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Abstract
Liquid–gas phase coexistence in a boundary-driven diffusive system is studied by analyzing
fluctuating hydrodynamics of a density field defined on a one-dimensional lattice with a
space interval Λ. When an interface width � is much larger than Λ, the discrete model
becomes the standard fluctuating hydrodynamics, where the phase coexistence condition is
given by the local equilibrium thermodynamics. In contrast, when � < Λ, the most probable
density profile is determined by a new variational principle, where the chemical potential at
the interface is found to deviate from the equilibrium coexistence chemical potential. This
means that metastable states at equilibrium stably appear near the interface as the influence
of the particle current. The variational function derived in the theoretical analysis is also
found to be equivalent to the variational function formulated in an extended framework of
thermodynamics called global thermodynamics. Finally, the validity of the theoretical result
is confirmed by numerical simulations.

Keywords Phase coexistence · Out of equilibrium · Fluctuating hydrodynamics

1 Introduction

A rich variety of phenomena exhibit non-equilibrium phase coexistence, such as boiling heat
transfer, pattern formation in crystal growth, and motility-induced phase separation [1–8].
Although many such impressive phenomena are dynamic and complex, a non-trivial and
surprising phenomenon has been predicted in calm and simple phase coexistence out of
equilibrium. One example is the quantitative prediction that, in liquid–gas coexistence under
heat conduction, the temperature of the liquid–gas interface is lower than the equilibrium
coexistence temperature for the pressure [9, 10], where the equilibrium phase coexistence
occurs at the first-order phase transition point far from the critical point. This phenomenon
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means that metastable states at equilibrium are stabilized by a steady current even in the
linear response regime.

The prediction was presented in an extended framework of thermodynamics that we call
global thermodynamics. This framework was first proposed as a natural extension of the min-
imum principle of free energy with the key concept of global temperature [9]. Applying the
framework to a van-der Waals fluid revealed that the temperature of the liquid–gas interface
is different from the first-order transition temperature at equilibrium. Then, the formula-
tion was carefully arranged so that quantitative predictions could be made for real materials
[10]. The equivalence among different ensembles was discussed, and finally, the maximum
entropy principle was formulated for enthalpy-conserving heat conduction systems [11]. The
entropy defined in the formulation is found to possess a non-additive term in addition to the
space integral of the local entropy density field. This formulation enables us to apply global
thermodynamics to various systems.

There have been no experimental reports on the predictions of global thermodynamics.
Nevertheless, it is worth mentioning that numerical simulation of the Hamiltonian Potts
model in heat conduction shows results consistent with the quantitative prediction of global
thermodynamics for large enough systems [12]. The singular nature of the phase coexistence
has also been discussed by analyzing a mesoscopic model describing the order parameter
dynamics in heat conduction [13]. However, this analysis involves some phenomenological
assumptions in calculating the singular part. Furthermore, the model is too complicated
to extract the microscopic mechanism of the deviation in interface temperature from the
equilibrium phase coexistence temperature.

On the basis of this background, we study a simple system that exhibits non-equilibrium
phase coexistence.We consider a system in which the number density field is a single dynam-
ical variable and the density field is directly driven by a boundary condition of the chemical
potential, where the temperature is given as a constant parameter of the system. The stochas-
tic time evolution of the density field is described in terms of a discrete form of fluctuating
hydrodynamics with a space interval Λ. When the width of an interface in phase coexistence
� is much larger than Λ, the model is equivalent to the standard fluctuating hydrodynamics
[14–17]. Then, local fluctuation properties of thermodynamic quantities are described by
local equilibrium distribution [18]. In contrast, when � � Λ, the local distribution may be
out of equilibrium [19]. For this case, we derive the variational function that determines the
most probable density profile. We then find that the chemical potential at the interface of
the most probable profile deviates from the equilibrium coexistence value. This means that
metastable states at equilibrium stably appear near the interface of the driven system. The
formula describing the deviation takes the same form as those phenomenologically predicted
by global thermodynamics. Indeed, we can derive the variational function for this system by
using the method of global thermodynamics. We also confirm the validity of the theoretical
calculation by numerical simulations.

The rest of this paper is organized as follows. In Sect. 2, we introduce a stochastic model
we study in this paper. We then review phase coexistence conditions for equilibrium systems,
and summarizes basic issues for non-equilibrium phase coexistence. In Sect. 3, we derive a
variational function by analyzing the Zubarev-McLennan representation of the stationary
distribution. In Sect. 4, we rewrite the variational equation as the form giving the chemical
potential at the interface. In Sect. 5, we derive the variational function using the method
of global thermodynamics. In Sect. 6, we show results of numerical simulations. Section7
provides some concluding remarks.
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Fig. 1 Schematics of a system we study. A one-dimensional density field is defined on a ring with a battery at
x = 0

2 Setup

2.1 Model

We consider a collection of stochastic and diffusive particles in a closed tube which are
driven by an external battery at one surface x = 0. See Fig. 1 for the illustration of the setup.
We describe the system by an averaged particle density ρ(x) defined in a one-dimensional
region [0, L]. More precisely, we define

ρ(x) ≡ 1

A

∫
dydz ρ(x, y, z) (2.1)

for the three-dimensional particle density ρ(x, y, z), where the area of the cross section of
the tube is denoted by A. We then assume a standard continuum description of fluctuating
hydrodynamics of ρ(x). The density field ρ(x, t) satisfies the continuity equation

∂tρ + ∂x j = 0. (2.2)

Based on the mean field picture in the cross section, we assume the current as

j(x, t) = −σ(ρ(x))

[
∂x

δF
δρ(x)

− φδ(x)

]
+
√
2σ(ρ(x))T

A
· ξ(x, t). (2.3)

T is the temperature, σ(ρ) is a conductivity as a smooth function of ρ, and φ represents the
voltage of a battery located at x = 0. ξ is Gaussian-white noise satisfying 〈ξ 〉 = 0 and

〈
ξ(x, t)ξ(x ′, t ′)

〉 = δ(x − x ′)δ(t − t ′). (2.4)

The symbol “·” in front of ξ in (2.3) represents the Stratonovich product in space and
the Ito product in time. Here, because the variance of the surface average Ξ(x, t) ≡∫
dydzξ(x, y, z, t)/A of the three-dimensional Gaussian-white noise ξ(x, y, z, t) with unit

variance is 1/A, we setΞ(x, t) = ξ(x, t)/
√
A, which determines the A dependence of (2.3).

The free energy functional F of the density profile ρ = (ρ(x))0≤x≤L is expressed as

F(ρ) =
∫ L

0
dx

[
f (ρ(x)) + κ

2
(∂xρ)2

]
. (2.5)
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As a specific example, we consider the case that

f (ρ) = −1

2
(ρ − 1.5)2 + 1

4
(ρ − 1.5)4 (2.6)

by introducing dimensionless length and energy in this form. Note that our argument below
is independent of the specific form if f (ρ) contains two local minima. The length unit is
assumed to be the order of particle distances. κ characterizes the interface free energy, which
is relevant when ∂xρ is large. In particular, when 0.5 < ρ̄ < 2.5 in noiseless equilibrium
systems with T = 0 and φ = 0, phase coexistence occurs with two interfaces. Then,

√
κ

determines the interface width in the phase coexistence.
Now, we notice that there is a cutoff length Λ of the continuum description. Because the

noise is assumed to be white in space, Λ should be larger than the microscopic length, which
is set to the order of unity. On the other hand, it is obvious that Λ should be much smaller
than the system size L . In many cases, the calculation result of fluctuating hydrodynamics is
independent of the cutoff Λ even in the limit Λ → 0, while there is a case where a singular
cutoff dependence is observed [20]. Here, let us recall that the width of interfaces in phase
coexistence is estimated as a microscopic length. Thus, this may be smaller than the cutoff
length of fluctuating hydrodynamics. Such a case cannot be studied by the continuummodel.
We thus need to propose and analyze a discrete model in which the microscopic cutoff Λ is
explicitly introduced.

With this background, we consider a sequence of N -boxes in a one-dimensional ring.
Let ρi be the density of particles at the i-th box, where 1 ≤ i ≤ N . Mathematically, ρi is
defined on the i-th site in the one-dimensional lattice {i |1 ≤ i ≤ N , i ∈ Z}with the periodic
boundary condition ρ0 ≡ ρN and ρN+1 = ρ1. The horizontal size of the box is denoted by
Λ and the cross section area of the box is A. The system size L is given by L = ΛN . The
free energy functional given in (2.5) is then replaced with

F(ρ) = Λ

N∑
i=1

[
f (ρi ) + κ

2Λ2 (ρi+1 − ρi )
2
]

(2.7)

for ρ = (ρi )1≤i≤N . The density ρi satisfies the continuity equation

dρi

dt
+ ji − ji−1

Λ
= 0 (2.8)

with j0 = jN . The current ji is defined on the i-th bond connecting the i-th site and the
(i + 1)-th site. Using the generalized chemical potential μ̃i defined by

μ̃i ≡ 1

Λ

∂F
∂ρi

, (2.9)

we replace the current given in (2.3) by

ji (t) = −σ(ρm
i )

Λ
(μ̃i+1 − μ̃i − φδi,N ) +

√
2σ(ρm

i )T

AΛ
· ξi (t), (2.10)

where we set ρm
i = (ρi +ρi+1)/2 to satisfy the detailed balance condition. ξi (t) is Gaussian-

white noise satisfying 〈ξi 〉 = 0 and

〈
ξi (t)ξ j (t

′)
〉 = δi jδ(t − t ′). (2.11)
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Fig. 2 Illustration of two limiting cases a κΛ � 1 and b κΛ � 1

The Λ dependence of the noise intensity in (2.10) is understood from the replacement of
δ(x − x ′) with δi j/Λ. Explicitly, μ̃i is written as

μ̃i = μ(ρi ) − κ

Λ2 (ρi+1 + ρi−1 − 2ρi ) (2.12)

with μ(ρi ) = ∂ f (ρi )/∂ρi . The total number of particles
∑N

i=1 ρi = ρ̄N is conserved in the
time evolution. The average density ρ̄ is a parameter of the system.

