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Sediment estimation would help practice sustainable watershed management and efficient reservoir
operation. Different methods exist to estimate reservoir sedimentation based on the differences in
sediment yield flowing in and releasing from the reservoir and successive bathymetric field measure-
ments. This paper investigates the variability in sediment yield from watersheds and sedimentation in
the A Vuong reservoir in central Vietnam using the soil and water assessment tool (SWAT) compared
with bathymetry mapping. Bathymetry data were collected in 2003, 2015, and 2021 and conducted in
2022. SWAT was calibrated from 1996 to 2008 and validated from 2009 to 2020 using monthly obser-
vations. SWAT performs well and can accurately simulate monthly streamflow and sediment yield. The
goodness-of-fit analyses suggested that the area list representation of the watershed behavior and
satisfactory Sutcliffe efficiency (NSE ¼ 0.86) values for streamflow were obtained during the calibration
and validation periods. For sediment simulation, the efficiency is lower than streamflow's, with NSE in
the validation values of 0.61. The results showed that the sedimentation estimate from the SWAT model
is smaller than that from bathymetry. A Vuong reservoir's annual storage capacity loss due to sedi-
mentation accumulation from the SWAT model and bathymetry was 0.08% and 0.38%, respectively. Based
on the bathymetry data, we estimated that the average rate of sedimentation deposition of A Vuong
reservoir was 1.3 Mm3/y. The average calculated net deposition value was 4.3 m (0.3 m per year) within
fourteen years of operation. The study outcomes demonstrated that the framework approach may
transfer to an ungauged catchment and address the complex sedimentation problem in tropical regions.
© 2024 International Research and Training Centre on Erosion and Sedimentation. Publishing services by
Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dam reservoirs are vital for freshwater supplies, disturbance
management, and hydropower production, among other multi-
purpose environments (Kantoush et al., 2023; Nguyen et al., 2023;
Tran et al., 2023). However, reservoir capacity loss due to sedi-
mentation is an economic, social and environmental challenge (Lee
et al., 2022; Sumi et al., 2004, pp. 1036e1043). The increased
extreme rainfall events associated with climate change have
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significantly affected erosion rate and sediment production from
the watershed (Gould et al., 2016; Li & Fang, 2016; Stryker et al.,
2018). The rich sediment loads are transported to the dam reser-
voirs where most sediment is trapped. Reservoir sedimentation
significantly affects the original reservoir capacity dam's lifespans
and deteriorates water quality (Michalec & Cupak, 2022; Tundu
et al., 2018). Over time, sediment accumulates in reservoirs, lead-
ing to a loss of active storage volume, increasing the risk of post-
dam flooding, and reducing water supplies (Mekonnen et al.,
2022). Currently, the interrelation between sediment yield and
reservoir sedimentation rates is poorly understood due to limited
bathymetric data and challenges in watershed modeling for sedi-
ment production (Buendia et al., 2016; Moges et al., 2018; Tamene
et al., 2006). In particular, a series of cascading dams and water
transfers heavily manage the tropical rivers in the central region of
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Vietnam (Nguyen et al., 2023a). Losing the storage capacity due to
reservoir sedimentation adds complexity to the dam operation
when coupled with climate change (Nguyen et al., 2024). Therefore,
quantifying the sediment yield and reservoir sedimentation rates is
highly needed for the current cascading dam operation for the
synergies between catchment management while maximizing
power production. Accurate prediction of sediment delivery from
the catchment and siltation rates is essential knowledge for flood,
drought, and hydropower management under present and future
climate conditions (Khoi et al., 2014; Tadesse et al., 2019; Vu et al.,
2024).

The rates of sedimentation are poorly monitored due to obser-
vational and modeling challenges. The research has shown that a
bathymetric survey is a more accurate indirect method for evalu-
ating the volume deposited in reservoirs (Maina et al., 2018).
However, the monitoring is expensive, and it is difficult to repeat all
cascading dams. In addition, there are challenges in the model
parameterization for calibration, validation, and uncertainty for
modeled sediment volumes. Climate, and various watershed char-
acteristics such as elevation, slope, drainage, soil type, and land use
conditions influence sediment yield (Atulley et al., 2022; Dutta,
2016; Moussa, 2003; Vente et al., 2005). Therefore, understanding
the sediment transport processes to reservoirs is essential to
evaluate the impacts of watershed management practices. How-
ever, it is difficult to quantify the complex relationships between
hydrological variables without actual field monitoring, which is a
vital tool to address a broad spectrum of watershed management
issues. Many physics-based hydrological models with different
characteristics have been developed and applied in many catch-
ments to simulate hydrological processes and estimate soil erosion
(Yesuf et al., 2015). Compared with streamflow, simulating erosion
and sediment transport is a challenging task using numerical
modeling (Bui et al., 2023). Specifically, all erosion and sediment
transport processes on land surfaces and rivers are complex to
capture (Merritt et al., 2003; Xu et al., 2009). Currently, semi-
distributed hydrological models have been applied to assess hu-
man impacts on streamflow and sediment transports
(Chattopadhyay et al., 2017; Le et al., 2022; Li et al., 2020;
Moradkhani et al., 2010; Tran et al., 2023, p. 2024). These models
determined the contribution rates of sediment yield from sub-
basins. Based on that, managers will make policies related to land
use planning and future watershed management.

