
Article
iScience
Identification of meibomia
n gland testosterone
metabolites produced by tissue-intrinsic intracrine
deactivation activity
Graphical abstract
Highlights
d Eyelid meibomian glands endogenously deactivate

testosterone

d The meibomian gland testosterone metabolites are

conserved between humans and mice

d There is no sex-related difference in meibomian testosterone

metabolism

d Enzymes for testosterone production and deactivation are

present in meibomian cells
Nguyen Pham et al., 2025, iScience 28, 111808
February 21, 2025 ª 2025 The Author(s). Published by Elsevier In
https://doi.org/10.1016/j.isci.2025.111808
Authors

Khanh Tien Nguyen Pham,

Takahito Miyake, Tomo Suzuki, ...,

Takeshi Nakajima, Emi Hasegawa,

Masao Doi

Correspondence
doimasao@pharm.kyoto-u.ac.jp

In brief

Biochemistry; Molecular Biology;

Physiology
c.

ll

mailto:doimasao@pharm.kyoto-u.ac.jp
https://doi.org/10.1016/j.isci.2025.111808
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2025.111808&domain=pdf


OPEN ACCESS

iScience ll
Article

Identification of meibomian gland testosterone
metabolites produced by tissue-intrinsic
intracrine deactivation activity
Khanh Tien Nguyen Pham,1 Takahito Miyake,1 Tomo Suzuki,2,3 Shigeru Kinoshita,4 Yuki Hamada,1 Hikari Uehara,1

Mamiko Machida,5 Takeshi Nakajima,5 Emi Hasegawa,1 and Masao Doi1,6,*
1Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Saky�o-ku, Kyoto 606-8501, Japan
2Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kamigy�o-ku, Kyoto 602-0841, Japan
3Department of Ophthalmology, Kyoto City Hospital, Nakagy�o-ku, Kyoto 604-8845, Japan
4Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kamigy�o-ku, Kyoto

602-0841, Japan
5Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co., Ltd., Kobe 650-0047, Japan
6Lead contact
*Correspondence: doimasao@pharm.kyoto-u.ac.jp

https://doi.org/10.1016/j.isci.2025.111808
SUMMARY
Intracrinology—wherein hormones are synthesized in the organ where they exert their effect without release
into circulation—has been described. However, molecular mechanisms of hormone deactivation within intra-
crine tissue are still largely unknown. The meibomian glands in the eyelids produce oil (meibum) to the ocular
surface to prevent dehydration (dry eye). Androgens are generated inside this gland and are crucial for its tis-
sue-homeostasis. However, there is no data showing the presence of androgens in meibum, implying local
conversion/deactivation into unknown metabolites. Here, we performed radioactive tracer studies in combi-
nation with pharmacological enzyme inhibition, followed by targeted liquid chromatography-tandem mass
spectrometry (LC-MS/MS) analysis, and found three androgen metabolites—androstanedione, andros-
terone, and epiandrosterone—in mouse and human meibomian glands. Accounting for the enzymatic con-
version, we show tissue-endogenous 3a/3b-ketosteroid reductase expression. We therefore reinforce the
idea that androgens are metabolically inactivated within the glands. These metabolite markers may help to
assess meibomian local androgen activity using meibum.
INTRODUCTION

Canonically, hormones are produced by endocrine organs and

delivered to distal target tissues. However, for steroids, the

concept of ‘‘intracrinology,’’ whereby hormones are synthesized

in the tissue where they exert their effect without release into cir-

culation, has been described1–3 for a number of extra-gonadal

tissues such as uterine endometrium4–6 and skin sebaceous

gland7,8 as well as several cancerous tissues including those of

the prostate,9,10 breast,11,12 and bone.13 Yet, the mechanisms

by which active steroid hormones are degraded in intracrine tis-

sues are still not fully understood. The degradation or deactiva-

tion of bioactive steroids is as crucial as the synthesis of new

ones in determining the timing and location of their biological ef-

fects in vivo. Our study focuses on the degradation process of

steroid hormones in the meibomian gland, a recently recognized

intracrine tissue14 situated in the tarsal plate of the eyelids.

The meibomian glands are responsible for producing and

secreting an oily substance called meibum. This meibum oil

forms a crucial part of the tear film that covers the ocular surface.

The primary function of meibum is to slow down the evaporation

of the tear film, thereby preventing the eyes from drying out and
iScience 28, 111808, Febru
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maintaining proper lubrication for optimal vision. Therefore,

dysfunction of the meibomian glands leads to dry eye conditions

and other ocular surface disorders; particularly, it is recognized

that meibomian gland dysfunction is clinically the most common

cause of evaporative dry eye disease.15–21

Androgens are generated or activated inside the meibomian

glands in both females and males, and these hormones are

crucial to promote meibum production.15 The meibomian gland

acinar cells express the androgen receptor (AR)22,23 and its acti-

vation causes upregulation of meibum production through a ho-

locrine mechanism.14,15 Androgen deficiency—such as that

caused by antiandrogen clinical treatment—has been reported

to be associated with the development of meibomian gland

dysfunction.24,25 Thus, evidence suggests that measuring

androgen activity within the meibomian gland could be clinically

relevant in understanding the etiology of meibomian gland

dysfunction and its related dry eye symptoms.26,27 However, at

present, there is no clinical biomarker to reflect local androgen

activity in the meibomian gland.

