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The generalized spectral theory and its application to

the Kuramoto conjecture

By

Hayato Chiba∗

Abstract

A spectral theory of linear operators based on a Gelfand triplet (rigged Hilbert space) is

developed under the assumptions that a linear operator T on a Hilbert spaceH is a perturbation

of a self-adjoint operator, and the spectral measure of the self-adjoint operator has an analytic

continuation near the real axis. It is shown that for a suitable dense subspace X of H and

its dual space X ′, for any ϕ ∈ X, the resolvent (λ − T )−1ϕ of the operator T has an analytic

continuation from the lower half plane to the upper half plane as an X ′-valued holomorphic

function even when T has a continuous spectrum on R. The Gelfand triplet consists of three

topological vector spaces X ⊂ H ⊂ X ′. Basic tools of the usual spectral theory, such as

spectra, resolvents and Riesz projections are extended to those defined on a Gelfand triplet.

They prove to have the same properties as those of the usual spectral theory. The results are

applied to estimate exponential decays of the semigroups of linear operators and bifurcations

of nonlinear dynamical systems. In particular, a conjecture on a bifurcation of the Kuramoto

model (Kuramoto conjecture) will be solved.

§ 1. Kuramoto model

In the last few decades, the study of large / infinite-dimensional dynamical systems

becomes more and more important. Let us consider the system of differential equations

dxi
dt

= fi(x1, · · · , xn), i = 1, · · · , N,

where xi = xi(t) moves on some phase space. This dynamical system assigns a directed

graph in the following way:

Let V = {vi}Ni=1 be the set of vortices. If the function fi depends on xj , we define

the edge eji from the vortex vj to vi, that means that xj affects the dynamics of xi.
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It is a challenging problem to understand how the graph structure is related to the

dynamics. For simplicity, we consider the system of the form

dθi
dt

= fi(θ1, · · · , θn), i = 1, · · · , N,(1.1)

where θi ∈ S1 rotates on a circle. Thus, the phase space is an N -torus. A dynamical

system of the form is often called a system of coupled oscillators [21, 23]. For

example, if a given dynamical system on a phase space X has an N -torus as an invariant

manifold, we obtain a coupled oscillators by restricting the dynamics on it.

The Kuramoto model is one of the most famous coupled oscillators given by

dθi
dt

= ωi +
K

N

N∑
j=1

sin(θj − θi), i = 1, · · · , N,(1.2)

which is well-known as a typical mathematical model for synchronization phenomena

[20, 21, 26]. Here, ωi and K are constants called natural frequencies and the coupling

strength, respectively. When the coupling strength is zero, there are no interactions

between oscillators and they rotate with their own velocity ωi. Hence, if ωj > ωi then

θj overtakes θi many times. However, if K is positive, there are interactions between

oscillators through the term sin(θj − θi) and we expect that if K is large enough, such

an overtaking does not occur. Indeed, it is easy to observe by numerics that there

exists a threshold Kc such that when K > Kc, a synchronized state appears; a subset

of oscillators forms a cluster on a circle and it behaves like a big oscillator without

overtaking. The cluster consists of oscillators whose natural frequency ωi is close to the

average Ω of all natural frequencies. As K increases, the number of oscillators that are

entrained into the cluster gets larger (Fig.1).

r

Figure 1. (left) synchronization. (right) de-synchronization.

In order to observe that whether a synchronization occurs or not, it is convenient

to introduce the order parameter defined by

η :=
1

N

N∑
j=1

eiθj(t).(1.3)
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This gives the center of mass of oscillators on a unit circle. Hence, when its absolute

value r := |η| is positive (resp. zero), a synchronization occurs (resp. does not occur).

Kuramoto performed a certain formal and technical calculation using the order param-

eter, and reached the following result, though there are no mathematical proofs.

The Kuramoto conjecture [21, 26].

Suppose N → ∞ and the natural frequencies are independent and identically dis-

tributed according to a probability density function g(ω). If g(ω) is an even and uni-

modal function, a bifurcation diagram of the order parameter r = |η| is given as Fig. 2.

This means that when K is smaller than Kc := 2/(πg(0)), the de-synchronized state

r = 0 is asymptotically stable. At K = Kc, a bifurcation (phase transition) occurs and

a stable synchronized state (r > 0) exists for K > Kc. Near the bifurcation point, r is

approximately given by r ∼ O(
√
K −Kc).

KK

r

c

Figure 2. A bifurcation diagram of the order parameter.

Note that by a translation of the coordinate θi 7→ θi +Ωt, we can assume without

loss of generality that the average value of g(ω) is zero. Then, “ g(ω) is unimodal” means

that when ω > 0 (resp. ω < 0), it is strictly monotonically decreasing (resp. increasing).

The bifurcation point Kc := 2/(πg(0)) is often called Kuramoto’s transition point. See

[26] for Kuramoto’s formal calculation.

As explained in later sections, the difficulty of a mathematical approach to the

Kuramoto conjecture is that a certain linear operator obtained by the linearization of

the model has a continuous spectrum. Recently, the author developed the generalized

spectrum theory of linear operators based on Gelfand triplets and proposed an effective

method to investigate linear operators having continuous spectra [5]. By applying this

theory to the infinite dimensional Kuramoto model, he proved the Kuramoto conjecture

under a suitable condition [3, 4]. In what follows, h(θ) denotes a distribution of the

initial values {θj(0)}∞j=1 of oscillators.

Theorem 1.1. Suppose that g(ω) is the Gaussian distribution. When 0 < K <
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Kc, there exists δ > 0 such that if h(θ) satisfies∣∣∣∣∫ 2π

0

eijθh(θ)dθ

∣∣∣∣ < δ, j = 1, 2, · · · ,

then the order parameter η(t) tends to zero as t→ ∞ with an exponential rate.

Theorem 1.2. Suppose that g(ω) is the Gaussian distribution. There exist num-

bers ε0, δ > 0 such that if h(θ) satisfies∣∣∣∣∫ 2π

0

eijθh(θ)dθ

∣∣∣∣ < δ, j = 1, 2, · · · ,

then for Kc < K < Kc + ε0, the absolute value of the order parameter converges to the

following value as t→ ∞

|η(t)| =

√
−16

πK4
c g

′′(0)

√
K −Kc +O(K −Kc).

In particular, a bifurcation diagram of the order parameter is given as Fig. 2.

This result holds even if g(ω) is not Gaussian. The most essential assumption is

that g(ω) is analytic on R and it has an analytic continuation around the real axis. On

the other hand, the Kuramoto conjecture was proved when g(ω) is a Cn function in

[13] by a different way. In this case, the decay rate (Thm.1.1) is not exponential but

algebraic O(t−n).

More general form of the Kuramoto model is given as

dθi
dt

= ωi +
K

N

N∑
j=1

aij sin(θj − θi + α), i = 1, · · · , N,(1.4)

and g(ω) is not unimodal, where α is a phase lag and aij denotes the adjacency matrix

that determines the graph structure (we have an edge connecting θj and θi only when

aij 6= 0). We can also consider other periodic function as the interaction term such as

sin 2(θj − θi). Even in these cases, we can obtain similar results as above, see [4, 7, 8,

9, 10] for the details.

The generalized spectral theory used to prove the Kuramoto conjecture is also

applicable to any problems related to continuous spectra, such as Schrödinger equations

[6], chaos in symbolic dynamical systems [11], the onset of the human brain wave [12],

and so on.

The purpose of this article is to illustrate the generalized spectral theory. For it,

we begin to investigate the Kuramoto model within the usual spectral theory in Sec. 2

and 3.
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§ 2. Continuous limit

Since we assume N → ∞ for the Kuramoto conjecture, we first start to define the

infinite-dimensional version of the Kuramoto model.

By substituting the definition of the order parameter η into the Kuramoto model

(1.2), we obtain

dθi
dt

= ωi +Kr sin(ψ − θi),

where we put η = reiψ. With this in mind, the continuous limit of the Kuramoto model

is defined by the following system

(2.1)


∂ρt
∂t

+
∂

∂θ
(vρt) = 0, ρt = ρt(θ, ω),

v := ω +Kr sin(ψ − θ),

η := reiψ =

∫
R

g(ω)dω

∫ 2π

0

eiθρt(θ, ω)dθ.