Meanwhile, various empirical and semiempirical methods exist
for estimating the sediment erosion rates (Auerswald et al., 2014; Pal
& Chakrabortty, 2022; Abdul Rahaman et al., 2015; Renard, 1997;
Salles & Duclaux, 2015). However, the lack of measured sedimenta-
tion data for model parameterization and calibration often leads to
incorrect sediment volume estimates. Recent studies combining land
surface and empirical models have shown strong effectiveness in
modeling spatio-temporal sediment variability (Al-Mamari et al.,
2023; Stewart et al., 2017). However, limited measurement data for
parameterizing and calibrating hydrological models has inhibited
them from widespread applications. The semi-distributed soil and
water assessment tool (SWAT) is a physically based hydrological
model and is an appropriate model to investigate the impacts of
climate conditions; land use land cover (LULC), human activities, and
agricultural production (Yesuf et al., 2015). Sediment transport in-
cludes two essential components in the SWATmodel: landscape and
channel. The SWAT model predicts the sediment yield within each
HRU and each subbasin from the landscape composition. The SWAT
model has been tested worldwide with different climate character-
istics, topography, LULC, soil type, area, etc (Tran et al., 2023a; Tran
et al., 2023b). Statistics have shown that SWAT is the most
commonly used hydrological model with acceptable accuracy to
simulate hydrological processes and sediment dynamics of the
catchment (Le et al., 2022; Tran et al., 2018b, 2022). However, eval-
uating the sediment production and cascading dam reservoirs is a
challenge. Therefore, using a hydrological model and campaign is a
framework approach for estimating sediment load in the catchment
and reservoir sedimentation rates. The model is well-validated and
calibrated for spatiotemporal data series from1996 to 2020. Based on
the calibrated model, sedimentation estimates can be expanded to
basin reservoirs or other catchments with the same characteristics,
especially in tropicalmonsoon regions, wheremeasurement data are
limited.

Identifying the sedimentation rate in the reservoir is vital to
optimize the dam operation rule and propose a suitable sediment
management technique. A comprehensive evaluation of reservoir
siltation is needed to predict storage losses and the remaining
reservoir life. Maintaining a reservoir's storage capacity by esti-
mating sediment yield, sediment dispersion, and deposition pat-
terns is critical. Therefore, this study aimed to examine the
temporal and spatial changes in sediment delivery into the
reservoir and the loss of the reservoir's original capacity of the A
Vuong reservoir in central Vietnam during 14 years of operation.
The paper proposes a framework approach to evaluate the per-
formance of the SWAT model and the ability to apply this model to
simulate streamflow processes and sediment transport at the ba-
sin scale. Based on that, we assess sediment yield from the
watershed and interrelation spatiotemporal distribution of sedi-
mentation. The proposed approach provides insight into the
erosion processes and sediment yield prediction at the catchment
scale, especially in basins with limited monitoring and field survey
data. These results are expected to be of significant value for
practical management at the basin scale, developing strategies to
control sediment transport and sediment management techniques
in tropical regions.

2. Study area

The A Vuong River basin, located in central Vietnam, is the
primary water supply for the Vu Gia Thu Bon (VGTB) basin (Fig. 1)
(Nguyen, Kantoush, van Binh, & Sumi, 2024). The A Vuong River
originates from a northwesternmountainwith an elevation of 1400
masl. In the A Vuong River basin, land use is forest and grassland,
and the soil type of the basin is mainly clay (Figs. 3(c) and 3(d)).
Downstream is a central agricultural region, with rice field land
comprisingmost of the basin area. Consequently, variations in the A
Vuong reservoir water supply can significantly affect the water
resources of the middle and downstream areas (Da Nang City and
Quang Nam Province) (Nguyen et al., 2023b; Nguyen et al., 2023a).
A Vuong reservoir's water quality and quantity are essential con-
cerns as a significant drinking water source in the two provinces.
However, climate change, land-use practices, and human activities
have significantly impacted downstream water resources (Nguyen,
2022; Viet, 2014). The region's climate is tropical monsoon, with an
annual rainfall of approximately 2200 mm. The rainy season is
concentrated in four months (SeptembereDecember) and causes
flooding downstream (Nguyen et al., 2022).