At the molecular level, we previously demonstrated that the

meibomian gland acinar cells express the type I 3b-hydroxyste-

roid dehydrogenase (type I 3b-HSD, or HSD3B1), which allows
ary 21, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Tracing of tissue-endogenous testosterone metabolism in the meibomian gland
(A) Schematic illustration of radioisotopic testosterone tracing. Freshly isolatedmouse tissueswere incubated in vitrowith 3H-labelled testosterone (3H-Te) and its

metabolites were detected using an HPLC-flow scintillation analyzer.

(B) Representative chromatograms showing metabolites of testosterone in the meibomian gland of male and female mice. Boiled male and female meibomian

gland tissues serve as control. Metabolites in the adrenal gland and testis were analyzed in comparison. Peaks labeled as X, Y, Z, a, b, c, and d in the meibomian

gland were analyzed in Figures 2 and 3.
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on-site production of androgens (conversion of their precursor

substrates to active androgens) in the meibomian gland.14 These

locally activated hormones are believed to function only in the

meibomian gland, because they are likely inactivated in the

same tissue. This localized hormone action likely ensures that

hormones exert their effects only in the tissue where they are pro-

duced. While part of the mechanism of androgen synthesis in the

meibomian gland has been elucidated,14,28 the equally important

process of hormonal inactivation remains less understood. Spe-

cifically, the molecular identity of androgen metabolites and the

enzymes responsible for their inactivation are still unknown.

There are comprehensive lipidome studies characterizing the

meibum in humans; however, none reported the existence of an-

drogens, such as testosterone (Te), in human meibum samples

tested.29–35 This absence may be due to the low levels of Te,

possibly because it is inactivated into othermetabolites. The cur-

rent study, therefore, aimed to identify tissue-endogenous Te

metabolites in human and mouse meibomian gland. To this

end, we first traced candidate Te metabolites in mice and then

applied these findings to humans by analyzing human meibum

metabolites.

RESULTS

Tracing testosterone metabolites
To gain insight into previously uncharacterized tissue-endoge-

nous metabolism or catabolism of testosterone within the mei-

bomian gland, we initiated our study by performing radioisotopic

tracer experiments using mouse tissues incubated with radioac-

tive tritium-labeled testosterone (3H-Te) (Figure 1A). Metabolites

were separated by HPLC, followed by radioisotope measure-

ment using an online-linked flow scintillation analyzer (see
2 iScience 28, 111808, February 21, 2025
STARMethods). Freshly isolatedmouse wholemeibomian gland

tissues, incubated in vitro with 3H-Te, produced three dominant

radioactive metabolites with retention times of 28 min (peak X),

33min (peak Y), and 34min (peak Z), withminor or trace amounts

of radioactive products around 21min (peak a), 23min (b), 27min

(c), and 29 min (d), all of which were undetectable in boiled mei-

bomian tissue (see Figure 1B). There was no obvious sex-related

difference as revealed by similar radioactive products of 3H-Te in

the meibomian gland of female mice. In comparison, testos-

terone (3H-Te) largely remained unconverted after incubation

with the isolated testis or the adrenal gland. A different product

peaking around 8 min was mainly observed in the adrenal gland

(Figure 1B), indicating that themeibomian gland possesses a tis-

sue-unique and potent metabolic activity against testosterone.

Effects of blocking 5a-reductase and aromatase on
meibomian gland Te metabolites
To gain insights into the nature of meibomian gland Te metabo-

lites, we first examined the influence of blocking 5a-reductase

and aromatase on the appearance of each product (Figure 2A).

We observed that all products except a (that is, X, Y, Z, b, c,

and d) were profoundly reduced by the treatment of dutasteride,

a 5a-reductase inhibitor (Figure 2B). The peak area ratios of X, Y,

and Z were significantly decreased upon dutasteride treatment

relative to those of vehicle control, with an accompanied signif-

icant increase of the peak area of a (Figure 2B). On the other

hand, fadrozole, a specific inhibitor for aromatase, did not pro-

duce statistically significant effect on the appearance of metab-

olites (Figure 2B), indicating that the metabolites X, Y, Z, and

others were raised through 5a-reductase, not aromatase, and

that the metabolite a was produced at the expense of the in-

hibited 5a-reductase-mediated metabolism to X�Z.



Figure 2. Effects of pharmacological inhibition of 5a-reductase by dutasteride and aromatase by fadrozole on the testosterone metabolism

in the meibomian gland

(A) Potential metabolic pathway of Te and A4 via 5a-reductase (blue) and aromatase (red).

(B) Example chromatograms and peak-area ratio of 3H-Te metabolites in the meibomian gland incubated with dutasteride, fadrozole or vehicle (0.5% DMSO)

(n = 5 for each condition).

(C) Example chromatograms and peak-area ratio of 3H-A4 metabolites in the meibomian gland incubated with dutasteride, fadrozole or vehicle (0.5% DMSO)

(n = 3 for each condition).

(D) Example chromatograms and peak-area ratio of 3H-DHTmetabolites in the meibomian gland treated with dutasteride or vehicle (0.5%DMSO) (n = 3 for each).

