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The eigenvalues of the principal minor of a

Hermitian random matrix

By
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Abstract

This is a summary of the paper [8]. We study the difference between the empirical eigen-

value distribution of a unitarily invariant Hermitian random matrix and that of its principal

minor. Under some technical assumptions, we prove that the difference can be described by

the Markov–Krein correspondence as the size of the matrix goes to infinity.

§ 1. Introduction

Let XN be a hermitian random matrix of size N whose distribution on the matrix

space MN (C) is invariant under conjugacy by any unitary matrix. Let ΛN = (λ
(N)
1 ≤

· · · ≤ λ
(N)
N ) be its eigenvalues. Then a diagonalization XN = UNDNUN

∗ exists, where

DN = diag(λ
(N)
1 , λ

(N)
2 , . . . , λ

(N)
N ) and UN is a Haar unitary random matrix of size N

and independent of DN (see [6, Proposition 6.1]). We denote by mN the empirical

eigenvalue distribution of XN :

mN :=
1

N

N∑
i=1

δ
λ
(N)
i

.

Given a Schwartz distribution ζ on R, let Mk(ζ) denote the evaluation of ζ by the

test function xk and call it the k-th moment of ζ, as long as it is well defined. If ζ is a

probability measure, then Mk(ζ) is the usual k-th moment.
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Assumption 1.1. The following are assumed throughout this paper.

(A1) sup
N≥1

E[Mk(mN )] < ∞, k ∈ 2N.

(A2) There exists a (non-random) probability distribution m on R having finite mo-

ments of all orders such that mN converges in moments in probability to m:

lim
N→∞

P[|Mk(mN )−Mk(m)| ≥ ϵ] = 0, k ∈ N, ϵ > 0.

Let X̃N be the principal minor of XN made by removing the last row and column

of XN . Cauchy’s interlacing law says that the eigenvalues Λ̃N = (λ̃
(N)
1 ≤ · · · ≤ λ̃

(N)
N−1)

of X̃N interlace with ΛN (see [16, Exercise 1.3.14]):

λ
(N)
1 ≤ λ̃

(N)
1 ≤ λ

(N)
2 ≤ λ̃

(N)
2 ≤ · · · ≤ λ

(N)
N−1 ≤ λ̃

(N)
N−1 ≤ λ

(N)
N .

It is not hard to see under Assumption 1.1 that the empirical eigenvalue distribution

m̃N of X̃N also converges in moments in probability to the same limit m. Our main

purpose is to investigate the difference of mN and m̃N . Let us investigate the rescaled

difference N(mN − m̃N ), which can be calculated as

N(mN − m̃N ) =

N∑
i=1

δ
λ
(N)
i

− N

N − 1

N−1∑
j=1

δ
λ̃
(N)
j

=

N∑
i=1

δ
λ
(N)
i

−
N−1∑
j=1

δ
λ̃
(N)
j︸ ︷︷ ︸

=:τ̂N

−m̃N .

Because m̃N converges to m, the problem is the convergence of the signed measure τ̂N .

To describe the convergence of τ̂N , recall the notions of free cumulants andMarkov–

Krein correspondence. The free cumulants Rn(m), n ∈ N, of m are the real numbers

defined by the recursive formula

(1.1) Mk(m) =
∑

ρ∈NC(k)

Rρ(m),

where NC(k) is the set of non-crossing partitions on the set {1, 2, . . . , k} and Rρ(m) :=∏
B∈ρ R|B|(m). Free cumulants are helpful for computing free convolutions and are well

studied in free probability. For further details, the reader is referred to [15]. On the

other hand, let τ be the Schwartz distribution determined by formula

(1.2)

∫
R

1

1− zx
dm(x) = exp

[∫
R
log

1

1− zx
dτ(x)

]
, z ∈ C \ R.

The correspondence between m and τ gives a bijection between the set of probability

measures on R and the set of certain Schwartz distributions, and is called the Markov–

Krein correspondence; see [12] for further details.



The eigenvalues of the principal minor of a Hermitian random matrix 67

Here are three remarks on the Markov–Krein correspondence. Firstly, in many

examples, τ is a signed measure, and in such a case it is called the Rayleigh measure

of m. In general, τ is the Schwartz-distributional derivative of a so-called Rayleigh

function.

Secondly, because we assumed that m has finite moments of all orders, so is τ (see

[1, Theorem A (d)] and [12, Section 3.4]). The relationship between the two kinds of

moments Mk(m) and Mk(τ), k ∈ N, is exactly the one between the complete symmetric

functions and Newton’s power sums, i.e.,

(1.3) Mk(τ) = kMk(m)−
k−1∑
r=1

Mr(τ)Mk−r(m), k ∈ N.

Thirdly, the Markov–Krein correspondence appears in different contexts to describe

interlacing sequences: limit shapes of large random Young diagrams [13, 17, 3, 4]; roots

of two consecutive orthogonal polynomials of large degrees [11]; eigenvalues of large

random matrices and of their principal minor [11, 5] (the present paper deals with this

category). There are also situations where the distribution τ above appears as a proba-

bility measure: Poisson–Dirichlet processes (see [12, Section 4.1] and references therein);

self-decomposable distributions for monotone convolution [7]; Harish-Chandra–Izykson–

Zuber integral of rank one at a high temperature regime [14]. The reason why the same

correspondence appears in different contexts seems still unclear.

§ 2. The main result

The main result of [8] is as follows.

Theorem 2.1. Let mN ,m, τ̂N , τ be as in Section 1. Then Mk(τ̂N ) converges to

Mk(τ) in L2 as N → ∞ for every k ∈ N. In particular, τ̂N converges to τ in moments

in probability.

This result is known as a folklore theorem and is announced in [10] as a conjecture.

Similar results are previously obtained in [11] for randomly rotated real Wigner matrices

and then in [5] for Wigner and Wishart matrices (without random rotation).

The proof is based on a free probability technique and is sketched below; for further

details see [8]. We first compute the expectation of Mk(τ̂N ), which is given by

(2.1) E[Mk(τ̂N )] = E ◦ Tr[Dk
N ]− E ◦ Tr[(DNUNPNUN

∗)k],

where PN = diag(1, 1, . . . , 1, 0). Weingarten calculus fits this problem and yields the

asymptotic expansion of E◦Tr[(DNUNPNUN
∗)k] in variable N−1. The first order term
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of the expansion is E ◦Tr[Dk
N ] that is of order O(N) and exactly cancels the first term

of (2.1). The second order term, which is the crucial part, turns out to be

(2.2) −
∑

ρ∈NC(k)

(k + 1− |ρ|)Rρ(m),

where |ρ| is the number of blocks of ρ. To prove the main theorem, expression (2.2)

should equal −Mk(τ), and indeed it is. This equality can be easily proved by combining

combinatorial formulas for complete symmetric functions. The higher order terms will

vanish in the limit and are unnecessary for the proof. Considering the above, we obtain

E[Mk(τ̂N )] = Mk(τ) + o(1) as N → ∞. To complete the proof of L2 convergence

Mk(τ̂N ) → Mk(τ), we also need to compute and estimate E[Mk(τ̂N )2]. Although the

computation is more involved, Weingarten calculus also works for this case.

As a final remark, the recent paper [9] investigated equation (2.1) from the view-

point of noncommutative independence. As a result, the equality of (2.2) and −Mk(τ)

was generalized to a multivariate situation, see [9, Theorem 6.1].
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