The A Vuong reservoir was completed in 2008 after six years of
construction (began in 2003), with a basin area of 682 km2. The
dam height will be 80 m, creating a reservoir with an area of
9.09 km2 at the normal operating water level. The volumes corre-
sponding to dead and normal water levels are 77.07 and
266.48 Mm3, respectively (Nguyen et al., 2024c). The elevations of
the dead water level and normal water level are 340 and 380 m,
respectively. The reservoir's primary purpose is power generation,
and it was assigned other tasks such as flood control, agricultural
production, water supply, and reducing downstream salinity
(Government, 2019).



Fig. 1. A Vuong reservoir, the position of 4 cross-sections (CS1, CS2, CS3, and CS4), and longitudinal route.
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The experimental results of sediment samples in the A Vuong
reservoir show that the suspended sediment is silt with
d50 ¼ 0.02979 mm (Fig. 2).

3. Methodology

In the study area, the Thanh My hydrological station has
measured streamflow and sediment from 1996 to 2020 (Fig. 3(a)).
Therefore, the study will set an area larger than the A Vuong
reservoir basin (Fig. 3). In the first step, the model will be calibrated
and validated for streamflow and sediment at Thanh My. In the
validation period, the model will be further evaluated indepen-
dently of the A Vuong reservoir's inflow and release since the
reservoir began operation in 2009.

3.1. SWAT model

The SWAT model was developed by the U.S. Department of
Agriculture (USDA) and Agriculture Research Service (ARS) (Arnold
et al., 1998). SWAT model segments a watershed into smaller units
called sub-basins. These sub-basins are then further divided based
on distinct soil characteristics, land use patterns, and slope gradi-
ents into what are known as hydrological response units (HRUs).
This division allows for a detailed understanding of the hydrolog-
ical processes within awatershed. Many studies have used SWAT to
Fig. 2. Grain size of suspended sediment in A Vuong Reservoir (the black line indicates
the average value). Box plot of d50 from nine sediment samples.
reveal the effects of LULC, climate change, and agricultural pro-
duction on streamflow or sediment loads (Le et al., 2022; Tran et al.,
2022; Vo et al., 2018a).

3.2. Data collection

The digital elevation model (DEM) was extracted from the Land
Use and Climate Change Interaction in central Vietnam (Lucci)
project, with a 30 m � 30 m spatial resolution in 2014 (Fig. 3(b)).
DEM was created by combining isolines and SRTM digital data
(Nguyen et al., 2023c). Land use and soil type data were extracted
from Lucci with a 30 m � 30 m resolution (Figs. 3(c) and 3(d)). In
this study, the authors reclassified the land use into six main
classes (Fig. 3(c)). The leading five soil types are presented in
Fig. 3(d) with characteristics that could be used in the hydrological
SWAT model.

The daily rainfall data were obtained from the Mid-Central
Regional Hydro-Meteorological Center (MCRHMC, 2022) from
1990 to 2020 at four meteorological stations as follows: Kham Duc,
Thanh My, Hoi Khach, and Hien (Fig. 3(a)). Daily minimum tem-
perature (Tmin) and maximum temperature (Tmax) data were ob-
tained at the Tra My meteorological station. The observed monthly
streamflow data at Thanh My hydrological station were collected
during the 1990e2020 period (Fig. 3(a)). The inflow and outflow of
the A Vuong reservoir (2009e2020) were also collected to validate
the simulation result of the SWAT model. The characteristics and
operating rules of ten dams were collected to set up, calibrate, and
validate the model (Fig. 3(a)). The data were collected from the
Vietnam Government (Decision 1865/QD-TTg) (Government, 2019)
and Quang Nam province (NDPAC, 2022). Experimental data on
grain size, sample drilling, and riverbed elevation were collected
from A Vuong Company at different times.

3.3. Campaign

The campaigns were conducted on the entire surface of the A
Vuong reservoir in June 2022 to study sedimentation issues and
their impact on storage capacity (Nguyen, Kantoush, van Binh, &
Sumi, 2024). The sedimentation volume was estimated from the
bathymetric mapping differences in 2003, 2015, 2021, and 2022.
Bathymetric surveys were conducted using a single-beam
echosounder (Odom Hydrotrac II) accompanied by the Trimble R5
and R8 GPS system. These machines have mean horizontal and
vertical survey errors of ±0.003 and ±0.005 m, respectively. The
hourlywater level datawas also collected at the AVuong dam. From
the water level data, the reservoir riverbed elevations were calcu-
lated by subtracting the water levels. The bathymetric datasets



Fig. 3. (a) River network, rain gauge station, and hydrological station. (b) Digital elevation model (m). (c) Land-use map. (d) Soil type map.
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were converted to the WGS 1984 UTM, with zone 48 North
projection.
3.4. Model setup