Data in (B), (C) and (D) were analyzed using two-way analysis of variance (ANOVA) followed by Bonferroni’s post hoc test. ANOVA interaction: ##p < 0.01,

####p < 0.0001, N.S., not significant. *p < 0.05, **p < 0.01, ****p < 0.0001 versus each DMSO control. A4, androstenedione; DHT, 5a-dihydrotestosterone.
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Androstenedione and 5a-dihydrotestosterone are not
metabolites X, Y, and Z
Next, the RI tracer experiments were performed using different

substrates (Figures 2C and 2D). Androstenedione (A4) is a poten-

tial Te metabolite that could accumulate upon the blockade of
5a-reductase (see Figure 2A). We thus assumed that the product

amightbeA4.Consistently, 3H-labeledA4 (3H-A4)notonlyhad the

same retention time as the metabolite a in the chromatogram but

alsoproduced threedominantmetabolites,most likelyX,Y, andZ,

in a manner that depended on 5a-reductase activity (Figure 2C).
iScience 28, 111808, February 21, 2025 3
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We also speculated that 5a-dihydrotestosterone (DHT) might

be included among the major metabolites X�Z. However, this

was not the case. 3H-labeled DHT eluted at a similar elution

time as d and was converted into radioactive products resem-

bling X, Y, Z, b, and c (but not a) (Figure 2D); These conversions

were not affected by dutasteride treatment (Figure 2D), consis-

tent with DHT being already a 5a-reduced product of Te (see a

metabolic pathway, Figure 2A). These data suggest that the

three major metabolites, X, Y, and Z, are likely 5a-reduced

testosterone metabolites or their derivatives, distinct from DHT.

Mass spectrometric identification of meibomian gland
Te metabolites
To characterize the identity of meibomian gland Te metabolites,

we next utilized targeted liquid chromatography-tandem mass

spectrometry (LC-MS/MS) approach (Figure 3). To this end, we

searched for the presence of androstanedione (adione), andros-

terone (ADT), epiandrosterone (epiADT), DHT, 5a-androstane-

3a,17b-diol (3a-diol), and 5a-androstane-3b,17b-diol (3b-diol),

all of which are potential 5a-reduced Te metabolites, in addition

to A4—the 17-oxidized metabolite (metabolite a) tested in Fig-

ure 2C. Non-radioactive Te was incubated in vitro with isolated

meibomian tissues, and metabolites were identified by

comparing the mass spectra and retention times with those of

the authentic standards (Figures S1 and 3A). In the uppermost

chromatogram in Figure 3A, radioactive 3H-Te metabolites

were separated using the same LC conditions as themass spec-

trometry to facilitate comparison of the metabolites’ retention

times. With these conditions, we obtained LC-MS/MS chro-

matograms consistent with the idea of the Te metabolites X, Y,

Z, a, b, and c being epiADT, adione, ADT, A4, 3b-diol, and

3a-diol, respectively (Figure 3A). All these metabolites were not

produced in boiled meibomian gland (Figure 3A, red chromato-

grams). Moreover, in dutasteride-treated meibomian glands

(Figure 3B), the production of epiADT (X), adione (Y), and ADT

(Z) was suppressed, while A4 (a) and Te accumulated, compat-

ible with the data in Figure 2B, which supports the identification

of X, Y, and Z as epiADT, adione, and ADT, respectively. Our

data therefore suggest that in the meibomian gland, the

5a-reduced A4 metabolite, which is adione (Y, see a schematic

in Figure 3C), is converted into two distinct enantiomeric metab-

olites, ADT (Z) or epiADT (X), through the enzymatic reaction via

the 3a-ketosteroid reductase (3a-KSR) or 3b-ketosteroid reduc-

tase (3b-KSR), respectively (Figure 3C).

Detection of Te metabolites in human meibum
Based on our initial motivation, we finally inquired whether the

identified three major Te metabolites can be found in meibum

samples taken from human eyelids (Figure 4). Meibum samples

were obtained from healthy volunteers as described in STAR
Figure 3. Mass spectrometric characterization of testosterone metabo

(A) LC-MS/MS MRM total ion chromatograms of testosterone (Te) and potentia

androstanedione (adione), androsterone (ADT), 5a-androstane-3b,17b-diol (3b-d

treated meibomian gland (blue) and those with boiled meibomian gland (red). For

method (top). Authentic standards serve to verify the retention time of metabolite

(B) LC-MS/MS chromatograms of Te, A4, epiADT, adione and ADT of testostero

(C) Proposed testosterone metabolic pathway in the meibomian gland.
Methods (see also Figure 4A). To enhance theMS/MS sensitivity,

we employed a quaternary aminooxy (QAO) reagent to derivatize

the carbonyl functional group of Te, epiADT, adione, and ADT

(see Figure 4B, left). Te was undetectable or below the lower limit

of quantitation (LOQ) in almost all human meibum samples

tested (Figure 4C; see also Table S1). On the other hand, adione,

ADT, and epiADT (the threemajormouse Temetabolites) were all

readily detectable with an average concentration normalized by

total cholesterol of 0.30 ± 0.02 (SEM) fmol/nmol for adione,

0.05 ± 0.005 fmol/nmol for ADT, and 0.03 ± 0.002 fmol/nmol

for epiADT. There was no sex-related difference in the amount

of metabolites (mean ± SEM, fmol/nmol, for adione, male,

0.32 ± 0.02, female, 0.27 ± 0.04; ADT,male, 0.05 ± 0.005, female,

0.05 ± 0.01; epiADT, male, 0.03 ± 0.003, and female, 0.02 ±

0.003) (Figure 4C), reminiscent of the similarity between male

and female Te metabolite profiles traced in mice (Figure 1B).

