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Abstract

Reinforcement learning (RL) has demonstrated performance comparable to or even sur-

passing human capabilities in various domains. However, RL is notorious for requiring

a huge number of samples for learning. This dissertation is motivated by the observa-

tion that scalable algorithms, which efficiently leverage computation, are essential for

the progress of artificial intelligence (AI). It explores scalable RL through straightfor-

ward vectorization of sample generation on modern accelerators such as GPUs. We

verify the applicability and effectiveness of vectorized sample generation in RL. This

dissertation primarily focuses on classic game environments due to their historical im-

portance as benchmarks in AI development and the challenges posed by their complex

branching structures, which seem incompatible with batched RL.

We demonstrate that batching is effective even in discrete sequential game envi-

ronments, which are often considered unsuitable for this technique. We found that

even in such classic game environments, simulators running on GPUs can be at least

10 times faster than existing implementations that use threading or multiprocessing

on CPUs. Next, we demonstrate the effectiveness of our approach in bridge bidding

AI benchmarks. Specifically, our approach surpasses existing benchmarks in bridge

bidding through a simple combination of existing techniques, indicating the potential

of batching approaches in RL. Finally, we consider a potential disadvantage of batch-

ing in RL. The delayed feedback in batched RL can potentially lead to performance

degradation compared to the sequential approach, as agents have the reduced adapt-

ability. However, we show that a pure exploration algorithm, Sequential Halving (SH),
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does not degrade performance under realistic conditions. We also empirically demon-

strate the effectiveness of batched SH when combined with the Monte Carlo tree search

algorithm. Overall, this dissertation verifies that the application range of fully vector-

ized RL on accelerators is wider than expected and demonstrates its effectiveness with

appropriate algorithms.
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Chapter 1

Introduction

We start this dissertation with a quote from Richard S. Sutton, who is known as the

father of reinforcement learning (RL):

“The biggest lesson that can be read from 70 years of AI research is that

general methods that leverage computation are ultimately the most effective,

and by a large margin.” — Sutton [2019], “The Bitter Lesson.”

The innovation that best embodies his words may be the appearance of AlexNet in the

ImageNet classification [Krizhevsky et al., 2012]. This model dramatically improved

the accuracy of image recognition by using large-scale learning with GPUs. It surpassed

human-crafted feature-based methods such as SIFT and opened a new era of image

recognition by deep learning [Goodfellow et al., 2016]. The “scaling law” [Kaplan et al.,

2020] in large language models (LLMs) also supports Sutton’s words. LLMs built using

the Transformer architecture [Vaswani et al., 2017], such as GPT-3 [Brown et al., 2020]

and GPT-4 [OpenAI, 2023], seem to scale with model size, data size, and the amount

of computation. Given his words, this dissertation is about leveraging computation in

Artificial Intelligence (AI) research.

Specifically, our focus is on RL [Sutton and Barto, 2018]. Unlike supervised learn-

ing (SL), RL agents can generate training samples by themselves through interaction

with the environment, the target world where the agent learns to maximize the expected
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future return. RL has the potential to realize AI with capabilities that essentially out-

performs humans, rather than mere imitation of humans. Current RL algorithms have

demonstrated their potential through remarkable successes such as AlphaGo [Silver

et al., 2016], the first AI who defeated a top-human Go player, the discovery of faster

matrix multiplication algorithms [Fawzi et al., 2022] and sorting algorithms [Mankowitz

et al., 2023], and Tokamak control [Degrave et al., 2022]. However, they often require a

vast number of samples and are recognized as slow and inefficient compared to humans.

To alleviate this problem, two approaches are considered:

• (1) Improve sample efficiency (i.e., performance gain per sample). This approach

has been well studied in model-based RL — in which the model of the environ-

ment is learned to reduce interaction with the real environment (see Sutton and

Barto [2018]).

• (2) Improve sample generation speed (i.e., samples per time). This is not an

elegant approach, but the idea is that learning progresses fast as long as a large

number of samples can be generated, even if the sample efficiency is poor.

