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Similarity and isospectral transformation of max-plus

matrices

By

Yuki Nishida∗, Sennosuke Watanabe∗∗and Yoshihide Watanabe∗∗∗

Abstract

Max-plus algebra is a semiring with addition “max” and multiplication “+”. It has been

used to describe ultradiscrete integrable systems. In this paper, we discuss transformations

of max-plus matrices. We first define the similarity transformation and show that such trans-

formation preserves the maximum eigenvalue of the matrix. Unlike the case of conventional

linear algebra, the similarity transformation does not induce an equivalence relation on max-

plus matrices. We develop the concept of unitary-pair semigroups so that the transformation

becomes symmetric and transitive.

§ 1. Introduction

Max-plus algebra Rmax = R ∪ {−∞} is a semiring with addition ⊕ and multipli-

cation ⊗ defined by a ⊕ b = max(a, b) and a ⊗ b = a + b for a, b ∈ Rmax, respectively.

Max-plus algebra appears in many real-world problems, for example, steelworks [7], train

timetable [14, 17], operation in emergency call center [2]. Hence, it is applied to many

problems, such as combinatorial optimization [4] and discrete event systems [12, 21].

The algebraic geometry on max-plus algebra is called tropical geometry [19, 22].

The adjective “tropical” is in honor of the works of Imre Simon [32]. Tropical geome-

try can be derived from algebraic geometry over the fields with the valuation through
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“tropicalization”, which is the limiting process in some sense. Such a limiting process

is called ultradiscretization in the research field of integrable systems [34]. Applying

this limiting process to the dependent variables of discrete integrable systems, we have

obtained “ultradiscrete integrable systems” described by max-plus operations. For ex-

ample, the box-ball system [33], which is a kind of cellular automata, can be obtained

by such process from the Lotka-Volterra equation [34] or the Toda lattice equation [23].

An application of the max-plus eigenvalue problem to these equations is found in [30].

In this paper, we discuss the similarity transformation from A to B of the form

A⊗P = P⊗B and the relation to the eigenvalue problem. Here, arithmetics of max-plus

matrices are defined as in the conventional algebra by replacing the addition and the

multiplication with ⊕ and ⊗, respectively. We first prove that for such transformation

from A to B, the maximum eigenvalue of A coincides with that of B under some

regularity condition for P . However, other eigenvalues that are not maximum may be

different. This fact is explained in terms of graph theory. Each max-plus square matrix is

associated with a weighted digraph so that the weight of an edge (i, j) corresponds to the

(i, j) entry of the matrix. Then, the maximum eigenvalue of a matrix is identical to the

maximum average weight of circuits in the associated graph. Further, each eigenvalue

comes from the average weight of some circuit, but it depends on the strong connectivity

of the digraph. In particular, an irreducible matrix, whose associated graph is strongly

connected, has exactly one eigenvalue. If we transpose the matrix, then the directions

of edges in the associated graph are reversed and hence the strong connectivity of the

graph will be changed. This causes that the left and right eigenvalues of a max-plus

matrix are not the same in general.

Max-plus spectral theory originated in [8] and developed with studies on the pe-

riodicity of matrix powers [11, 29]. In the computational aspect, a method to find

all eigenvalues and eigenvectors of reducible matrices was given in [5]. To cope with

the problem that a max-plus matrix has a very few eigenvalues and eigenvectors, the

authors recently introduced algebraic eigenvectors with respect to the roots of the char-

acteristic polynomial [25]. These vectors are shown to have analogous properties to the

conventional ones [26]. It is known that some discrete integrable systems are related to

numerical algorithms for computing eigenvalues of usual matrices by interpreting the

recurrence equations as similarity transformations [31]. This is extended to the relation

between ultradiscrete integrable systems and eigenvalue problems of max-plus matrices.

For example, an isospectral transformation of a max-plus tridiagonal matrix is given

by the ultradiscrete Toda equation [35], that of a symmetric tridiagonal matrix is by

the ultradiscrete Lotka-Volterra equation [15], and that of a lower Hessenberg banded

matrix is by the ultradiscrete hungry Toda equation [?].