Now infinitely many oscillators rotate on a circle like a fluid, and ρt denotes its distribu-

tion. More precisely, ρt(θ, ω) implies a probability density function of θ for each time t

and natural frequency ω. The first line of the system is the equation of continuity (con-

servation law) of ρt. The velocity field v is given by the second line, that comes from the

right hand side of the finite-dimensional one by removing the subscript i. The third line

is the definition of the infinite-dimensional version of the order parameter, that is ob-

tained by replacing the summation in the finite-dim model by the integral with respect

to the measure g(ω)ρt(θ, ω)dωdθ, where g(ω) is a given density function. In this article,

we assume that it is the Gaussian distribution for simplicity. It is easy to show that

this system has a unique weak solution for a given initial condition ρ0(θ, ω) = h(θ, ω)

for any t > 0.

Since the unknown function ρt is periodic in θ, we consider the Fourier series of it.

The Fourier coefficients are given by

Zj(t, ω) :=

∫ 2π

0

eijθρt(θ, ω)dθ.

Rewriting the equation of ρt by Zj yields the system of equations of Zj as

dZ1

dt
= iωZ1 +

K

2
η(t)− K

2
η(t)Z2,

and

dZj
dt

= ijωZj +
jK

2
(η(t)Zj−1 − η(t)Zj+1),
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for j = 2, 3, · · · . Note that Z0 = 1 because of the normalization of a probability density.

This system has the trivial solution Zj = 0, j = 1, 2, · · · . In this case ρt = 1/(2π) is the

uniform distribution on a circle which corresponds to the de-synchronization state.

Let us investigate the stability of the trivial solution. Since η is written as η =∫
R
Z1g(ω)dω, the terms such as η(t)Zj in the system are nonlinear terms. Therefore,

the linearization of the system around the trivial solution is given by

dZ1

dt
= T1Z1 :=

(
iM+

K

2
P
)
Z1,

dZj
dt

= ijMZj , j = 2, 3, · · ·

where the linear operators M and P are defined by M : f(ω) 7→ ωf(ω) and

Pf(ω) =
∫
R

f(ω)g(ω)dω.

The order parameter η =
∫
R
Z1g(ω)dω = PZ1 depends only on Z1 at least for the

linearized system. Hence, let us investigate the spectrum of the operator T1 = iM +

KP/2, that defines the linearized system for Z1, as an operator on the Hilbert space

L2(R, g(ω)dω) (weighted Lebesgue space).

§ 3. Spectrum of linear operators

For the comparison with the generalized spectrum, we give a brief review of the

(usual) spectral theory on a Banach space.

The spectrum set σ(T ) of a linear operator T on a Banach space X is the set of

the singularities of the resolvent operator (λ− T )−1. More precisely, it consists of ;

point spectrum σp(T ). The set of point λ such that λ− T is not injective on X.

residual spectrum σr(T ). The set of point λ such that λ − T is injective on X but

its range is not a dense subspace of X.

continuous spectrum σc(T ). The set of point λ such that λ− T is injective and the

range is dense but the inverse (λ− T )−1 is not a continuous operator on X.

The resolvent set is defined by ρ(T ) = C\σ(T ).
The point spectrum is just the set of eigenvalues ; Tv = λv has a solution v 6= 0 in

X. If X is a finite dimensional space, λ − T is surjective if and only if it is injective,

however, it is not true for infinite one. Unfortunately, λ − T is not surjective for most

problems. Hence, we consider a more mild condition that the range of λ−T is dense or

not dense in X. When it is not dense, the set of such λ is the residual spectrum. If λ
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is neither in the point spectrum nor the residual spectrum, the inverse (λ− T )−1 exists

and the domain is dense. If (λ − T )−1 is a continuous operator, we can continuously

extend its domain to the whole space X, and λ is a regular point. The continuous

spectrum is the set of λ such that we cannot extend the domain of (λ − T )−1 to the

whole space (recall the closed graph theorem) 1.

Let us consider the linear differential equation du/dt = Tu, u ∈ X defined on a

Banach space X. The asymptotic behavior of a solution as t→ ∞ is almost character-

ized by the spectrum of T . Indeed, under a suitable assumption for T , it is known that

a solution is expressed by the Laplace inversion formula

(3.1) u(t) = eTtu(0) =
1

2πi

∫ a+i∞

a−i∞
eλt(λ− T )−1u(0)dλ,

for t > 0, where the integral path is a vertical straight line such that the spectrum

set of T is included in the left half plane Re(λ) < a. The operator eTt is called the

semigroup generated by T . For example when X is a finite dimensional space, the set

of singularities of the integrant (λ− T )−1 consists only of the eigenvalues of T . In this

case, we can calculate the Laplace inversion formula by deforming the integral path and

using the residue theorem as is shown in Fig. 3. Hence, the real parts of eigenvalues

completely determine the asymptotic behavior of solutions because of the factor eλt.

This is true even if X is an infinite-dim space as long as T is a bounded operator or a

sectorial operator, that admit the deformation of the integral path as in Fig. 3 2.

With this in mind, let us calculate the spectrum of the operator T1 = iM+KP/2.
We only give the sketch of proofs, see [3] for the detail.

1The concept of the spectrum makes sense only when T is a closed operator. Let us consider the
point λ ∈ ρ(T ). By the definition, the resolvent (λ − T )−1 is a continuous operator on X, in
particular it is a closed operator. It is known that the inverse of a closed operator is also closed.
Thus, ((λ− T )−1)−1 = λ− T is also closed. Then, T = −(λ− T ) + λ is also closed. Consider the
contraposition. If T is not a closed operator, there are no λ ∈ ρ(T ); the whole complex plane is
the spectrum set.

2Roughly speaking, a sectorial operator is an operator such that its spectrum set is included in a
small sector that is open toward the left direction (i.e. included in the > shape region). A bounded
operator is always sectorial because its spectrum set is compact.
If T is not sectorial, solutions u(t) may diverge as t → ∞ even when the spectrum set is included
in the left half plane. A typical situation is that the spectrum set is not bounded for imaginary
direction (so we can not take > shape region). This means that the spectrum set does not determine
the behavior of solutions [18].
This difficulty essentially comes from the fact that the spectral mapping theorem does not hold.
Let S(t) = eTt be a semi-group generated by T . If T is bounded or a self-adjoint operator on
a Hilbert space, we have the spectral mapping theorem, that states eσ(T )t = σ(S(t)). However,
in general we only have eσ(T )t ⊂ σ(S(t)). This implies that S(t) has an information that is not
obtained from an information of σ(T ).
The domain D(T ) of an unbounded operator T is not the whole space X but its dense subspace.
However, the domain of its semigroup S(t) can be the whole space. Hence, if we take an initial
condition u(0) from X\D(T ), then the behavior of a solution u(t) is not captured by σ(T ). If we
choose u(0) from D(T ), we may obtain nice information about a solution from σ(T ), see [18] for
the detail.
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Figure 3. A deformation of the integral path. × denotes an eigenvalue.

Proposition 3.1. T1 is a densely defined closed operator on L2(R, g(ω)dω) sat-

isfying

(i) the continuous spectrum is σc(T1) = i · supp(g),
(ii) the residual spectrum is empty,

(iii) an eigenvalue is given as a root of the equation

(3.2)

∫
R

1

λ− iω
g(ω)dω =

2

K
, λ ∈ C\σc(T1),

if it exists.

Since P is a compact operator, (i) and (ii) immediately follow from the perturbation

theory of linear operators. If g is the Gaussian distribution, σc(T1) = iR is the whole

imaginary axis. Let us derive the eigen-equation (3.2). Let P0(ω) ≡ 1 be a constant

function. By using the inner product on L2(R, g(ω)dω), P is written as Pf = (f, P0)P0.

This gives

λv = T1v = iωv +
K

2
(v, P0)P0

=⇒ v =
K

2
(v, P0)(λ− iω)−1P0.

By taking the inner product with P0 and dividing by (v, P0), we obtain (3.2). From this

calculation, it turns out that an eigenvector is given by

(3.3) v(ω) =
1

λ− iω

if an eigenvalue λ exists.

Proposition 3.2. Suppose that g is an even, unimodal and continuous function.

