l≤M

is an M ×M matrix function

of four variables y, ȳ, z and z̄. By scaling we can relax the condition, det J = 1, and

replace it by

(2.2) det J : nonzero constant.

Theorem 2.1. The Gram type determinant solution for SDYM equation (2.1)

and (2.2) is given as

(2.3) J =
G

f
, G =

(
gkl

)
1≤k,l≤M

,

where f is N ×N Gram type determinant and gkl is its bordered determinant,

(2.4)

f = det
1≤i,j≤N

(
mij

)
=

∣∣∣∣∣∣∣∣
m11 · · · m1N

...
...

mN1 · · · mNN

∣∣∣∣∣∣∣∣ , gkl =det

(
mij φil
1
qj
ψkj δkl

)
=

∣∣∣∣∣∣∣∣∣∣
m11 · · · m1N φ1l

...
...

...

mN1 · · · mNN φNl
1
q1
ψk1 · · · 1

qN
ψkN δkl

∣∣∣∣∣∣∣∣∣∣
,

mij =
1

pi + qj

M∑
µ=1

φiµψµj ,(2.5)

φiµ = φiµ(ȳ + piz, z̄ − piy), ψµj = ψµj(ȳ − qjz, z̄ + qjy),(2.6)

where φiµ and ψµj are arbitrary functions of two variables, and pi and qj are constants.

Remark. For the Gram type determinant solution in the above theorem, we have

(2.7) det J =

N∏
ν=1

(−pν
qν

),

and J−1 is given as

J−1 =
H

f
, H =

(
hkl

)
1≤k,l≤M

,(2.8)

hkl = det

(
mij

1
pi
φil

ψkj δkl

)
=

∣∣∣∣∣∣∣∣∣∣
m11 · · · m1N

1
p1
φ1l

...
...

...

mN1 · · · mNN
1
pN
φNl

ψk1 · · · ψkN δkl

∣∣∣∣∣∣∣∣∣∣
,(2.9)
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since f , gkl and hkl in (2.4) and (2.9) satisfy

(2.10)
M∑
µ=1

hkµgµl = δklff.

By using (2.3) and (2.8), the SDYM equation (2.1) is decoupled to two bilinear equa-

tions,

M∑
µ=1

Dzhkµ · gµl = 2Dȳfkl · f,(2.11)

M∑
µ=1

Dyhkµ · gµl = −2Dz̄fkl · f,(2.12)

where D is the Hirota bilinear differential operator and fkl is an auxiliary variable which

is given as the bordered determinant,

(2.13) fkl = det

(
mij φil

ψkj 0

)
=

∣∣∣∣∣∣∣∣∣∣
m11 · · · m1N φ1l

...
...

...

mN1 · · · mNN φNl

ψk1 · · · ψkN 0

∣∣∣∣∣∣∣∣∣∣
.

An elementary proof of the facts in above theorem and remark is given in appendix.

§ 3. Rogue wave type solutions

By choosing the arbitrary functions φiµ and ψµj in the Gram type determinant

solution appropriately, we can derive various solutions explicitly. For example the stan-

dard N -soliton solution of SDYM equation is obtained by taking

φiµ(ȳ + piz, z̄ − piy) = Aiµ exp(ri(ȳ + piz) + ui(z̄ − piy)),

ψµj(ȳ − qjz, z̄ + qjy) = Bµj exp(sj(ȳ − qjz) + vj(z̄ + qjy)),

where pi, ri and ui are wave numbers of i-th soliton, 1/qi, viqi and −siqi are their

conjugates, Aiµ is the phase parameter of i-th soliton in µ-th component and Bµi/qi is

its conjugate up to µ-dependent constant multiplication.

Since the rogue wave solutions are typically given by rational functions, we consider

the case that φiµ and ψµj are polynomials. In particular let us take them as first order

polynomials,

φiµ(ȳ + piz, z̄ − piy) = aiµ(ȳ + piz) + biµ(z̄ − piy) + ciµ,

ψµj(ȳ − qjz, z̄ + qjy) = αµj(ȳ − qjz) + βµj(z̄ + qjy) + γµj ,
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where aiµ, biµ, αµj and βµj are wave numbers, and ciµ and γµj are phase constants. By

choosing these parameters appropriately, some of the components Jkl localize in time

direction, i.e., one direction in four dimensional space. For simplicity we only study the

case of ȳ and z̄ being complex conjugate of y and z, respectively, and apply the variable

transformations, y = t+
√
−1u and z = v+

√
−1w, where we regard t as time variable.

