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Abstract
Background  Most intraoperative adverse events (iAEs) result from surgeons’ errors, and bleeding is the majority of iAEs. 
Recognizing active bleeding timely is important to ensure safe surgery, and artificial intelligence (AI) has great potential 
for detecting active bleeding and providing real-time surgical support. This study aimed to develop a real-time AI model to 
detect active intraoperative bleeding.
Methods  We extracted 27 surgical videos from a nationwide multi-institutional surgical video database in Japan and divided 
them at the patient level into three sets: training (n = 21), validation (n = 3), and testing (n = 3). We subsequently extracted 
the bleeding scenes and labeled distinctively active bleeding and blood pooling frame by frame. We used pre-trained 
YOLOv7_6w and developed a model to learn both active bleeding and blood pooling. The Average Precision at an Intersec-
tion over Union threshold of 0.5 (AP.50) for active bleeding and frames per second (FPS) were quantified. In addition, we 
conducted two 5-point Likert scales (5 = Excellent, 4 = Good, 3 = Fair, 2 = Poor, and 1 = Fail) questionnaires about sensitivity 
(the sensitivity score) and number of overdetection areas (the overdetection score) to investigate the surgeons’ assessment.
Results  We annotated 34,117 images of 254 bleeding events. The AP.50 for active bleeding in the developed model was 
0.574 and the FPS was 48.5. Twenty surgeons answered two questionnaires, indicating a sensitivity score of 4.92 and an 
overdetection score of 4.62 for the model.
Conclusions  We developed an AI model to detect active bleeding, achieving real-time processing speed. Our AI model can 
be used to provide real-time surgical support.
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Most intraoperative adverse events (iAEs) occur due to sur-
geons’ technical errors and inappropriate judgment. iAEs 
have a significant impact on the patient’s postoperative 
course and have been shown to increase 30-day mortality, 
30-day morbidity, postoperative length of stay [1], and hos-
pital costs [2]. Recent developments in the field of minimally 
invasive surgery (MIS), including laparoscopic and robotic 
surgeries, have made it easier to record and analyze surgical 
procedures, including iAEs. Therefore, many surgical video 
assessment methods by human evaluators have been devel-
oped [3–9], and these methods have revealed that bleeding 
is a major iAE [5–8].

Bleeding has a direct impact on patients, and greater 
blood loss has been shown to cause worse postopera-
tive outcomes [10, 11]. In addition, we experimentally 
understand that bleeding has indirect negative effects and 
sometimes leads to additional severe iAEs as suggested 
by Heinrich’s pyramid [9]. For example, when bleeding 
flows into and stains loose connective tissues during left 
colorectal surgery, surgeons may misidentify the cor-
rect dissection plane and injure the autonomic nerve and 
ureter. The recognition and appropriate control of even 
small amounts of bleeding are important to ensure safe 
surgery. However, bleeding caused by too much retraction 
or assistant surgeons may arise apart from the dissection 

area. Therefore, bleeding can arise at the edge of the sur-
gical view or be hidden behind instruments, preventing 
its detection timely. To assist surgeons in monitoring the 
entire surgical view constantly and detecting bleeding, we 
have used artificial intelligence (AI) and computer vision 
(CV) technologies.

Over the past decade, following the advent of deep-
learning algorithms, AI and CV technologies have rap-
idly developed, with their use spreading to several medical 
fields, including radiological diagnosis [12], dermatology 
[13], and gastrointestinal endoscopy [14, 15]. In surgical 
videos of MIS, many AI models have been reported for 
anatomy identification [16–22], instrument identification 
[23, 24], surgical phase recognition [25, 26], and surgical 
skill assessment [27–30]. However, AI and CV models that 
focus on iAEs, including bleeding, have rarely been stud-
ied. A few models [31–33] aimed to classify pixels into 
blood or non-blood pixels, but these were not designed to 
distinguish whether the blood pixels were from sites of 
active bleeding. Such real-time differentiation of active 
bleeding from blood pooling is essential for surgical 
support.