The steady state of this system is characterized by five parameters (κΛ, Teff , φ, ρ̄, N ),
where

κΛ ≡ κ

Λ2 , Teff ≡ T

A
. (2.13)

That is, systems with the same values of (κΛ, Teff , φ, ρ̄, N ) exhibit the same steady state. In
the argument below, the Λ dependence appear only through κΛ dependence. When κΛ � 1
and N → ∞, the system behavior of (2.8) and (2.10) is understood by analyzing (2.2) and
(2.3) because (2.8) and (2.10) correspond to an accurate approximation of (2.2) and (2.3).
In contrast, the system behavior for the case κΛ < 1 cannot be described by (2.2) and (2.3).
For such cases, we have to analyze the discrete model with focusing on the limiting case that
κΛ � 1. See Fig. 2 for the illustration of two limiting cases. Finally, we note that A � 1
because A is the square of a macroscopic length. We thus consider the weak noise limit
Teff → 0 for the steady state realized in the limit t → ∞.

2.2 Review of Equilibrium Phase Coexistence

We review phase coexistence states for the equilibrium system with φ = 0. The stationary
distribution of ρ is given by

Peq(ρ; ρ̄) = 1

Z
exp

[
− 1

Teff
F(ρ)

]
δ

(
N∑
i=1

ρi − ρ̄N

)
. (2.14)

SeeAppendixA for the derivation. Themost probable profile in theweak noise limit Teff → 0
is determined as the density profile that minimizes F(ρ) defined by (2.7). The variational
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Fig. 3 a μ − ρ diagram. b and c represent density profiles in metastable and equilibrium states, respectively

equation is obtained as
μ̃i = μ̃i+1, (2.15)

which means that μ̃i is a constant independent of i .
We study two limiting cases κΛ � 1 and κΛ � 1. First, for the case κΛ � 1, we can

derive the phase coexistence condition from the analysis of the continuum limit of (2.15)
with N → ∞, which is given in (B.2). Importantly, the solution of the variational equation
is unique under the boundary condition that ∂xρ(0) = ∂xρ(L) = 0 with ρ(0) > ρ(L). As
shown in Appendix B, phase coexistence occurs when ρ̄ satisfies ρG

c ≤ ρ̄ ≤ ρL
c , where ρL

c
and ρG

c are determined by

μ(ρL
c ) = μ(ρG

c ), p(ρL
c ) = p(ρG

c ) (2.16)

with the thermodynamic pressure p(ρ) defined by

p(ρ) ≡ ρμ(ρ) − f (ρ). (2.17)

Hereafter, the equilibrium value of the coexistence chemical potential is denoted by μc ≡
μ(ρL

c ) = μ(ρG
c ). We assume ρG

c < ρL
c without loss of generality. Then, ρL

c and ρG
c represent

the densities of the liquid and gas in the phase coexistence, respectively. Furthermore, once
ρL
c and ρG

c are obtained, the fraction of the liquid region X eq is uniquely determined from
Λ
∑

i ρi = ρ̄L , which is expressed by

ρL
c X

eq + ρG
c (1 − X eq) = ρ̄. (2.18)

See Fig. 3c for the profile.
For the other case κΛ � 1, which we mainly study in this paper, the derivation method in

the continuum limit cannot be applied. However, even in this case, the variational principle
determines the most probable profile. The variational equation (2.15) is rewritten as μi =
μi+1 in the limit κΛ → 0 so that the chemical potential is uniform. In this case, there is a
one-parameter family of solutions ρ

φ=0
i;X characterized by X ∈ [0, 1], where N X is a half

integer. Let us write the solution ρ
φ=0
i;X explicitly. Referring to Fig. 3a, for a given X , we set

ρL
X and ρG

X as those satisfying

μ(ρL
X ) = μ(ρG

X ), XρL
X + (1 − X)ρG

X = ρ̄ (2.19)
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with ρG
X < ρL

X . We can then express the solution as

ρ
φ=0
i;X = ρL

Xχ(i ∈ [1, N X ]) + ρG
Xχ(i ∈ [N X , N ]), (2.20)

where χ(P) represents the characteristic function that takes 1 if P is true and 0 otherwise.
From Fig. 3b, it is found that X corresponds to the interface position of ρ

φ=0
i;X . Note that the

free energy of the solutions is smaller than the other solutions with more interfaces as far as
κΛ > 0. The uniform value of the chemical potential for the solution ρ

φ=0
i;X is denoted by

μ
φ=0
X , which is equal to μ(ρL

X ) and μ(ρG
X ).

Note that the value of X is not determined from the variational equation (2.15) with
κΛ → 0. Physically, the solutions ρ

φ=0
X form a family of metastable states characterized by

X . The most probable value of X , which is denoted by X∗, is derived from the minimum free
energy principle formulated as follows. We first define the variational function

Feq(X; ρ̄) ≡ F(ρ
φ=0
X ). (2.21)

Then, the minimum free energy principle means

Feq(X∗; ρ̄) = min
X

Feq(X; ρ̄), (2.22)

where, in the present case, X∗ satisfies

dFeq(X; ρ̄)

dX

∣∣∣∣
X=X∗

= 0. (2.23)

Substituting the expression

F(ρ
φ=0
X ) = LX f (ρL

X ) + L(1 − X) f (ρG
X ) (2.24)

into (2.23), we obtain
f (ρL

X∗) − f (ρG
X∗) = μ

φ=0
X∗ (ρL

X∗ − ρG
X∗) (2.25)

using (2.19) and (2.19). Comparing (2.19) and (2.25) with (2.16), we find

μc = μ
φ=0
X∗ , ρL

c = ρL
X∗ , ρG

c = ρG
X∗ . (2.26)

Moreover, X∗ is equal to X eq. The result means that the equilibrium states for the two limiting
cases, κΛ � 1 and κΛ � 1, are equivalent.

2.3 Preliminaries for Non-equilibrium Phase Coexistence

We concentrate on the case that ρ̄ satisfies ρG
c < ρ̄ < ρL

c where liquid and gas coexist.
When the voltage of the battery φ is positive, the stationary distribution is not written as
the canonical form (2.14). Therefore, we do not have a general variational principle for
determining the most probable profile for φ > 0. Nevertheless, we divide the problem for
determining the most probable profile into two steps. As the first step, we consider stationary
solutions of the deterministic equations without noise. If the stationary solution is unique, this
is the most probable profile in the weak noise limit. In contrast, if stationary solutions form a
one parameter family, we proceed to the second step, where we will formulate a variational
principle for selecting the most probable profile among the stationary solutions as we have
examined in (2.22) for the equilibrium system. In this section, we focus on the first step.
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We consider stationary solutions of the deterministic equation given in (2.2) and (2.3)
with Teff = 0. Let J be the steady particle current induced by the battery. Setting ji (t) = J
for all i in (2.3), we obtain the conduction equation

1

Λ

(
μ̃i+1 − μ̃i + φδi,N

) = − J

σ(ρm
i )

. (2.27)

The uniformity of J yields

J = φ

(
Λ

N∑
i=1

1

σ(ρm
i )

)−1

. (2.28)

When κΛ � 1 and N → ∞ with L = NΛ and κ = κΛΛ2 fixed, we can analyze
the continuum limit of (2.27). As shown in Appendix B, we find that the solution of the
deterministic equation is unique and that the chemical potential and pressure are continuous
at the interface in the space x̂ = x/L with L → ∞. We can then conclude that the chemical
potential at the interface is μc. See Appendix B for the derivation of this result.

In contrast, when we first fix κΛ � 1 and take the limit N → ∞, there is a family of
stationary solutions of the conduction equation (2.27). In the equilibrium system, they cor-
respond to metastable states characterized by (2.19), as shown in Fig. 3b, and the metastable
states were candidates for themost probable profile.We thus expect that a family of stationary
solutions ρ

φ

i;X for φ > 0 correspond to metastable states among which the most probable
profile is selected. In the remainder of this section, we express the metastable states explicitly
as a preliminary for the analysis in the next section.

We concentrate on small φ and ignore the contribution of O(φ2). The solution ρ
φ

i;X should

be given as a perturbation of the equilibrium solution ρ
φ=0
i;X given in (2.20). We thus assume

that |ρφ

i;X − ρL
c | < |ρφ

i;X − ρG
c | for 1 ≤ i < N X , and |ρφ

i;X − ρG
c | < |ρφ

i;X − ρL
c | for

N X < i ≤ N . Letting
σ L = σ(ρL

c ), σG = σ(ρG
c ), (2.29)

the conduction equation (2.27) with κΛ → 0 results in

μ(ρ
φ

i;X ) = − 1

σ L
J L

i − 1

N
+ μ

φ
1:X + O(φ2), (1 ≤ i ≤ N X), (2.30)

μ(ρ
φ

i;X ) = − 1

σG
J L

i − N

N
+ μ

φ

N ;X + O(φ2), (N X < i ≤ N ), (2.31)

where
μ

φ

1;X = μ
φ

N ;X + φ. (2.32)

From the direct calculation, we also obtain the difference between the chemical potentials of
two adjacent sites over the interface as

μ(ρ
φ

X−1/(2N );X ) − μ(ρ
φ

X+1/(2N );X ) = O(φ/N ). (2.33)

Finally, the condition

1

N

N∑
i=1

ρ
φ

i;X = ρ̄ (2.34)

uniquely determines μ
φ

1;X and ρ
φ

1;X for a given X . We can easily confirm that limφ→0 ρ
φ

i;X
is equivalent to (2.20).
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Fig. 4 Schematic profiles of μ
φ
X (x̂) and ρ

φ
X (x̂)

2.4 Singular ContinuumDescription

We introduce a continuum description using a real variable x̂ = x/L defined on the interval
[0, 1] by taking the limit N → ∞. The mathematical formulation of this limit is beyond the
scope of the present paper. However, to simplify the calculation in the subsequent sections,
we naively introduce the continuum description based on expected behaviors of ρi (t) for
large N . For a discrete variable ρ = (ρi (t))Ni=1 at time t , we first define ρN (x̂, t̂) as the
piece-wise linear function obtained by connecting two consecutive points (i/N , ρi (t)) and
((i + 1)/N , ρi+1(t)) for 0 ≤ i ≤ N in the (x̂, ρ) space, where we set t̂ = t/L2 for
later convenience. For sufficiently large N , we expect that there exists an almost continuous
function ρ(x̂, t̂) such that |ρ(x̂, t̂)−ρN (x̂, t̂)| = O(1/N ). The chemical potential μ(x̂, t̂) in
the continuum description is defined fromμi (t) by the same procedure and it is expected that
μ(x̂, t̂) = μ(ρ(x̂, t̂)). The definition of j(x̂, t̂) is slightly different from ρ(x̂, t̂) and μ(x̂, t̂),
because the current ji (t) is defined on the i-th bond connecting the i site and i + 1 site as
seen in (2.8) and (2.10). Concretely, we define j(x̂, t̂) by using the piece-wise linear function
obtained by connecting points (i/N + 1/2N , ji/L) in the (x̂, j) space. Then, the continuum
limit of (2.8) and (2.10) with κΛ → 0 is expressed by

∂t̂ρ(x̂, t̂) + ∂x̂ j(x̂, t̂) = 0, (2.35)

and

j(x̂, t̂) = −σ(ρ(x̂, t̂))

[
∂μ(x̂, t̂)

∂ x̂
− φδ(x̂)

]
+
√
2σ(ρ(x̂, t̂))Teff

L
· ξ̂ (x̂, t̂), (2.36)

where ξ̂ (x̂, t̂) satisfies 〈
ξ̂ (x̂, t̂)ξ̂ (x̂ ′, t̂ ′)

〉
= δ(x̂ − x̂ ′)δ(t̂ − t̂ ′). (2.37)

Apparently, (2.35) and (2.36), which we call the singular continuum description, take
the same form as a singular case of the standard continuum description (2.2) and (2.3) with
κ → 0 by setting x̂ = x/L and t̂ = t/L2. We here notice the difference between the two
descriptions. In the singular continuum description, we first take N → ∞ with L and κΛ

fixed, and then consider κΛ → 0. On the other hand, as described in the previous subsection,
in the standard continuum description, we take κΛ = κ/Λ2 → ∞ and N → ∞ with L and
κ fixed. Then, as a singular case of the standard continuum description, we consider the limit
κ → 0. The behavior of the two descriptions are rather different, but we do not discuss the
difference anymore. In the argument below, we will consider only the singular continuum
description.