Hereafter ¯ means complex conjugate. Then we take

qj =
1

p̄j
, αµj = −b̄jµ, βµj = ājµ, γµj =

c̄jµ
p̄j
,

so that the complex conjugate conditions, ψµj = 1
p̄j
φ̄jµ and mij = m̄ji, are satisfied.

After all, the solution in this case is given as

f = det
1≤i,j≤N

(
mij

)
, gkl = det

(
mij φil

φ̄jk δkl

)
, mij =

1

pip̄j + 1

M∑
µ=1

φiµφ̄jµ,

φiµ = (aiµ − biµpi)t− (aiµ + biµpi)
√
−1u+ (aiµpi + biµ)v + (aiµpi − biµ)

√
−1w + ciµ,

where pi, aiµ, biµ and ciµ are complex constants.

Now let us take

bi1 = −ai1p̄i, aiµ = biµ = 0 (2 ≤ µ ≤M).

Then ai1 can be normalized to 1 without loss of generality. Denoting ci1 = θi+
√
−1ϕi,

φi1 is given as

φi1 = (pip̄i + 1)t+ θi +
√
−1[(pip̄i − 1)u+

pi − p̄i√
−1

v + (pi + p̄i)w + ϕi],

and φiµ = ciµ for 2 ≤ µ ≤ M . This solution might be regarded as the rogue wave

solution. Here pi is wave number and θi and ϕi parametrize the position of rogue

waves. In the case of N = 1, by omitting the indices i and j for notational simplicity,

the solution is written as

f =
1

|p|2 + 1

M∑
µ=1

|φµ|2, gkl = δklf − φ̄kφl,

φµ =

(pp̄+ 1)t+ θ +
√
−1[(pp̄− 1)u+ p−p̄√

−1
v + (p+ p̄)w + ϕ], µ = 1,

cµ, 2 ≤ µ ≤M.

This solution might be regarded as the fundamental rogue wave, since the components

of J are localized in time except (1, 1)-component,

Jkl − δkl =
gkl − δklf

f
→ 0 (t→ ±∞),
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for (k, l) ̸= (1, 1). We should note that J11 is not localized in time. The solution for

N ≥ 2 describes the superposition of N fundamental rogue waves.

§ 4. Concluding remark

A wide class of solutions for the SDYM equation is explicitly given by using the

Gram type determinant which is expressed in terms of arbitrarily many arbitrary func-

tions of two variables. The rogue wave type solutions are obtained by taking these

functions as appropriate polynomials. Any number of fundamental rogue waves with

any displacements can be superposed in the case of SDYM equation.

Appendix

We give a direct proof of the results in section 2 by using the bilinear method. Let

us assume f , gkl, hkl and fkl are defined by (2.4), (2.9) and (2.13) with (2.5). Since mij

satisfies

mij −
M∑
µ=1

φiµ
1

qj
ψµj = −pi

qj
mij ,

the Gram type determinant f is expressed in M -bordered determinant form,

(A.1) f

N∏
ν=1

(−pν
qν

) = det
1≤i,j≤N

(
− pi

qj
mij

)
=

∣∣∣∣∣∣∣∣∣∣
mij φi1 · · · φiM
1
qj
ψ1j 1 0
...

. . .
1
qj
ψMj 0 1

∣∣∣∣∣∣∣∣∣∣
.

Similarly hkl is rewritten as (N + l, N +k)-cofactor of (N +M)× (N +M) determinant,

hkl

N∏
ν=1

(−pν
qν

) = det

(
− pi

qj
mij φil

− 1
qj
ψkj δkl

)
(A.2)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

mij φi1 · · · φiM φil
1
qj
ψ1j 1 0
...

. . . ∅
1
qj
ψMj 0 1

− 1
qj
ψkj

t∅ δkl

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

mij φi1 · · · φiM ∅
1
qj
ψ1j 1 0
...

. . . −el
1
qj
ψMj 0 1
t∅ tek 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
mij φi1 · · · φiM
1
qj
ψ1j 1 0
...

. . .
1
qj
ψMj 0 1

∣∣∣∣∣∣∣∣∣∣
N+l,N+k

,

where ∅ is zero column vector, el is unit column vector with 1 in l-th component and 0

in others, and |(· · · )|α,β means (α, β)-cofactor of the matrix (· · · ). The sizes of vectors ∅
and el depend on the place they appear. Applying the Sylvester’s determinant identity
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to rhs of (A.1), we obtain

f
N∏

ν=1

(−pν
qν

)

f
= det

1≤k,l≤M

(det

(
mij φil
1
qj
ψkj δkl

)
f

)
.