To address this unmet need, the present study aimed to 
develop an AI and CV model that could detect active bleed-
ing in the surgical field.
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Materials and methods

Study design

The study protocol was reviewed and approved by the Eth-
ics Committee of Kyoto University Graduate School and 
Faculty of Medicine (approval number: R-3614). This study 
was conducted in accordance with the Checklist for Arti-
ficial Intelligence in Medical Imaging (CLAIM) [34] and 
conformed to the provisions of the Declaration of Helsinki 
in 1964 [35] (revised in Brazil in 2013).

We further accessed a nationwide surgical video database 
containing videos of 3558 cases taken in 71 institutions in 
Japan. This database was supported by the Japan Agency for 
Medical Research and Development (AMED) under Grant 
Number JP21he2102001h0003. Written informed consent 
was obtained from all patients. All data were completely 
anonymized before being accessed.

Dataset

We randomly extracted 27 videos of 739 laparoscopic sig-
moidodectomies and high anterior resection videos from 
a nationwide database to develop AI models, maintaining 

an equal distribution of the three scope systems (Olympus, 
KARL STORZ, and Stryker). We divided the 27 videos 
into three groups: 21 for training, 3 for validation, and 3 for 
testing. We estimated that more than 160 bleeding scenes 
were required for training from a previous study [14] and 
determined that 21 videos were sufficient for this purpose 
according to our pilot study. The data split in this study at 
the patient level prevented contamination of the validation 
and test data into training data and ensured no data leakage. 
The flow of the data splitting is shown in Fig. 1.

Annotation

Before annotation, five surgeons, including the first author, 
established annotation protocols and trained video editing 
and image labeling for 6 months. In the first step of annota-
tion, bleeding scenes were extracted at 1920 × 1080 resolu-
tion at 30 frames per second (fps) from the entire surgical 
video and the surgical phases of the bleeding scenes were 
recorded according to the definition of a previous study [25]. 
The inclusion criteria for bleeding scenes were defined as 
scenes where active bleeding was clearly observed, and the 
exclusion criteria were any scenes determined as poor-qual-
ity views due to surgical smoke, bleu lens, or halation.

Fig. 1   The flowchart of the model development and evaluation
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The bleeding scene video clips were then down sam-
pled to 10 fps to reduce annotation costs, and each frame 
was labeled in bounding box formats using CVAT, a free 
open-source annotation tool (https://​cvat.​org), by the 
same five surgeons. Two classes were labeled: “bleeding” 
and “pooling.” “Bleeding” refers to any active flowing 
bleeding, whereas “pooling” refers to non-flowing blood 
pooling with a liquid component or judged by annotators 
to be potentially misidentified as active bleeding, such as 
blood residue and blood clots. The aim of adding “pool-
ing” was to indicate explicitly the difference between 
active bleeding and blood pooling to thereby improve the 
detection of active bleeding. Although the stained tissue 
and blood vessels were also red and visually resembled 
“bleeding” and “pooling,” they were not labeled as the 
annotation costs were considered too great.

All annotation data were reviewed and verified frame 
by frame by the first author, and confirmation of the 
annotation data was performed by the chief surgeon of 
the colorectal surgery team at Kyoto University Hospi-
tal, not the annotator. Examples of annotated images are 
presented in Figure S1.

Model development

We selected “YOLOv7” series [36], a state-of-the-art 
real-time object detector, and used pre-trained “YOLOv7_
w6” because the default input resolution was 1280 and the 
model size was suitable for our computational resources. 
The codes and pre-trained weights for fine-tuning were 
used in MMYOLO [37], an open-source library for object 
detection. The batch size was set to eight, which was the 
maximum memory capacity of our GPU, RTX A6000 
(NVIDIA Corp., Santa Clara, California, USA), with 
48 GB of VRAM, and the anchor box size was optimized 
using the scripts provided by MMYOLO. Our preliminary 
study revealed that changes in hyper parameters and data 
augmentation settings lead to the same or slightly worse 
results; thus, we used the default hyper parameters and 
data augmentation settings provided by MMYOLO.