In the definition of the similarity transformation A ⊗ P = P ⊗ B, an important
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issue is which kind of regularity we should impose on the matrix P . If we follow the

similarities in conventional linear algebra, the invertible matrix P may be a possible

choice. However, in max-plus algebra, it is not appropriate since most square matrices

do not have their inverses. Some kinds of the regularity of max-plus matrices are

proposed in the literature such as [1, 13, 18]. We demonstrate the difference and the

intensities of these regularities by presenting examples. Also, we discuss the similarity

transformations defined by the matrix P with such kinds of regularities. In any case,

we must note that the relation derived from the similarity transformation A ⊗ P =

P ⊗B does not define the equivalence relation since it is not symmetric. To obtain the

equivalence relation we consider two equations A ⊗ P = P ⊗ B and B ⊗ Q = Q ⊗ A

at the same time. The matrix Q is expected to be close to the inverse of P so that we

impose the condition that all diagonal of P⊗Q and Q⊗P are 0, and the determinants of

both of them are 0 as well. Moreover, in order to have the transitive law, we introduce

the notion of a unitary-pair semigroup consisting of pairs of matrices imitating the pair

of P and its inverse. Equivalence relation induced by unitary-pair semigroup includes

the similarity transformation by invertible matrices and the transformation into a block

diagonal form in spectral theory.

§ 2. Preliminaries on max-plus algebra

Max-plus algebra is the set Rmax := R ∪ {−∞} with two operations ⊕ and ⊗,

defined by

a⊕ b := max(a, b), a⊗ b := a+ b

for a, b ∈ Rmax. By regarding ⊕ and ⊗ as addition and multiplication, respectively,

max-plus algebra is a semiring. Here, ε := −∞ is the identity element for addition, and

e := 0 is the identity element for multiplication.

Let Rn
max and Rm×n

max be the set of n-dimensional max-plus column vectors and the

set of m× n max-plus matrices, respectively. The operations ⊕ and ⊗ are extended to

max-plus vectors and matrices as in conventional linear algebra. For A,B ∈ Rm×n
max , the

matrix sum A⊕B ∈ Rm×n
max is defined by

[A⊕B]ij = [A]ij ⊕ [B]ij ,

where [A]ij indicates the (i, j) entry of A. For A ∈ Rℓ×m
max and B ∈ Rm×n

max , the matrix

product A⊗B ∈ Rℓ×n
max is defined by

[A⊗B]ij =

m⊕
k=1

[A]ik ⊗ [B]kj .
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For A ∈ Rm×n
max and c ∈ Rmax, the scalar multiplication of A by c is defined by

[c⊗A]ij = c⊗ [A]ij .

The n-dimensional max-plus zero vector and the m× n zero matrix are denoted by En
and Em,n, respectively, and the max-plus unit matrix of order n is denoted by In.

§ 2.1. Regularity of max-plus square matrices

Here, we summarize some kinds of “regularity” of max-plus square matrices. Many

characteristics of regular matrices in conventional linear algebra are not equivalent in

max-plus algebra. Several kinds of non-equivalent rank function on max-plus matrices

are presented and compared in [1]. Some regularity of max-plus matrices can be defined

by these rank functions.

A matrix A ∈ Rn×n
max is called regular if it contains finite (i.e., non-ε) entry in each

row and each column [18]. This property is also referred to as doubly R-astic in [9].

This simple definition is sometimes used in the eigenvalue problem. The class of regular

matrices seems to be too large. For example, all finite matrices become regular.

A concept that is analogous to regularity in conventional linear algebra is stated in

terms of the independence of column (or row) vectors [10]. Let S ⊂ Rn
max be a finite set

of vectors. It is called dependent if there exists a vector x ∈ S that can be expressed as

a linear combination of others, that is,

x =
⊕

u∈S\{x}

cu ⊗ u, cu ∈ Rmax.

If S is not dependent, then it is called independent. A matrix A ∈ Rn×n
max is called doubly

full-rank if both row vectors and column vectors are independent.

Another definition of regularity comes from the determinant of a matrix [13]. For

a matrix A = (aij) ∈ Rn×n
max , we define the determinant of A by

detA :=
⊕
π∈Sn

n⊗
i=1

aiπ(i),

where Sn denotes the symmetric group of order n. The right-hand side of the above

equation is the maximum over n! permutations. The matrix A is called singular if the

maximum is attained by at least two permutations; otherwise A is called non-singular.

Lastly, a matrix A ∈ Rn×n
max is called invertible if there exists B ∈ Rn×n

max such that

A ⊗ B = B ⊗ A = In. The matrix B is called the inverse of A and denoted by

A⊗(−1). In max-plus algebra, A ∈ Rn×n
max is invertible if and only if A is a generalized

permutation matrix [9], that is, there exists a permutation σ ∈ Sn such that [A]ij ̸= ε

if and only if j = σ(i). In this case, A⊗(−1) is also a generalized inverse matrix with

[A⊗(−1)]ji = −[A]ij for j = σ(i).
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For these four kinds of regularity, we have the following relationship:

regular
(1)⇐= doubly full-rank

(2)⇐= non-singular
(3)⇐= invertible.