The stationary solution of the deterministic equation ρ
φ

i;X and the corresponding chemical

potential μ(ρ
φ

i;X ) are expressed as ρ
φ
X (x̂) and μ

φ
X (x̂) in the singular continuum description.
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Note that ρ
φ
X (x̂) is discontinuous at x̂ = X , while μ

φ
X (x̂) is continuous at x̂ = X as is seen

from (2.33). The chemical potential at the interface x̂ = X is denoted by

μI
X ≡ μ

φ
X (X). (2.38)

As shown in Fig. 4, ρφ
X (x̂) is a piece-wise continuous function and thatμφ

X (x̂) is a piece-wise
smooth function with singular points at x̂ = 0 and x̂ = X . Furthermore, we rewrite (2.30)
and (2.32) as

μ
φ
X (x̂) = − 1

σ L
J Lx̂ + μ

φ
X (0) + O(φ2) (2.39)

for 0 ≤ x̂ < X , and

μ
φ
X (x̂) = − 1

σG
J L(x̂ − 1) + μ

φ
X (1) + O(φ2) (2.40)

for X < x̂ ≤ 1. We also have
μ

φ
X (0) = μ

φ
X (1) + φ. (2.41)

Here, from (2.28), we obtain

J L = φ

(
X

σL + 1 − X

σG

)−1

. (2.42)

Then, the density field ρ
φ
X (x̂) for 0 ≤ x̂ < X is determined from (2.39) with μ

φ
X (x̂) =

μ(ρ
φ
X (x̂)) and |ρφ

X (x̂)−ρL
c | < |ρφ

X (x̂)−ρG
c |. Similarly, the density fieldρ

φ
X (x̂) for X < x̂ ≤ 1

is determined from (2.40) with μ
φ
X (x̂) = μ(ρ

φ
X (x̂)) and |ρφ

X (x̂)−ρG
c | < |ρφ

X (x̂)−ρL
c |. Note

that ρ
φ
X (x̂) and ∂x̂μ

φ
X (x̂) are discontinuous at x̂ = 0 and x̂ = X . For given X and system

parameters (φ, ρ̄), μφ
X (x̂) and ρ

φ
X (x̂) are uniquely determined from the condition

∫ 1

0
dx̂ ρ

φ
X (x̂) = ρ̄. (2.43)

3 Variational Function

To simplify the notation, we use x and t for x̂ and t̂ in this and next sections. In the previous
section, we determined the candidates of steady density profile ρ

φ
X (x) characterized by X in

the weak noise limit Teff → 0. To determine the most probable density profile among them
for given system parameters (ρ̄, φ), in Sect. 3.1, we derive a variational function using the
Zubarev-McLennan representation of the steady state. The variational function includes a
time integral of the current at x = 0. After confirming some basic issues and assumptions in
Sect. 3.2, we calculate the time integral of the current in Sect. 3.3. The result is presented in
Sect. 3.4.

3.1 Stationary Distribution

We consider the stationary distribution Pss(ρ; ρ̄, φ) of density field ρ. When φ = 0, the
stationary distribution is given by (2.14). However, the stationary distribution for the system
with φ > 0 is not generally obtained. Nevertheless, in the linear response regime out of
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Fig. 5 Schematic relationship

between ρ
φ
X (x) and ρ

φ=0
X (x)

equilibrium, there is a useful expression called the Zubarev-McLennan representation

Pss(ρ; ρ̄, φ) = Peq(ρ; ρ̄) exp

[
−φ 〈Q〉eqρ + O(φ2)

Teff

]
(3.1)

with

Q =
∫ ∞

0
dt jN (t), (3.2)

where jN (t) is a fluctuating current at the N -th bond, which is defined in (2.10). The N -
th bond is the only bond on which the driving φ is imposed. 〈 〉eqρ denotes the conditioned
expectation for the equilibrium path ensemble provided that the initial density profile is given
by the specified ρ as the argument of the stationary distribution [21–27]. See Appendix C
for the derivation of (3.1).

For the general expression (3.1) with (3.2), we take the limit κΛ → 0 and consider the
singular continuum description introduced in the previous section. From (2.14) and (3.1), we
have

Pss(ρ; ρ̄, φ) = exp

[
− 1

Teff
(F(ρ) + φ 〈Q〉eqρ + O(φ2) + const)

]
δ

(∫ 1

0
dxρ(x) − ρ̄

)

(3.3)
with

Q = L
∫ ∞

0
dt j(0, t). (3.4)

Note that jN (t) becomes j(0, t) = j(1, t) in the singular continuum description. The most
probable density profile is identified as ρ

φ
X∗(x) that minimizes − logPss(ρ

φ
X ; ρ̄, φ). This is

the variational principle to determine X∗. From (3.3), we obtain the variational function as

Fss(X; ρ̄, φ) = F(ρ
φ
X ) + φ 〈Q〉eq

ρ
φ
X

+ O(φ2). (3.5)

We then find X∗ as the special value of X that minimizes the variational functionFss(X; ρ̄, φ)

with (ρ̄, φ) fixed. That is, X∗ is determined as

Fss(X∗; ρ̄, φ) = min
X

Fss(X; ρ̄, φ). (3.6)

We thus need to calculate 〈Q〉eq
ρ

φ
X

.
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3.2 Preliminaries for the Calculation 〈Q〉eq
��
X

To calculate 〈Q〉eq
ρ

φ
X

, we have to know the typical time evolution of ρ(x, t) starting from

ρ
φ
X (x) at t = 0 under the equilibrium condition φ = 0 in the weak noise limit Teff → 0,

where Teff → 0 is taken after t → ∞ is considered. Here, from (3.5), we find that only
φ-independent terms of 〈Q〉eq

ρ
φ
X

are necessary for the calculation because φ-dependent terms

are absorbed into O(φ2). We then notice expansions

μ
φ
X (x) = μ

φ=0
X (x) + O(φ), ρ

φ
X (x) = ρ

φ=0
X (x) + O(φ). (3.7)

See Fig. 5 for illustration of ρ
φ
X (x) and ρ

φ=0
X (x). See also the sentence involving (2.19) for

μ
φ=0
X . Using these relations, we find

〈Q〉eq
ρ

φ
X

= 〈Q〉eq
ρ

φ=0
X

+ O(φ). (3.8)

That is, we study the typical time evolution of the density field starting from ρ
φ=0
X (x). Since

we study the case κΛ → 0, ρφ=0
X (x) represents a metastable profile that does not evolve in

time without noises. Nevertheless, weak noise slowly drives the metastable profile ρ
φ=0
X (x)

to the equilibrium state characterized by (2.14). One may conjecture that the most probable
time evolution from ρ

φ=0
X (x) in the weak noise limit is described by the relaxation process

to the equilibrium profile ρ
φ=0
X∗ (x) in Fig. 3c from the metastable profile in Fig. 3b. However,

this is not correct because of the space translational symmetry of equilibrium systems. Note
that metastable profiles for a given width X of the liquid region form a one-parameter family
of profiles obtained by any space translation of ρ

φ=0
X (x), and similarly equilibrium profiles

also form a one-parameter family. Thus, stochastic dynamics in this neutral direction are
equally probable, which are represented by Brownian motion of the profile with the width
of the liquid region fixed. In other words, most probable process is not uniquely determined
in the weak noise limit. We have to consider a collection of trajectories that are equally
probable and dominantly contribute to 〈Q〉eq

ρ
φ=0
X

. We call this collection the highly probable

path ensemble to distinguish it with the most probable process.
Here, we concretely describe the highly probable path ensemble starting from the initial

condition ρ
φ=0
X (x). We assume that each trajectory in the highly probable path ensemble

satisfies the following two conditions. First, the liquid or gas region is not separated into
smaller pieces of liquid or gas at any time t . That is, the number of interfaces in the system
is always two. Second, slow dynamics occurs along a continuous family of metastable states
by the influence of weak noise, where the metastable states are characterized by the position
of two interfaces. We then consider the time evolution ρ(x, t) as follows. Let DL(t) and
DG(t) denote the liquid region and gas region at any time t . Recalling the relation (2.20)
with (2.19), we express ρ(x, t) in the highly probable path ensemble as

ρ(x, t) = ρL(t)χ(x ∈ DL(t)) + ρG(t)χ(x ∈ DG(t)), (3.9)

where ρL(t) and ρG(t) are determined from

μ(ρL(t)) = μ(ρG(t)) (3.10)

and
ρL(t)|DL(t)| + ρG(t)|DG(t)| = ρ̄. (3.11)
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It should be noted that we adopt the singular continuumdescription introduced in the previous
section. Using this form of the time evolution, we estimate (3.2).

Because ρ(x, t) in (3.9) is described by DL(t) and DG(t), we explicitly express them in
terms of the interface positions X↑(t) and X↓(t) at time t , where they satisfy

ρ(X↑(t) + ε, t) − ρ(X↑(t) − ε, t) > 0, ρ(X↓(t) + ε, t) − ρ(X↓(t) − ε, t) < 0 (3.12)

for small positive ε. See Fig. 6a. Then, the liquid region DL(t) and gas region DG(t) are
expressed as DL(t) = [X↑(t), X↓(t)] and DG(t) = [0, 1]\DL(t) if X↑(t) < X↓(t), or
DG(t) = [X↓(t), X↑(t)] and DL(t) = [0, 1]\DG(t) if X↑(t) > X↓(t).