We trained the model for 100 epochs using training 
datasets including 2 classes, “bleeding” and “pooling,” 
and selected the best epoch models based on the aver-
age precision (AP) for the class “bleeding” on valida-
tion datasets. For the model performance evaluation and 
video assessment by the surgeons, we used the best epoch 
model. To verify the effect of two class labels, we further 
trained the model with the same settings using the data-
sets including only the class “bleeding” (1 class-model) 
and compared it to the model including the two classes 
(2 classes-model).

Evaluation of model performance

To evaluate the model performances, we used the test data-
sets and calculated the AP for the class “bleeding.” AP is a 
commonly used performance metric to assess object detec-
tion model performance, which was computed according 
to the method of the Microsoft Common Objects in Con-
text [38]. The AP is scored between 0 and 1, with values 
closer to 1 being superior. The primary outcome of model 
performance was AP.50, which indicates that the Intersec-
tion over Union (IoU) threshold was set to 0.5.

We further evaluated the inference speed in frames per 
second (FPS) and set the threshold for real-time object 
detection to ≥ 30. For the measurement of FPS, we used 
two types of computer machines: one with a Core i9 
10980XE (18 core/36 thread, 3.0 GHz) with 64 GB of 
RAM and an RTX A6000 (NVIDIA Corp., Santa Clara, 
California, USA) with 48 GB of VRAM and the other with 
a Core i5 12,400 (6 core/12 thread, 2.5–4.4 GHz) with 
32 GB of RAM and an RTX 3060 (NVIDIA Corp., Santa 
Clara, California, USA) with 12 GB of VRAM.

Video assessment by surgeons

Although AP is the gold standard for evaluating object 
detection models, the association between AP and clini-
cal meaning is unclear, and the interpretation of AP is 
difficult for surgeons. Therefore, we created two 5-point 
Likert scales (5 = Excellent, 4 = Good, 3 = Fair, 2 = Poor, 
and 1 = Fail) to investigate the surgeons’ subjective assess-
ment of our AI models, with reference to a previous study 
[17]. The first question was “How much did the AI model 
fail to detect an actual detect active bleeding?” (sensitiv-
ity score). The answers were provided on a 5-point scale 
in 20% increments (from a score of 1 for 80–100% failure 
to detect active bleeding to a score of 5 for 0–20% failure 
to detect active bleeding). The second question was “How 
many active bleeding areas did the AI model over detect?” 
(overdetection score). The answers were provided on a 
5-point scale (a score of 1 for four or more over detec-
tion areas, 2 for three, 3 for two, 4 for one, and 5 for no 
overdetection areas). “Overdetection” was defined as the 
misrecognition of a blood pooling area as active bleeding 
lasting for more than 1 s (accumulation if intermittent).

For video evaluation, we extracted five other bleeding 
scenes from four videos that were not used in the model 
development and created inference video clips for each 
model with a confidence score threshold of 0.5. The dura-
tion of the inference video clip was approximately 15 s. 
Twenty surgeons, who did not overlap with the annotators, 
assessed the video clips and answered two questionnaires.

https://cvat.org
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Statistical analysis

All statistical analyses were performed using Python 
(V.3.10.12), and we used the numpy (V1.23.5), pandas 
(V.1.5.3), and matplotlib (V.3.7.1) libraries. Continuous 
variables were expressed as the means and standard devia-
tions, and categorical variables were expressed as numbers 
and percentages.

Results

Datasets

The patient characteristics are summarized in Table 1. For 
the training dataset, we extracted 205 bleeding scenes from 
21 videos and annotated a total of 26,581 images, which con-
tained 25,204 instances of “bleeding” and 15,812 instances 
of “pooling.” We further extracted 26 bleeding scenes from 
three videos for the validation dataset, from which we anno-
tated 3104 images, and a further 23 bleeding scenes from 
three videos for the test dataset, from which we annotated 
4432 images (Fig. 1). The training dataset contained all the 
surgical phases (Table S1).

