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Space of initial conditions for the four-dimensional

Garnier system revisited

By

Tomoyuki Takenawa∗

Abstract

A geometric study is given for the 4-dimensional Garnier system. By the resolution

of indeterminacy, the group of its Bäklund transformations is lifted to a group of pseudo-

isomorphisms between rational varieties obtained from P2 ×P2 by 10 or 21 blow-ups. The root

basis is discussed in the Néron-Severi bilattices for the space with 10 blow-ups.

§ 1. Introduction

§ 1.1. Background and overview

The method of Okamoto-Sakai’s spaces of initial conditions (SIC in short) is a

powerful tool for studying the classification and symmetry of the Painlevé equations in

two dimensions [12, 13]. However, studies of higher dimensional initial value spaces are

scarce due to the theoretical and computational complexity.

The Garnier system is a natural generalization of the Painlevé equations to higher

order and obtained as the monodromy preserving deformation for a Fuchsian ODE of

the Schlesinger type:

d

dx
y(x) =

n+2∑
i=1

Ai

x− zi
y(x),(1.1)

where n is a positive integer, y is two-dimensional and the eigenvalues of Ai’s and

A∞ = −
∑n+2

i=1 Ai are different with each other. More concretely, the monodromy
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preserving deformation is given by so called the Schlesinger equation:

∂Ai

∂zj
=

[Aj , Ai]

zj − zi
(j 6= i),

∂Ai

∂zi
= −

∑
j ̸=i

[Aj , Ai]

zj − zi
(1.2)

[Jimbo-Miwa-Môri-Sato 1980]. Since the singular points of the Fuchsian equation (z1,

. . . , zn+2,∞) can be normalized to (0, 1,∞, z′1, . . . , z
′
n) by a Möbius transformation for x,

the Garnier system has n independent variables, or more precisely, they are n-compatible

systems of ODEs. On the other hand the Garnier system has 2n dependent variables,

since the dimension of the moduli space of ODEs of the form of (1.1) is 2n. It is well

known that the Garnier system has Painlevé property, i.e. movable singularities are at

most poles [6].

In particular, when n = 2, the Garnier system is a commuting pair of four-

dimensional systems of ordinary differential equations. In [11] H. Kimura and K.

Okamoto showed that it can be written in a polynomial Hamiltonian form of two direc-

tions as
dqi
dsj

=
∂Hj

∂pi
,
dpi
dsj

= −∂Hj

∂qi
(i, j = 1, 2)

with the Hamiltonians

s1(s1 − 1)H1 =
(
q1(q1 − 1)(q1 − s1)−

s1(s1 − 1)

s1 − s2
q1q2

)
p21

+ 2q1q2

(
q1 +

s1(s2 − 1)

s1 − s2

)
p1p2 + q1q2

(
q2 −

s2(s1 − 1)

s1 − s2

)
p22

−
{
(κ0 − d)q1(q1 − 1) + κ1q1(q1 − s1) + θ1(q1 − 1)(q1 − s1)

+ θ2q1

(
q1 +

s1(s2 − 1)

s1 − s2

)
− θ1

s1(s1 − 1)

s1 − s2
q2

}
p1

+
(
(2α0 + κ∞)q1q2 + θ2q1

s2(s1 − 1)

s1 − s2
− θ1q2

s1(s2 − 1)

s1 − s2

)
p2

+ α0(α0 + κ∞)q1

H2 ={replacing as q1 ↔ q2, p1 ↔ p2, s1 ↔ s2, θ1 ↔ θ2 in H1},

where κ0, κ1, κ∞, θ1, θ2 and α0 are parameters independent from the Hamiltonian

flows, and d is given by d = 2α0 + κ0 + κ1 + κ∞ + θ1 + θ2.