The proofs of (1) and (3) are very simple. Indeed, if the ith column vector ai of A

is the zero vector En, then it can be expressed as a trivial linear combination of other

columns:

ai =
⊕
j ̸=i

ε⊗ aj .

A similar result holds for rows. Hence, if A is not regular, then it is not doubly full-rank,

which proves (1). For an invertible matrix A ∈ Rn×n
max , take a permutation σ ∈ Sn such

that [A]ij ̸= ε if and only if j = σ(i). Then, we see that
⊗n

i=1 aiπ(i) ̸= ε if and only

if π = σ. Thus, the maximum in the definition of the determinant is attained only by

σ. This implies A is non-singular, proving (3). The proof of (2) is rather nontrivial,

see [28].

Example 2.1. We consider four matrices

A1 =

1 3 3

2 1 2

0 ε 0

 , A2 =

0 0 ε

ε 0 0

0 ε 0

 , A3 =

1 0 0

0 1 0

0 0 1

 , A4 =

 ε ε 2

−3 ε ε

ε 1 ε


All of them are regular because no row or column is the zero vector. The matrix A1 is

not doubly full-rank because the third column is the sum of the other two:1

2

0

⊕

3

1

ε

 =

3

2

0

 .

The matrix A2 is doubly full-rank but singular because the maximum in the determinant

is attained by two terms:

detA2 = 0⊗ 0⊗ 0⊕ 0⊗ 0⊗ 0⊕ ε⊗ ε⊗ ε⊕ 0⊗ 0⊗ ε⊕ 0⊗ ε⊗ 0⊕ ε⊗ 0⊗ 0

= 0⊕ 0⊕ ε⊕ ε⊕ ε⊕ ε.

The matrix A3 is non-singular but not invertible. Indeed, suppose B = (bij) ∈ R3×3
max is

an inverse of A. Then, from the (1, 2) entry of A⊗B = I3, we have

1⊗ b12 ⊕ 0⊗ b22 ⊕ 0⊗ b32 = ε,

which implies b12 = b22 = b32 = ε. Then, the (2, 2) entry of A⊗B is computed as

0⊗ b12 ⊕ 1⊗ b22 ⊕ 0⊗ b32 = ε,
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which contradicts the fact that [A ⊗ B]22 = [I3]22 = 0. Hence, A3 must not have an

inverse matrix. The matrix A4 is an example of a generalized permutation matrix,

which is invertible. The inverse of A4 is

A
⊗(−1)
4 =

 ε 3 ε

ε ε−1

−2 ε ε

 .

§ 2.2. Max-plus matrices and graphs

For a matrix A = (aij) ∈ Rn×n
max , we define a weighted digraph G(A) := (V,E,w)

associated with A as follows. The sets of the vertices and edges are V = {1, 2, . . . , n}
and E = {(i, j) | aij ̸= ε}, respectively, and the weight function w : E → R is defined

by w((i, j)) = aij for (i, j) ∈ E. A sequence of vertices P = (i0, i1, . . . , iℓ) is called a

path if (ik, ik+1) ∈ E for k = 0, 1, . . . , ℓ − 1. It is called an i0-iℓ path if its start and

end should be specified. The sets of the vertices and edges in P are denoted by V (P)

and E(P), respectively. The number ℓ(P) := ℓ is called the length of P. The sum

w(P) :=
∑ℓ−1

k=0 w((ik, ik+1)) is called the weight of P. A path C = (i0, i1, . . . , iℓ) with

iℓ = i0 is called a circuit. In particular, if ik ̸= ik′ for 1 ≤ k < k′ ≤ ℓ, then C is called an

elementary circuit. The length and weight of a circuit are defined similarly to a path.

The average weight of a circuit C is defined by w(C)/ℓ(C).

For A ∈ Rn×n
max and a positive integer k, let A⊗k denote the product

k times︷ ︸︸ ︷
A⊗A⊗ · · · ⊗ A.

The (i, j) entry of A⊗k is identical to the maximum weight of all i-j paths with length

k in G(A). We consider the formal matrix power series of the form

A∗ := In ⊕A⊕A⊗2 ⊕ · · · .