In this dissertation, we focus on the less elegant approach (2) and aim to just leverage

computation to improve the sample generation speed of RL.

To leverage computation in RL, let us revisit the success of AlexNet [Krizhevsky

et al., 2012]. What was the mechanism to leverage computation behind the success of

AlexNet? One of the most critical elements is batching the training and utilizing GPUs

for efficient computation. GPUs were originally developed for graphics processing, but

they have been used for various computations as GPGPU (General-Purpose computing

on Graphics Processing Units). Nowadays, training deep learning models on GPUs is a

standard practice. Given the revolution in AlexNet by batching on GPU accelerators, in

this dissertation, we focus on leveraging the computation in RL by (massive) batching

the sample generation process, fully utilizing the accelerator hardware.

Recent studies [Makoviychuk et al., 2021, Freeman et al., 2021, Hessel et al., 2021]
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Figure 1.1: Comparison of conventional sample generation scheme in RL (Left) and
fully vectorized sample generation on a GPU accelerator (Right).

proposed to generate sample sequences entirely on GPU accelerators (Figure 1.1). This

approach has the following advantages:

• As the environment step, which is usually performed on the CPU, is also per-

formed on the GPU, data transfer between the CPU and GPU is unnecessary,

improving efficiency.

• By executing vectorized environment steps on the GPU, it is possible to scale to

a large batch size, improving the scalability.

These approaches have been validated to be effective in tasks with continuous action

spaces using physics simulators [Makoviychuk et al., 2021, Freeman et al., 2021] and

simple environments such as classical control [Lange, 2022]. However, vectorized envi-

ronment steps may not be applicable depending on the nature of the environment. In

particular, vectorized environment steps are not suitable for environments with many

control structures such as conditional branching.

We consider the applicability and effectiveness of RL architectures using vectorized

environment steps on the accelerators. Therefore, we chose (classic) game environ-

ments as benchmarks (Figure 1.2). There are several reasons for this choice. First,
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(classic) games have been considered as important milestones in AI research [Tesauro,

1995, Mnih et al., 2015, Silver et al., 2016, 2017, 2018, Brown and Sandholm, 2018,

2019, Berner et al., 2019, Vinyals et al., 2019, Li et al., 2020a]. Second, such games

with large discrete state and action spaces seem to be unsuitable with such vector-

ized environment steps due to the sequential nature of the environments with complex

branching structures. If we can demonstrate that the batch environment step approach

is effective even in environments that seem to be incompatible with, we can expand

the range of applicability of this approach.

Our contributions in this dissertation are as follows:

• We demonstrated that the sample sequence generation with vectorized environ-

ment step is more efficient than existing appoach (e.g., multi-threading or multi-

processing) in classic game environments by a large margin. These games include

Chess, Shogi, and Go, which are considered as important benchmarks in AI re-

search and also have a large discrete state and action spaces. Their environment

steps include complex branching structures, which are not suitable for vector-

ized environment steps. However, we showed that the vectorized approach on

accelerators is effective even in such game environments, expanding the range of

applicability of this approach than previously thought (Chapter 3).

• As a demonstration of RL with vectorized sequence generation in GPU accelera-

tors, we achieved performance that significantly outperforms existing benchmarks

in bridge bidding AI. Our method is a combination of simple existing methods,
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except that it uses the vectorized sequence generation. This demonstration shows

the actual effectiveness of this approach (Chapter 4)

• We also discuss a potential disadvantage of massive batching approach. We point

out that batching may degrade performance compared to sequential processing

due to delayed feedback. For example, comparing (1) the case of performing

100K sequential environment steps, observing a reward each step and adapting

the policy sequentially, and (2) the case of performing 20 vectorized environment

steps with 5K batch size each. The total number of steps is the same in both cases,

but in the latter case, the agent has only 20 opportunities to observe the reward

and update the policy, which may lead to the inferior performance. We consider

this problem in the context of the pure exploration problem of the stochastic

bandit problem, which is the simplest class of RL. We found that a natural variant

of the popular Sequential Halving (SH) algorithm [Karnin et al., 2013] does not

degrade performance under realistic assumptions — the arm selection is exactly

the same in the two cases mentioned above. We also experimentally verified that

SH is robust to batching in more realistic conditions, such as applying it to Monte

Carlo tree search (Chapter 5).
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Chapter 2

Preliminary

In this chapter, we explain the minimum background knowledge necessary to under-

stand this dissertation.