(i) When K > Kc := 2/(πg(0)), there exists a unique eigenvalue on the positive real
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axis,

(ii) it converges to the origin as K → Kc + 0 and

(iii) when K ≤ Kc, there are no eigenvalues.

Proof. By setting λ = x + iy and decomposing (3.2) into the real and complex

parts, we have 
∫
R

x

x2 + (ω − y)2
g(ω)dω =

2

K
,∫

R

ω − y

x2 + (ω − y)2
g(ω)dω = 0.

Further the second line is written as∫ ∞

0

ω

x2 + ω2
(g(y + ω)− g(y − ω)) dω = 0.

If g is even, y = 0 satisfies it. By using that g is unimodal, we can verify that y 6= 0

does not satisfy. The first line shows that when K > 0, x is positive, which means that

if an eigenvalue exists, it should be on the positive real line. It also follows from the

first line that an eigenvalue is unique if it exists. When |λ| = x is sufficiently large, the

equation (3.2) is estimated as 1/λ+O(1/λ2) = 2/K, which proves that the eigenvalue

exists and given by λ ∼ K/2. On the other hand, since the left hand side of (3.2) is

bounded on the right half plane, there are no eigenvalues when K > 0 is sufficiently

small. This shows that there is a number Kc > 0 such that x → +0 as K → Kc + 0.

The value Kc is obtained from the well-known formula

lim
x→+0

∫
R

x

x2 + ω2
g(ω)dω = πg(0).

This result proves that the trivial solution (de-synchro state) is unstable when

K > Kc because of the eigenvalue on the right half plane. The eigenvalue goes to

the left side as K decreases, and finally it is absorbed into the continuous spectrum

on the imaginary axis at K = Kc. When K ≤ Kc, there are no eigenvalues and the

spectrum set consists only of the continuous spectrum on the imaginary axis. Since a

point of the spectrum on the imaginary axis implies the neutral stability, we cannot

prove the asymptotic stability from the spectrum σ(T1). This problem will be resolved

by introducing the generalized spectrum.

§ 4. Gelfand triplet

To handle the difficulty caused by the continuous spectrum on the imaginary axis,

we develop the generalized spectral theory based on a Gelfand triplet. In this section,

we will illustrate how the triplet naturally arises by a simple example.
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Let us consider the multiplication operator M : f(x) 7→ xf(x) on L2(R). The

continuous spectrum is the whole real axis. Indeed, the resolvent is given by

(λ−M)−1f(x) =
1

λ− x
f(x)

and it is not included in L2(R) when λ ∈ R. Nevertheless, we will show that there

exists a topological vector space larger than L2(R) on which the resolvent operator

makes sense even if λ ∈ R.

To this end, we consider the L2(R)-inner product with some functions ϕ, ψ

((λ−M)−1ϕ, ψ∗) =

∫
R

1

λ− x
ϕ(x)ψ(x)dx,

where ψ∗(x) := ψ(x) is introduced to avoid the complex conjugate in the right hand

side. The right hand side above is holomorphic in λ on the lower half plane {Im(λ) < 0}.
Next, suppose λ approaches the real axis from below

lim
Im(λ)→0

∫
R

1

λ− x
ϕ(x)ψ(x)dx.

The factor 1/(λ− x) diverges at x = λ ∈ R, however, it is known that as long as ϕ and

ψ are continuous functions on R, the above integral exists as an improper integral and

is continuous in λ ∈ R.

Further suppose that λ moves to the upper half plane. It is known that as long as

ϕ and ψ are holomorphic on the region {Im(λ) ≥ 0}, the above function of λ has an

analytic continuation to the upper half plane given by∫
R

1

λ− x
ϕ(x)ψ(x)dx+ 2πiϕ(λ)ψ(λ), Im(λ) > 0.

Now we have shown that if ϕ and ψ are holomorphic on the real axis and the upper

half plane, the function ((λ − M)−1ϕ, ψ∗) of λ has an analytic continuation from the

lower to the upper half plane across the continuous spectrum on the real axis. We

denote it as

R(λ;ϕ, ψ) :=


∫
R

1

λ− x
ϕ(x)ψ(x)dx, Im(λ) < 0∫

R

1

λ− x
ϕ(x)ψ(x)dx+ 2πiϕ(λ)ψ(λ), Im(λ) > 0.

Motivated by this observation, let X be a dense subspace of L2(R) consisting

of some class of holomorphic functions and X ′ be its dual space, the vector space

of continuous linear functionals on X. The mapping ϕ 7→ R(λ;ϕ, ψ) defines a linear

functional on X, which is denoted by R(λ; •, ψ) ∈ X ′. The topology on X is defined



The generalized spectral theory 81

so that this functional is continuous. Then, the mapping ψ 7→ R(λ; •, ψ) gives a linear

mapping from X to X ′, denoted by Rλ, that is holomorphic in λ ∈ C. By the definition,

Rλ = (λ−M)−1 when Im(λ) < 0. We call Rλ the generalized resolvent of M.

This discussion is summarized as follows: As an operator from L2(R) to L2(R),

the resolvent operator (λ−M)−1 is singular on the real axis because of the continuous

spectrum. Nevertheless, if we regard it as an operator from X into X ′, it has an analytic

continuation Rλ from the lower to the upper half plane. For any ψ ∈ X, Rλψ is an

X ′-valued holomorphic function.

If X is a dense subspace of L2(R) and the embedding is continuous, L2(R) is

continuously embedded to the dual space X ′. In this manner, we obtain the triplet

(4.1) X ⊂ L2(R) ⊂ X ′

called the Gelfand triplet or rigged Hilbert space.

The spectrum set is also generalized as follows. Let H be a Hilbert space and T a

linear operator on H. Recall that the spectrum set of T is the set of singularities of the

resolvent (λ−T )−1. Suppose that T has a continuous spectrum. In a similar manner to

the above, suppose that there exists a suitable subspace X ⊂ H such that if we regard

the resolvent as an operator from X to X ′, then it has an analytic continuation Rλ

across the continuous spectrum. In general, the Riemann surface of Rλ is nontrivial.

If the analytic continuation Rλ has a new singularity on the Riemann surface different

from the original complex plane, we call it a generalized spectrum. By the definition,

it is not a true eigenvalue in H-sense, however, it is expected that it plays a similar role

to a usual eigenvalue and provides a new information that is not obtained from the

framework of a Hilbert space.

It is applied to the dynamics of the Kuramoto model as follows. Recall that the

semigroup eTt generated by T is given by the Laplace inversion formula (3.1). As

explained, if T is a bounded operator, we can estimate the formula by deforming the

integral path as shown in Fig. 3. However, for the operator T1 obtained from the

Kuramoto model, any point on the imaginary axis is a singularity of the integrant

eλt(λ− T1)
−1 and we cannot deform the integral path toward the left half plane. Now

we assume that there exists a subspace X ⊂ L2(R, g(ω)dω) such that the resolvent

(λ − T1)
−1 has an analytic continuation Rλ from the right to the left half plane as an

operator from X into X ′. Hence, we interpret (3.1) as

(4.2) eTtϕ= lim
y→∞

1

2πi

∫ a+iy

a−iy
eλtRλϕdλ, ϕ ∈ X.

Then, we can deform the integral path toward the left half plane (more precisely, the

second sheet of the Riemann surface), on which Rλϕ ∈ X ′ 3. A singularity of Rλ on the

3Thus, the limit lim
y→∞

in (4.2) is considered in weak sense (weak dual topology on X′).
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second Riemann sheet is called the generalized eigenvalue. By picking up the residue of

the generalized eigenvalue, we can estimate the asymptotic behavior of the semigroup.

Recall that there is the eigenvalue on the positive real axis when K > Kc, it moves to the

left side as K decreases and is absorbed into the continuous spectrum as K → Kc + 0,

and disappears. Actually, the eigenvalue does not disappear. It moves to the second

Riemann sheet when K < Kc (now the imaginary axis is a branch cut of the Riemann

surface). After getting across the branch cut, it is not an eigenvalue in the usual sense

but becomes a generalized eigenvalue, that is not found in Hilbert space theory, see

Fig. 4. We can deform the integral path to the second Riemann sheet and calculate

the residue around the generalized eigenvalue, which prove the exponential decay of a

solution of dZ1/dt = T1Z1 with respect to the topology of X ′ (asymptotic stability of

the de-synchronization when K < Kc). Further, we can show that when the generalized

eigenvalue crosses the imaginary axis at K = Kc as K increases, a bifurcation from

the de-synchro state to the synchronized state occurs. In this manner, the Kuramoto

conjecture was proved [3].