As shown in Figure 4D, existence of ADT and epiADT in human

meibum samples was further corroborated by immunostaining of

the corresponding enzyme; We used a specific antibody to

AKR1C3 and AKR1C4 (anti-AKR1C3/4) because the enzymes en-

codedbyhumanAKR1C3 andAKR1C4 are reported to exhibit 3a/

3b-KSR activity in vitro36,37 and expression surveys using acces-

sible transcriptome datasets for human meibomian gland tissue

and cells point to the presence of these enzymes among the other

AKR1C subtypes at the mRNA level.38,39 We also used a specific

antibody to HSD3B1, which is the enzyme essential for producing

androgen40 and has been demonstrated to be present in the mei-

bomian gland cells of both men and women,14 for comparison.

Immunohistochemistry (Figure 4D) revealed strong anti-

AKR1C3/4 immunoreactivities within the meibomian gland

acinar cells, but not in duct/ductule cells or adjacent connective

tissues. Anatomically, each single meibomian gland is

composed of multiple acini connected via short ductules to a

long central duct that extends to the orifice at the eyelid

margin17,41: anti-AKR1C3/4 immunoreactivities were detected

in nearly all acini and broadly distributed within each of them

(Figure 4D). A similar staining pattern was also observed using

a different antibody (see Figure S2). Moreover, no obvious differ-

ence was observed between male (Figure 4D, left) and female

(Figure 4D, right) eyelids, consistent with the detection of similar

metabolites in both sexes.

The expression of HSD3B1, an androgen-producing enzyme,

was distributed in acini but in a mosaic distribution pattern,14 re-

sulting in the observation that nearly all HSD3B1-immuno-posi-

tive cells (green) are also immunopositive for AKR1C3/4 (red),

but not vice versa (Figure 4E, dual-label immunofluorescence

for HSD3B1 and AKR1C3/4) (see also serial flip-flop tissue sec-

tions for HSD3B1 and AKR1C3/4, Figure 4D). It is likely that Te in

the meibomian gland is metabolized inside as well as outside of

the HSD3B1-positive cells by AKR1C3/4.
lites produced by the meibomian gland

l testosterone metabolites, androstenedione (A4), epiandrosterone (epiADT),

iol) and 5a-androstane-3a,17b-diol (3a-diol), of testosterone (non-radioactive)-

comparison, RI chromatography was performed in parallel using the same LC

s (black). b, 3b-diol; c, 3a-diol; d, not determined.

ne-treated meibomian gland with or without dutasteride application.
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DISCUSSION

The current studywas conducted to approach the identity of pre-

viously uncharacterized Te metabolite-species contained in the

human meibomian gland’s secretion. Not surprisingly, Te itself

was not detected at a quantifiable concentration in human mei-

bum samples tested.29–35 To approach the unknown metabo-

lites, we took advantage of the hypothetical resemblance of

mouse and human meibomian gland and traced the tissue-

endogenous Te metabolism using the mouse meibomian gland

tissue, which eventually led to identifying three Te metabolites,

adione (androstanedione), epiADT (epiandrosterone), and ADT

(androsterone) in human and mouse meibomian gland. No

obvious sex-related differencewas observed. These results sup-

port the notion that humans and mice exhibit similar tissue-

endogenous androgen inactivation profiles in the meibomian

gland (see Figure S3, a schematic summary of our findings).

Intracrine activity does not solely refer to the activity of hor-

mone production in situ but it also denotes the activity of

hormone inactivation inside the tissue where the hormone is

produced and acts.1–13,42–46 Previously, we elaborated on the

aspect of hormone production by showing the presence of

3b-HSD enzyme responsible for the local androgen production

in the meibomian gland14; however, the mechanism of hormone

inactivation limb remains poorly understood. In the present

study, we identified detectable amounts of three specific Te me-

tabolites—epiADT, ADT, and adione—in human meibum sam-

ples. We also found that human meibomian gland acinar cells

strongly express 3a/3b-KSR (AKR1C3/4), which aligns with

the detection of epiADT and ADT. This enzyme catalyzes

3-ketosteroid reduction to inactivate androgens.37 Of interest,

the expression of 3a/3b-KSR (AKR1C3/4) was more broadly

distributed than that of 3b-HSD. This spatial relationship be-

tween 3b-HSD (androgen-activating enzyme) and 3a/3b-KSR

(androgen-inactivating enzyme) supports the concept of robust

testosterone metabolism involving both 3b-HSD-positive and

negative cells (Figure S3). The large inactivation area surround-

ing the activation site likely explains the loss of detectable levels

of Te during meibum secretion. In addition, the time that this

secretion (holocrine) takes reaches as long as �9 days, as re-

ported in rats,47 providing an additional reason for undetectable

levels of Te in the meibum. This enzymatically robust deactiva-

tion system may also apply to other tissues; in skins, 3a/3b-

KSR is reported to broadly distribute in epidermis,48 while

3b-HSD is confined to the sebaceous gland.49 In breast and
Figure 4. Human meibum testosterone metabolites and corresponding

(A) Meibum collection.