The subbasins were divided into 134 subbasins and 1898 HRUs
based on five slope classes, six land classes, five soil classes, dam
locations, and hydrological stations (Nguyen et al., 2023d). In this
study, a 6-year warm-up period (1990e1995) was chosen over the
31-year simulation period (1990e2020), in which thirteen years
would be chosen (1996e2008) for the calibration, and the valida-
tion period would be from 2009 to 2020. The location of calibration
and validation is the Thanh My hydrological station (Fig. 3(a)). The
input and output streamflow of the AVuong reservoir from 2009 to
2020 was also validated to evaluate the model's performance.
3.5. SWAT streamflow and sediment simulation

The SWAT model calculates surface runoff using the Soil Con-
servation Service curve number, a function of land use, soil
permeability, and soil moisture content. For streamflow routing,
the Muskingummethod is used. Potential evapotranspiration (PET)
was calculated by using PenmaneMonteith. The hydrological cycle
simulated by SWAT is based on the water balance equation (Setegn
et al., 2009):

SWt ¼ SW0 þ
Xt

n¼1

�
Rday �Qsurf � Ea �Wseep �Qgw

�
(1)

where SWt is the soil water content (mm), SW0 is the water
available to plants (mm), Rday is the precipitation (mm), Qsurf is the
surface runoff (mm), Ea is the evapotranspiration (mm),Wseep is the
percolation (mm), Qgw is the low flow (mm), and t is the time (d).
The modified universal soil loss equation (MUSLE), a function of
runoff factors, was used to predict sediment yield on a given day in
the SWAT model (Wischmeier & Smith, 1965). MUSLE assumes a
simple hydrograph shape to estimate daily runoff volume, thereby
predicting variation in runoff erosive energy. Simulated sediment
yield regarding total sediment loadings and the sand, clay, and silt
fractions from each sub-watershed. The equation is as Eq. (2):

sed¼11:8�
�
Qsurf � qpeak � areahru

�0:56 �KUSLE �CUSLE

� PUSLE � LSUSLE � CFRG ð2Þ

where sed is the sediment yield on a given day (metric tons), Qsurf is
the surface runoff volume (mmH20/ha), qpeak is the peak runoff rate
(m3/s), areahru is the area of HRU (ha), KUSLE is the soil erodibility
factor, CUSLE is the cover and management factor, PUSLE is the sup-
port practice factor, LSUSLE is the USLE topographic factor, and CFRG
is the coarse fragment factor.

3.6. Performance evaluation of model

This study uses the R-SWAT for calibration, validation, param-
eter sensitivity, and uncertainty analysis for the SWAT model
(Nguyen et al., 2022). The calibration, validation, and sensitivity
approach using Sensi_Cali_(uniform_Latin_Hypercube_Sampling).
The method uses a multivariable regression approach with pa-
rameters generated by uniform Latin hypercube sampling. The
authors have chosen five reliable statistical metrics based on key
findings of Babalola et al. (2021), Gupta et al. (2009), Kouchi et al.
(2017), and Moriasi et al. (2007) for the model performance met-
rics: square correlation coefficient (R2), KlingeGupta efficiency
(KGE), NasheSutcliffe coefficient (NSE), root mean square error
(RMSE), and percentage of bias (PBIAS) (Table 1).
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3.7. Estimating reservoir sediment deposition

Reservoir riverbed data for three periods were used to assess
sediment distribution: one before dam construction (2003), the
next period (2015), and the other in 2021. The 2003, 2015, and
2021 data are collected from A Vuong Company. The difference
between these data represented the variation of sedimentation
within the reservoirs. In addition, the sediment yield data are also
estimated using the SWAT model. The results will be compared
with bathymetry data to evaluate the ability to estimate the
sediment yield coming to and out of the A Vuong reservoir from
the SWAT model. From there, we evaluate the sedimentation of
the A Vuong reservoir. In addition, the results from SWAT also
show the distribution of sediment yield and sediment load from
subbasins and reaches.
4. Results

4.1. SWAT calibration and validation

Fig. 4 shows that calibration and validation performed well for
streamflow and sediment simulation. SWAT performs well and can
accurately simulate monthly streamflow and sediment yield. The
goodness-of-fit analyses suggested an area list representing the
watershed behavior and satisfactory values for streamflow
(Table 2). The R2, KGE, NSE, RMSE, and PBIAS coefficients at the
Thanh My station in the calibration and validation periods were
0.93, 0.91, 0.86, 63.92 m3/s, and �6.56% and 0.93, 0.81, 0.86,
50.60 m3/s, and �13.47%, respectively. The efficiency of sediment
simulation is lower than that for streamflow. The model was
underestimated during the years of storm events and heavy rainfall
(e.g., 2009, 2020). In the calibration period, the R2, KGE, NSE, RMSE,
and PBIAS coefficients were 0.83, 0.55, 0.61, 5.25 � 103 tons,
and �41.43%, respectively.