Figure 4. The motion of the (generalized) eigenvalue as K decreases. When K > Kc,

it is a usual eigenvalue in L2-sense. When 0 < K < Kc, it is a generalized eigenvalue

that lies on the second Riemann sheet different from the original complex plane.

From the next section, the generalized spectral theory will be formulated in a

general setting. The reader can find all omitted proofs in [5, 6]. Throughout this

article, D(·) and R(·) denote the domain and range of an operator, respectively. For

terminologies of topological vector spaces, refer to [27].

§ 5. The generalized spectral theory

Let X be a locally convex Hausdorff topological vector space over C, X ′ be its dual

space that is a vector space consisting of all continuous anti-linear functionals on X.

For µ ∈ X ′ and ϕ ∈ X, µ(ϕ) is denoted by 〈µ |ϕ〉. For any a, b ∈ C, ϕ, ψ ∈ X and
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µ, ξ ∈ X ′, the equalities

〈µ | aϕ+ bψ〉 = a〈µ |ϕ〉+ b〈µ |ψ〉,
〈aµ+ bξ |ϕ〉 = a〈µ |ϕ〉+ b〈ξ |ϕ〉,

hold. On the dual space X ′, there are several ways to introduce a topology. The most

commonly used are the weak dual topology and the strong dual topology. A sequence

{µj} ⊂ X ′ is said to be weakly convergent to µ ∈ X ′ if we have 〈µj |ϕ〉 → 〈µ |ϕ〉 for

each ϕ ∈ X. If we have 〈µj |ϕ〉 → 〈µ |ϕ〉 uniformly on arbitrary bounded subset in X,

then {µj} ⊂ X ′ is said to be strongly convergent to µ ∈ X ′.

Let H be a Hilbert space with a Hermitian inner product (· , ·). Suppose X is a

dense subspace of H and the embedding into H is continuous (i.e. the topology of X is

stronger than that of H). By considering their duals, it turns out that H′ is continuously

embedded into X ′. Since a Hilbert space is isomorphic to itself, we have H′ ' H ⊂ X ′.

Definition 5.1. Assume that a locally convex Hausdorff topological vector space

X is a dense subspace of a Hilbert space H and the topology of X is stronger than that

of H. The triplet

X ⊂ H ⊂ X ′

is called the Gelfand triplet or the rigged Hilbert space.

The embedding i : H → X ′ is defined as follows: For ψ ∈ H, i(ψ) is denoted by

〈ψ| and defined as

i(ψ)(ϕ) = 〈ψ |ϕ〉 = (ψ, ϕ), ϕ ∈ X.

In other words, the isomorphism H ' H′ is defined so that 〈ψ |ϕ〉 is compatible with

the inner product when ψ ∈ H. The embedding is injective and continuous by the

assumption in Def. 5.1. A Gelfand triplet was proposed to generalize the theory of

Schwartz distribution [15], for which X = C∞
0 (Rm) and ,H = L2(Rm).

§ 5.1. Generalized eigenvalue

Let H be a Hilbert space over C, H be a self-adjoint operator densely defined on

H and {E(B)}B∈B its spectral measure; H admits the spectral representation H =∫
R
ωdE(ω). Let K be another densely defined operator on H. The purpose here is to

investigate spectral properties of T := H +K. For the Kuramoto model, H = M, K =

P, and for a Schrödinger operator, H is the Laplacian, K is a potential function [6].

Let Ω ⊂ C be a simply connected region included in the upper half plane, and let

Ī be the intersection of the closure of Ω and the real axis (we assume that it is not
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I

Figure 5. The region Ω and the interval I.

empty and connected). Let I be an open interval obtained by removing the end points

from Ī (Fig. 5). Later we will see that our setting makes sense when Ī is a (subset of)

continuous spectrum of H. For a given operator T = H+K on H, we assume that there

exists a locally convex Hausdorff topological vector space X(Ω) satisfying the following

conditions.

(X1) X(Ω) is a dense subspace of H.

(X2) The topology of X(Ω) is stronger than that of H.

(X3) X(Ω) is a quasi-complete barreled space.

By (X1), (X2), the Gelfand triple

X(Ω) ⊂ H ⊂ X(Ω)′

is well-defined. The definition of a barreled space is rather complicated [27]. It includes

any Fréchet space, Banach space, Hilbert space, nuclear space and Montel space 4. If X

is a barreled space, the Banach-Steinhaus theorem 5 holds and usual complex function

theory (such as Cauchy theorem) is applicable for X ′-valued functions [5].

4If a locally convex topological vector space is barreled and has the property that “any closed and
bounded set is compact”, then it is called a Montel space (this property is often called the Heine-
Borel property). A Montel space has a nice property that any weakly convergent series is also
strongly convergent. For a sufficient condition for a given space to be a Montel, refer to [16], [19].
For example, they are Montel spaces: the space of C∞ functions, the space of C∞ functions with
compact support, the space of rapidly decreasing C∞ functions, the space of holomorphic functions
on an open region, and their dual spaces.

5Banach-Steinhaus theorem.
Let X be a barreled space and X′ its dual space. For a subset A ⊂ X′, the following conditions
are equivalent.
(i) A is bounded with respect to the weak dual topology.
(ii) A is bounded with respect to the strong dual topology.
(iii) A is equicontinuous as a family of mappings.
(iv) A is relatively compact with respect to the weak dual topology.
(i) ⇒ (ii) is well-known as the uniform boundedness principle when X is a Banach space.
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Next, we need the assumptions for the spectral measure E(B) of H.

(X4) For any ϕ ∈ X(Ω), the spectral measure (E(B)ϕ, ϕ) is absolutely continuous on

the interval I 6. Its density function denoted by E[ϕ, ϕ](ω) has an analytic continuation

to the region Ω ∪ I.
(X5) For each point λ ∈ I ∪ Ω, the bilinear form E[ · , · ](λ) : X(Ω) × X(Ω) → C is

separately continuous.

By (X4) with the aid of the polarization identity, we can verify that (E(B)ϕ, ψ) is

absolutely continuous on I for any ϕ, ψ ∈ X(Ω). We denote its density function as

E[ϕ, ψ](ω) F

d(E(ω)ϕ, ψ) = E[ϕ, ψ](ω)dω, ω ∈ I.

Then, the function E[ϕ, ψ](ω) is holomorphic in ω ∈ I ∪ Ω. For simplicity, we use the

notation E[ϕ, ψ](ω) for any ω ∈ R.

Define a linear operator A(λ) : X(Ω) → X(Ω)′ to be

(5.1) 〈A(λ)ψ |ϕ〉 =



∫
R

1

λ− ω
E[ψ, ϕ](ω)dω + 2πiE[ψ, ϕ](λ) (λ ∈ Ω),

lim
y→−0

∫
R

1

x+ iy − ω
E[ψ, ϕ](ω)dω (λ = x ∈ I),∫

R

1

λ− ω
E[ψ, ϕ](ω)dω (Im(λ) < 0).

We can verify that the function 〈A(λ)ψ |ϕ〉 is holomorphic in {Im(λ) < 0} ∪ Ω ∪ I. In

particular, if Im(λ) < 0 then 〈A(λ)ψ |ϕ〉 = ((λ − H)−1ψ, ϕ) and A(λ) coincides with

the resolvent of H. This means that A(λ)ψ is an analytic continuation of the resolvent

from the lower half plane to Ω through the interval I as an X(Ω)′-valued function. We

can show that A(λ) : X(Ω) → X(Ω)′ is a continuous operator 7, if X(Ω)′ is equipped

with the weak dual topology.