The Hamiltonians can be written using the Hamiltonian for the sixth Painlevé

equation

s(s− 1)HVI(q, p, s, κ0, κ1, κ∞, θ, α0)

=q(q − 1)(q − s)p2 −
{
− (2α0 + κ1 + κ∞ + θ)q(q − 1) + κ1q(q − s)

+ θ1(q − 1)(q − s)
}
p+ α0(α0 + κ∞)q
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as

s1(s1 − 1)H1 =s1(s1 − 1)HVI(q1, p1, s1, κ0, κ1, κ∞, θ1, α0)

+ (2q1p1 + q2p2 + 2α0 + κ∞)q1q2p2 +
s1(s1 − 1)

s1 − s2
(−q1p1 + θ1)q2p1

+
s1(s2 − 1)

s1 − s2
(2q1p1 − θ1)q2p2 +

s2(s1 − 1)

s1 − s2

(
− q2p

2
2 + θ2(p2 − p1)

)
q1.

In this paper we construct the space of initial conditions for this four-dimensional

Garnier system, where a fiber space π : X → B is called the space of initial conditions

for the ODE system φ if

(i) φ is regularly defined at any point in X;

(ii) For any point x in X, any path γ in B passing through π(x) can be lifted to γ′ ⊂ X

by φ, where π : γ′ → γ is an isomorphism.

The most typical examples of the SIC are those for the Painlevé equations[12], while H.

Kimura constructed the SIC for the Garnier system in n variables in [10].

In particular, for the sixth Painlevé equation (the Garnier system with n = 1),

the SIC was constructed by blowing up a Hirzebrugh surface 8 times and excluding

5 irreducible curves (called vertical leaves), where B is {t ∈ C | t 6= 0, 1}. For the

Garnier system with n = 2, it was constructed by blowing up a 4-dimensional minimal

projective variety 10 times, where B is {(t1, t2) ∈ C2 | ti 6= 0, 1 (i = 1, 2), t1 6= t2}.
In the n = 2 case, M. Suzuki also constructed by gluing 13 affine spaces C4 using the

Bäcklund transformations in [15] and Y. Sasano (reported as he) constructed the SIC

by 13 times blowing up from P4 in [14]. Note that these systems have the Painlevé

property, which guarantees that any path in B can be globally lifted.

Our approach to constructing the SIC is similar to Kimura’s, but follows the way of

H. Sakai constructing the SIC for discrete Painlevé systems [13]1. Our approach differs

from Kimura’s at the following points:

(i) we blow up from P2 ×P2 instead of twisted four-dimensional variety;

(ii) we resolve the indeterminacy of Bäcklund transformations instead of the system of

ODEs.

In the discrete setting, the SIC is a compact variety without excluding vertical leaves.

Thus, not only does this approach provide a good computation prospect, but also allows

us to easily see the homology and cohomology structure and to find the root lattice in

this structure.

1A concrete expression of the SIC for the sixth Painlevé equation from P1 ×P1 can be found in [5]
and [8], for example.
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For a discrete dynamical system φn : Xn → Xn+1, n ∈ Z, the sequence of manifolds

{Xn}n∈Z is called a SIC for {φn}n∈Z if φn : Xn → Xn+1 is a pseudo-isomorphism for

all n ∈ Z (see Section 1.3 below).2

§ 1.2. Bäcklund transformations

We use birational symmetries (Bäcklund transformations) of the Garnier sytem

found by H. Kimura [9] and T. Tsuda [16]. Let us denote (κ0, κ1, κ∞, θ1, θ2, α0, s1, s2) by

α and w(f) by f̄ for a birational action w. Bäcklund transformations change parameters

as Table 1.