The validation of the monthly streamflow inflow and release
from the A Vuong reservoir also agrees with the observed data
(Figs. 4(c) and 4(d) and Table 2). The NSE and PBIAS values were
0.72 and 0.23% and 0.56 and 0.72%, respectively. Overall, the results
indicate that the established model is suitable for conducting as-
sessments on hydrological processes, sediment transport, and im-
pacts of reservoirs.
4.2. SWAT sediment yield simulation

Fig. 5 identifies the subwatersheds that produce high
sediment yields. According to the simulation results, the areas
where soil erosion was severe can be identified. Seventeen
Table 1
Indicators to evaluate performance of SWAT model.

Metric equation

R2 ¼
hP

iðQm;i � QmÞðQs;i � QsÞ
i2

P
iðQm;i � QmÞ2PiðQs;i � QsÞ2

KGE ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCC� 1Þ2 þ

 
Qs

d

Qm
d
� 1

!2

þ
 
Qs

Qm
� 1

!2
vuut

NSE ¼ 1�
Pn

i¼1ðQm � QsÞ2Pn
i¼1ðQm � QmÞ2

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðQm � QsÞ2
n

s

PBIAS ¼ 1�
Pn

i¼1ðQm � QsÞPn
i¼1ðQm � QmÞ2

Note: Q is the streamflow (m3/s); m and s stand for measured and simulated, respectively
mean value, and the number of values is n.
SWAT subbasins produce average annual sediment yields
ranging from 0.045 to 0.06 tons/ha/y. Between 2009 and 2020,
the erosion intensity was more significant than the 1996e2008
period.
4.3. Reservoir sedimentation from SWAT model

Fig. 6 shows that the average annual sediment load was esti-
mated from the SWAT model in the periods at the dam site. The
average annual sediment load in the 2009e2020 period was higher
than that in some subbasins in the 1996e2008 period.

The annual average amount of sedimentation in the A Vuong
reservoir in the 2009e2020 period was 0.35 Mt/y, and the total
amount was approximately 4.2 Mt. Based on Fu et al. (2008), the
estimation of bedload accounting for 3%e15% of the suspended
load, the annual amount of sedimentation in the A Vuong reservoir
was approximately 0.4 Mt/y, and the total amount from 2009 to
2021 was 4.6 Mt. It is assumed that the average bulk density of
sediment to be 1.4 tons/m3, the total storage capacity loss of the A
Vuong reservoir was approximately 3.29 Mm3, which accounts for
0.96% (0.08% per year) of the total storage capacity in 343.55 Mm3.
4.4. Reservoir sedimentation from bathymetry

Wemapped the bathymetry and estimated howmuch sediment
was deposited and the reduction capacity of the A Vuong reservoir
from 2003 to 2021 along the main route from upstream to the dam
and four typical cross-sections (Fig. 7). Fig. 8 shows the detailed
riverbed elevation of the A Vuong reservoir from the campaign in
June 2022. We estimated the average calculated net deposition
valuewas 4.3 m (0.3 m per year) within fourteen years of operation.
The highest sediment thickness values were observed at the dam
site. Therefore, the capacity of the storage reservoir of A Vuong was
reduced by 18.7 Mm3 as a result of sediment deposition. The
reservoir has lost approximately 5.4% of its practical capacity.
Assuming the rate remained constant during the entire period, the
yearly sedimentation ratewas 1.3 Mm3/y. According to this rate, the
annual storage capacity decreases by approximately 0.38% per year
due to sedimentation. This value is lower than the projected global
average rate of 0.5%e1% worldwide (Ayele et al., 2017; Froehlich
et al., 2017; Schellenberg et al., 2017; Zimale et al., 2016). Further-
more, the average loss rate is approximately equal to that of Indian
reservoirs (0.44% per year) (Asthana & Khare, 2022).

In Japan, based on annual data from 877 reservoirs, Sumi, 2006;
Sumi& Kantoush, 2018 found that the reservoir sedimentation rate
is approximately 0.24%, especially for reservoirs located on tectonic
lines in the central region, the rate is higher (0.42%). Based on
Optimal value

1

1

1

0

0

, and d stands for deviation of it; i is the ith measured and simulated; Q indicates the



Fig. 4. (a, b) Hydrographs of the monthly streamflow and sediment at Thanh My station in calibrated period (1996e2008) and validated period (2009e2020). (c, d) Hydrographs of
A Vuong reservoir's monthly streamflow inflow and release in validated period (2009e2020).

Table 2
Statistical indices of streamflow and sediment at Thanh My hydrological station and A Vuong reservoir.