Model performances and surgeon’s assessments

The AP.50 for the class “bleeding” of the 2 classes-model 
(0.574) was higher than the 1 class-model (0.560). 
The FPS using RTX A6000 was both over 30; 48.5 (2 

classes-model) vs 50.4 (1 class-model), while the FPS 
using RTX 3060 was 23.3 vs 23.9, respectively (Table 2).

The surgeons’ questionnaires revealed that the 2 
classes-model had a slightly higher sensitivity score of 
4.92 (2 classes-model) vs 4.88 (1 class-model). Further, 
the 2 classes-model had slightly more overdetection areas, 
with overdetection scores of 4.62 (2 classes-model) vs 4.75 
(1 class-model) (Table 3 and Fig. 2). The inference video 
clips used for the surgeon’s assessments are shown in Vid-
eos S1–5 and screenshots of the video clips are shown in 
Fig. 3. Our model misrecognized residual blood as active 
bleeding (Fig. 3a and b); however, it could detect active 
bleeding from the onset (Fig. 3b) or find active bleeding 
hidden under the instruments (Fig. 3e).

Table 1   Patient characteristics

Values are n or n (%) unless indicated otherwise; values are *mean (s.d.). HAR: High antrectomy. JSES: 
Japan Society for Endoscopic Surgery

Training (N = 21) Validation (N = 3) Test (N = 3)

Age (years)* 65.7 (12.6) 67.7 (13.1) 68.0 (9.2)
Sex ratio (M: F) 12: 9 3: 0 1: 2
BMI* 24.3 (5.3) 25.5 (2.6) 19.1 (0.7)
Abdominal surgery history 7 (33.3) 0 (0) 3 (100)
Sigmoidectomy/HAR 19 / 2 2 / 1 3 / 0
cStage
 I 4 (19.0) 1 (33.3) 0 (0)
 II 6 (28.6) 2 (66.6) 0 (0)
 III 11 (52.4) 0 (0) 3 (100)
 IV 0 (0) 0 (0) 0 (0)

Operator
 Years* 12.0 (9.7) 10.0 (3.0) 10.3 (12.9)
 JSES qualified surgeon 6 (28.6) 0 (0) 1 (33.3)

Scopist
 Years* 6.2 (4.9) 5.7 (7.2) 4.0 (6.9)
 Surgical time (min)* 212.6 (70.3) 216.3 (77.0) 204.3 (68.1)
 Blood loss (g) * 7.9 (11.8) 16.7 (28.9) 1.0 (1.7)

Table 2   Average precision (AP) and frames per second (FPS) at test 
dataset

AP50 for 
bleeding

AP50 for 
pooling

FPS with 
RTX 
A6000

FPS with 
RTX 
3060

2 classes-
model

0.574 0.068 48.5 23.3

1 class-model 0.560 – 50.4 23.9
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Discussion

In this study, we successfully developed a real-time AI 
model that could detect active bleeding during laparo-
scopic colectomy. The AP for active bleeding was 0.574 
for the 2 classes-model and 0.560 for the 1 class-model, 
with FPS values of 48.5 and 50.4, respectively. The clini-
cal performance was appropriately assessed by surgeons 
watching the video clips, and notably, both models had 
very high sensitivity; the sensitivity score was 4.94 for the 
2 classes-model and 4.88 for the 1 class-model. Therefore, 
our model offers real-time surgical support by monitoring 
active bleeding.