(B) Representative LC-MS/MS chromatograms showing QAO-derivatized Te, ad

each QAO-derivative shown on the left.

(C) Relative concentration of Te, adione, ADT, and epiADT inmeibum specimen fro

boundaries mark the 25th and 75th percentiles, and the whiskers indicate minima

(D and E) 3a-/3b-KSR expression in human meibomian gland. (D) Anti-AKR1C3

chemistry using a pair of flip-flopped mirror image serial section from 41-year-old

region of magnified view. Representative AKR1C3/AKR1C4-immunopositive cel

label immunofluorescence of AKR1C3+4 (red) and HSD3B1 (green). The dotted b

double positive cells. Blue arrowheads, AKR1C3+4-positive and HSD3B1-nega

female meibomian gland.

Data in (C) was analyzed using two-way ANOVA followed by Bonferroni’s post h
prostate cancers, the expression of deactivation enzymes

(such as estrogen sulfotransferase and glucuronosyltransferase)

is negatively correlated with tumor progression and malig-

nancy.50,51 These findings align with the principle of intracrinol-

ogy, wherein hormones are inactivated within the same tissue

where they are synthesized, thereby limiting the influence of

bioactive hormones to the local region in which they are pro-

duced,1–13,42–46 and potential dysregulation of this system may

lead to pathological conditions.

A more precise explanation may be necessary for clarifying

why the meibomian Temetabolite species remained unidentified

till our study. Indeed, despite comprehensive lipidome studies

conducted for human meibomian gland excreta (meibum),

adione, ADT, epiADT have so far escaped identification.29–35

This is likely largely due to the scant presence of Te metabolites,

which are the catabolites of biological hormones, in the meibum,

compared to other lipid constituents: cholesteryl esters (68%

w/w), wax esters (25%), triacyl glycerol (5%), O-acyl-u-hydroxy

fatty acids (OAHFA) (4%), which are substantially more abundant

than adione (0.3 fmol/nmol total cholesterol), ADT (0.05 fmol/

nmol) and epiADT (0.03 fmol/nmol) (Figure 4C). Moreover, ste-

roids are structurally similar compounds and also suffer from

poor ionization efficiency in MS/MS analysis; thus targeted

MS/MS approach with improved sensitivity is required. As

such, in this study, we carried out radioactive tracer experiments

in combination with pharmacological enzyme inhibition and

thereby selected the potential Te metabolites for targeted LC-

MS/MS analysis. Moreover, in order to detect trace concentra-

tions of endogenous steroid hormonemetabolites, we enhanced

the MS/MS sensitivity by introducing an ionizable moiety (QAO)

to the ketone group of each target metabolites. Employing the

methodologies described above enabled detection of natural

steroid hormone metabolites contained in human meibum.

A potential clinical application of our findings may include

assessment of local androgen activity in the meibomian gland

by quantifying androgen metabolites in meibum. Previous

studies demonstrate that the human meibomian gland function

is strongly influenced by sex steroid hormones, particularly an-

drogens (see study by Bron et al.15 and references therein). In

both females and males, androgens promote the synthesis and

secretion ofmeibum lipids and suppress the expression of genes

related to keratinization. Conversely, androgen deficiency—

such as that seen in aging, Sjögren’s syndrome, antiandrogen

treatment, or complete androgen insensitivity syndrome—is

associated with meibomian gland dysfunction, altered meibum
enzyme expression in the meibomian gland

ione, ADT, and epiADT in human meibum specimen with chemical structure of

mmen andwomen. For the boxplots, the center line indicatesmedians, the box

and maxima. n = 10 per gender.

+AKR1C4 (for human 3b-KSR and 3a-KSR) and anti-HSD3B1 immunohisto-

male and 34-year-old female eyelid specimen. The dotted boxes indicate the

ls and HSD3B1-immunopositive cells are pointed by arrowheads. (E) Double-

ox, the region of magnified view. White arrowheads, AKR1C3+4- and HSD3B1-

tive cells. Pink arrow heads, HSD3B1-dominant cells. Specimen, 34-year-old

oc test. N.S., not significant.
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lipid profiles, and decreased tear film stability.17,25,52,53 Accumu-

lating data thus suggest the potential clinical importance of

measuring local androgen activity to understand the etiology of

meibomian gland dysfunction and to develop therapies for

ameliorating this condition.3,16 In this context, we identified spe-

cific androgen metabolites in meibum. Meibum is clinically

accessible lipid excreta from the meibomian gland. These

metabolite markers may help to provide a unique opportunity

to assessing local-tissue androgen activity. Although further

studies are required, these metabolites may contribute as a clin-

ical surrogate endpoint for assessing meibomian gland dysfunc-

tion or dry eye, particularly in the context of drug discovery and

development for these unmet medical conditions.54,55

Collectively, in the present study, we have elucidated the mo-

lecular identity of the tissue-endogenous androgen metabolism

in the meibomian gland. The deactivation of active steroid hor-

mones is equally important as their de novo synthesis in deter-

mining the time and space of their actions. Our studies

contribute to understanding the intracrine system of the meibo-

mian gland, encompassing both the generation and deactivation

of local steroid hormones. Our methods used in this study and

results/findings may pave the way to understand the local ste-

roid-hormone system reported in other intracrine tissues.
Limitations of the study
The potential of the identified metabolites, adione, ADT, and epi-