Statistical index Thanh My station A Vuong reservoir

Streamflow Sediment Streamflow

Calibrated
(1995e2008)

Validated
(2009e2020)

Calibrated
(1995e2008)

Validated
(2009e2020)

Inflow Released

Validated
(2009e2020)

Validated
(2009e2020)

R2 0.93 0.93 0.83 0.69 0.89 0.82
KGE 0.91 0.81 0.55 0.30 0.80 0.76
NSE 0.86 0.86 0.61 0.40 0.72 0.56
RMSE (m3/s, 103 tons) 63.92 50.60 5.25 7.96 19.74 19.54
PBIAS (%) �6.56 �13.47 �41.43 21.12 0.23 0.72

Fig. 5. Sediment yield of subbasins in three periods: (a) 1996e2008, (b) 2009e2020, and (c) 1996e2020.
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bathymetric survey data completed for many central states and 24
constructed reservoirs in the central U.S. Great Plains. In 2016, these
reservoirs had an average age of 52 years and collectively had an
average rate loss of approximately 0.33%, with the highest average
rate loss of 0.87% (Rahmani et al., 2018).

Ivanoski et al. (2019) performed a long-term model to evaluate
the sedimentation rate of the Tikvesh reservoir, one of the largest
reservoirs in the Republic of Macedonia. The analysis results show
that the reservoir sedimentation rate changes over different periods,
depending on the weather conditions in the catchment. The average
annual sedimentation rate was 0.02%e1.28% from 1969 to 2016.

Based on bathymetric data collected from two reservoirs in the
White Volta Basin drains in Ghana, Burkina Faso, and Togo in 2020
and an analysis of Landsat satellite images (1986, 1996, 2006, and
2020), Atulley et al. (2022) assessed the sedimentation rate of two
reservoirs named Vea and Tono. The authors found an annual
sedimentation rate of 0.304% in the small reservoir and 0.17% in the
medium-sized reservoir.

Haregeweyn et al. (2012) estimated an annual total capacity loss
of 0.18%e4% for thirteen reservoirs in northern Ethiopia. New
studies in the same Tana subbasin show that the annual capacity
reduction of the Shina microearth reservoir and Selamko reservoir
is 1.67% and 2.295%, respectively (Berihun et al., 2022).

Past studies show that the sedimentation problem in the A
Vuong reservoir is similar to that in most other reservoirs world-
wide. We want to highlight that this is the first sedimentation
estimated for the tropical river in central Vietnam based on
bathymetric maps. Therefore, the results of our study will provide
evidence of the characteristics and sedimentation rates of reser-
voirs in Vietnam. Based on the new findings, sedimentation



Fig. 6. Sediment load of subbasins in three periods: (a) 1996e2008, (b) 2009e2020, and (c) 1996e2020.
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estimates can be expanded to basin reservoirs or other basins with
the same characteristics, especially in tropical monsoon regions
with limited measurement data. From there, managers and au-
thorities will actively look for solutions to minimize
Fig. 7. Riverbed elevation in 2003, 2015, and 2021 along main rou
sedimentation's impact on the reservoir's life and operation,
including downstream.

We distinguish the soil layers with different thicknesses at
cross-sections 3 and 4 (CS3 and CS4) to better understand the
te from upstream to dam site and four typical cross-sections.



Fig. 8. Bathymetry of A Vuong reservoir from the campaign in June 2022.
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influence of factors such as streamflow, the reservoir's operational
procedure, mobility, and properties on sediment distribution
(Fig. 9). The 1st layer is the vegetative cover (pdQ), the ruins layer
(edQ) is the 2nd, and theweathering layer (IA1) is the third. In 2015,
the soil properties were the ruins layer (edQ); in 2021, they were
vegetative cover (pdQ). Fig. 9 also shows the soil layers at different
locations of the AVuong reservoir taken from the campaign in June
2022 (details of the locations are shown in Fig. 1).

5. Discussion

5.1. Comparing sedimentation from campaign and SWAT model

The sedimentation quantities and rate calculations presented in
the previous sections represent our best estimates based on the
hydrological model and bathymetry. Comparing each other in two
ways, the annual average sedimentation estimated from the SWAT
model was relatively lower than the result from the bathymetry.
The annual amount of sedimentation in the AVuong reservoir from
the SWAT model was approximately 0.4 Mt/y. Meanwhile, the
yearly sedimentation rate from bathymetry was 1.3 Mm3/y.
Therefore, AVuong reservoir's annual storage capacity loss from the
SWAT model and bathymetry was 0.08% and 0.38%, respectively.
This differencemay be due to several reasons when using the SWAT
model. SWAT uses one input dataset and parameter in the simu-
lation period, while the basin characteristics change in reality (e.g.,
topographic characteristics, LULC, …). Therefore, we will discuss
the uncertainties and limitations of the input data, model structure,
and analysis leading to the above differences. First, we will deter-
mine why the estimates from the SWAT model are underestimated
compared with bathymetry.