We need some notation for the next assumptions. Let Q be a densely defined linear

operator on X(Ω). Its dual operator Q′ : D(Q′) → X(Ω)′ is defined as follows : The

domain D(Q′) of Q′ is all elements µ ∈ X(Ω)′ so that the mapping ϕ 7→ 〈µ |Qϕ〉 from
X(Ω) to C is continuous, and Q′ is defined through the equality 〈Q′µ |ϕ〉 = 〈µ |Qϕ〉.
Next, for a densely defined operator Q on H, its Hilbert-adjoint Q∗ is defined through

(Qϕ,ψ) = (ϕ,Q∗ψ). Moreover, if Q∗ is densely defined on X(Ω), its dual operator (Q∗)′

can be considered and we denote is as Q×. Then, Q× = (Q∗)′ satisfies Q = Q×|D(Q),

6Imagine the situation that Ī is a spectrum of H. Otherwise (E(B)ϕ, ϕ) = 0 on I.
7Note that since X(Ω) may not be a Banach space, there is a gap between a continuous operator
and a bounded operator. The condition for two concepts to coincide other than a Banach space is
complicated [1].
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which means that Q× is a natural extension (lift) of Q from H to X(Ω)′. For simplicity,

we call Q× the dual operator of Q.

For the operators H and K on H, we assume the following.

(X6) H (= H∗) is densely defined operator on X(Ω) (there is a dense subspace Y of

X(Ω) such that HY ⊂ X(Ω)).

(X7) K is H-bounded and K∗ is densely defined on X(Ω).

(X8) For any λ ∈ {Im(λ) < 0} ∪ I ∪ Ω, we have K×A(λ)X(Ω) ⊂ X(Ω).

By (X6) and (X7), H×,K× and T× are densely defined on X(Ω)′ (recall T := H +K).

If H and K are continuous on X(Ω), so are H×,K× and T× on X(Ω)′, but we do not

assume it in general. An operator K is said to be H-bounded when K(λ −H)−1 is a

bounded operator on H for λ /∈ σ(H). Recalling that A(λ) is an analytic continuation

of (λ−H)−1, (X8) is in some sense the analytic continuation version of (X7).

With these assumptions, we define a generalized eigenvalue. An eigenvalue and

eigenvector in the usual sense are defined by (λ − T )v = 0. Since T = H + K now,

it is rewritten as (id − (λ −H)−1K)v = 0. Recalling that the analytic continuation of

(λ−H)−1 in X(Ω)′ is A(λ), we make the following definition.

Definition 5.2. If the equation

(5.2) (id−A(λ)K×)µ = 0

have a solution 0 6= µ ∈ X(Ω)′ for some λ ∈ Ω ∪ I ∪ {λ | Im(λ) < 0}, λ and µ are called

the generalized eigenvalue and generalized eigenvector of T , respectively.

Applying K× to (5.2), we obtain

(5.3) (id−K×A(λ))K×µ = 0.

If K×µ = 0, then (5.2) gives µ = 0. Hence, λ is a generalized eigenvalue if and only

if id −K×A(λ) is not injective on X(Ω). Note that the operator K×A(λ) on X(Ω) is

well-defined because of (X8).

Theorem 5.3. For a generalized eigenvalue λ of T and its generalized eigenvec-

tor µ, the equality

T×µ = λµ

holds.

Sketch of a Proof. By the operational calculus, we can show D(λ − H×) ⊃
R(A(λ)) and (λ−H×)A(λ) = id|X(Ω). This yields

(λ−H×)(id−A(λ)K×)µ = (λ−H× −K×)µ = (λ− T×)µ = 0.
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Thus, a generalized eigenvalue is a true eigenvalue of the dual operator T×, although

the converse statement is not true. An eigenvalue of T× is not always a generalized

eigenvalue. Since the dual space X(Ω)′ is too large, typically any points in C become

eigenvalues of T×.

§ 5.2. Properties of A(λ)

For further discussion, let us investigate the properties of A(λ) in detail. For

n = 1, 2, · · · , we define an linear operator A(n)(λ) : X(Ω) → X(Ω)′ to be

〈A(n)(λ)ψ |ϕ〉 =



∫
R

1

(λ− ω)n
E[ψ, ϕ](ω)dω + 2πi

(−1)n−1

(n− 1)!

dn−1

dzn−1

∣∣∣
z=λ

E[ψ, ϕ](z), (λ ∈ Ω),

lim
y→−0

∫
R

1

(x+ iy − ω)n
E[ψ, ϕ](ω)dω, (λ = x ∈ I),∫

R

1

(λ− ω)n
E[ψ, ϕ](ω)dω. (Im(λ) < 0)

By integration by parts, it is easy to show that 〈A(n)(λ)ψ |ϕ〉 is an analytic continuation

of ((λ − H)−nψ, ϕ) from the lower half plane to the upper half plane. A(1)(λ) is also

denoted by A(λ) as before.

Proposition 5.4. For any integer j ≥ n ≥ 0, the operator A(j)(λ) satisfies

(i) (λ−H×)nA(j)(λ) = A(j−n)(λ), where A(0)(λ) := id.

(ii) A(j)(λ)(λ−H×)n = A(j−n)(λ).

In particular, if (λ−H×)µ ∈ X(Ω) then A(λ)(λ−H×)µ = µ.

(iii)
dj

dλj
〈A(λ)ψ |ϕ〉 = (−1)jj!〈A(j+1)(λ)ψ |ϕ〉, j = 0, 1, · · · .

(iv) For any ψ ∈ X(Ω), A(λ)ψ is expanded as

(5.4) A(λ)ψ =
∞∑
j=0

(λ0 − λ)jA(j+1)(λ0)ψ,

and the right hand side converges with respect to the strong dual topology on X(Ω)′.

Sketch of a Proof. (i) and (ii) are easily proved by the operational calculus. (iii)

follows from the definition of A(λ). Since 〈A(λ)ψ |ϕ〉 is holomorphic, (iii) yields

〈A(λ)ψ |ϕ〉=
∞∑
j=0

(λ0 − λ)j〈A(j+1)(λ0)ψ |ϕ〉,(5.5)

which means that A(λ)ψ is weakly holomorphic in X(Ω)′. Since X(Ω) is barreled, a

weakly holomorphic function is strongly holomorphic by the Banach-Steinhaus theorem.
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Next, we define an eigenspace and the multiplicity of a generalized eigenvalue. In

the usual spectral theory, the eigenspace of λ is defined as the space spanned by solutions

of (λ− T )nv = 0. For example n = 2, it is rearranged as

(λ−H −K)(λ−H −K)v

= (λ−H)2(id− (λ−H)−2K(λ−H)) ◦ (id− (λ−H)−1K)v = 0.

Divided by (λ−H)2, it gives

(id− (λ−H)−2K(λ−H)) ◦ (id− (λ−H)−1K)v = 0.

Since the analytic continuation of (λ−H)−n is A(n)(λ), we may consider the equation

(id−A(2)(λ)K×(λ−H×)) ◦ (id−A(λ)K×)µ = 0.

Thus, let us define an operator B(n)(λ) : D(B(n)(λ)) ⊂ X(Ω)′ → X(Ω)′ by

(5.6) B(n)(λ) = id−A(n)(λ)K×(λ−H×)n−1.

Then, the above equation is simply written as B(2)(λ)B(1)(λ)µ = 0. The domain of

B(n)(λ) is the domain of A(n)(λ)K×(λ−H×)n−1. The following equality

(λ−H×)kB(j)(λ) = B(j−k)(λ)(λ−H×)k, j > k(5.7)

is easily proved.

Definition 5.5. The generalized eigenspace associated with a generalized

eigenvalue λ is defined by

Vλ =
⋃
m≥1

KerB(m)(λ) ◦B(m−1)(λ) ◦ · · · ◦B(1)(λ),

and dimVλ is called the multiplicity of λ.

In particular, an element of KerB(1)(λ) is a generalized eigenvector defined in

Def. 5.2. In the same way as Thm. 5.3, we can prove the next theorem.

Theorem 5.6. For any µ ∈ Vλ, there exists an integer M such that (λ −
T×)Mµ = 0.

The theorem means that Vλ is a subspace of an eigenspace
⋃
m≥1 Ker (λ−T×)m of

T×. Since the dual space X(Ω)′ is too large, typically
⋃
m≥1 Ker (λ−T×)m becomes an

infinite dimensional, however, Vλ is finite dimensional for most applications (Thm. 5.16).
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§ 5.3. Generalized resolvent

Let Rλ = (λ− T )−1 be the resolvent operator of T . Since

(5.8) Rλψ = (λ−H)−1
(
id−K(λ−H)−1

)−1
ψ

and the analytic continuation of (λ − H)−1 in X(Ω)′ is given by A(λ), we make the

following definition. In what follows, we put Ω̂ = Ω ∪ I ∪ {λ | Im(λ) < 0}.