Now, we consider the time evolution of interface positions, X↑(t) and X↓(t), starting
from X↑(0) = 0 and X↓(0) = X . However, because 0 ≤ X↑(t) ≤ 1 and 0 ≤ X↓(t) ≤
1, X↑(t) and X↓(t) are not continuous functions of t . This would lead to a complicated
calculation of the accumulated current defined by (3.4). To describe the interface motion
using continuous functions, we introduce generalized coordinates X̂↑(t) ∈ R and X̂↓(t) ∈ R

such that displacements of the interface from the initial time 0 to the time t are given by
X̂↑(t) − X̂↑(0) and X̂↓(t) − X̂↓(0). That is, X̂↑(t) and X̂↓(t) describe the positions of the
left and right interfaces of the liquid region in a generalized coordinate spaceR. The interface
positions X↑(t) and X↓(t) in the space [0, 1] are then obtained as

X↑(t) = X̂↑(t) − �X̂↑(t)�, X↓(t) = X̂↓(t) − �X̂↓(t)�, (3.13)

where � � represents the floor function. The width of the liquid and gas regions are then
written as

|DL(t)| = X̂↓(t) − X̂↑(t), |DG(t)| = 1 − |DL(t)| = X̂↑(t) − X̂↓(t) + 1 (3.14)

irrespective of the sign of X↓(t) − X↑(t). We also introduce the center of the liquid region
in the generalized coordinate space as

Ŷ (t) = X̂↑(t) + X̂↓(t)

2
. (3.15)

Using the width |DL(t)| and the center Ŷ (t) of the liquid region, we have

X̂↓(t) = Ŷ (t) + |DL(t)|
2

, X̂↑(t) = Ŷ (t) − |DL(t)|
2

. (3.16)

We note that, in the weak noise limit, |DL(t)| obeys a deterministic equation describing
|DL(t)| → X eq as t → ∞, while Ŷ (t) shows unbounded-free Brownian motion because
of the translation symmetry for the case φ = 0. This fact simplifies the calculation of the
accumulated current defined by (3.2).

At the end of this subsection, we discuss the difference between the most probable process
for the case κΛ � 1 and the highly probable path ensemble for the case κΛ � 1. In the
former case, ρφ=0

X evolves to an equilibrium configuration in the deterministic system, which
is in contrast with the latter case. To obtain the accumulated current Q for the former case,
we have to analyze the time-dependent solution of the deterministic equation, which is out
of the present paper.
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Fig. 6 a Density profile ρ(x, t) whose interface positions are X↑(t) and X↓(t). ρ(x, t) = ρL(t) in DL(t) =
[X↑(t), X↓(t)], while ρ(x, t) = ρG(t) in DG(t) = [0, 1]\DL(t). b Example of ψ(x, t) defined in −∞ <

x < ∞

3.3 Expression of j(0, t)

In this subsection, we calculate j(x, t) in the singular continuum description based on (2.35)
and (2.36). In the argument below, X̂↑(t), X̂↓(t), DL(t), and DG(t) are simply denoted by
X̂↑, X̂↓, DL, and DG if their t-dependencies are clearly guessed.

For a given density profile (ρ(x, t))1x=0 at time t , we define

ψ(x, t) ≡
∫ x

0
dx ′(ρ(x ′, t) − ρ̄) (3.17)

for 0 ≤ x ≤ 1. Because ψ(0, t) = ψ(1, t) = 0, ψ(x, t) can be extended to a periodic
function in x . That is, we defineψ(x, t) ≡ ψ(x −�x�, t) for any−∞ < x < ∞. See Fig. 6b
for the illustration. The time derivative of (3.17) leads to

∂tψ(x, t) = − j(x, t) + j(0, t) (3.18)

for any x ∈ [0, 1]. We here integrate (3.18) over the liquid region and divide by σL. We
repeat the same operation for the gas region. Summing up the two results, we have a relation

1

σL

∫
DL

dx∂tψ + 1

σG

∫
DG

dx∂tψ

= − 1

σL

∫
DL

dx j(x, t) − 1

σG

∫
DG

dx j(x, t) +
( |DL|

σL + |DG|
σG

)
j(0, t). (3.19)

Here, we attempt to extract slow dynamics of j(0, t) by considering a short-time average of
(3.19). Recalling the formula for j(x, t) given in (2.36), we find that, in the weak noise limit,
μ(x, t) takes a constant value in the bulk regions and the space integral of the noise term is
estimated as zero by the short-time average. Then, the first and second terms on the right
side of (3.19) turn out to be zero. We thus obtain the expression for j(0, t) as

j(0, t) =
[ |DL|

σL + |DG|
σG

]−1 [
1

σL

∫
DL

dx ∂tψ + 1

σG

∫
DG

dx ∂tψ

]
. (3.20)

We remark that j(0, t) is still stochastic. Indeed, in the right side of (3.20), DL(t), DG(t),
and the space integrals of ∂tψ(x, t) are affected by the Brownian motion of the interfaces.

123



Non-equilibrium Phase Coexistence… Page 15 of 33 26

The current j(0, t) formulated in (3.20) contains the time derivative of ψ in the space
integrals. We now transform (3.20) into a formula by letting the time derivative be outside
the integral. In the transformation procedure, we need to pay attention to the time-dependent
ranges DL and DG of the integrals. As the result, the current j(0, t) is expressed as

j(0, t) = Φ(t) − Φ0(t), (3.21)

where

Φ(t) ≡ d

dt

{[ |DL|
σL + |DG|

σG

]−1 [
1

σL

∫
DL

dx ψ + 1

σG

∫
DG

dx ψ

]}
, (3.22)

and Φ0(t) is determined from (3.20), (3.21), and (3.22). Concretely, we perform the time-
derivative of (3.22). In the time derivative of a function of Brownianmotion X(t), we note the
chain rule d f (X(t))/dt = f ′(X(t))◦dX/dt , where the symbol ◦ represents the Stratonovich
product. We then have

Φ0(t) =
(

1

σL − 1

σG

)[ |DL(t)|
σL + |DG(t)|

σG

]−1

|DL(t)|(ρL(t) − ρ̄) ◦ d

dt
Ŷ . (3.23)

See Appendix D for the derivation of Φ0(t).
Due to the translational invariance for the case φ = 0, Ŷ (t) shows the free Brownian

motion. Because |DL(t)| and ρL(t) obey deterministic equations in the weak noise limit,
they have no correlation with Ŷ (t). Therefore, taking the path ensemble average over noise
realization, we have

〈Φ0(t)〉 =
(

1

σL − 1

σG

)〈[ |DL(t)|
σL + |DG(t)|

σG

]−1

|DL(t)|(ρL(t) − ρ̄)

〉 〈
d

dt
Ŷ

〉

= 0 (3.24)

Combining this with (3.21), we obtain

〈 j(0, t)〉eq
ρ

φ=0
X

= 〈Φ(t)〉eq
ρ

φ=0
X

. (3.25)

3.4 Result of 〈Q〉eq
��=0
X

Let us define

q(τ ) ≡
∫ τ

0
dt Φ(t). (3.26)

From (3.4) and (3.25), we have

〈Q〉eq
ρ

φ=0
X

= L lim
τ→∞ 〈q(τ )〉eq

ρ
φ=0
X

. (3.27)

Substituting (3.22) into (3.26) with noting X↑(0) = 0 and X↓(0) = X , we obtain

q(τ ) =
[ |DL(τ )|

σL + |DG(τ )|
σG

]−1 [
1

σL

∫
DL(τ )

dx ψ + 1

σG

∫
DG(τ )

dx ψ

]

−
[
X

σL + 1 − X

σG

]−1 [ 1

σL

∫ X

0
dx ψ + 1

σG

∫ 1

X
dx ψ

]
. (3.28)
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From the piece-wise linear nature of ψ(x, t), the integrals are calculated by the trapezoidal
rule as ∫

DL
dx ψ(x, t) = 1

2
|DL|

(
ψ(X̂↑(t), t) + ψ(X̂↓(t), t)

)
, (3.29)

∫
DG

dx ψ(x, t) = 1

2
|DG|

(
ψ(X̂↑(t), t) + ψ(X̂↓(t), t)

)
, (3.30)

where ψ(X↑(t) + 1) = ψ(X↑(t)) is applied. Using these relations, we obtain

1

σL

∫
DL

dx ψ + 1

σG

∫
DG

dx ψ = 1

2

( |DL|
σL + |DG|

σG

)(
ψ(X̂↑(t), t) + ψ(X̂↓(t), t)

)
.

(3.31)

Substituting this into (3.28), we have

q(τ ) =1

2

(
ψ(X̂↑(τ ), τ ) + ψ(X̂↓(τ ), τ )

)
− 1

2
(ψ(0, 0) + ψ(X , 0)) . (3.32)

Here,

ψ(0, 0) = 0, ψ(X , 0) = (ρL
X − ρ̄)X , (3.33)

and

ψ(X̂↑(τ ), τ ) = ψ(X↑(τ ), τ ), ψ(X̂↓(τ ), τ ) = ψ(X↓(τ ), τ ). (3.34)

We thus obtain

lim
τ→∞ 〈q(τ )〉eq

ρ
φ=0
X →∗ = 1

2
lim

τ→∞
(〈
ψ(X↑(τ ), τ )

〉 + 〈
ψ(X↓(τ ), τ )

〉) − 1

2
(ρL

X − ρ̄)X . (3.35)

Note that the positions of the interfaces, X↑ and X↓, are uniformly distributed in the interval
x ∈ [0, 1] as τ → ∞. We thus conclude that

〈Q〉eq
ρ

φ=0
X

= L

[
C − 1

2
(ρL

X − ρ̄)X

]
, (3.36)

where C is a constant independent of X . Using the relation

ρ̄ = XρL
X + (1 − X)ρG

X , (3.37)

which comes from (2.43), we can also express (3.36) as

〈Q〉eq
ρ

φ=0
X

= L

[
C − 1

2
(ρL

X − ρG
X )X(1 − X)

]
. (3.38)

Substituting (3.38) into (3.5), we have

Fss(X; ρ̄, φ) = L

[∫ 1

0
dx f (ρφ

X (x)) − φ

2
(ρL

X − ρG
X )X(1 − X) + φC

]
. (3.39)

We note that ρ
φ
X (x) is uniquely determined for given (X , φ, ρ̄) by μ(ρ

φ
X (x)) = μ

φ
X (x)

with (2.39) and (2.40) and that ρL
X and ρG

X are functions of (X , ρ̄). Thus, Fss(X; ρ̄, φ) is
the variational function for determining the most probable interface position X∗ for a given
(ρ̄, φ). The most probable density profile is expressed as ρ

φ
X∗(x).
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4 Variational Equation

In this section, using the variational function (3.39), we determine the most probable value of
X . This is regarded as an extension of the argument for determining the equilibrium profile in
the paragraph containing (2.23). Thus, similarly to (2.23), we analyze the variational equation

dFss(X; ρ̄, φ)

dX

∣∣∣∣
X=X∗

= 0 (4.1)

with (3.39). The difference from (2.23) is the O(φ) terms in (3.39). As shown in Fig. 4, one
of the interfaces of ρ

φ
X (x) is located at x = 0 for any X , both the liquid and gas density

profiles are sloped, and the chemical potential profile μ
φ
X (x) is piece-wise linear. Then, as

did for the equilibrium system, we first derive the chemical potential at the interface μI
X∗

defined by (2.38) instead of directly calculating X∗. Once we have μI
X∗ , we obtain the most

probable profiles μ
φ
X∗(x) and ρ

φ
X∗(x), and the value of X∗. The determination of μI

X∗ is also

physically important because if μI
X∗ �= μc, metastable states at equilibrium stably appear in

the non-equilibrium phase coexistence.