Hydrological models are increasingly used to propose and
evaluate strategies to improve water resource management in ba-
sins (Tapas et al., 2024). However, the processing and parameteri-
zation of parameters in hydrological models is challenging because
of the overparameterization of hydrologic models (El-Nasr et al.,
2005). Therefore, various sources of uncertainty in hydrological
modeling must be considered to increase reliable runoff and sedi-
ment yield predictions. SWAT is a physics-based model for
continuous watershed simulation, intending to minimize modeling
errors due to assumptions. However, the SWAT model still has
prediction uncertainties even when the model has been well-
calibrated and validated. The reason is believed to be due to
incomplete information about the quantity and quality of input
data to set up, calibrate, and validate the model, the capability and
appropriateness of search algorithms or support tools to parameter
estimates, and the model's ability to represent natural watershed
processes (Abbaspour et al., 2007; Muleta & Nicklow, 2005). In
addition, SWAT uses a curve numbermethod that assumes constant
parameter values throughout the entire watershed to estimate
streamflow based on the relationship between precipitation, LULC,
and soil types. However, the value and order of parameter sensi-
tivity can vary significantly depending on the climate, LULC, and
soil type spatial detailing at the HRU scale, and higher are the
subbasins (Tran et al., 2023). In addition, surface erosion mainly
occurs during higher-rainfall days, while high flows mostly drive
bank erosion and sediment transport (Baniya et al., 2024; Buendia
et al., 2016b). Therefore, the model sediment calibration should be
biased towards high rainfall and high flow periods.

Topographic characteristics (slope form, length, and steepness)
also influence erosion and sediment transport. Additionally,
another factor to consider is the shape of the catchment. Many
studies have shown a close relationship between catchment shape
and hydrological processes, such as peak discharge and lag time
(Moussa, 2003). It is assumed that circular catchments have more
significant sediment than elongated catchments, usually only one
river, because of the denser drainage networks, shorter travel dis-
tances, and more direct slope runoff. A Vuong River basin is an
elongated basin with various reaches entering the mainstream
(Fig. 1). DEM of the basin has changed over time due to natural
tectonic and human activities (Tran et al., 2014; Vu et al., 2017).
Changing DEM will affect surface characteristics such as drainage



Fig. 9. Image of soil layers at different locations in the A Vuong reservoir. The image was taken from the campaign in June 2022 (credit by authors).
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density, surface slope, slope length, and channel slope (Lakshmi,
2024). The SWAT model is susceptible to these factors in predict-
ing sediment yield (Setegn et al., 2010).

In the SWAT model, only one set of parameters is used during
the simulation. However, studies have shown that sediment yield
varies for different storm events in practice (Dutta, 2016). Extreme
events significantly impact sediment yield more, especially in
tropical monsoon climates. In addition, from the calibration and
validation results of sediment (Fig. 4(b)), we can see that the most
significant error in the model predictions was always related to
the peak. Abbaspour et al. (2007) discuss that the “second storm
effect” may be partly responsible for poor sediment simulation
results. The A Vuong reservoir has no long-term streamflow or
sediment measurements. Therefore, we set up the SWAT model in
a larger area, including a location with complete data observation
(Fig. 3(a)). Both A Vuong reservoir and Thanh My subbasin belong
to the upstream of Vu Gia River basin (Kantoush et al., 2023;
Nguyen et al., 2023). Although the two locations are close and
proximity in geographical terms, this approach leads to uncer-
tainty in the estimated sediment yield for the A Vuong reservoir
basin.

LULC has been demonstrated in various studies to be essential in
watershed erosion. LULC characteristics within a watershed
significantly affect the sedimentation rate in the reservoirs. Spe-
cifically, it indirectly affects soil structure and infiltration capacity
Fig. 10. Landslides in the A Vuong re
or directly by protecting the soil (Vente et al., 2005). By evaluating
60 basins in Spain, the authors have shown that the erosion process
is closely related to LULC. Atulley et al. (2022) noted that extensive
tree removal increased sedimentation rates in small reservoirs in
the White Volta basin. Globally, LULC changes over time, especially
in areas where production is changing, and there are many human
impacts, such as in Vietnam. The VGTB basin, including the AVuong
reservoir basin has been recorded as a major change in LULC,
especially in recent times, which has affected the process of erosion
and the downstream sediment yield (Nguyen, 2023; Ribbe et al.,
2017). Part of the upstream forest area has been converted into
other land uses. However, we used only one LULC map in the SWAT
model in 2014 (Fig. 3(c)). This leads to the estimated results from
the SWAT model being underestimated compared with
bathymetry.

Landslides affect sediment transport; they frequently occur in
mountainous areas with steep slopes and tectonic activities
(Cloetingh et al., 2005; Montgomery & Brandon, 2002). There are
many reasons leading to landslides, possibly due to land leveling for
agricultural production and road construction purposes. In addi-
tion, theremay also be other factors, such asmining or bank erosion
of the reservoir itself (Fig. 10). Many studies have shown that the A
Vuong basin has frequent landslides, especially recently (Duc et al.,
2020; Handwerger et al., 2022; Pham et al., 2021, 2022). Few
studies are quantifying the contribution of landslides, but it is
servoir area (credit by authors).