The AP of our models was lower than that for detecting 
surgical instruments [23, 24], but higher than that of the 
models for detecting anatomical structures [18, 22]. AI and 
CV models can easily detect surgical instruments as they 
are relatively large and have textures that are clearly dif-
ferent from those of the human tissues in the background, 

such as fat and the gastrointestinal tract. However, bleed-
ing and anatomical structures occupy only a small portion 
of the surgical field with ambiguous boundaries, and their 
recognition requires expertise. In addition, the fluidity of 
bleeding results in the creation of indefinite shapes. To 
overcome these difficulties, we annotated a total of 34,117 
images, which is more than 10 times larger than those of 
previous studies for the detection [18, 22] or segmentation 
[16, 17, 20, 21] of anatomical structures. This extensive 
annotation data may have allowed our models to achieve 
a higher AP.

Our 2 classes-model had a slightly higher AP and sen-
sitivity score than that of the 1 class-model, while the 
overdetection score of the 2 classes-model was somewhat 
lower than that of the 1 class-model. Namikawa et al. previ-
ously reported that learning about gastric ulcers, not only 
gastric cancer, improved the positive predictive value of 
their AI model for detecting gastric cancer [39]. Thus, we 
expected that the 2 classes-model would reduce false posi-
tives, resulting in a higher overdetection score. However, 

Table 3   Video assessment by 20 surgeons

Two 5-point Likert scales (5 = Excellent, 4 = Good, 3 = Fair, 2 = Poor, and 1 = Fail) questionnaires
(a) The answers are provided on a 5-point scale in 20% increments (from a score of 1 for 80–100% failure to detect active bleeding to a score of 
5 for 0–20% failure to detect active bleeding)
(b) A score of 1 for four or more overdetection areas, 2 for three, 3 for two, 4 for one, and 5 for no overdetection areas

(a) Q1: How much did the AI model fail to detect an actual active bleeding? (sensitivity score): mean (s.d.)

Video clips No. 1 No. 2 No. 3 No. 4 No. 5 Total

Two classes-model 4.90 (0.45) 4.95 (0.22) 4.95 (0.22) 4.90 (0.31) 5.00 (0.00) 4.94 (0.28)
One class-model 4.90 (0.45) 4.95 (0.22) 4.95 (0.22) 4.65 (0.59) 4.95 (0.22) 4.88 (0.38)

(b) Q2: How many active bleeding areas did the AI model over detect? (overdetection score): mean (s.d.)

Video clips No. 1 No. 2 No. 3 No. 4 No. 5 Total

Two classes-model 4.10 (0.45) 4.50 (0.51) 5.00 (0.00) 4.95 (0.22) 4.55 (0.60) 4.62 (0.53)
One class-model 4.30 (0.47) 4.90 (0.31) 5.00 (0.00) 4.95 (0.22) 4.60 (0.60) 4.75 (0.46)

Fig. 2   The point distributions of the 5-point Likert scales (5 = Excel-
lent, 4 = Good, 3 = Fair, 2 = Poor, 1 = Fail) questionnaires. Q1 is 
“How much did the AI model fail to detect an actual detect active 

bleeding?” (sensitivity score). Q2 is “How many active bleeding 
areas did the AI model over detect?” (overdetection score)
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this approach showed no expected improvement in this study 
and increased annotation costs. There are two reasons for 
this finding. First, active bleeding is obviously brighter than 
blood pooling, and learning the class “bleeding” alone was 
sufficient to recognize active bleeding. In fact, annotators 
can indicate active bleeding areas using still images to some 
extent, focusing on subtle differences in color tone and tex-
ture. Second, our annotation protocol of “pooling” was not 
appropriate. We defined the class “pooling” as blood residue 
and blood clots. However, there would have been countless 
blood residues and blood clots in the surgical field if small 
and trivial ones were included as well. We could not label 
everything because of our limited annotation resources, and 
therefore labeled only relatively large ones. Thus, the defini-
tion of the class “pooling” was inconsistent, and our model 
did not learn the class “pooling” well, which reflected the 
very low AP for the class “pooling” (0.068).