Table 1. Action on parameters

κ̄0 κ̄1 κ̄∞ θ̄1 θ̄2 ᾱ0 s̄1 s̄2

wκ0
−κ0 κ1 κ∞ θ1 θ2 α0 + κ0 s1 s2

wκ1 κ0 −κ1 κ∞ θ1 θ2 α0 + κ1 s1 s2

wκ∞ κ0 κ1 −κ∞ θ1 θ2 α0 + κ∞ s1 s2

wθ1 κ0 κ1 κ∞ −θ1 θ2 α0 + θ1 s1 s2

wθ2 κ0 κ1 κ∞ θ1 −θ2 α0 + θ2 s1 s2

wα0
d− κ0 d− κ1 −κ∞ −θ1 −θ2 −α0 s1 s2

σ1 κ1 κ0 κ∞ θ1 θ2 α0 s−1
1 s−1

2

σ2 κ0 κ∞ κ1 θ1 θ2 α0
s1

s1−1
s2

s2−1

σ3 κ0 κ1 θ1 κ∞ θ2 α0 s−1
1 s−1

1 s2

σ4 κ0 κ1 κ∞ θ2 θ1 α0 s2 s1

The actions on dependent variables are as Table 2, where

d = 2α0 + κ0 + κ1 + κ∞ + θ1 + θ2

Q12 = q1 + q2 − 1(1.3)

Qs
12 = q1/s1 + q2/s2 − 1(1.4)

P12 = q1p1 + q2p2 + α0.

2Some of the contents of this paper have already been published in the proceedings for a special
lecture of the infinite integrable systems session of the Mathematical Society of Japan in 2021, but
this paper is the first publication of the proofs, details and accompanying results.
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Table 2. Action on (q, p) variables

q̄1 q̄2 p̄1 p̄2

wκ0
q1 q2 p1 − κ0

s1Qs
12

p2 − κ0

s2Qs
12

wκ1 q1 q2 p1 − κ1

Q12
p2 − κ1

Q12

wκ∞ q1 q2 p1 p2

wθ1 q1 q2 p1 − θ1/q1 p2

wθ2 q1 q2 p1 p2 − θ2/q2

wα0

s1p1(q1p1−θ1)
P12(P12+κ∞)

s2p2(q2p2−θ2)
P12(P12+κ∞) −q1p1/q̄1 −q2p2/q̄2

σ1 s−1
1 q1 s−1

2 q2 s1p1 s2p2

σ2
q1
Q12

q2
Q12

Q12(p1 − P12) Q12(p2 − P12)

σ3 q−1
1 −q−1

1 q2 −q1P12 −q1p2

σ4 q2 q1 p2 p1

Similar to the case of the sixth Painlevé equation, let us introduce new coordinates

(qi, ri) = (qi, qipi), then these actions are written more simply as Table 3, where

R12 = r1 + r2 + α0.(1.5)

Table 3. Action on (q, r) variables

q̄1 q̄2 r̄1 r̄2

wκ0
q1 q2 r1 − κ0q1

s1Qs
12

r2 − κ0q2
s2Qs

12

wκ1
q1 q2 r1 − κ1q1

Q12
r2 − κ1q2

Q12

wκ∞ q1 q2 r1 r2

wθ1 q1 q2 r1 − θ1 r2

wθ2 q1 q2 r1 r2 − θ2

wα0

s1r1(r1−θ1)
q1R12(R12+κ∞)

s2r2(r2−θ2)
q2R12(R12+κ∞) −r1 −r2

σ1 s−1
1 q1 s−1

2 q2 r1 r2

σ2
q1
Q12

q2
Q12

r1 − q1R12 r2 − q2R12

σ3 q−1
1 −q−1

1 q2 −R12 r2

σ4 q2 q1 r2 r1

In the next section we will consider P2 ×P2 using this coordinate system.

§ 1.3. Basic facts

In this paper, we use the following basic facts about birational maps between higher

dimensional varieties; see § 2 of [3] for details.
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Pseudo-isomorphisms

Let X and Y be smooth projective varieties. For a birational map f : X → Y , let I(f)

denote the indeterminate set (i.e. the set of points where f is not defined) of f in X .