4.1 Preliminaries for the Calculation

In the argument below, we ignore the contribution of O(φ2). We first define

ρ̄L
X ≡ 1

X

∫ X

0
dxρφ

X (x), ρ̄G
X ≡ 1

1 − X

∫ 1

X
dxρφ

X (x), (4.2)

and

μ̄L
X ≡ 1

X

∫ X

0
dxμφ

X (x), μ̄G
X ≡ 1

1 − X

∫ 1

X
dxμφ

X (x). (4.3)

Because the density profile ρ
φ
X (x) and the chemical potential profile μ

φ
X (x) are linear in the

respective regions, [0, X ] and [X , 1], we obtain

f
(
ρ̄L
X

) = 1

X

∫ X

0
dx f (ρφ

X (x)), f
(
ρ̄G
X

) = 1

1 − X

∫ 1

X
dx f (ρφ

X (x)), (4.4)

and
μ̄L
X = μ(ρ̄L

X ), μ̄G
X = μ(ρ̄G

X ). (4.5)

The pressures in the liquid and gas regions are characterized by pLX ≡ p(ρ̄L
X ) and pGX ≡

p(ρ̄G
X ), which are expressed by

pLX = μL
X ρ̄L

X − f (ρ̄L
X ), pGX = μG

X ρ̄G
X − f (ρ̄G

X ). (4.6)

The first term on the right side of (3.39) is written as
∫ 1

0
dx f (ρφ

X (x)) = X f
(
ρ̄L
X

) + (1 − X) f
(
ρ̄G
X

) + O(φ2), (4.7)

and the variational function (3.5) as

Fss(X; ρ̄, φ) = L

[
X f

(
ρ̄L
X

) + (1 − X) f
(
ρ̄G
X

) − φ

2

(
ρL
X − ρG

X

)
X(1 − X) + φC

]
. (4.8)
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Since ρ̄L
X = ρL

X + O(φ) and ρ̄G
X = ρG

X + O(φ), we can rewrite (4.8) as

Fss(X; ρ̄, φ) = L

[
X f

(
ρ̄L
X

) + (1 − X) f
(
ρ̄G
X

) − φ

2

(
ρ̄L
X − ρ̄G

X

)
X(1 − X) + φC

]
. (4.9)

We emphasize that (4.9) is explicitly expressed as a function of X .
Noting that the chemical potential profile is piece-wise linear as shown in Fig. 4, we

estimate

μ̄L
X = μ

φ
X (0) + μI

X

2
, μ̄G

X = μ
φ
X (1) + μI

X

2
. (4.10)

From (4.10), φ = μ
φ
X (1) − μ

φ
X (0) is rewritten as

μ̄L
X − μ̄G

X = φ

2
. (4.11)

Furthermore, using (2.39) and (2.40), we can express μ̄L
X and μ̄G

X in terms of μI
X as

μ̄L
X = μI

X + J L

σL

X

2
, μ̄G

X = μI
X − J L

σG

1 − X

2
. (4.12)

4.2 Steady State

We consider the variational equation

dFss(X; ρ̄, φ)

dX
= 0. (4.13)

Substituting (4.9) into (4.13), we have

f (ρ̄L
X ) − f (ρ̄G

X ) − φ

2
(ρ̄L

X − ρ̄G
X )(1 − 2X)

+ μ̄L
X
dρ̄L

X

dX
X + μ̄G

X
dρ̄G

X

dX
(1 − X) − φ

2

(
dρ̄L

X

dX
− dρ̄G

X

dX

)
X(1 − X)

= 0. (4.14)

Using (4.11), we rewrite the second line as

[Xμ̄L
X + (1 − X)μ̄G

X ]
[
X
dρ̄L

X

dX
+ (1 − X)

dρ̄G
X

dX

]
. (4.15)

Here, taking the derivative of ρ̄ = X ρ̄L
X + (1 − X)ρ̄G

X in X , we obtain

X
dρ̄L

X

dX
+ (1 − X)

dρ̄G
X

dX
= −(ρ̄L

X − ρ̄G
X ). (4.16)

We substitute this into (4.15) and combine it with (4.14). Then, the variational equation (4.14)
becomes

f (ρ̄L
X ) − f (ρ̄G

X ) − (ρ̄L
X − ρ̄G

X )[(1 − X)μ̄L
X + Xμ̄G

X ] = 0. (4.17)

The solution of (4.17) provides the most probable value X∗ of the interface position. There-
fore, we express

f (ρ̄L
X∗) − f (ρ̄G

X∗) − (ρ̄L
X∗ − ρ̄G

X∗)[(1 − X∗)μ̄L
X∗ + Xμ̄G

X∗ ] = 0. (4.18)
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Now, we rewrite (4.18) as a different form using the chemical potential at the interface
position X∗. We subtract the equilibrium version of (4.18), i.e., f (ρL

c ) − f (ρG
c ) − (ρL

c −
ρG
c )μc = 0, from (4.18). Noting f (ρ̄L

X∗) − f (ρL
c ) = (ρ̄L

X∗ − ρL
c )μc + O(φ2), we obtain

(ρ̄L
X∗ − ρ̄G

X∗)
{
μc − [(1 − X∗)μ̄L

X∗ + X∗μ̄G
X∗ ]

} = 0. (4.19)

Substituting (4.12) into this equation and using ρ̄L
X∗ �= ρ̄G

X∗ , we have

μI
X∗ = μc − J LX∗(1 − X∗)

2

(
1

σL − 1

σG

)
. (4.20)

Because X∗ = X eq + O(φ), we can rewrite it as

μI
X∗ = μc − J LX eq(1 − X eq)

2

(
1

σL − 1

σG

)
. (4.21)

Furthermore, combining (2.42) with (4.21), we finally obtain

μI
X∗ = μc + φ

2

(σL − σG)X eq(1 − X eq)

σGX eq + σL(1 − X eq)
. (4.22)

Recalling that X eq is uniquely determinedby ρ̄ from (2.18),we conclude thatμI
X∗ is expressed

in terms of the system parameters. Thus, the chemical potential at the interface deviates from
μc linearly with the voltage φ. This means that metastable states at equilibrium stably appear
around the interface. The relation (4.22) is the most important achievement of our theory.

Next, from (4.11) and (4.19), we obtain

μ̄L
X∗ = μc + X eq φ

2
, μ̄G

X∗ = μc − (1 − X eq)
φ

2
, (4.23)

which also givesμ
φ
X∗(0) andμ

φ
X∗(1) using (4.10). The result yieldsμ

φ
X∗(x). Usingμ

φ
X∗(x) =

μ(ρ
φ
X∗(x)), we have ρ

φ
X∗(x). Finally, from X∗ρ̄L

X∗ + (1 − X∗)ρ̄G
X∗ = ρ̄, we can express

X∗ − X eq in terms of system parameters. In this manner, all thermodynamic quantities are
determined by the variational principle. As one example, we discuss the pressure in the steady
state. Using (4.6), we can express (4.18) as

pLX∗ − pGX∗ = φρ̄

2
. (4.24)

Recalling that the local pressure is given by p(x) = p(ρ(x)), we define the pressures at the
left and right sides of the interface as

p− ≡ lim
x→X−∗

p(ρ(x)), p+ ≡ lim
x→X+∗

p(ρ(x)). (4.25)

Then, using
ρ
L/G
X∗ (μ

L/G
X∗ − μI

X∗) = pL/G
X∗ − p−/+, (4.26)

we can derive

p− = pc + (μI
X∗ − μc)ρ

L
c , p+ = pc + (μI

X∗ − μc)ρ
G
c , (4.27)

where pc is the equilibrium coexistence pressure. This result indicates that the pressure is
not continuous at the interface. It should be noted that this discontinuity occurs only in the
singular continuum description for κΛ � 1 but never occur in the continuum description for
κΛ � 1 as shown in Appendix B.
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5 Global Thermodynamics

The extension of the variational function from Feq(X; ρ̄) to Fss(X; ρ̄, φ) is closely related
to the extension of thermodynamic functions. Without analyzing specific stochastic models,
one can construct such an extended thermodynamic framework relying on the consistency,
uniqueness, and predictability. This phenomenological argument, which is called global
thermodynamics, was developed for heat conduction systems exhibiting phase coexistence
[9–11]. Furthermore, global thermodynamics was applied to the order–disorder transition in
heat conduction, and the prediction by global thermodynamics was confirmed by numerical
simulations [12]. Similarly, in the present setup, we can determine the variational function
(4.9) following the method in Refs. [11, 28].

We set M ≡ ρ̄L , where MA represents the total number of particles in the tube. In
equilibrium thermodynamics, the free energy function Feq(L, M) is determined as

Feq(L, M) = Feq(X∗; ρ̄) (5.1)

using the variational function Feq(X; ρ̄) given by (2.21). We then have the fundamental
relation of thermodynamics

dFeq = −pcdL + μcdM, (5.2)

where pc and μc are the equilibrium values of pressure and chemical potential in phase
coexistence states. Note that pc andμc are constants in (L, M). Extending the relations (5.1)
and (5.2) to non-equilibrium systems, we attempt to determine the thermodynamic function
Fss(L, M, φ) and the variational function Fss(X; ρ̄, φ).