Definition 5.7. When the inverse (id −K×A(λ))−1 exists on X(Ω), the gen-

eralized resolvent Rλ : X(Ω) → X(Ω)′ of T is defined by

(5.9) Rλ = A(λ) ◦ (id−K×A(λ))−1 = (id−A(λ)K×)−1 ◦A(λ), λ ∈ Ω̂.

The second equality follows from (id−A(λ)K×)A(λ) = A(λ)(id−K×A(λ)). Note

that id − K×A(λ) is an operator on X(Ω) because of (X8), and id − A(λ)K× is an

operator on R(A(λ)). The former is injective if and only if so is the latter. Since A(λ)

is continuous as mentioned in Sec. 5.1, we require that Rλ : X(Ω) → X(Ω)′ is also

continuous.

Definition 5.8. The set of λ ∈ Ω̂ satisfying the following two conditions is called

the generalized resolvent set ϱ̂(T ) G There exists a neighborhood Vλ ⊂ Ω̂ of λ such

that

(i) For any λ′ ∈ Vλ, Rλ′ is a densely defined continuous operator from X(Ω) into X(Ω)′,

where X(Ω)′ is equipped with the weak dual topology.

(ii) For any ψ ∈ X(Ω), the set {Rλ′(ψ)}λ′∈Vλ
is a bounded set in X(Ω)′ 8.

The complement σ̂(T ) = Ω̂\ϱ̂(T ) is called the generalized spectrum set of

T . The generalized point spectrum σ̂p(T ) is the set of points λ ∈ σ̂(T ) at which

id−K×A(λ) is not injective (this is the set of generalized eigenvalues). The generalized

residual spectrum σ̂r(T ) is the set of points λ ∈ σ̂(T ) such that the domain of

Rλ is not dense in X(Ω). The generalized continuous spectrum is defined to be

σ̂c(T ) = σ̂(T )\(σ̂p(T ) ∪ σ̂r(T )).
By the definition, ϱ̂(T ) is an open set. This definition looks rather complicated

because X(Ω) is not a Banach space. To require the existence of the neighborhood

Vλ ⊂ Ω̂ in the above definition was introduced by Waelbroeck [31] (see also Maeda

[18]) for the spectral theory on locally convex spaces. If ϱ̂(T ) were simply defined to

be the set of points such that Rλ′ is a densely defined continuous operator as in the

Banach space theory, ϱ̂(T ) is not an open set in general. If X(Ω) is a Banach space, the

definition coincides with the usual definition of the resolvent set in a Banach space.

8Because of the Banach-Steinhaus theorem, a weakly bounded set is strongly bounded. Thus, we
need not specify a topology here.
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Theorem 5.9.

(i) For each ψ ∈ X(Ω), Rλ(ψ) is an X(Ω)′-valued holomorphic function on ϱ̂(T ).

(ii) When Im(λ) < 0, Rλ = i ◦ (λ− T )−1 ( i is the embedding into X(Ω)′).

The second part (ii) implies that when Im(λ) < 0, the equality 〈Rλψ |ϕ〉 = ((λ −
T )−1ψ, ϕ) holds for ψ, ϕ ∈ X(Ω). Thus, 〈Rλψ |ϕ〉 is an analytic continuation of ((λ −
T )−1ψ, ϕ).

Sketch of a Proof of (i).

Put ψλ = (id−K×A(λ))−1(ψ). It is easy to confirm that

Rλ+h(ψ)−Rλ(ψ)

= (A(λ+ h)−A(λ))(ψλ) +Rλ+hK
×(A(λ+ h)−A(λ))(ψλ).

We show that it tends to zero as h → 0 with respect to the weak dual topology on

X(Ω)′. Since A(λ) is holomorphic in λ, the first term is easy to treat. To estimate the

second term, we need to estimate Rλ+h and K×A(λ). For the latter one, we can verify

that K×A(λ) is also holomorphic in λ as an X(Ω)-valued function, so that

ϕh := K×(A(λ+ h)−A(λ))(ψλ) ∈ X(Ω)

tends to zero as h→ 0. For the former one, the set {Rλ+h(ϕ); |h| : small } is bounded

for any ϕ ∈ X(Ω) due to the condition (ii) in Def. 5.8. This shows that Rλ+h(ϕh) → 0

weakly as h→ 0 by the condition (i). Hence, Rλ+h(ψ) → Rλ(ψ) as h→ 0.

Repeating the same procedure after dividing by h, it turns out that Rλ(ψ) is weakly

holomorphic. Since X(Ω) is barreled, it is automatically strongly holomorphic.

Proposition 5.10. Rλ satisfies that

(i) (λ− T×) ◦ Rλ = id|X(Ω),

(ii) when µ ∈ X(Ω)′ satisfies (λ− T×)µ ∈ X(Ω), then Rλ ◦ (λ− T×)µ = µ,

(iii) T× ◦ Rλ = Rλ ◦ T×.

This proposition immediately follows from Prop. 5.4.

§ 5.4. Generalized projection

Let Σ ⊂ σ̂(T ) be a bounded subset of the generalized spectrum set which is sepa-

rated from the rest of the spectrum by a simple closed curve γ ⊂ Ω∪I∪{λ | Im(λ) < 0}.
Define an operator ΠΣ : X(Ω) → X(Ω)′ by

(5.10) ΠΣϕ =
1

2πi

∫
γ

Rλϕdλ, ϕ ∈ X(Ω),
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where the integral is defined as the Pettis integral 9. Since the composition ΠΣ ◦ ΠΣ

cannot be defined, it is not a projection operator in the usual sense. Nevertheless, it is

reasonable to call ΠΣ the generalized projection because of the following results.

Proposition 5.11. The following hold

ΠΣ(X(Ω)) ∩ (id−ΠΣ)(X(Ω)) = {0}
X(Ω) ⊂ ΠΣ(X(Ω))⊕ (id−ΠΣ)(X(Ω)) ⊂ X(Ω)′

In particular, for any ϕ ∈ X(Ω), there are µ1, µ2 ∈ X(Ω)′ such that ϕ is uniquely

decomposed as

(5.11) i(ϕ) = 〈ϕ| = µ1 + µ2, µ1 ∈ ΠΣ(X(Ω)), µ2 ∈ (id−ΠΣ)(X(Ω)).

Proposition 5.12. ΠΣ is T×-invariant : ΠΣ ◦ T× = T× ◦ΠΣ.

Theorem 5.13. Let λ0 be an isolated generalized eigenvalue, Π0 be the general-

ized projection for λ0 and V0 be the generalized eigenspace of λ0 (Def. 5.5). If Π0X(Ω)

is finite dimensional, Π0X(Ω) = V0.

In the usual spectral theory, these properties are proved by using Π ◦ Π = Π and

the resolvent identity. In our case, since these formulae do not hold because Π and Rλ

are mappings from X(Ω) into X(Ω)′ (i.e. the composition of them is not defined), the

proof is rather technical [5].

§ 5.5. Properties of of the generalized spectrum

Obviously the definition of the generalized spectrum depends on the choice of the

space X(Ω). When we want to emphasize the choice, we denote σ̂(T ) as σ̂(T ;X(Ω)). If

we have two spaces X1(Ω) and X2(Ω) satisfying (X1) to (X8), there are two generalized

spectra σ̂(T ;X1(Ω)) and σ̂(T ;X2(Ω)).

Proposition 5.14 ([6]). Suppose that X2(Ω) is a dense subspace of X1(Ω) and

the topology of X2(Ω) is stronger than that of X1(Ω). Then, the following statements

hold.