We say a sequence of birational maps φn : Xn → Xn+1 for smooth projective

varieties Xn (n ∈ Z) to be algebraically stable if

(φn+k−1 ◦ · · · ◦ φn+1 ◦ φn)
∗
= φ∗

n ◦ φ∗
n+1 ◦ · · · ◦ φ∗

n+k−1

holds as a mapping from the Picard group of Xn+k to that of Xn for any integers n

and k ≥ 1.

Proposition 1.1 ([2, 1]). A sequence of birational maps φn : Xn → Xn+1 for

smooth projective varieties Xn (n ∈ Z) is algebraically stable if and only if there do

not exist integers n and k ≥ 1 and a divisor D on Xn−1 such that φ(D \ I(φn−1)) ⊂
I(φn+k−1 ◦ · · · ◦ φn+1 ◦ φn).

3

We call a birational mapping f : X → Y a pseudo-isomorphism if f is isomorphic

except on finite number of subvarieties of codimension two at least. This condition is

equivalent to that there is no prime divisor pulled back to the zero divisor by f or

f−1. Hence, if φn is a pseudo-isomorphism for each n, then {φn}n∈Z and {φ−1
n }n∈Z are

algebraically stable.

Proposition 1.2 ([4]). Let X and Y be smooth projective varieties and φ a

pseudo-isomorphism from X to Y. Then φ acts on the Néron-Severi bi-lattice as an

automorphism preserving the intersections.

The Néron-Severi bi-lattice of a smooth rational variety X is isomorphic toH2(X ,Z)×
H2(X ,Z) which is explicitly given in the following.

Blow-ups

Recall that in local coordinates U ⊂ CN , the blow-up along a subvariety V of dimension

N − d, d ≥ 2, written as

x1 − f1(xd+1, . . . , xN ) = · · · = xd − fd(xd+1, . . . , xN ) = 0,

where fi’s are holomorphic functions, is a birational morphism π : X → U such that

X = {Ui} is an open variety given by

Ui = {(u(i)
1 , . . . , u

(i)
d , xd+1, . . . , xN ) ∈ CN} (i = 1, . . . , d)

3This statement is a non-autonomous analog of a proposition shown in [2, 1]. The proof does not
change except in notations.
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with π : Ui → U :

(x1, . . . , xN ) =(u
(i)
1 u

(i)
i + f1, . . . , u

(i)
i−1u

(i)
i + fi−1, u

(i)
i + fi,

u
(i)
i+1u

(i)
i + fi+1, . . . , u

(i)
d u

(i)
i + fd, xd+1, . . . , xN ).

It is convenient to write the coordinates of Ui as(
x1 − f1
xi − fi

, . . . ,
xi−1 − fi−1

xi − fi
, xi − fi,

xi+1 − fi+1

xi − fi
, . . . ,

xd − fd
xi − fi

, xd+1, . . . , xN

)
.

The exceptional divisor E is written as ui = 0 in Ui and each point in the center of the

blow-up corresponds to a subvariety isomorphic to Pd−1: (x1 − f1 : · · · : xd − fd). Thus

E is locally a direct product V × Pd−1. We called such Pd−1 a fiber of the exceptional

divisor. (In algebraic setting the affine charts often need to be embedded into higher

dimensional space.)

Case of P2 ×P2

Let X be a rational variety obtained by K successive blowups from P2 ×P2 and

(x1,x2) = (x10 : x11 : x12, x20 : x21 : x22)

the direct product of homogeneous coordinate chart. Let Hi denote the total transform

of the class of a hyper-plane cixi = ci0xi0+ci1xi1+ci2xi2 = 0, where ci = (ci0 : ci1 : ci2)

is a constant vector in P2, and Ek the total transform of the k-th exceptional divisor

class.