5.1 Thermodynamic Function

For the system under consideration, we have the equilibrium free energy Feq(L, M). In
the phase coexistence state, it takes the simple form

Feq(L, M) = −pcL + μcM . (5.3)

To derive Fss(L, M, φ), we first assume

dFss = − p̄dL + μ̄dM − Ψ dφ. (5.4)

without an explicit form ofΨ , where p̄ and μ̄ are the average pressure and chemical potential
defined by

p̄ = X∗ pLX∗ + (1 − X∗)pGX∗ , μ̄ = X∗μ̄L
X∗ + (1 − X∗)μ̄G

X∗ . (5.5)

Note that p̄ and μ̄ are functions of (ρ̄, φ) and that the steady state value X∗ of the interface
position is also given as a function of (ρ̄, φ). Ψ is a conjugate variable of the battery voltage
φ. From the reflection symmetry, Ψ is an odd function of φ and thus Ψ = 0 for φ = 0. On
the other hand, from the singular nature of the phase coexistence, we assume that Ψ �= 0
in the limit φ → 0+. For simplicity, we consider only the case φ > 0 as in the previous
sections and we can set Ψ = Ψ (L, M) by considering the limit φ → 0+ to study the linear
response regime. Furthermore, from the extensivity in the equilibrium state, we have

Ψ (L, M) = Mψ(v) (5.6)

with v = L/M = 1/ρ̄.
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Next, we set
Fss(L, M, φ) = Feq(L, M) − Mψ(v)φ (5.7)

in the linear response regime. By substituting this expression into (5.4), we obtain

p̄ = pc + ψ ′(v)φ, μ̄ = μc + (vψ ′(v) − ψ(v))φ. (5.8)

We solve these differential equations of ψ(v). Eliminating ψ ′(v) from these two equations,
we obtain a necessary condition for ψ(v) as

ψ(v)φ = v( p̄ − pc) − (μ̄ − μc). (5.9)

Here, we simplify the right-hand side of (5.9) using the expressions given in (5.5). We
first note the relations

pLX∗ − pc = ρ̄L
X∗(μ̄

L
X∗ − μc), pGX∗ − pc = ρ̄G

X∗(μ̄
G
X∗ − μc). (5.10)

Using the relations, we express (5.9) as

ψ(v)φ = (vρ̄L
X∗ − 1)X∗μ̄L

X∗ + (vρ̄G
X∗ − 1)(1 − X∗)μ̄G

X∗ . (5.11)

We next notice that the relation (3.37) yields useful expressions

(vρ̄L
X∗ − 1)X∗ + (vρ̄G

X∗ − 1)(1 − X∗)μ̄G
X∗ = 0, (5.12)

and

ρ̄L
X∗ − ρ̄ = (1 − X∗)(ρ̄L

X∗ − ρ̄G
X∗). (5.13)

Using (4.11) and (5.12), we rewrite (5.11) as

ψ(v)φ = (vρ̄L
X∗ − 1)X∗

φ

2
. (5.14)

By substituting (5.13) into (5.14), we obtain

φΨ (L, M) = φMψ(v) = φ

2
L(ρ̄L

X∗ − ρ̄G
X∗)X∗(1 − X∗). (5.15)

Thus, if a solution exists for (5.8), this should be (5.15).
Conversely, suppose that (5.15) holds. Noting the relation

Feq(L, M) = LX∗ f (ρ̄L
X∗) + L(1 − X∗) f (ρ̄G

X∗) + O(φ2), (5.16)

we find that Fss assumed in (5.7) is expressed as

Fss(L, M, φ) = LX∗ f (ρ̄L
X∗) + L(1 − X∗) f (ρ̄G

X∗) − φ

2
L(ρ̄L

X∗ − ρ̄G
X∗)X∗(1 − X∗).

(5.17)

Then, using (4.6) and (4.11), we rewrite (5.17) as

Fss(L, M, φ) = −LX∗ pLX∗ − L(1 − X∗)pGX∗ + (X∗μ̄L
X∗ + (1 − X)μ̄G

X∗)M . (5.18)

Furthermore, using (5.5), we further rewrite Fss as a suggestive form

Fss(L, M, φ) = − p̄L + μ̄M . (5.19)

123



26 Page 22 of 33 S. Sasa, N. Nakagawa

Now, taking the derivative of Fss in L , we have

∂Fss(L, M, φ)

∂L
= − p̄ − ∂ p̄(L, M, φ)

∂L
L + ∂μ̄(L, M, φ)

∂L
M . (5.20)

Here, using (4.5), (4.6), (4.11), and (4.24), we can confirm

∂ p̄(L, M, φ)

∂L
= ρ̄

∂μ̄(L, M, φ)

∂L
. (5.21)

Substituting this result into (5.20), we obtain

∂Fss(L, M, φ)

∂L
= − p̄. (5.22)

By repeating the similar calculation, we also have

∂Fss(L, M, φ)

∂M
= μ̄. (5.23)

Finally, (5.15) leads to

Ψ = −∂Fss(L, M, φ)

∂φ
. (5.24)

These three relations (5.22), (5.23), and (5.24) are summarized as an extended form of the
fundamental relation of thermodynamics (5.4). Thismeans thatψ(v) given by (5.15) satisfies
(5.8). We then conclude that (5.17) is the free energy extended to the non-equilibrium steady
state.

5.2 Variational Function

We formulate a variational principle for determining the steady state. In the phase coexistence
state, unconstrained thermodynamic variables are the length of the liquid region LX and the
particle number of the liquid ML ≡ LρL per unit area. Let Fss(LX , ML; L, M, φ) be the
variational function for (LX , ML) with (L, M, φ) fixed. Following the standard method of
thermodynamics, we assume

Fss(L, M, φ) = min
X ,ML

Fss(LX , ML; L, M, φ). (5.25)

With (5.17), (5.25) naturally leads to

Fss(LX , ML; L, M, φ) = Feq(LX , ML) + Feq(L(1 − X), ML) − φ

2
(ML − MX),

(5.26)

where we have used (5.14). The variational equations are then expressed as

∂Fss(LX , ML; L, M, φ)

∂X
= 0, (5.27)

and
∂Fss(LX , ML; L, M, φ)

∂ML = 0. (5.28)

The solution (X∗, ML∗ ) of the equations is the steady state value.
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Now, we construct a variational function for determining X∗ from the variational function
(5.26) for determining X∗ and ML∗ . For a given X , we write the solution of (5.28) as ML

X .
We can then confirm

dFss(LX , ML
X ; L, M, φ)

dX

∣∣∣∣∣
X=X∗

= 0 (5.29)

using (5.27) and (5.28). The Eq. (5.29) means that Fss(LX , ML
X ; L, M, φ) is the variational

function for determining X∗. We note that ML
X = Lρ̄L

X because (5.28) leads to (4.11). Thus,
the variational function Fss(LX , ML

X ; L, M, φ) takes the same form as (3.39) expect for
the constant term. Namely, the steady state determined by the phenomenological argument
is equivalent to that calculated in the previous section. Therefore, all the prediction made
by global thermodynamics for the present setup are the same as the theoretical result for
the stochastic model we study. In our research history, the variational function (4.9) was
first derived using global thermodynamics, and after that it was re-derived by analyzing the
stochastic model.

6 Numerical Simulation

In this section, we perform numerical simulations of the discrete model and compare numeri-
cal results with the theoretical predictions presented in the previous sections. More explicitly,
the time evolution of (ρi )Ni=1 is defined by (2.8) accompanied with the current ( ji )Ni=1 defined
by (2.10). To obtain ( ji )Ni=1 using (2.10), we determine (μ̃i )

N
i=1 by (2.9) with

μ(ρi ) = (ρi − 0.5)(ρi − 1.5)(ρi − 2.5) (6.1)

from (2.6). We adopt a simple form of the conductivity σ(ρ) = ρ, where we have introduced
a dimensionless time in this expression. For this specificmodel, we have ρL

c = 2.5, ρG
c = 0.5,

and μc = 0 from (2.16), and we thus obtain σL = 2.5 and σG = 0.5 from (2.29).
Recalling that the independent parameters to be specified for numerical determination of

the steady state are (κΛ, Teff , φ, ρ̄, N ) as discussed around (2.13), we study the κΛ depen-
dence of the steady state with fixing the other parameter values as

(Teff , φ, ρ̄, N ) = (0.002, 0.05, 1.5, 64). (6.2)

Since A and Λ are contained in the renormalized quantities κΛ and Teff , we do not need to
specify the values of A and Λ, while the total volume and the total number of particles are
given by L A and ρ̄L A with L = ΛN . To numerically solve (2.8) and (2.10), we adopt the
Heun method with a time step dt = 0.01Λ2, where it should be noted that the time step dt
is always coupled with Λ2 for the time-discretized form of (2.8) and (2.10).

In Fig. 7, we show the steady state for κΛ = 0.5 and κΛ = 1.5, where the density profile
ρi and the chemical potential profile μ̃i are plotted for i/N . We remark that the system
reaches the steady state without dependence on initial conditions, (ρi )Ni=1 at t = 0. Note that
μ̃i = μc = 0 for all i for the equilibrium system with φ = 0, which is shown as the dotted
line in Fig. 7b. It is observed that μ̃ near the interface is close toμc = 0 for the case κΛ = 1.5,
while it clearly deviates fromμc = 0 for the case κΛ = 0.5. That is, the metastable gas stably
appears at the left-side of the interface for the case κΛ = 0.5.