The matrix A∗ is called the Kleene star of A. If there is no circuit with positive weight

in G(A), then A∗ is computed as the finite sum

A∗ = In ⊕A⊕A⊗2 ⊕ · · · ⊕ A⊗n−1.

In this case, the (i, j) entry of A∗ is the maximum weight of all i-j paths [16].

§ 2.3. Eigenvalues and eigenvectors

For a matrix A ∈ Rn×n
max , a scalar λ is called a (right) eigenvalue of A if there exists

a vector x ̸= En satisfying

A⊗ x = λ⊗ x.

This vector x is called a (right) eigenvector of A with respect to λ. Here, we summarize

the results in the literature on the max-plus eigenvalue problem, e.g., [3, 6, 18].
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Proposition 2.2. For a matrix A ∈ Rn×n
max , the maximum average weight of all

elementary circuits in G(A) is the maximum eigenvalue of A.

Let λ(A) be the maximum eigenvalue of A. A circuit in G(A) with average weight

λ(A) is called critical. Vertices and edges of a critical circuit are called critical vertices

and critical edges, respectively. The set of all critical vertices and edges are denoted by

V c(A) and Ec(A). The subgraph Gc(A) = (V c(A), Ec(A)) of G(A) is called the critical

graph.

Proposition 2.3. The kth column of ((−λ(A)) ⊗ A)∗ is an eigenvector of A

with respect to λ(A) if and only if k ∈ V c(A).

Example 2.4. We consider a matrix

A =


ε 2 ε ε ε

0 ε 3 ε ε

1 ε ε 1 4

ε ε 5 1 ε

ε ε ε ε 4

 .

The associated graph G(A) is shown in Figure 1. The elementary circuits in G(A) are

(1, 2, 1), (1, 2, 3, 1), (3, 4, 3), (4, 4) and (5, 5),

whose average weights are

2 + 0

2
= 1,

2 + 3 + 1

3
= 2,

1 + 5

2
= 3,

1

1
= 1 and

4

1
= 4,

respectively. Thus, the maximum eigenvalue of A is 4. To find an eigenvector, we

compute the Kleene star of

B := (−4)⊗A =


ε −2 ε ε ε

−4 ε −1 ε ε

−3 ε ε −3 0

ε ε 1 −3 ε

ε ε ε ε 0

 .

We note that the maximum (average) weight of circuits in G(B) becomes 0 since the

weights of all edges are decreased by 4. We see that

B∗ = I5 ⊕B ⊕B⊗2 ⊕B⊗3 ⊕B⊗4 =


0 −2−3−6−3

−4 0 −1−4−1

−3−5 0 −3 0

−2−4 1 0 1

ε ε ε ε 0


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Since the critical circuit of G(B) is (5, 5), the last column of B∗ is an eigenvector of A

with respect to the eigenvalue 4.

Figure 1. Associated graph G(A) for Example 2.4.

To find all eigenvalues of a matrix, we focus on the strong connectivity of the

associated graph. A directed graph G is called strongly connected if there exists an i-j

path for any vertex i, j of G. A matrix A is called irreducible if the associated graph

G(A) is strongly connected; otherwise, it is called reducible. If A is reducible, then G(A)

is decomposed into strongly connected components G1,G2, . . . ,Gr. By definition, any

elementary circuit of G(A) is contained in exactly one of these components. For each

component Gi, let λ(Gi) be the maximum average weight of circuits in Gi. If Gi has

no circuit, we set λ(Gi) = ε. A component Gi is called spectral if it is not reachable

from any other components Gj such that λ(Gi) < λ(Gj), that is, there is no path from

a vertex of Gj to that of Gi.

Proposition 2.5 ([5]). For a matrix A ∈ Rn×n
max , let G1,G2, . . . ,Gr be strongly

connected components of G(A). Then, the set of all eigenvalues of a matrix A is

{λ(Gi) | Gi is spectral}.

In particular, if A is irreducible, then A has exactly one eigenvalue λ(A).

Example 2.6. We again consider the matrix A in Example 2.4. The associated

graph G(A) is reducible and it is decomposed into strongly connected components G1

and G2 with vertices {1, 2, 3, 4} and {5}, respectively. The maximum average weight for

these components are λ(G1) = 3 and λ(G2) = 4. Since there is no path from vertex 5 to

the others, both G1 and G2 are spectral. Hence, the eigenvalues of A are 3 and 4. For

the eigenvalue 3, we compute an eigenvector. As in the previous example, we consider
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a matrix C = (−3)⊗A. Then, we have

C∗ =


0 −1−1−3∞
−2 0 0 −2∞
−2−3 0 −2∞
0 −1 2 0 ∞
ε ε ε ε ∞

 .