Thus we have proved that J in (2.3) satisfies (2.7). Applying the Laplace expansion to

the vanishing 2(N +M)× 2(N +M) determinant,

det



mij φi1 · · · φil · · · φiM
1
qj
ψ1j 1 1

...

. . .
el . . . 0 . . .

1
qj
ψMj 1 1

φil mij
1
qj
ψ1j 1

0 el 0
...

. . .
1
qj
ψMj 1


= 0,

where (N + k)-th column is replaced by the vector
(
φil

el

)
both on top and bottom, we

obtain

δkl

∣∣∣∣∣∣∣∣∣∣
mij φi1 · · · φiM
1
qj
ψ1j 1
...

. . .
1
qj
ψMj 1

∣∣∣∣∣∣∣∣∣∣
∣∣∣mij

∣∣∣− M∑
µ=1

∣∣∣∣∣∣∣∣∣∣
mij φi1 · · · φiM
1
qj
ψ1j 1
...

. . .
1
qj
ψMj 1

∣∣∣∣∣∣∣∣∣∣
N+µ,N+k

∣∣∣∣∣ mij φil
1
qj
ψµj δµl

∣∣∣∣∣ = 0.

Thus by using (A.1) and (A.2) we have proved that (2.10) holds and J−1 is actually

given as (2.8).

Assuming (2.6), φiµ, ψµj and mij satisfy

∂zφiµ = pi∂ȳφiµ, ∂zψµj = −qj∂ȳψµj , ∂zmij −
M∑
µ=1

φiµ
1

qj
∂zψµj = pi∂ȳmij ,(A.3)

∂yφiµ = −pi∂z̄φiµ, ∂yψµj = qj∂z̄ψµj , ∂ymij −
M∑
µ=1

φiµ
1

qj
∂yψµj = −pi∂z̄mij .(A.4)
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Then we have

Dȳfkl · f =
N∑

α=1

N∑
β=1

( ∣∣∣∣∣mij φil

ψkj 0

∣∣∣∣∣
α,β

∣∣∣mij

∣∣∣− ∣∣∣∣∣mij φil

ψkj 0

∣∣∣∣∣ ∣∣∣mij

∣∣∣
α,β

)
∂ȳmαβ

+
( ∣∣∣∣∣mij ∂ȳφil

ψkj 0

∣∣∣∣∣+
∣∣∣∣∣ mij φil

∂ȳψkj 0

∣∣∣∣∣ ) ∣∣∣mij

∣∣∣
=

N∑
α=1

N∑
β=1

∣∣∣∣∣mij φil

ψkj 0

∣∣∣∣∣
α,N+1

∣∣∣∣∣mij φil

ψkj 0

∣∣∣∣∣
N+1,β

1

pα
(∂zmαβ −

M∑
µ=1

φαµ
1

qβ
∂zψµβ)

+
( ∣∣∣∣∣mij

1
pi
∂zφil

ψkj 0

∣∣∣∣∣+
∣∣∣∣∣ mij φil

− 1
qj
∂zψkj 0

∣∣∣∣∣ ) ∣∣∣mij

∣∣∣ ,
where we used the Jacobi’s formula and (A.3). Thus we have

Dȳfkl · f =

N∑
α=1

N∑
β=1

∣∣∣∣∣mij eα

ψkj 0

∣∣∣∣∣
∣∣∣∣∣mij φil

teβ 0

∣∣∣∣∣ 1

pα
∂zmαβ(A.5)

−
M∑
µ=1

∣∣∣∣∣mij
1
pi
φiµ

ψkj δkµ

∣∣∣∣∣
∣∣∣∣∣ mij φil
1
qj
∂zψµj 0

∣∣∣∣∣+
∣∣∣∣∣mij

1
pi
∂zφil

ψkj 0

∣∣∣∣∣ ∣∣∣mij

∣∣∣ .
The last term in rhs of (A.5) multiplied by

∏N
ν=1(−

pν

qν
) is rewritten as∣∣∣∣∣mij

1
pi
∂zφil

ψkj 0

∣∣∣∣∣ ∣∣∣mij

∣∣∣ N∏
ν=1

(−pν
qν

) =

∣∣∣∣∣−
pi

qj
mij ∂zφil

− 1
qj
ψkj 0

∣∣∣∣∣ ∣∣∣mij

∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

mij φi1 · · · φiM ∂zφil
1
qj
ψ1j 1
...

. . .
1
qj
ψMj 1

− 1
qj
ψkj 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣mij

∣∣∣ = −
M∑
µ=1

∣∣∣∣∣∣∣∣∣∣
mij φi1 · · · φiM
1
qj
ψ1j 1
...