Here, we determine the chemical potential at the interface, which is denoted by μI , more
quantitatively from the numerical data (ρi )

N
i=1 and (μ̃i )

N
i=1. In principle,wefirst determine the

interface position X I from the data (ρi )
N
i=1, and then read the value of the chemical potential
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Fig. 7 a Density profile ρi for i/N . b Chemical potential profile μ̃i for i/N . κΛ = 0.5 and κΛ = 1.5. The
dotted line in (b) represents the equilibrium profile of chemical potential μ̃i = μc = 0

at the interface position from the data (μ̃i )
N
i=1. In practice, we use the linear interpolation of

the data sets to systematically estimate μI for several parameters. That is, we define a piece-
wise linear function ρ(x) for 0 ≤ x ≤ 1 by connecting two consecutive points (i/N , ρi ) and
((i + 1)/N , ρi+1) for 0 ≤ i ≤ N in the graph of (i/N , ρi )

N
i=1. We then define the interface

position X I as ρ(X I ) = 1.5, where (ρG
c + ρL

c )/2 = 1.5. Similarly, we define μ̃(x) from
(μ̃i )

N
i=1. Using this X

I and μ(x), we obtain μI = μ̃(X I ). More explicitly, μI is determined
as follows. First, we find i∗ satisfying ρi∗−1 > 1.5 and ρi∗ < 1.5. From the construction of
ρ(x), we obtain

X I = 1.5 − ρi∗
ρi∗−1 − ρi∗

i∗ − 1

N
+ ρi∗−1 − 1.5

ρi∗−1 − ρi∗

i∗
N

. (6.3)

We then have

μI = 1.5 − ρi∗
ρi∗−1 − ρi∗

μ̃i∗−1 + ρi∗−1 − 1.5

ρi∗−1 − ρi∗
μ̃i∗ . (6.4)

Using this formula, we haveμI = 7.7×10−3 for the data of κΛ = 0.5, andμI = 2.1×10−4

for the data of κΛ = 1.5. In Fig. 8, μI obtained by (6.4) are plotted for several values of κΛ.
Now, we compare the numerical results with the theoretical predictions. We developed

the theory of the steady state in the weak noise limit Teff � 1 and the macroscopic limit
N � 1, with particularly focusing on the two regimes κΛ � 1 and κΛ � 1. When κΛ � 1,
the chemical potential at the interface isμc = 0, as shown in Appendix B.When κΛ � 1, we
have the formula (4.22), whereμc = 0, σL = 2.5, and σG = 1.5were already determined for
the model in the first paragraph of this section. X eq in the right-side of (4.22) is determined
as X eq = 1/2 using (2.18) with ρ̄ = 1.5, ρL

c = 2.5, ρG
c = 0.5. By substituting these values

into (4.22), we obtain

μI
X∗ = φ

6
+ O(φ2). (6.5)

The dotted lines in Fig. 8 represent the theoretical predictions μI/φ = 1/6 for κΛ � 1 and
μI/φ = 0 for κΛ � 1. These are consistent with the numerical result in Fig. 8.

It is quite interesting to elucidate the κΛ dependence of μI quantitatively. In particular,
onemay conjecture a phase transition at some value of κΛ in the limit N → ∞. To investigate
the validity of this naive conjecture, we have to numerically study the asymptotic behavior
for N → ∞, Teff → 0 and φ → 0 in more detail. From the theoretical viewpoint, we need
to develop a calculation method for thermodynamic properties of the system with finite κΛ.
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Fig. 8 κΛ dependence of μI .
Square symbols show the
numerical results for N = 64.
The two dotted lines represent the
theoretical predictions μI = φ/6
for κΛ � 1 and μI = 0 for
κΛ � 1

7 Concluding Remarks

We have derived the variational function determining the steady state for a boundary-driven
diffusive system with κΛ � 1. The result is consistent with global thermodynamics, which
is an extended framework of thermodynamics. Before ending the paper, we present a few
remarks.

The first remark is on the boundary conditions. It is natural to study a system with dif-
ferent boundary conditions leading to the same most probable profile. As more familiar
boundary conditions, one considers the case that chemical potentials at boundaries are fixed.
However, as far as we attempted, we could not evaluate the Zubarev-McLennan represen-
tation for this case. To study the boundary condition dependence of the system is a future
problem.

Second, in general, fluctuating hydrodynamics is regarded as amesoscopicmodel obtained
by coarse-graining microscopic dynamics. Thus, it is a significant problem to find relation-
ship between microscopic dynamics and the discrete fluctuating dynamics. As the first step
of such studies, parameter values of the model should be determined from the observation
of microscopic dynamics. In particular, it seems highly challenging to identify the value of
κΛ from microscopic models.

Third, as a generalization of the present model, one may consider a discrete fluctuating
hydrodynamics describing liquid–gas phase coexistence in heat conduction systems. One can
numerically study the model by changing κΛ. It is interesting to observe the deviation of the
interface temperature from the equilibrium coexistence temperature. Furthermore, following
the theoretical method presented in this paper, we may develop a theory for calculating the
deviation. We conjecture that the deviation formula is equivalent to that predicted by global
thermodynamics.

The most important future work is an experimental observation of non-equilibrium
phase coexistence in which metastable states are stable as the influence of a non-
equilibrium current. As shown in this paper, the phenomenon is expected to occur in
systems described by a discrete fluctuating hydrodynamics. However, it is not obvious
whether experimental systems are described by a discrete fluctuating hydrodynamics. It
would be interesting to clarify an experimental condition for realizing a discrete fluctuating
hydrodynamics.
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Appendix A: Derivation of (2.14)

In this section, we derive the the stationary distribution of ρ for the equilibrium system with
φ = 0. In general, to analyze statistical properties of ρ(t) obeying (2.8) with (2.10), it is
convenient to use a new variable ψ = (ψi )

N
i=1 for ρ. The introduction of the new variable is

another purpose of this section. See Appendix C for the analysis using ψ .
We first define ψi (t) by

dψi (t)

dt
= − ji (t) (A.1)

with ψi (0) = Λ
∑i

j=1 (ρ j (0) − ρ̄) at t = 0. Substituting (A.1) into (2.8) and integrating it
in time, we have

ρi (t) = ψi (t) − ψi−1(t)

Λ
+ρ̄ (A.2)

for any t . Substituting (A.2) intoF(ρ) given by (2.7), we can defineF(ψ) fromF(ρ). Taking
the derivative of F(ψ) in ψi , we obtain

∂F
∂ψi

=
(

∂F
∂ρi

− ∂F
∂ρi+1

)
1

Λ
= μ̃i − μ̃i+1. (A.3)

Using (A.1) and (A.3), we rewrite (2.10) as

dψi

dt
= σ(ρm

i )

Λ

(
− ∂F

∂ψi
− φδi,N

)
+
√
2σ(ρm

i )Teff
Λ

· ξi (A.4)

with

ρm
i = ψi+1 − ψi−1

2Λ
+ ρ̄. (A.5)

Because σ(ρm
i ) is independent of ψi , the multiplication of σ(ρm

i ) and ξi is uniquely
determined independently of the multiplication rule. From (A.4), we obtain the stationary
distribution of ψ for the equilibrium system with φ = 0 as

Peq(ψ) = 1

Z ′ exp
[
− 1

Teff
F(ψ)

]
, (A.6)

where Z ′ is the normalization constant. This gives the stationary distribution of ρ as (2.14).

Appendix B: Analysis of the ContinuumModel

In this section, we analyze the continuum model (2.2) and (2.3) which corresponds to the
discrete model (2.8) and (2.10) in the limit κΛ → ∞ and N → ∞ with L and κ fixed.
Explicitly, we derive the phase coexistence condition (2.16) for the equilibrium system with
φ = 0 and the chemical potential at the interface for the case φ > 0.

B.1: Equilibrium Phase Coexistence

Stationary solutions of (2.2) and (2.3) with φ = 0 and T = 0 satisfy

∂x
δF

δρ(x)
= 0. (B.1)
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Using (2.5), (B.1) is explicitly written as

f ′(ρ) − κ∂2xρ = μc, (B.2)

where μc is a constant in x . Furthermore, multiplying (∂xρ) with (B.2) and integrating in x ,
we obtain

f (ρ) − κ

2
(∂xρ)2 − μcρ = pc, (B.3)

where pc is also a constant in x .
We first consider necessary conditions under which there is a stationary and spatially

inhomogeneous solution, which we call the phase coexistence solution, because it connects
two stationary and spatially homogeneous solutions that represent a liquid phase and a gas
phase, respectively. To make the argument clear, we take the limit L → ∞ and we assume
ρ(0) > ρ(∞) for the phase coexistence solution. Because the phase coexistence solution
approaches to the stationary and spatially homogeneous solutions ρ(0) and ρ(∞) as x → 0
and x → ∞, we have

∂xρ(0) = 0, ∂2xρ(0) = 0, ∂xρ(∞) = 0, ∂2xρ(∞) = 0. (B.4)

Therefore, (B.2) and (B.3) lead to necessary conditions as

μ(ρ(0)) = μ(ρ(∞)) = μc, (B.5)

and
f (ρ(0)) − μcρ(0) = f (ρ(∞)) − μcρ(∞) = pc, (B.6)

which is further rewritten as

μc = f (ρ(0)) − f (ρ(∞))

ρ(0) − ρ(∞)
. (B.7)

For the function f (ρ) with two local minima, the conditions (B.5) and (B.7) represents the
common tangent line at the special values ρ = ρL

c and ρ = ρG
c .We set ρL

c > ρG
c without loss

of generality. We thus identify ρ(0) = ρL
c and ρ(∞) = ρG

c , and the values of the constants
μc and pc are also determined. Note that (B.5) and (B.6) are regarded as the conditions giving
ρL
c , ρ

G
c , μc and pc by the form

μ(ρL
c ) = μ(ρG

c ) = μc, p(ρL
c ) = p(ρG

c ) = pc. (B.8)

Now, suppose that ρ̄ satisfies ρG
c < ρ̄ < ρL

c , where ρG
c and ρL

c are determined by (B.8).
By setting ρ(0) = ρL

c and ρ(∞) = ρG
c , we solve (B.2) with the determined value of μc. We

here notice that (B.2) is interpreted as Newton’s equation describing the motion of a point
particle under a potential field, where ρ and x correspond to position and time, respectively. κ
is interpreted as the mass, and the potential function V (ρ) is given by V (ρ) ≡ μcρ − f (ρ).
(B.3) represents the energy conservation for the equation of motion. From (B.8), we find
that ρL

c and ρG
c are local maximal points with the same potential value. Therefore, the phase

coexistence solution ρ(x) with ρ(0) = ρL
c and ρ(∞) = ρG

c is given by the heteroclinic orbit
connecting the two maximal points with the same potential value. This result corresponds to
the statement involving (2.16) in the main text.
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B.2: Non-equilibrium Phase Coexistence

Stationary solutions of (2.2) and (2.3) with φ > 0 and T = 0 satisfy

∂x
δF

δρ(x)
= − J

σ(ρ(x))
, (B.9)

which corresponds to (2.27) in the continuum limit κΛ → ∞ and N → ∞, where J is a
constant given by

J =
(∫ L

0
dx

1

σ(ρ(x))

)−1

, (B.10)

which corresponds to (2.28) in the continuum limit κΛ → ∞ and N → ∞. By analyzing
(B.9), we determine the value of the chemical potential at the interface.