ADT, for assessing local androgen activity in patients with

different meibomian gland disorders or symptoms remains to

be explored. Our currently available data are only confined to

healthy subjects with no eye-related diseases. Although these

metabolites have the potential to serve as a clinical surrogate

endpoint in the evaluation of meibomian gland dysfunction or

dry eye conditions, further research is still required.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-AKR1C3/4 Abcam Cat# ab209899, RRID:AB_2922995

Mouse monoclonal anti-HSD3B1 Abnova Cat# H00003283-M01, RRID:AB_425493

Rabbit polyclonal anti-AKR1C4 Affinity Biosciences Cat# DF9190, RRID:AB_2842386

Donkey anti-rabbit IgG, Alexa FluorTM 594-conjugated Thermo Fisher Scientific Cat# A-21207, RRID:AB_141637

Donkey anti-mouse IgG, Alexa FluorTM 488-conjugated Cell Signaling Cat# A-21202, RRID:AB_141607

Goat anti-rabbit IgG, peroxidase labeled polymer

conjugated

Agilent Cat# K4003, RRID:AB_2630375

Chemicals, peptides, and recombinant proteins

Testosterone, [1,2,6,7-3H] Perkin Elmer Cat# NET370

5a-dihydrotestosterone, [1,2,4,5,6,7-3H] Perkin Elmer Cat# NET926

Androst-4-ene-3,17-dione, [1b-3H] Perkin Elmer Cat# NET453

Dutasteride Cayman Chemical Cat# 15956

Fadrozole hydrochloride Sigma Aldrich Cat# F3806

Testosterone, used in Figure 3 Tokyo Chemical Industry Cat# T0027

Testosterone, used in Figure 4 FUJIFILM Wako Pure Chemical Cat# 201-20551

Androstenedione Tokyo Chemical Industry Cat# A0845

Epiandrosterone Tokyo Chemical Industry Cat# E0374

Androstanedione, used in Figure 3 Matrix Scientific Cat# 155569

Androstanedione, used in Figure 4 ALB Technology Limited Cat# ALB-RS-04085

Androsterone, used in Figure 3 Cayman Chemical Cat# 15872

Androsterone, used in Figure 4 FUJIFILM Wako Pure Chemical Cat# 015-03971

5a-androstane-3a,17b-diol (3a-diol) Sigma Aldrich Cat# A7755

5a-androstane-3b,17b-diol (3b-diol) Biosynth AG Cat# FA17909

Testosterone-d3 Supelco Cat# T2655

Epiandrosterone-d4 Cambridge Isotope Laboratories, Inc. Cat# DLM-10269

Androstanedione-d4 ALSACHIM Cat# C2125

Androsterone-d4 Cambridge Isotope Laboratories, Inc. Cat# DLM-10402

Critical commercial assays

AmplifexTM Keto Reagent Sciex Cat# 4465962

Dako REAL EnVision Detection System, Peroxidase/

DAB, Rabbit/Mouse, HRP Kit

Agilent Cat# K5007, RRID:AB_2888627

Software and algorithms

Prism 8 GraphPad Prism RRID:SCR_002798

LabSolutions Shimadzu RRID:SCR_018241

ProFSA Software Perkin Elmer Cat# ProFSA625TR
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals
C57BL/6J male and female mice were purchased from Japan SLC and maintained on a 12-h light:12-h dark cycle with ad libitum

access to food and water as described.56 Mice were sacrificed by cervical dislocation for tissue collection at 3–4 months of age.

All procedures were conducted in compliance with the Ethical Regulations of Kyoto University and performed under protocols

approved by the Animal Care and Experimentation Committee of Kyoto University (Protocol #24-21).
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Human participants
For this study, young, healthy Japanese participants aged 21–35 years were recruited from the local populations of Kyoto andOsaka,

Japan, through a third-party corporation with no conflicts of interest. Participants confirmed the absence of systemic or ocular dis-

eases via a written interview conducted prior to enrollment. Of the participants, 10 males and 10 females with no signs or symptoms

of meibomian gland dysfunction (MGD) or dry eye disease (DE) were selected following an eye examination performed using a slit-

lamp microscope. Participants self-reported their sex. The study, which involved clinical data collection and meibum sampling,

received approval from the Institutional Review Board of Kyoto Prefectural University of Medicine (KPUM) [Protocol #ERB-C-

2649]. All participants provided written informed consent and were enrolled in compliance with the principles of the Declaration of

Helsinki. Exclusion criteria included anatomical or functional abnormalities of the eyelids, such as tumors; ocular allergies or infec-

tions; the use of punctal plugs or a history of surgical punctal occlusion; eye surgery within the past three months; contact lens use;

anti-glaucoma treatments; or ongoing use of local or systemic antimicrobial or steroid medications. Meibum sampling and clinical

data collection related to the meibomian glands and ocular surface were performed at Kyoto City Hospital (KCH).