. . .
1
qj
ψMj 1

∣∣∣∣∣∣∣∣∣∣
N+µ,N+k

∣∣∣∣∣ mij ∂zφil
1
qj
ψµj 0

∣∣∣∣∣ ,

where in the last line we used the identity obtained by Laplace expansion applied to

det



mij φi1 · · · ∂zφil · · · φiM
1
qj
ψ1j 1 1

...

. . . ∅ . . . 0 . . .

1
qj
ψMj 1 1

∂zφil mij
1
qj
ψ1j 1

0 ∅ 0
...

. . .
1
qj
ψMj 1


= 0,
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where (N +k)-th column is replaced by the vector
(
∂zφil

∅
)
on top and bottom. Similarly

for the first term in rhs of (A.5), we have

∣∣∣∣∣mij eα

ψkj 0

∣∣∣∣∣
∣∣∣∣∣mij φil

teβ 0

∣∣∣∣∣ 1

pα

N∏
ν=1

(−pν
qν

) =

∣∣∣∣∣−
pi

qj
mij eα

− 1
qj
ψkj 0

∣∣∣∣∣
∣∣∣∣∣mij φil

teβ 0

∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

mij φi1 · · · eα · · · φiM
1
qj
ψ1j 1

...

. . . ∅ . . .
1
qj
ψMj 1

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

m̃ij

1̃
qj
ψ1j 1
...

. . .

1̃
qj
ψMj 1

∣∣∣∣∣∣∣∣∣∣∣
,

where in rhs, (N + k)-th column of the first determinant is
(
eα
∅
)
, and m̃ij and 1̃

qj
ψµj in

the second determinant are same with mij and 1
qj
ψµj except that their β-th columns

are replaced by φil and δµl, respectively. We can farther rewrite it as

∣∣∣∣∣mij eα

ψkj 0

∣∣∣∣∣
∣∣∣∣∣mij φil

teβ 0

∣∣∣∣∣ 1

pα

N∏
ν=1

(−pν
qν

)

= δkl

∣∣∣∣∣∣∣∣∣∣
mij φi1 · · · φiM
1
qj
ψ1j 1
...

. . .
1
qj
ψMj 1

∣∣∣∣∣∣∣∣∣∣
∣∣∣mij

∣∣∣
α,β

−
M∑
µ=1

∣∣∣∣∣∣∣∣∣∣
mij φi1 · · · φiM
1
qj
ψ1j 1
...

. . .
1
qj
ψMj 1

∣∣∣∣∣∣∣∣∣∣
N+µ,N+k

∣∣∣∣∣ mij φil
1
qj
ψµj δµl

∣∣∣∣∣
α,β

,

by using the identity obtained by Laplace expansion of

det



mij φi1 · · · eα · · · φiM m̃ij

1
qj
ψ1j 1 1̃

qj
ψ1j 1

...

. . . ∅ . . .

...
. . .

1
qj
ψMj 1 1̃

qj
ψMj 1

eα m̃ij

1̃
qj
ψ1j 1

0 ∅ 0
...

. . .

1̃
qj
ψMj 1



= 0.
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Therefore using (A.1) and (A.2), from (A.5) we get

Dȳfkl · f =
N∑

α=1

N∑
β=1

(
δklf

∣∣∣mij

∣∣∣
α,β

−
M∑
µ=1

hkµ

∣∣∣∣∣ mij φil
1
qj
ψµj δµl

∣∣∣∣∣
α,β

)
∂zmαβ

−
M∑
µ=1

hkµ

∣∣∣∣∣ mij φil
1
qj
∂zψµj 0

∣∣∣∣∣−
M∑
µ=1

hkµ

∣∣∣∣∣ mij ∂zφil
1
qj
ψµj 0

∣∣∣∣∣
= δklf∂zf −

M∑
µ=1

hkµ∂zgµl.

Finally eliminating δklf∂zf from the above equation by using z-derivative of (2.10), we

obtain (2.11). Similarly (2.12) is derived by replacing z and ȳ by −y and z̄, respectively,

and using (A.4). We can simply denote (2.11) and (2.12) in matrix bilinear form,

DzH ·G = 2DȳF · f, DyH ·G = −2Dz̄F · f,

where G and H are given in (2.3) and (2.8), and F is defined by F =
(
fkl

)
1≤k,l≤M

.

Dividing these by f2 we get

DzJ
−1 · J = 2∂ȳ

F

f
, DyJ

−1 · J = −2∂z̄
F

f
,

thus

∂ȳ(DyJ
−1 · J) + ∂z̄(DzJ

−1 · J) = 0,

which is equivalent with (2.1). This completes the proof.
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