First, to uniquely identify the interface position,we introduce a scaled coordinate x̂ = x/L .
Taking the limit L → ∞, we find that the interface width in the scaled coordinate space
becomes zero. Thus, the interface position X in the x̂ space is given by the discontinuous
point of ρ(x̂) in the limit L → ∞. We then define the chemical potential at the interface
by μ(x̂ = X). To determine the value of μ(x̂ = X), we consider the generalized chemical
potential μ̃(x) given by

μ̃(x) = μ(ρ(x)) − κ∂2xρ, (B.11)

which corresponds to (2.12) in the limit κΛ → ∞ and N → ∞. By integrating (B.9) in the
range [x1, x2], we have

μ̃(x2) − μ̃(x1) = −J
∫ x2

x1
dx

1

σ(ρ(x))
(B.12)

for any x1 and x2. Even though σ(ρ(x̂)) is discontinuous at x̂ = X , the integration in the
right-side of (B.12) gives a continuous function in x2 and x1. Thus, μ̃(x̂) is a continuous
function in the limit L → ∞.

Here, the key idea for the determination ofμ(x̂ = X) is the introduction of the generalized
pressure p̃ satisfying

ρ∂x μ̃ = ∂x p̃. (B.13)

We can explicitly derive p̃ from (B.11) and (B.13) as

p̃ = p(ρ) − κρ∂2xρ + κ

2
(∂xρ)2, (B.14)

which was first obtained by van der Waals [29]. By integrating (B.13) in the range [x1, x2],
we have

p̃(x2) − p̃(x1) = −J
∫ x2

x1
dx

ρ(x)

σ (ρ(x))
, (B.15)

for any x1 and x2.We find from (B.15) that p̃(x̂) is a continuous function in the limit L → ∞.
Note that p̃(x) = pc for the equilibrium system, where pc is the constant given in (B.3).

Now, using the continuity of μ̃(x̂) and p̃(x̂) at x̂ = X , we can determine the values of
ρ(x̂ = X − ε) and ρ(x̂ = X + ε) for small ε > 0 in the limit L → ∞. Let ρ− and ρ+ be
ρ(x̂ = X − ε) and ρ(x̂ = X − ε) for ε → 0+ after taking the limit L → ∞. The continuity
of μ̃(x̂) and p̃(x̂) at x̂ = X leads to

μ(ρ−) = μ(ρ+), p(ρ−) = p(ρ+). (B.16)
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Recalling (B.8), we obtain
ρ− = ρL

c , ρ+ = ρG
c . (B.17)

Therefore, the chemical potential at the interface is equal to μc. The result is mentioned in
the third paragraph of Sect. 2.3 in the main text.

Finally, we present a remark on the singular continuum description for the case κΛ → 0
in Sect. 2.4. The chemical potentialμ(x̂) is continuous at the interface position x̂ = X where
ρ(x̂) is discontinuous. In this case, however, p(x̂) is discontinuous at x̂ = X , as shown by
(4.27). That is, (B.13) does not hold at the interface. This is the most essential difference
between the two cases κΛ � 1 and κΛ � 1.

Appendix C: Zubarev-McLennan Representation

In this section, we derive the Zubarev-McLennan representation (3.1) in Sect. 3.1.
We study stochastic processes of ψ = (ψi )1≤i≤N defined by (A.1). The time evolution

of ψ is described by (A.4). Let ψ̂ = (ψ t )
τ
t=0 be a trajectory in the time interval [0, τ ]. The

path probability density Ppath(ψ̂) in the system with φ > 0 starting from a density profile
sampled from an equilibrium distribution Peq(ψ0) is expressed as

Ppath(ψ̂) = Peq(ψ0) × const

× exp

(
− 1

4Teff

∫ τ

0
dt

N∑
i=1

Λ

σ(ρm
i )

[
dψi

dt
+ σ(ρm

i )

Λ

(
∂F
∂ψi

+ φδi,N

)]2)
.

(C.1)

For the time-reversed trajectory ψ̂
† = (ψτ−t )

τ
t=0 of ψ̂ , we have

Ppath(ψ̂
†
) = Peq(ψτ ) × const

× exp

(
− 1

4Teff

∫ τ

0
dt

N∑
i=1

Λ

σ(ρm
i )

[
−dψi

dt
+ σ(ρm

i )

Λ

(
∂F
∂ψi

+ φδi,N

)]2)
.

(C.2)

The ratio of the two yields

Ppath(ψ̂)

Ppath(ψ̂
†
)

= exp

[
− 1

Teff
φ

∫ τ

0
dt

dψN (t)

dt

]
, (C.3)

where (A.6) has been substituted into Peq(ψ0) and Peq(ψτ ).
To simplify the notation, we introduce the accumulated current

Qτ (ψ̂) ≡
∫ τ

0
dt jN (t). (C.4)

Using (A.1) and (C.4), we rewrite (C.3) as

Ppath(ψ̂)

Ppath(ψ̂
†
)

= exp

[
φQτ

Teff

]
. (C.5)
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The distribution of ψ at time t is expressed as

Pτ (ψ) =
∫

Dψ̂ Ppath(ψ̂)δ(ψτ − ψ)

=
∫

Dψ̂
†
exp

[
φQτ (ψ̂)

Teff

]
Ppath(ψ̂

†
)δ(ψτ − ψ), (C.6)

wherewehave usedDψ̂ = Dψ̂
†
and (C.5).When the path integration variable is transformed,

the right side of (C.6) is rewritten as

∫
Dψ̂ exp

[
φQτ (ψ̂

†
)

Teff

]
Ppath(ψ̂)δ(ψ0 − ψ),

=
∫

Dψ̂ exp

[
−φQτ (ψ̂)

Teff

]
Ppath(ψ̂)δ(ψ0 − ψ), (C.7)

where we have used Qτ (ψ̂
†
) = −Qτ (ψ̂). We thus have the relation

Pτ (ψ) = Peq(ψ)

〈
exp

[
−φQτ

Teff

]〉
ψ

. (C.8)

Taking the limit τ → ∞, we have

Pss(ψ) = Peq(ψ)

〈
exp

[
−φQ

Teff

]〉
ψ

(C.9)

with

Q =
∫ ∞

0
dt jN (t). (C.10)

In the limit Teff → 0, we estimate
〈
exp

[
−φQ

Teff

]〉
ψ

� exp

[
−φ 〈Q〉ψ

Teff

]
. (C.11)

We then expand 〈Q〉ψ in φ, and we obtain

Pss(ψ) = Peq(ψ) exp

[
−φ 〈Q〉eq

ψ + O(φ2)

Teff

]
. (C.12)

This is the Zubarev-McLennan representation of the steady state distribution. By using (A.2),
we obtain the stationary distribution of ρ as the form (3.1).

Appendix D: Derivation of (3.23)

In (3.21), we consider the decomposition of j(0, t) into Φ(t) and Φ0(t). In this section, we
calculate Φ0(t).
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D.1: Preliminaries for the Calculation

We first note that (3.14) and (3.16) yield

d X̂↓
dt

= dŶ

dt
+ 1

2

d|DL|
dt

,
d X̂↑
dt

= dŶ

dt
− 1

2

d|DL|
dt

,
d|DG|
dt

= −d|DL|
dt

. (D.1)

From the chain rule of the derivative, we have

d

dt

[ |DL|
σL + |DG|

σG

]−1

= −
[ |DL|

σL + |DG|
σG

]−2

◦
[

1

σL

d|DL|
dt

+ 1

σG

d|DG|
dt

]

= −
(

1

σL − 1

σG

)[ |DL|
σL + |DG|

σG

]−2

◦ d|DL|
dt

, (D.2)

and

d

dt

[
1

σL

∫
DL

dx ψ + 1

σG

∫
DG

dx ψ

]
= d

dt

[
1

σL

∫ X̂↓(t)

X̂↑(t)
dx ψ + 1

σG

∫ X̂↑(t)+1

X̂↓(t)
dx ψ

]

= 1

σL

[
ψ(X̂↓(t), t) ◦ d X̂↓

dt
− ψ(X̂↑(t), t) ◦ d X̂↑

dt

]

+ 1

σG

[
ψ(X̂↑(t), t) ◦ d X̂↑

dt
− ψ(X̂↓(t), t) ◦ d X̂↓

dt

]

+ 1

σL

∫
DL

dx ∂tψ + 1

σG

∫
DG

dx ∂tψ

=
(

1

σL − 1

σG

)[(
ψ(X̂↓(t), t) − ψ(X̂↑(t), t)

)
◦ dŶ

dt

+1

2

(
ψ(X̂↓(t), t) + ψ(X̂↑(t), t)

)
◦ d|DL|

dt

]

+ 1

σL

∫
DL

dx ∂tψ + 1

σG

∫
DG

dx ∂tψ. (D.3)

D.2: Relation Between8(t) and j(0, t)

Noting the two derivatives (D.2) and (D.3), we define

Φ1 ≡ −
(

1

σL − 1

σG

)[ |DL|
σL + |DG|

σG

]−2 [
1

σL

∫
DL(t)

dx ψ + 1

σG

∫
DG(t)

dx ψ

]
◦ d|DL|

dt
,

(D.4)

Φ2 ≡
(

1

σL − 1

σG

)[ |DL|
σL + |DG|

σG

]−1

×
[ (

ψ(X̂↓(t), t) − ψ(X̂↑(t), t)
)

◦ dŶ

dt

+ 1

2

(
ψ(X̂↓(t), t) + ψ(X̂↑(t), t)

)
◦ d|DL|

dt
.

]
(D.5)

Then, the definition of Φ(t) in (3.22) leads to

Φ(t) = Φ1(t) + Φ2(t) + j(0, t) (D.6)
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by using (3.20). Here, from the piece-wise linear nature of ψ(x, t), we have

1

σL

∫
DL(t)

dx ψ + 1

σG

∫
DG(t)

dx ψ = 1

2

[ |DL|
σL + |DG|

σG

] (
ψ(X̂↓(t), t) + ψ(X̂↑(t), t)

)
.

(D.7)

See also (3.31) for the same equation. Using this relation, we obtain

Φ1 + Φ2 =
(

1

σL − 1

σG

)[ |DL(t)|
σL + |DG(t)|

σG

]−1 (
ψ(X̂↓(t), t) − ψ(X̂↑(t), t)

)
◦ dŶ

dt
.

(D.8)
Finally, we note that

ψ(X̂↓(t), t) − ψ(X̂↑(t), t) =
∫
DL

dx ∂xψ,

= |DL(t)|(ρL(t) − ρ̄). (D.9)

Substituting this into (D.8), we obtain (3.23) where Φ0 ≡ Φ1 + Φ2.
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