Let hi denote the total transforms of the class of a line

{x | xj = cj(∀j 6= i), xi = sai + tbi(∃(s : t) ∈ P1)},

where ai, bi and cj ’s are constant vectors in P2, and ek the class of a line in a fiber of the

k-th blow-up. Then, the Picard group ' H2(X ,Z) and its Poincaré dual ' H2(X ,Z)
are lattices

H2(X ,Z) =
2⊕

i=1

ZHi ⊕
K⊕

k=1

Z Ek, H2(X ,Z) =
2⊕

i=1

Zhi ⊕
K⊕

k=1

Z ek(1.6)

and the intersection form is given by

〈Hi, hj〉 = δij , 〈Ek, el〉 = −δkl, 〈Hi, ek〉 = 〈Ek, hi〉 = 0(1.7)

for i, j = 1, 2 and 1 ≤ k, l ≤ K.

Moreover, the anti-canonical divisor class of X is given by

−KX = 3H1 +3H2 −
K∑

k=1

(3− dk) Ek,(1.8)
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where dk is the dimension of the center manifold for the k-th blow-up.

§ 2. Construction of the space of initial conditions

First of all, let us compactify the phase space (q1, q2, p1, p2) ∈ C4 to (Q0 : Q1 :

Q2) × (R0 : R1 : R2) ∈ P2 ×P2, where the original coordinates correspond to Q0 6= 0

and R0 6= 0 through (q1, q2, r1, r2) = (Q1/Q0, Q2/Q0, R1/R0, R2/R0) as usual. Let Xα

be a rational projective variety obtained by successive 10 blow-ups from P2 ×P2 with

the center of each blow-up Ci (i = 1, . . . , 10) given as follows.

C1 : q1 = r1 = 0 U1 : (u1, q2, v1, r2) = (q1, q2, r1/q1, r2)

C2 : q1 = r1 − θ1 = 0 U2 : (u2, q2, v2, r2) = (q1, q2, (r1 − θ1)/q1, r2)

C3 : q2 = r2 = 0 U3 : (q1, u3, r1, v3) = (q1, q2, r1, r2/q2)

C4 : q2 = r2 − θ2 = 0 U4 : (q1, u4, r1, v4) = (q1, q2, r1, (r2 − θ2)/q2)

C5 : Q0 = R12 = 0 U5 : (u5, q2,1, r1, v5) = (1/q1, q2/q1, r1, q1R12)

C6 : Q0 = R12 + κ∞ = 0 U6 : (u6, q2,1, r1, v6) = (1/q1, q2/q1, r1, q1(R12 + κ∞))

C7 : R0 = Q12 = A12 = 0 U7 : (q1, u7, v7, w7) = (q1, 1/r1, Q12r1, A12r1)

C8 : u7 = v7 − κ1q1 = 0 U8 : (q1, u8, v8, w7) = (q1, 1/r1, (v7 − κ1q1)r1, w7)

C9 : R0 = Qs
12 = As

12 = 0 U9 : (q1, u9, v9, w9) = (q1, 1/r1, Q
s
12r1, A

s
12r1)

C10 : u9 = v9 − κ0q1/s1 = 0U10 : (q1, u10, v10, w9) = (q1, 1/r1, (v9 − κ0q1/s1)r1, w9)

where Q12, Q
s
12 are R12 are (1.3), (1.4) and (1.5) respectively, and

A12 = q2/q1 − r2/r1(2.1)

As
12 = (s1q2)/(s2q1)− r2/r1.(2.2)

Here, Ci is two-dimensional subvariety for i 6= 7, 9, while C7 and C9 are 1-dimensional.

The following proposition follows immediately from the basic facts in Section 1.3.