Human eyelid specimens
Formalin-fixed, paraffin-embedded human eyelid samples obtained from postmortem donors of 41-year-old male and 34-year-old

female, who had no history of eye-related diseases, both purchased from Science Care (Phoenix, Arizona, USA).

METHOD DETAILS

Testosterone radioactive tracing
The isolated upper eyelids (tarsal plates), testes or adrenal glandswere incubated in vitro in pre-aerated Hank’s balanced salt solution

(HBSS) containing either 80 nM 3H-labelled Te (Testosterone, [1,2,6,7-3H]), DHT ([5a-dihydrotestosterone, [1,2,4,5,6,7-3H]), or A4

(androst-4-ene-3,17-dione, [1b-3H]) (all from PerkinElmer) for 3 h at 37�C with gentle vibration as described previously.14,57 Where

indicated, 10 mM dutasteride (Cayman Chemical) or fadrozole hydrochloride (Sigma) was included in medium. After incubation, ste-

roids were extracted into 1 mL ethyl acetate from the tissues, followed by evaporation to dryness under nitrogen at 75�C with 2 mL

propylene glycol as a carrier solvent. The residues were dissolved using 43% acetonitrile (ACN) and filtered through a 0.22 mmPVDF

membrane. Samples were analyzed using aWaters e2695 high-performance liquid chromatography (HPLC) system coupled with an

online flow scintillation analyzer (625TR series, PerkinElmer). Chromatographic separation was performed on a Lichrospher 100 RP-

18 column (5 mm, 2503 4mm; Kanto Chemicals) with a LiChroCART guard column (5 mm, 43 4mm;Merck) at 40�C. Gradient elution

was performed using a mobile phase consisting of water (solvent A) and ACN (solvent B) at the flow rate of 0.7 mL/min and the

following program: 43–46% B (0–30 min), 46–50% B (30–35 min), 50–100% B (35–40 min), 100% B (40–45 min), 100–43% B

(45–50 min), and post run 10min. Peak areas were quantified using the ProFSA software (PerkinElmer) and calculated as percentage

of the sum of all peaks for each individual sample to compare data across samples. The RI chromatography in Figure 3A was per-

formed using the same HPLC conditions as the LC-MS chromatography. The tissues boiled at 95�C for 5 min were used for negative

control.

Testosterone tracing by LC-MS/MS
Non-radioactive testosterone was used for LC-MS/MS-based testosterone tracing. The tissues were incubated under the same con-

ditions as those for radioactive tracing except increased concentration of testosterone (1 mM) and elongation of incubation time (5 h)

to allow sufficient quantification of all steroid metabolites by LC-MS/MS. The tissues boiled at 95�C for 5 min were used for negative

control. Steroids were measured using a Shimadzu Nexera X2 Ultra HPLC system coupled to a triple quadrupole mass spectrometer

(LCMS-8040, Shimadzu) with reference to authentic standards for adione (Matrix Scientific), ADT (Cayman Chemical), 3b-diol

(Biosynth AG) and 3a-diol (Sigma-Aldrich), A4, Te and epiADT (all from Tokyo Chemical Industry). Chromatographic separation

was performed on a Lichrospher 100 RP-18 column (5 mm, 250 3 4 mm; Kanto Chemicals) with a LiChroCART guard column

(5 mm, 4 3 4 mm; Merck) at 40�C. Mobile phase consisted of water (A) and ACN (B), both containing 0.1% formic acid. Using a

flow rate of 0.5 mL/min, chromatographic separation was achieved with the gradient elution time program as follows: 43–46% B

(0–42 min), 46–50% B (42–49 min), 50–100% B (49–56 min), 100% B (56–63 min), 100–43% B (63–70 min), and 43% B

(70–84 min). Metabolites were identified by comparing their retention times and the relative intensities of 3 multiple reaction moni-

toring (MRM) events with those of the authentic standards. The peak area of each metabolite target was analyzed using

LabSolutions software (Shimadzu). The parameters for LC-MS/MS analysis in Figures 3 and S1 are shown in Table S2.

LC-MS/MS for human meibum profiling
Meibum was collected as described previously58 and dissolved in 0.5 mL chloroform. Samples were stored in sealed glass tubes at

�80�C before further processing. Quantitation of human meibum steroid was performed at Shimadzu Techno-Research (Kyoto,

Japan). Unlabelled and deuterated standards were purchased from FUJIFILM Wako Pure Chemical Corporation (Te, ADT), Tokyo

Chemical Industry (epiADT), ALB Technology Limited (adione), and Sigma-Aldrich Co. LLC (cholesterol). Testosterone metabolites

were derivatized with a permanently charged quaternary aminooxy (QAO) reagent to enhance their ESI-MS/MS sensitivity.59 For

steroid quantification, 100 mL of sample was spiked with 50 mL internal standard (IS) mixture containing 2 ng/mL deuterated Te
e2 iScience 28, 111808, February 21, 2025
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(testosterone-d3, Supelco), epiADT (epiandrosterone-d4, Cambridge Isotope Laboratories, Inc.), adione (androstanedione-d4,