We remark that some entries of C∗ do not converge and tend to infinity because G(C)

has the circuit (5, 5) with positive weight. Nevertheless, the columns corresponding to

the critical circuit (3, 4, 3) of G1 are still in R5
max. Hence, the third and fourth columns

of C∗ are eigenvectors of A with respect to the eigenvalue 3. Note that these vectors

are essentially the same, that is,
−1

0

0

2

 = 2⊗


−3

−2

−2

0

 .

So far, we have dealt with right eigenvalues and right eigenvectors. Left eigenvalues

and left eigenvectors are similarly defined by the equation for a row vector x:

x⊗A = λ⊗ x.

We can see that left eigenvalues and eigenvectors of A are right eigenvalues and eigen-

vectors of A⊤. The associated graph G(A⊤) is comprised of all edges of G(A), but the

directions of edges are reversed. Hence, each circuit of G(A⊤) corresponds one-to-one

to that of G(A⊤). In particular, the maximum average weights of circuits of G(A) and

G(A⊤) are the same. This means that the maximum left eigenvalue is equal to the

maximum right one. Thus, the maximum eigenvalue need not be distinguished by the

adjective “left” or “right”. On the other hand, surprisingly, not all left eigenvalues of A

become the right ones. For example, let us consider the matrix A in Example 2.4. The

decomposition of G(A⊤) into strongly connected components induces the same partition

of vertices as G(A). However, we have an edge (5, 3) in G(A⊤). This means that the

component G1 with vertex set {1, 2, 3, 4} is not spectral any longer. Thus, λ(G1) = 3 is

not an left eigenvalue of A.

§ 3. Similarity transformation of max-plus matrices

In this section, we discuss the similarity transformation of max-plus matrices. As

described in the previous section, only generalized permutation matrices have their
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inverses. Hence, to define the similarity transformation from A to B by P⊗(−1)⊗A⊗P =

B seems to be inappropriate. Instead, we consider the transformation induced by the

following equation:

A⊗ P = P ⊗B.

We first show that the maximum eigenvalue is preserved by this transformation.

Theorem 3.1. For A,B ∈ Rn×n
max , suppose there exists a regular matrix P ∈

Rn×n
max such that

A⊗ P = P ⊗B.

Then, any right eigenvalue of B is that of A, and any left eigenvalue of A is that of B.

In particular, the maximum eigenvalue of A and B coincide.

Proof. Let λ be a right eigenvalue of B and x be a right eigenvector with respect

to λ. Then, we have

A⊗ (P ⊗ x) = P ⊗B ⊗ x = λ⊗ (P ⊗ x).

Since x is a right eigenvector, [x]j ̸= ε for some index j. Further, if P is regular,

[P ]ij ̸= ε for some row i because the jth column is not the zero vector. Hence, the

ith entry of P ⊗ x is not ε, which implies that P ⊗ x ̸= En. Thus, P ⊗ x is a right

eigenvector of A with respect to the right eigenvalue λ.

The assertion for a left eigenvalue is similarly proved. Since the maximum eigen-

value is both a left and right eigenvalue, the maximum eigenvalue of B is that of A.

Example 3.2. Let us consider two matrices

A =

1 ε ε

0 3 3

ε ε 4

 , B =

1 ε ε

3 4 3

2 2 3

 .

Taking a regular matrix

P =

 1 ε ε

−1−1 0

−1 0 −1

 ,

we have

A⊗ P = P ⊗B =

2 ε ε

2 3 3

3 4 3

 .
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We see that the maximum eigenvalues of both A and B are 4. We can easily check that

x = (0, ε, ε) is a left eigenvector of A with respect to the left eigenvalue 1. Moreover,

we can also check that x ⊗ P = (1, ε, ε) is a left eigenvector of B with respect to the

left eigenvalue 1. On the other hand, although A has a right eigenvalue 3 and a right

eigenvector (ε, 0, ε)⊤ with respect to it, it is not a right eigenvalue of B because G(B)

has only two strongly connected components G1 and G2 with λ(G1) = 1 and λ(G2) = 4.