Proposition 2.1. The Picard group (' H2(Xα,Z)) and its dual ' H2(Xα,Z)
are 12-dimensional lattices

H2(Xα,Z) = ZHq ⊕ZHr ⊕
10⊕
k=1

Z Ek, H2(Xα,Z) = Zhq ⊕ Zhr ⊕
10⊕
k=1

Z ek,

where Hq, Hr and Ek denote the total transforms of the classes for a hyper-plane c0Q0+

c1Q1+c2Q2 = 0, c0R0+c1R1+c2R2 = 0 with (c0 : c1 : c2) ∈ P2 and the k-th exceptional

divisor, and hq, hp and ek denote the total transforms of the classes for a generic line

{(Q,R) = (c, sa+ tb) ∈ P2 ×P2 | (s : t) ∈ P1},

{(Q,R) = (sa+ tb, c) ∈ P2 ×P2 | (s : t) ∈ P1},
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and a generic fiber of the k-th blow-up. The intersection form is given by

〈Hi, hj〉 = δij , 〈Ek, el〉 = −δkl, 〈Hi, ek〉 = 〈Ek, hi〉 = 0.(2.3)

The anti-canonical divisor class is

−KX = 3Hq +3Hr −
∑

k=1,2,3,4,5,6,8,10

Ek −2 E7 −2 E9 .

Let A denote the set of generic values of the parameter α. The following theorem

holds.

Theorem 2.2. The Bäcklund transformations w = wi for i = κ0, κ,κ∞, θ1, θ2

and w = σj for j = 1, 2, 3, 4 can be lifted to pseudo-isomorphisms from Xα to Xw(α),

where w acts a bijection on A.

Table 4 is the actions of the above w, where we omit the preserved elements and

E i1,i2,...,ik is the abbreviation for E i1 + E i2 + · · ·+ E ik .

Table 4. Action on the Picard group

wκ0 Hr ↔ Hq +Hr −E9,10

E9 ↔ Hq −E10, E10 ↔ Hq −E9

wκ1
Hr ↔ Hq +Hr −E7,8

E7 ↔ Hq −E8, E8 ↔ Hq −E7

wκ∞ E5 ↔ E6

wθ1 E1 ↔ E2

wθ2 E3 ↔ E4

σ1 E7 ↔ E9, E8 ↔ E10

σ2 Hr ↔ Hq +Hr −E5,7, E5 ↔ Hq −E7

E6 ↔ E8, E7 ↔ Hq −E5

σ3 E1 ↔ E5, E2 ↔ E6

σ4 E1 ↔ E3, E2 ↔ E4

Furthermore, direct calculations also allow us to verify the following theorem.

Theorem 2.3. Let X o
α be the open variety obtained by excluding the following
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proper transforms from Xα:

Q1 = 0 : Hq −E1 −E2

Q2 = 0 : Hq −E3 −E4

Q0 = 0 : Hq −E5 −E6

R0 = 0 : Hr −E7 −E9

R0 = Q12 = A12 = 0 : E7 −E8

R0 = Qs
12 = As

12 = 0 : E9 −E10,

then the family {X o
α}α∈A is a SIC for the Garnier system.

However, we need further blow-ups for wα0 which is lifted to a pseudo-isomorphism.

Actually, wα0
maps a hypersurface Q0 = 0 to a subvariety Q1 = Q2 = 0 whose codi-

mension is two, which means that we need blow-up along Q1 = Q2 = 0. Note that both

Q0 = 0 and Q1 = Q2 = 0 are included in Xα \X o
α, vertical leaves.

Let us blow-up P2 ×P2 along C11, . . . , C21, where

C11 :Q0 = Q2 = 0 U11 : (u11, v11, r1, r2) = (1/q1, q2, r1, r2)

C12 :Q0 = Q1 = 0 U12 : (u12, v12, r1, r2) = (1/q2, q1, r1, r2)

C13 : q1 = q2 = 0 U13 : (u13, v13, r1, r2) = (q1, q2/q1, r1, r2)

C14 : q1 = q2 − 1 = R0 = R1 = 0

U14 : (x14, w14, v14, u14) = (q1r2, (q2 − 1)r2, r1, 1/r2)

C15 : q1 = q2/s2 − 1 = R0 = R1 = 0

U15 : (x15, w15, v15, u15) = (q1r2, (q2/s2 − 1)r2, r1, 1/r2)

C16 : q2 = q1 − 1 = R0 = R2 = 0

U16 : (x16, w16, v16, u16) = (q2r1, (q1 − 1)r1, r2, 1/r1)