(i) σ̂(T ;X2(Ω)) ⊂ σ̂(T ;X1(Ω)),

9In general, let X be a topological vector space, X′ its dual space with the strong dual topology,
S compact Hausdorff space and µ be a finite Borel measure on S. For a mapping f : S → X′, if
there exists I(f) ∈ X′ satisfying

⟨I(f) |ϕ⟩ =
∫
S
⟨f |ϕ⟩dµ

for any ϕ ∈ X, then f is said to be Pettis integrable and I(f) =
∫
Sfdµ is called the Pettis integral

of f . If X is barreled and f is holomorphic, it is Pettis integrable [5].
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(ii) Let Σ 6= ∅ be a bounded subset of σ̂(T ;X1(Ω)) which is separated from the rest

of the spectrum σ̂(T ;X1(Ω)) by a simple closed curve γ. Then, there exists a point

of σ̂(T ;X2(Ω)) inside γ. In particular, if λ is an isolated point of σ̂(T ;X1(Ω)), then

λ ∈ σ̂(T ;X2(Ω)).

Sketch of a Proof. Because of the assumption of the topology, the general-

ized resolvent Rλ : X2(Ω) → X2(Ω)
′ behaves “better” than Rλ : X1(Ω) → X1(Ω)

′,

which proves (i). For (ii), let ΠΣ be the generalized projection. By the assumption,

ΠΣX1(Ω) 6= {0}. Since X2(Ω) is dense in X1(Ω), we have ΠΣX2(Ω) 6= {0}. □

Due to this theorem, the existence of isolated generalized eigenvalues is independent

of the choice of X(Ω) 10.

For the next theorem, we define a uniformly compact operator. A linear operator

L from a topological vector space X1 to another topological vector space X2 is said to

be bounded if there exists a neighborhood U ⊂ X1 of the origin such that LU ⊂ X2 is a

bounded set. When L = L(λ) is parameterized by λ, it is said to be bounded uniformly

in λ if such a neighborhood U is independent of λ. When the domain X1 is a Banach

space, L(λ) is bounded uniformly in λ if and only if L(λ) is continuous for each λ (U is

taken to be the unit sphere).

Similarly, L is called compact if there exists a neighborhood U ⊂ X1 of the origin

such that LU ⊂ X2 is relatively compact. When L = L(λ) is parameterized by λ, it

is said to be compact uniformly in λ if such a neighborhood U is independent of λ.

When the domain X1 is a Banach space, L(λ) is compact uniformly in λ if and only

if L(λ) is compact for each λ. When the range X2 is a Montel space, a (uniformly)

bounded operator is (uniformly) compact because every bounded set in a Montel space

is relatively compact.

Put Ω̂ := {Im(λ) < 0}∪I∪Ω as before. In many applications, K×A(λ) is a bounded

operator on X(Ω). In such a case, the following proposition is useful to estimate the

generalized spectrum.

Proposition 5.15. Suppose that for fixed λ ∈ Ω̂, there exists a neighborhood

Uλ ⊂ Ω̂ of λ such that K×A(λ′) : X(Ω) → X(Ω) is a bounded operator uniformly in

λ′ ∈ Uλ. If id−K×A(λ) has a continuous inverse on X(Ω), then λ /∈ σ̂(T ).

Sketch of a Proof. Check the condition of Def. 5.8. On the generalized re-

solvent Rλ = A(λ) ◦ (id − K×A(λ))−1, since A(λ) : X(Ω) → X(Ω)′ is continuous,

it is sufficient to show that there exists a neighborhood Vλ of λ such that the set

10Historically, several definitions of the generalized eigenvalues had been proposed. It seems that
their results are the same because of this theorem. For example, for the study of Schrödinger
operators, the generalized eigenvalue is called the resonance pole. This is defined by the analytic
continuation of a scattering matrix [24] or the method of complex deformation [17] and so on.
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{(id−K×A(λ′))−1ψ}λ′∈Vλ
exists and is bounded in X(Ω) for any ψ. For this purpose,

it is sufficient to show that the mapping λ′ 7→ (id − K×A(λ′))−1ψ is continuous in

λ′ ∈ Vλ. Since A(λ) is holomorphic, there is an operator D(λ, h) such that

id−K×A(λ+ h) = id−K×A(λ)− hD(λ, h)

=
(
id− hD(λ, h)(id−K×A(λ))−1

)
◦ (id−K×A(λ))

for small h ∈ C. Since K×A(λ) is uniformly bounded by the assumption, D(λ, h) is

a uniformly bounded operator in h. Further, (id − K×A(λ))−1 is continuous by the

assumption. Thus, D(λ, h)(id − K×A(λ))−1 is a bounded operator. Then, Bruyn’s

theorem [2] is applicable to show that id− hD(λ, h)(id−K×A(λ))−1 has a continuous

inverse that is continuous in h (when X(Ω) is a Banach space, Bruyn’s theorem is

reduced to the existence of the Neumann series). This proves that id−K×A(λ′) has a

continuous inverse which is continuous in λ′.

Theorem 5.16. Suppose that K×A(λ) : X(Ω) → X(Ω) is a compact operator

uniformly in λ ∈ Ω̂. Then, the following statements hold.

(i) For any compact set D ⊂ Ω̂, the number of generalized eigenvalues in D is finite

(thus σ̂p(T ) consists of a countable number of generalized eigenvalues and they may

accumulate only on the boundary of Ω̂ or infinity).

(ii) For each λ0 ∈ σ̂p(T ), the generalized eigenspace V0 is of finite dimensional (in

particular Thm. 5.13 holds).

(iii) σ̂c(T ) = σ̂r(T ) = ∅.

This kind of result is well-known as the Riesz-Schauder theory for a Banach space.

Even if X(Ω) is not Banach but a general locally convex vector space, it is known that

the Riesz-Schauder theory is valid [25], which is used to prove the above theorem.

§ 5.6. Semigroup

Suppose that the operator iT = i(H+K) generates a C0-semigroup eiT t onH (here,

i is not the embedding but
√
−1). It is expressed by the Laplace inversion formula as

(5.12) (eiT tψ, ϕ) =
1

2πi
lim
x→∞

∫ x−iy

−x−iy
eiλt((λ− T )−1ψ, ϕ)dλ, x, y ∈ R,

for ϕ, ψ ∈ H, where the integral path is the horizontal straight line below the spectrum

of T . If T has a continuous spectrum on the real axis, we cannot deform the integral

path from the lower to the upper half plane and it is difficult to estimate the asymptotic

behavior of the semigroup as t → ∞. However, for ϕ, ψ ∈ X(Ω), we can rewrite (5.12)

as

(eiT tψ, ϕ) =
1

2πi
lim
x→∞

∫ x−iy

−x−iy
eiλt〈Rλψ |ϕ〉dλ.
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As a result, the path can be deformed toward the Riemann surface of Rλ. In many

applications, the set of singularities of 〈Rλψ |ϕ〉 consists of isolated generalized eigen-

values, and we can estimate the Laplace inversion formula by the residue theorem. A

residue is calculated by using the generalized projection. Let Π0 be the projection asso-

ciated with an isolated generalized eigenvalue λ0 with the multiplicity M . The residue

of it is given by

1

2πi

∫
γ0

eiλt〈Rλψ |ϕ〉dλ =
M−1∑
k=0

eiλ0t
(−it)k

k!
〈(λ0 − T×)kΠ0ψ |ϕ〉,

where γ0 is a small simple closed curve enclosing λ0, see Fig. 6. In particular, if λ0

lies on the upper half plane, it induces an exponentially decaying term with respect to

the weak topology on X(Ω)′, not the topology on H. This kind of decay in the weak

dual topology induced by the generalized eigenvalues is known in plasma physics as the

Landau damping [14] and in Schrödinger equations as a tunnel effect [17, 24, 6].

Figure 6. Deformation of the integral path γ to γ′. The solid curve denotes the path on

the original complex plane, and the dotted one denotes the path on the second Riemann

sheet.

In general, the decay of a semigroup occurs only during a transient state. To see it,

let λ0 be a generalized eigenvalue on the upper half plane and µ0 ∈ X(Ω)′ its generalized

eigenvector. Let (eiT t)× be the dual operator. Since the equality (eiT t)×µ0 = ei λ0tµ0

holds, if we consider µ0 as the initial condition, actually the semigroup decays to zero

exponentially. However, µ0 is an element of the dual space, which may be not a suitable

choice for an application. Since X(Ω) is a dense subspace of X(Ω)′, for any ε > 0, there

are τ > 0 and a function ϕ0 ∈ X(Ω) such that for 0 ≤ t ≤ τ , the inequality

|〈(eiT t)×ϕ0 |ψ〉 − 〈(eiT t)×µ0 |ψ〉| < ε
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holds. This means that for a finite time interval 0 ≤ t ≤ τ , we have

(eiT tϕ0, ψ) ∼ eiλ0t〈µ0 |ψ〉,

and the generalized eigenvalue gives a transient behavior.