We may consider other kinds of “regularity” for the transformation matrix P in

Theorem 3.1. If P is invertible and A ⊗ P = P ⊗ B, then we have B ⊗ P⊗(−1) =

P⊗(−1) ⊗A. Hence, we have the following result.

Corollary 3.3. For A,B ∈ Rn×n
max , suppose there exists an invertible matrix P ∈

Rn×n
max such that

A⊗ P = P ⊗B.

Then, the sets of right (left) eigenvalues of A and B coincide.

If P is doubly full-rank or non-singular, the assertion of Theorem 3.1 also holds

because P is regular in either case. However, the transformation defined by doubly

full-rank or non-singular matrices is not transitive. As demonstrated in the following

example, the product of doubly full-rank (non-singular) matrices is not always doubly

full-rank (non-singular).

Example 3.4. Let us consider two matrices

A =

(
1 0

1 1

)
, B =

(
1 1

0 1

)
.

It is easily checked that both A and B are doubly full-rank and non-singular. On the

other hand, we obtain

A⊗B =

(
2 2

2 2

)
,

which is neither doubly full-rank nor non-singular.

As we have seen, the relation A ⊗ P = P ⊗ B seems appropriate to define the

similarity transformation from A to B. However, this is not symmetric, that is, the

existence of a matrix Q such that B⊗Q = Q⊗A is not guaranteed. To make the term

“transformation” more appropriate, we introduce a framework that gives an equivalence

relation for max-plus matrices. The basic idea is to define that A and B are equivalent

if A⊗P = P ⊗B and B ⊗Q = Q⊗A for some matrices P and Q. In the conventional
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algebra, Q can be taken as P−1. Hence, in max-plus algebra, it is expected that P ⊗Q,

as well as Q⊗P , is close to the identity matrix. From this observation, we propose the

following definition.

Definition 3.5. A subset U ⊂ Rn×n
max × Rn×n

max is called a unitary-pair semigroup

if it has the properties 1–4.

1 (In, In) ∈ U.

2 If (P,Q) ∈ U, then (Q,P ) ∈ U.

3 If (P1, Q1) ∈ U and (P2, Q2) ∈ U, then (P1 ⊗ P2, Q2 ⊗Q1) ∈ U.

4 If (P,Q) ∈ U, then all diagonal entries of P ⊗Q and Q⊗P are 0. In addition, both

det(P ⊗Q) and det(Q⊗ P ) are attained only by the identity permutation.

Property 2 corresponds to the equality (P−1)−1 = P in the conventional linear

algebra. Property 3 is needed to ensure the transitivity of the transformation. Property

4 means that the diagonal entries of P ⊗Q and In are identical, and the other entries

are so small that they can be ignored. This implies that Q is like an inverse of P .

We remark that property 4 ensures that both P and Q are regular. Indeed, if the ith

column of P is En, then the ith column of Q⊗ P is also En. Other cases can be shown

similarly. Moreover, we can see that both P and Q are non-singular using the fact that

det(P ⊗Q) = detP ⊗ detQ if P ⊗Q is non-singular [27].

Definition 3.6. Let U ⊂ Rn×n
max × Rn×n

max be a unitary-pair semigroup. Two ma-

trices A,B ∈ Rn×n
max are called U-equivalent, denoted by A ∼U B, if there exists a pair

(P,Q) ∈ U such that

A⊗ P = P ⊗B and B ⊗Q = Q⊗A.

The reflexive law follows from (In, In) ∈ U. The symmetric law is trivial. To show

the transitive law, suppose that there exists (P1, Q1) ∈ U such that

A⊗ P1 = P1 ⊗B and B ⊗Q1 = Q1 ⊗A,

and (P2, Q2) ∈ U such that

B ⊗ P2 = P2 ⊗ C and C ⊗Q2 = Q2 ⊗B.

Then, we have

A⊗ (P1 ⊗ P2) = P1 ⊗B ⊗ P2 = (P1 ⊗ P2)⊗ C,

C ⊗ (Q2 ⊗Q1) = Q2 ⊗B ⊗Q1 = (Q2 ⊗Q1)⊗A.

Since (P1⊗P2, Q2⊗Q1) ∈ U by Definition 3.5, we have shown the transitive law. Hence,

the relation ∼U is an equivalence relation.
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Remark. Property 4 in Definition 3.5 is not used to ensure that ∼U is an equiv-

alence relation. This property is introduced to restrict the class of unitary-pair semi-

groups. Indeed, without this property, Rn×n
max × Rn×n

max itself becomes a unitary-pair

semigroup.