Fig. 11. Decrease in storage capacity of the A Vuong reservoir.

Fig. 12. Elevations and storage capacity curve of the A Vuong reservoir.
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known that they can contribute significantly to sediment yield
(Bathurst et al., 2005; Korup et al., 2004). Although landslides can
move large amounts of sediment in slope areas, they do not
transport sediment directly to a reservoir or basin outlet but pro-
vide sediment for other transport processes (e.g., bank erosion)
(Vente et al., 2006). In other words, interactions between landslides
and bank erosion generally result in high sediment yields at the
reservoir or basin outlet.

A Vuong reservoir was completed in 2008 and started operation
in 2009. During this period, only bathymetry survey data were
available in 2003. Therefore, we have assumed that these data are
from the year that started operating (2009), considering the stable
bathymetry from 2003 to 2009.With this assumption, the results of
the analysis of the volume and sedimentation rate of a Vuong
reservoir will be limited and lead to a difference from the estimated
results from the SWATmodel. However, despite the differences and
uncertainties, the results from the SWATmodel provide insight into
the erosion process and sediment yield prediction at the watershed
scale, especially in basins with limited monitoring and field survey
data. These findings are expected to be of significant value for
developing strategies to control sediment transport to ensure the
sustainable development of the basin and increase the A Vuong
reservoir's life.

5.2. Evaluation of area storage capacity curve

Sedimentation rates are controlled by sediment produced in the
watersheds and the amount of sediment trapped by the reservoir.
We used bathymetric survey data to estimate the AVuong reservoir
lifespan. Research assuming the annual rate loss of storage capacity
remains constant to determine the remaining useful life of AVuong
reservoir (Patro et al., 2022) (Fig. 11).

The most straightforward remaining life calculation was based
on the sedimentation rate in the dead storage area. The dead
storage volumewas 77.07Mm3, while the mean sedimentation rate
was 1.3 Mm3/y, so the reservoir's life could be obtained by
approximately 59 years. Thus, the life of the A Vuong reservoir is
until 2068 if calculated from 2021, to 48 years remain. The total and
dead storage capacity in 2021 were left at 79.8% and 95.5%,
respectively. Fig.12 shows the elevations and storage capacity curve
of A Vuong reservoir.
It is time for agencies to consider the sedimentation problem in
the A Vuong reservoir. Based on experience worldwide, we can
reduce sedimentation effects and increase reservoir life. Various
strategies are available to improve the sediment problem across
reservoirs and adapt to the storage loss due to sediment
encroachment, especially under the impact of climate change.
Strategies can be used at a single reservoir or multiple reservoirs,
applied simultaneously or over time (Morris, 2020). Adaptive
strategies can be crucial because restoring andmaintaining original
reservoir capacities is rarely possible.

The findings of this study indicate that the planning and
implementation of various techniques to control and remove
sediment deposition in A Vuong reservoir are most important. The
sediment control mechanisms depend on estimating sediment
production from the watershed and reservoir' outlet. Because A
Vuong reservoir is affected by sediment accumulation generated
from different directions, it is necessary to control the sediment
flow rate into the reservoir. Therefore, a multidisciplinary approach
to land use management is necessary to maintain reservoir storage.
Encourage conservation activities in upstream areas such as affor-
estation, change of land use purposes, soil erosion control, and
construction of structures such as check dams, bypass, and sluicing
(Auel et al., 2016).

6. Conclusions and recommendations

The study evaluated the sedimentation status of the A Vuong
reservoir after fourteen years of operation using bathymetry map-
ping and the SWAT hydrological model. The authors evaluated the
sedimentation rate, sediment distribution, amounts of sediment
deposited, capacity loss, and life of A Vuong reservoir. The results
showed that the sedimentation estimate from the SWAT model is
smaller than that from bathymetry. A Vuong reservoir's annual
storage capacity loss due to sedimentation accumulation from the
SWATmodel and campaignwas 0.08% and 0.38%, respectively. Based
on the bathymetry data, we estimated that the average rate of
sedimentation deposition of A Vuong reservoir was 1.3 Mm3/y. The
average calculated net deposition value was 4.3 m (0.3 m per year).

The study outcomes demonstrated that the strategic modeling
framework may address the complex sedimentation problem in
tropical regions. Combining a hydrological model and a bathymetry
survey will be helpful for reservoir sedimentation estimation.
Based on that, sedimentation estimates can be expanded to reser-
voirs in the basin or other basins with the same characteristics,
especially in tropical monsoon regions, where measurement data
are limited.

The results can help managers proactively make decisions to
ensure sustainable development of reservoirs, planning, and
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rational use of water resources in the basin. The findings of this
study indicate that the planning and implementation of various
techniques to control and remove sediment deposition in A Vuong
reservoir are most important.
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