C17 : q2 = q1/s1 − 1 = R0 = R2 = 0

U17 : (x17, w17, v17, u17) = (q2r1, (q1/s1 − 1)r1, r2, 1/r1)

C18 :Q0 = Q1 +Q2 = R0 = R1 +R2 = 0

U18 : (x18, w18, v18, u18) = (r1/q1, (q2/q1 + 1)r1, r2 + r1, 1/r1)

C19 :Q0 = Q1/s1 +Q2/s2 = R0 = R1 +R2 = 0

U19 : (x19, w19, v19, u19) = (r1/q1, (q2/q1 + s2/s1)r1, r2 + r1, 1/r1)

C20 : q1 + s1(s2 − 1)/(s1 − s2) = q2 + s2(s1 − 1)/(s2 − s1) = R0 = 0

U20 : (v20, w20, u20, r2,1)

= ((q1 + s1(s2 − 1)/(s1 − s2))r1, (q2 + s2(s1 − 1)/(s2 − s1))r1, 1/r1, r2/r1)

and C21 = wα0
(C20).

Then, all the Bäcklund transformations in Table 3 are lifted to pseudo-isomorphisms

as Table 5.
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Table 5. Action on the Picard group with 21 blow-ups

wκ0
Hr ↔ Hq +Hr −E9,10,15,17,19,20

E9 ↔ Hq −E10,15,17,19,20, E10 ↔ Hq −E9,15,17,19,20

wκ1 Hr ↔ Hq +Hr −E7,8,14,16,18,20

E7 ↔ Hq −E8,14,16,18,20, E8 ↔ Hq −E7,14,16,18,20

wκ∞ E5 ↔ E6

wθ1 E1 ↔ E2

wθ2 E3 ↔ E4

wα0 Hq ↔ 2Hq +2Hr −E1,2,3,4,5,6,11,12,13,14,15,16,17,18,19

E1 ↔ Hr −E1,14,15, E2 ↔ Hr −E2,14,15, E3 ↔ Hr −E3,16,17

E4 ↔ Hr −E4,16,17, E5 ↔ Hr −E5,18,19, E6 ↔ Hr −E6,18,19

E7 ↔ E9, E8 ↔ E10

E11 ↔ Hq −E1,2,12,13,14,15, E12 ↔ Hq −E3,4,11,13,16,17

E13 ↔ Hq −E5,6,11,12,18,19 E20 ↔ E21

σ1 E7 ↔ E9, E8 ↔ E10

E14 ↔ E15, E16 ↔ E17, E18 ↔ E19

σ2 Hr ↔ Hq +Hr −E5,7,14,16,18,19, E5 ↔ Hq −E7,14,16,18,20

E6 ↔ E8, E7 ↔ Hq −E5,11,12,18,19 E11 ↔ E16, E12 ↔ E14, E19 ↔ E20

σ3 E1 ↔ E5, E2 ↔ E6

E11 ↔ E13, E14 ↔ E18, E15 ↔ E19

σ4 E1 ↔ E3, E2 ↔ E4

E11 ↔ E12, E14 ↔ E16, E15 ↔ E17

§ 3. Root system

Since the space with 21 blow-ups is too complicated to see the structure, in this

section we consider the action on the Néron-Severi bi-lattice for the case of 10 blow-ups.

Let Xα be the space of initial conditions obtained by the first 10 blow-ups. Define

the root vectors αi (i = 0, 1, . . . , 5) and the co-root vectors as

α0 = 1
2 (Hq +2Hr −2 E1 −2 E3 −2 E5), α1 = Hq −E9 −E10

α2 = Hq −E7 −E8, α3 = E5 −E6

α4 = E1 −E2, α5 = E3 −E4

α̌0 = hq − e1 − e3 − e5, α̌1 = hr − e9 − e10

α̌2 = hr − e7 − e8, α̌3 = e5 − e6

α̌4 = e1 − e2, α̌5 = e3 − e4
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(see Figure 1).