Surgeons’ assessments showed a very high sensitivity 
score, which is desirable for surgical support. Surgeons 
and AI should work together, not independently, and when 
considering that missing active bleeding is critical, the col-
laboration of high-sensitivity AI with surgeons could greatly 
contribute to achieving the goal of safe surgery. Collabora-
tion between humans and AI has been reported to be effec-
tive in endoscopic polyp detection [40, 41], and the same 
effects are expected during surgery. In particular, less expe-
rienced surgeons will benefit more from collaboration.

To further improve the performance of the proposed 
model, we propose three approaches. First, we could gather 
additional annotated data; this approach is simple and the 

most robust but would require expensive annotation costs. 
Following this, unsupervised learning, semi-supervised 
learning, and self-supervised learning can be used to reduce 
annotation costs. The second approach would be to utilize 
temporal and interframe features, such as optical flow, long 
short-term memory (LSTM), tracking, and 3D convolutional 
neural networks (3D-CNN), which have been reported to be 
effective in surgical skill assessment models [27, 28, 30]. 
Temporal and interframe features may enable models to deal 
with motion information (e.g., spreading or spurting); how-
ever, the inference speed will be significantly slower. The 
third is the use of vision transformer models [42], which 
have recently garnered significant attention. In our pre-
liminary study, we trained the “deformable DETR” [43], 
a vision transformer model, but the AP of this model was 
slightly lower, and the FPS was less than 40% than that of 
the “YOLOv7_w6” model. Vision transformer models have 
evolved at a tremendous rate, and models with higher accu-
racy and speed are expected to emerge in the next few years. 
These three approaches will improve AP, but these improve-
ments may be difficult for surgeons to notice, considering 
the high evaluation scores in the surgeons’ assessment in 
the present study.

This study had several limitations. First, bleeding scenes 
were extracted using only two procedures: laparoscopic sig-
moidectomy and high anterior resection. Hence, our model 
performances for other surgical procedures such as right 
hemicolectomy and gastrectomy were not secure because the 
detection performances of the AI and CV models were sig-
nificantly affected by the background. Although bleeding is 

Fig. 3   Screenshots of inference videos of 2 classes-model, which 
was assessed by surgeons. Blue bounding box is the class “bleeding,” 
active bleeding. Green bounding box is the class “pooling,” blood 
pooling (e.g., blood residue and blood clots). White arrowhead repre-
sents active breeding areas and white arrow represents blood residual 
areas. a–c are sequences of the inference video no.1 (see Video S1), 

and the AI model can detect active bleeding from the onset (white 
arrowhead in b). On the contrary, the model misrecognized a blood 
residual area as active bleeding (white arrow in a and b). d–f are 
sequences of the inference video no. 5 (see Video S5), and the AI 
model can find it hidden under instruments (white arrowhead in e) 
(Color figure online)
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common and observed in all surgical procedures, additional 
validation is required to generalize our model to other pro-
cedures. Second, the performance of our model may not be 
sufficiently robust when detecting very massive or spurting 
bleeding as these situations were not included in the training 
dataset. Indeed, we could not find any cases of severe bleed-
ing in our datasets, possibly due to a selection bias in which 
surgical videos including severe bleeding could not be pro-
vided in the nationwide database. Third, there is a time lag 
associated with display speed, which was not investigated in 
this study. This time lag arises from the fact that the display 
speed in practical settings depends not only on the FPS of 
the model, but also on the data transmission speed. Although 
an FPS > 30 is a necessary condition for real-time applica-
tions, this time lag should be measured during actual use in 
the operating room, and its acceptability must be assessed 
by surgeons. Finally, the clinical impact of our models on 
actual surgical outcomes, such as decreased bleeding, organ 
injury, and better postoperative courses, remains unclear, 
and a prospective assessment will be necessary to evaluate 
their practical use as a next step.

In conclusion, we developed an AI model that can detect 
active bleeding with a real-time processing speed. In addi-
tion, we recruited surgeons to assess the validity of the 
models and found that their clinical performance was satis-
factory. Thus, our AI model can provide real-time surgical 
support and contribute to assisting in improving the safety 
of surgeries.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00464-​024-​10874-z.
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