§ 6. Application to the Kuramoto model

§ 6.1. The stability of the de-synchronization state

Let us apply the previous results to the linear operator T1 = iM+KP/2 obtained

by the linearization of the Kuramoto model (Sec. 2). Since the self-adjoint operator M
is multiplied by i =

√
−1, the right (resp. left) half plane play the same role as the

lower (resp. upper) half plane in the previous sections.

Since the continuous spectrum of T1 is the whole imaginary axis, we cannot deter-

mine the stability of the de-synchronization state within Hilbert space theory. Thus, we

suitably introduce the Gelfand triplet X ⊂ L2(R, g(ω)dω) ⊂ X ′ so that if the resolvent

(λ − T1)
−1 is regarded as an operator from X into X ′, it has an analytic continuation

from the right half plane to the left half plane across the continuous spectrum. We can

show that the resolvent is calculated as

((λ− T1)
−1ϕ, ψ∗) = D[ϕ, ψ](λ) +

K

2−KD[P0, P0](λ)
D[ϕ, P0](λ) ·D[P0, ψ](λ),

D[ϕ, ψ](λ) :=

∫
R

1

λ− iω
ϕ(ω)ψ(ω)g(ω)dω,

where P0(ω) ≡ 1 is a constant function and ψ∗(x) := ψ(x). If D[ϕ, ψ](λ) has an analytic

continuation from the right to the left half plane, it is given by∫
R

1

λ− iω
ϕ(ω)ψ(ω)g(ω)dω + 2πϕ(−iλ)ψ(−iλ)g(−iλ).

For the existence of the second term, ϕ and ψ should be holomorphic on the upper

half plane. Thus, we define X to be some class of functions that are holomorphic on

the upper half plane and are in L2(R, g(ω)dω) on the real axis (see [3] for the precise

definition). With a suitable topology on X, T1 and X ⊂ L2(R, g(ω)dω) ⊂ X ′ satisfy

the assumptions (X1) to (X8). Further, they satisfy the assumption for Thm. 5.16 ; the

generalized spectrum consists of discrete generalized eigenvalues with finite multiplicities

(actually the multiplicities are 1).

The generalized eigenvalues are defined by (5.2). More convenient way to obtain

them is as follows: An eigenvalue in the usual sense is given by the root of the equation
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(3.2). The analytic continuation of this equation from the right to the left half plane is

given by ∫
R

1

λ− iω
g(ω)dω + 2πg(−iλ) = 2

K
, (Re(λ) < 0),(6.1)

whose root gives a generalized eigenvalue. When g is the Gaussian distribution, there

are infinitely many generalized eigenvalues on the left half plane. Recall that when

K > Kc, there exists a unique eigenvalue λ0 = λ0(K), which is a root of (3.2), on the

positive real axis. For K ≤ Kc, it becomes a root of (6.1). This implies that at K = Kc,

λ0(K) crosses the imaginary axis (now it is a branch cut of the Riemann surface), goes

to the second Riemann sheet and becomes a generalized eigenvalue (Fig. 4).

A generalized eigenvector is calculated in a similar manner. When K > Kc, the

eigenvector v ∈ L2(R, g(ω)dω) of the usual eigenvalue λ is given by (3.3). By the

embedding i : L2(R, g(ω)dω) → X ′ we regard v as an element in X ′, which is denoted

by µλ. Its action on X is defined by

〈µλ |ϕ∗〉 = (v, ϕ∗) =

∫
R

1

λ− iω
ϕ(ω)g(ω)dω, (Re(λ) > 0).

The generalized eigenvector µλ associated with a generalized eigenvalue on the left half

plane λ is given by the analytic continuation, that is

〈µλ |ϕ∗〉 =
∫
R

1

λ− iω
ϕ(ω)g(ω)dω + 2πϕ(−iλ)g(−iλ), (Re(λ) < 0).

It is not an element of L2(R, g(ω)dω) but of X ′.

Let {λn}∞n=0, {µn}∞n=0 be the set of generalized eigenvalues and their generalized

eigenvectors, respectively. By deforming the integral path of the Laplace inversion

formula as in Fig. 3 and using the residue theorem, we can prove the next theorem.

Theorem 6.1 (Spectral decomposition).

For any ϕ ∈ X, the dual operator of the semigroup eT1t generated by T1 is expanded

as

(6.2) (eT1t)×ϕ =
∞∑
n=0

eλnt〈µn |ϕ〉µn,

where the right hand side converses in X ′ with respect to the strong dual topology. When,

0 < K < Kc, Re(λn) < 0 for all n = 0, 1, · · · , which proves that (eT1t)×ϕ converges to

0 as t→ ∞ in X ′ (asymptotic stability of the de-synchronization).

Note that T1 is not a self-adjoint nor compact operator. Thus, a spectral decom-

position does not hold within Hilbert space theory. Nevertheless, it is possible by using

elements in X ′.
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§ 6.2. Bifurcation to the synchronized state

The remaining task is to show a bifurcation from the de-synchro state to the synchro

state. To investigate a bifurcation in dynamical systems, one of the most effective ways is

to apply the center manifold reduction. In our problem, there is a continuous spectrum

on the imaginary axis, so that the center manifold is not well-defined within Hilbert

space. To treat this difficulty, by using generalized eigenvalues λn and their generalized

eigenvectors µn, we define the generalized center subspace Ec by

Ec := span{µn |λn ∈ iR} ⊂ X ′.

This is the range of the generalized projection associated with generalized eigenvalues

on the imaginary axis. For the Kuramoto model, when K = Kc there is a general-

ized eigenvalue λ0 = 0 with the multiplicity 1. Thus, there exists a corresponding

1-dimensional center subspace Ec. Furthermore, we can prove the existence of a center

manifold in X ′ which is tangent to Ec.

In Sec.2, we derive the system of equations for the Fourier coefficients Zj . For

example, the equation of Z1 is

dZ1

dt
= iωZ1 +

K

2
η(t)− K

2
η(t)Z2 = T1Z1 −

K

2
(Z1, P0)Z2.

This defines an equation on L2(R, g(ω)dω), however, it is difficult to investigate it in

Hilbert space because of the continuous spectrum of T1. Thus, by using the embedding

i : L2(R, g(ω)dω) → X ′, we regard this equation as an equation given on X ′. To this

end, the operator T1 is replaced by its dual, the inner product (Z1, P0) is replaced by

the paring 〈Z1 |P0〉 F

dZ1

dt
= T×

1 Z1 −
K

2
〈Z1 |P0〉Z2, Zj ∈ X ′.

On the dual space, the center subspace Ec is well-defined. Let fix an element µ0 ∈ Ec

(generalized eigenvector of λ0 = 0). Let α be a coordinate of Ec and we decompose Z1

into the direction of the center subspace and its complement as Z1 = α(t)µ0+Y1, where

Y1 is given by Y1 = (id − Π0)Z1 by using the projection Π0. Since Y1 and Z2, Z3, · · ·
are vector that are outside the center subspace, we can assume that they are of order

O(α2). By substituting Z1 = α(t)µ0+Y1 into the equation and after a long calculation,

the dynamical system on the center manifold is obtained as

(6.3)
d

dt
α = (K −Kc)p1α+ p3α|α|2 +O(α5),

where p1 and p3 are constants given by

p1 =
D0

Kc
, p3 =

πD0K
3
c g

′′(0)

16
,
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and D0 is a constant related to the residue around λ0 = 0. This equation is a normal

form of the pitchfork bifurcation. Hence, it is easy to see that when −p1/p3 > 0 and

K > Kc, there exists a steady state (fixed point) approximately given by

|α| =
√

−p1
p3

√
K −Kc +O(K −Kc).

Since r = |α|+O(α2), this result gives Kuramoto’s bifurcation diagram (Fig. 2).
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