α0− 5
2

α1
−2

1
α2

−2
1

α3 −2

1

α4−2

1

α5

−2
1

Figure 1. Dynkin diagram

Numbers beside edges denote the intersection number ⟨αi, α̌j⟩ = ⟨αj , α̌i⟩, while numbers beside vertices

denote the self-intersection number ⟨αi, α̌i⟩.

Then, wαi
, i = 1, 2, 3, 4, 5, acts on the Néron-Severi bi-lattice as

wαi
(D) = D − 2

〈D, α̌i〉
〈αi, α̌i〉

αi, wαi
(d) = d− 2

〈αi, d〉
〈αi, α̌i〉

α̌i

for D ∈ H2(X a,Z) and d ∈ H2(X a,Z).
Thus, wαi , i = 1, 2, 3, 4, 5, coincide with wκ0 , wκ1 , wκ∞ , wθ1 , wθ2 respectively, while

σj , j = 1, 2, 3, 4, act on the roots as transposition (1, 2), (2, 3), (3, 4), (4, 5) respectively.

Remark. The coroots are taken orthogonal to the vertical leaves, while there is

not known automatic way to determine the roots, which are determined in a manner

consistent with the action of the Bäcklund transformations on the bi-lattice.

According to this remark, there seems to be no reasonable way to determine α0.

Moreover, wα0 was not a pseudo-isomorphism with 10 blow-ups. In fact, if we apply

the above formula to wα0
with D = Hq, we obtain

Hq 7→ Hq +
2

5
(Hq +2Hr −E1 −E3 −E5),

which is not in H2(Xα,Z), and wα0
can not be realized as a birational map.

Surprisingly, however, the following theorem holds and gives the reason why we

take α0 as above.

Theorem 3.1. Kac’s translation (§6.5 in [7]):

Tαi
(D) = D + 〈D, δ̌〉αi + 〈D, δ̌ − α̌i〉δ
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with4

δ = 2α0 +
5∑

i=1

αi = 3Hq +2Hr −E1,2,3,4,5,6,7,8,9,10(3.1)

δ̌ = 2α̌0 +

5∑
i=1

α̌i = 2hq + 2hr − e1,2,3,4,5,6,7,8,9,10(3.2)

can be realized as a pseudo-isomorphism for i = 1, 2, 3, 4, 5. Moreover, T 2
α0

can be

realized as a pseudo-isomorphism.

Especially, Tα1 acts on (α0, α1, . . . , α5) as

Tα1 :(α0, α1, . . . , α5) 7→ (α0, α1, . . . , α5) + δ(−1, 2, 0, 0, 0, 0)

and T 2
α0

acts on (α0, α1, . . . , α5) as

T 2
α0

:(α0, α1, . . . , α5) 7→ (α0, α1, . . . , α5) + δ(5,−2,−2,−2,−2,−2).

Proof. Using Table 5, it tuns out that the action of

T1 = (wθ2wθ1wκ2
wκ0

wα0
)
2

on the space with 21 blow-ups is trivial on the sub-lattice expanded by E11, . . . , E21, and

hence T1 is a pseudo-isomorphism on the space with the first 10 blow-ups. Moreover,

the action of T1 on {Xα} coincides with Tα1
. In other words, Tα1

is realized as T1 as a

birational map.

Obviously, we have

Tα1
= T1, Tα2

= σ1T1σ1, Tα3
= σ2σ1T1σ1σ2,

Tα4
= σ3σ2σ1T1σ1σ2σ3, Tα5

= σ4σ3σ2σ1T1σ1σ2σ3σ4,

and using these translations, we can realize T 2
α0

as

T 2
α0

= T−α1
T−α2

T−α3
T−α4

T−α5
,

where T−αi
= T−1

αi
for i = 1, 2, 3, 4, 5.
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