We present some examples of unitary-pair semigroups.

(1) The set

UGP
n = {(P, P⊗(−1)) | P ∈ Rn×n

max is a generalized permutation matrix}

is obviously a unitary-pair semigroup. Indeed, P ⊗P⊗(−1) = P⊗(−1) ⊗P = In and

any product of generalized permutation matrices is also a generalized permutation

matrix. Hence, the equivalence relation defined by unitary-pair semigroups is an

extension of the similarity transformation by invertible matrices. Two matrices

A,B ∈ Rn×n
max are UGP

n -equivalent if and only if there exists an invertible matrix P

such that A⊗ P = P ⊗B.

(2) Let P ∈ Rn×n
max be a Kleene star of some matrix. This is equivalent to P⊗2 = P and

all diagonal entries of P are 0. If P is non-singular, the set

UKS
P = {(In, In), (P, P )}

is a unitary-pair semigroup. This kind of unitary-pair semigroup appears when we

consider the transformation derived from eigenvectors.

(3) To obtain a broader class of unitary-pair semigroup, we focus on non-positive ma-

trices whose determinants are 0. For a non-singular matrix P ∈ Rn×n
max , let σP ∈ Sn

denote the permutation that attains detP . Further, we say that P is strictly nor-

malized if [P ]iσP (i) = 0 for i = 1, 2, . . . , n and [P ]ij < 0 for all other entries. We

note that detP = 0 if P is strictly normalized. The set

USN
n =

{
(P,Q) ∈ Rn×n

max × Rn×n
max | P and Q are strictly normalized, σP = σ−1

Q

}
is a unitary-pair semigroup. This follows from the next lemma.

Lemma 3.7. Let P,Q ∈ Rn×n
max be strictly normalized matrices. Then P ⊗ Q is

strictly normalized and σP⊗Q = σQσP .

Proof. For any indices i, j, we have

[P ⊗Q]ij =

n⊕
k=1

[P ]ik ⊗ [Q]kj ≤ 0.
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The equality holds if and only if [P ]ik = [Q]kj = 0 for some k, which implies

k = σP (i) and j = σQ(k) = σQσP (i). Hence, we have

det(P ⊗Q) =
n⊗

i=1

[P ⊗Q]i σQσP (i) = 0.

This means σP⊗Q = σQσP and P ⊗Q is strictly normalized.

If (P,Q) ∈ USN
n , then det(P ⊗Q) = 0 and σP⊗Q = σQσP = idn, where idn denotes

the identity permutation. Since all entries of P ⊗ Q are non-positive, all diagonal

entries of P ⊗ Q must be 0. A similar argument holds for Q ⊗ P . Hence, USN
n

satisfies property 4 in Definition 3.5. Further, for (P1, P2), (Q1, Q2) ∈ USN
n , we see

that σP1⊗P2
= σP2

σP1
= (σQ1

σQ2
)−1 = σ−1

Q2⊗Q1
. Hence, property 3 in Definition 3.5

is satisfied.

(4) Finally, we propose a method to generate a new unitary-pair semigroup from a given

unitary-pair semigroup using a generalized permutation matrix. Let D ∈ Rn×n
max be

a fixed generalized permutation matrix and U be a unitary-pair semigroup. The set

UD =
{
(D⊗(−1) ⊗ P ⊗D,D⊗(−1) ⊗Q⊗D) | (P,Q) ∈ U

}
is also a unitary-pair semigroup. It is shown by the following observation. For any

non-singular matrix A and a generalized permutation matrix D, we can easily verify

that [D⊗(−1) ⊗A⊗D]ii = [A]σ−1
D (i)σ−1

D (i). In addition, we have

det(D⊗(−1) ⊗A⊗D) =
⊕
π∈Sn

n⊗
i=1

[D⊗(−1) ⊗A⊗D]iπ(i)

=
⊕
π∈Sn

n⊗
i=1

(−[D]σ−1
D (i) i)⊗ [A]σ−1

D (i)σ−1
D π(i) ⊗ [D]σ−1

D π(i)π(i)

=
n⊗

i=1

(−[D]iσD(i))⊗

(⊕
τ∈Sn

n⊗
i=1

[A]iτ(i)

)
⊗

n⊗
i=1

[D]iσD(i)

= detA.