ALSACHIM), and ADT (androsterone-d4, Cambridge Isotope Laboratories, Inc.) prior to evaporation to dryness in a centrifugal evap-

orator (CVE 3100). The residue was reconstituted in 10 mL QAO reagent solution (Supelco-SigmaAldrich, Kyoto, Japan) and 40 mL

methanol containing 7%vol acetic acid. After 1 h of heating at 70�C, the samples were dried using a centrifugal evaporator (CVE

3100). Fifty microliters of water/methanol containing 7%vol acetic acid = 4:1 (v/v) solvent mixture was added and the samples

were analyzed on a Shimadzu Nexera X2 Ultra HPLC system coupled to a triple quadrupole mass spectrometer (LCMS-8060,

Shimadzu). For the quantification of total cholesterol, 5 mL samples were spiked with 20 mL IS solution containing 25 mg/mL choles-

terol-d7, 20 mL methanol and 175 mL KOH (0.35N). After heating at 50�C for 1 h, the samples were neutralized with 200 mL methanol

containing 5% acetic acid and filtered. The samples were analyzed on a UPLC-MS-MS system consisting of a Shimadzu Nexera

X2 Ultra HPLC system (Shimadzu, Kyoto, Japan) and a 5500QTRAP mass spectrometer (Sciex, Framingham, MA, USA).

Testosterone metabolites derivatized with QAO reagent were analyzed using a Shim-pack Scepter C18-120 column (1.9 mm,

2.1 mm I.D. 3 100 mm; Shimadzu, Kyoto, Japan). Mobile phase A was ultrapure water containing 0.1%vol formic acid and

2 mmol/L ammonium formate; mobile phase B was acetonitrile/water = 95/5 containing 0.1%vol formic acid and 2 mmol/L ammo-

nium formate. The flow rate was set to 0.35 mL/min and the HPLC gradient was as follows: 0–0.75 min, 25% B; 0.75–13.0 min,

25–40%B; 13.0–14.0min, 40–90%B; 14.0–17.0 min, 90%B; 17.0–17.1 min, 90-25%B; 17.1–20.0min, 25%B. TheMRM transitions

and retention times for all compounds analyzed are shown in Table S3.

Cholesterol was analyzed using a TSKgel column (5 mm, 2.0 mm I.D.3 50mm; Tosoh, Japan). Mobile phase A was ultrapure water

containing 0.1%vol formic acid; mobile phase Bwas acetonitrile containing 0.1%vol formic acid. The flow rate was set at 0.5mL/min,

and the HPLC gradient was as follows: 0.0–3.0 min, 90–100%B; 3.0–6.0 min, 100%B; 6.0–6.1 min, 100-90%B; 6.1–8.0 min, 90%B.

The MRM transitions and retention times for all compounds analyzed are shown in Table S3.

The linearity of the method was determined by analysis of standard plots associated with a freshly prepared seven-point standard

calibration curve. Stock solutions of standards and internal standards were prepared in chloroform/methanol [2:1, (v/v)]. Calibration

standard (CS) samples were prepared to give concentrations: 1.5, 7.5, 15, 75, 150, 750 and 1500 pg/mL for steroids and 4, 20, 40,

200, 400, 2000 and 4000 mg/mL for cholesterol, while quality control (QC) samples were prepared with rabbit meibum at three con-

centrations: 15, 150 and 750 pg/mL for steroids and 40, 200 and 400 mg/mL for cholesterol. The peak area ratios of analyte/IS

compared to the nominal concentrations of each calibration standard point were plotted using a linear regression with a weighted

factor of 1/x2 to calculate the concentration of each compound in the samples. The linear regression equation, correlation coefficient

(r), linear range, and LOD are presented in Table S4.

Immunohistochemistry and immunofluorescence staining
Five-mm-thick eyelid paraffin sections were antigen-retrieved by pressure cooking in Tris-EDTA buffer (pH 9.0) as described14 and

immersed into PBS containing 0.1% Tween 20 (PBS-T). Sections were blocked with 3% BSA in PBS-T for 2 h and incubated with

a specific set of antibodies, including anti-AKR1C3+AKR1C4 antibody (rabbit monoclonal, EPR16726, Abcam, final concentration

0.4 mg/mL for IHC and 0.7 mg/mL for IF) and anti-HSD3B1 (mouse monoclonal, 3C11-D4, Abnova, final 0.05 mg/mL for IHC and

0.5 mg/mL for IF)60 for 24 h at 4�C. The immunoreactivities were visualized with 3,3-diaminobenzidine using horseradish peroxi-

dase-labeled anti-IgG polymers (Dako, EnVision+ System-HRP Labeled Polymer anti-rabbit for AKR1C3+AKR1C4 and anti-mouse

for HSD3B1) or visualized using Alexa 594-conjugated anti-rabbit (for AKR1C3+AKR1C4) or anti-mouse (for HSD3B1) IgG (Thermo

Fisher Scientific, 1:1000 dilution).61 For immunofluorescence, sections were mounted in medium containing 4ʹ,6-diamidino-2-phe-

nylindole (DAPI) for counterstaining cell nuclei.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using GraphPad Prism 8. two-way ANOVA followed by Bonferroni’s post-hoc tests were used to

analyze statistical significance between groups. The results and details of statistics are available in corresponding figure legends and

Table S5. The results that reach statistical significance are indicated by * or # in the figures.
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