Here, we replace σ−1
D πσD with τ for each π ∈ Sn. Hence, we see that σD⊗(−1)⊗A⊗D =

σDσAσ
−1
D . Since

det((D⊗(−1) ⊗ P ⊗D)⊗ (D⊗(−1) ⊗Q⊗D)) = det(D⊗(−1) ⊗ (P ⊗Q)⊗D),

we take A = P ⊗Q and A = Q⊗P to prove property 4 of Definition 3.5. Similarly,

we take A = (P1⊗P2)⊗(Q2⊗Q1) and A = (Q2⊗Q1)⊗(P1⊗P2) to prove property

3 of Definition 3.5.
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Example 3.8. We consider the equivalence relation derived from the unitary-

pair semigroup USN
n . Let A ∈ Rn×n

max be a non-positive matrix with 0 only on the

diagonal. We can easily verify that A∗ is strictly normalized. In addition, we have

A⊗A∗ = (A⊕ In)⊗A∗ = A∗. For another non-positive matrix B ∈ Rn×n
max with 0 only

on the diagonal, we have

A⊗ (A∗ ⊗B∗) = A∗ ⊗B∗ = (A∗ ⊗B∗)⊗B,

B ⊗ (B∗ ⊗A∗) = B∗ ⊗A∗ = (B∗ ⊗A∗)⊗A.

Here, both A∗ ⊗ B∗ and B∗ ⊗ A∗ are strictly normalized. Hence, A is USN
n -equivalent

to B. In particular all n × n non-positive matrices with 0 only on the diagonal are

USN
n -equivalent. This class contains In

Example 3.9. We present an example that is derived from the theory of Jordan

canonical forms in max-plus algebra [24]. We consider a matrix

A =


ε 4 3 ε ε

4 ε ε ε ε

ε ε ε 5 ε

ε 2 ε ε 4

ε ε 3 ε 0

 .

The associated graph G(A) is illustrated in Figure 2. Since the maximum average weight

of circuits in G(A) is 4 and the G(A) is strongly connected, A has exactly one eigenvalue

λ(A) = 4. The critical circuits in G(A) are (1, 2, 1) and (3, 4, 5, 3). By computing

((−4)⊗A)∗ =


0 0 −1 0 0

0 0 −1 0 0

−1−1 0 1 1

−2−2−1 0 0

−2−2−1 0 0

 ,

we have two independent right eigenvectors
0

0

−1

−2

−2

 and


−1

−1

0

−1

−1

 .

The number of right independent eigenvectors is less than the dimension of the matrix.
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To cope with this problem, we compute (((−4)⊗A)⊗6)∗ instead:

P := (((−4)⊗A)⊗6)∗ =


0 −2−1 0 0

−2 0 −1 0 0

−1−1 0 −1−1

−2−2−3 0 −2

−2−2−3−2 0

 .

Here, the exponent 6 comes from the least common multiple of the lengths of critical

circuits (1, 2, 1) and (3, 4, 5, 3). Then, columns of P are independent and become right

eigenvectors of A⊗6 with respect to λ(A)⊗6. The same holds for rows of P . Further,

detP ∗ = 0 is attained only by the identity permutation. By computation, we can verify

that

A⊗ P = P ⊗


ε 4 ε ε ε

4 ε ε ε ε

ε ε ε 5 ε

ε ε ε ε 4

ε ε 3 ε ε

 and P ⊗A =


ε 4 ε ε ε

4 ε ε ε ε

ε ε ε 5 ε

ε ε ε ε 4

ε ε 3 ε ε

⊗ P.

This shows that A is equivalent to a block diagonal matrix:

A ∼UKS
P


ε 4 ε ε ε

4 ε ε ε ε

ε ε ε 5 ε

ε ε ε ε 4

ε ε 3 ε ε

 .

Figure 2. Associated graph G(A) for Example 3.9.

§ 4. Concluding remarks

In this paper, we discuss the similarity transformation of max-plus matrices. Al-

though the similarity transformation A⊗P = P⊗B preserves the maximum eigenvalue,
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the other eigenvalues of A and B are different in general. One of the main reasons is that

the similarity transformation is not symmetric in general. To resolve this problem, we

propose a pair of matrices that imitates a pair of a matrix and its inverse. By defining a

set of these pairs as a unitary-pair semigroup, we obtain a transformation that is both

symmetric and transitive, and hence induces an equivalence relation. It is expected in

the future to enlarge the class of matrices that can be used in the similarity transfor-

mation. Moreover, it is also a challenging problem to construct a transformation of

matrices that preserves the roots of the characteristic polynomial as well as eigenvalues.
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