2.1 Reinforcement Learning (RL)

Reinforcement learning (RL) is a framework for solving decision-making problems [Sut-

ton and Barto, 2018]. In this dissertation, we consider RL problems with discrete state

space S and action space A. Each episode starts with an initial state s0 ∈ S given by

s0 ∼ p0(s0), where p0 is the (unknown) initial state distribution. The agent and the

environment interact as follows until the state reaches a terminal state.

• Given the current state st, the agent selects an action at ∈ A according to the

policy π(at|st).

• Given the action at from agent, the environment returns a reward by the (un-

known) reward function: r(st, at) : S × A → [Rmin, Rmax], where Rmin and Rmax

are the given minimum and maximum reward, respectively.

• Also, the environment returns the next state st+1 ∼ p(st+1|st, at), where p is

the (unknown) state transition kernel.
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We assume that this interaction reaches a terminal state in finite time, and the episode

ends. Note that we assume the Markov property, which means that the current state

st contains enough information for the next state transition and for decision-making.

Value and objective. We define the value of a state s ∈ S under the policy π as

the expected cumulative rewards given the state:

vπ(s) := Ep,π

∑
t≥0

r(st, at)
∣∣∣∣∣∣ s0 = s

 .
Here, we omitted the discount factor γ < 1 for simplicity. In this dissertation, we

focus only on the finite-horizon problem, assuming that the episode ends in finite time.

Thus, note that the cumulative rewards is bounded even without introducing a discount

factor. The agent’s goal is to find a policy π that maximizes the expected cumulative

rewards

J(π) := Ep0 [vπ(s0)] .

This problem can be solved by approximated dynamic programming when the number

of states is small (see Sutton and Barto [2018]). However, real-world problems have a

large number of states and such solutions are infeasible.

2.2 Deep RL

In RL, it has been common to represent the policy and value to be learned by function

approximators when the state space is large. Neural Networks (NNs) has been a

popular choice as function approximators since 1990s [Tesauro, 1995], and the success

of deep learning in ImageNet [Krizhevsky et al., 2012] and its application to the Atari

2600 benchmark [Mnih et al., 2015] makes deep RL accelerated. The further potential

of deep RL has been demonstrated by (but not limited to) AlphaGo [Silver et al.,
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2016], which first defeated top professional Go human players, and application to the

LLMs [OpenAI, 2023].

To grasp the outline of deep RL and make it easier to understand the motivation

of this dissertation, we provide a high-level overview of the PPO algorithm [Schulman

et al., 2017], the most popular mode-free policy optimization algorithm in deep RL

to date (Algorithm 1). While PPO is popular as shown by the application to the

LLMs [OpenAI, 2023], its implementation details are known to be complex [Huang

et al., 2022a]. Since the subject of this dissertation is not related to the implementation

details of PPO, we do not provide a detailed explanation. For implementation details,

please refer to the original paper [Schulman et al., 2017] and the 37 implementation

details of PPO [Huang et al., 2022a].

Algorithm 1 High-level overview of PPO [Schulman et al., 2017]
1: initialize N vectorized environments, initial policy θ, and batch size B.
2: for iteration = 1, . . . do
3: Generate N rollouts for T timesteps from the N environments using policy θ.
4: Update policy θ for K epochs and for bNT

B
c minibatches in each epoch.

High-level overview of PPO (Algorithm 1). As other deep RL algorithms, PPO

represents the policy and value function by neural networks, whose torso is shared

by them. We denote the parameters of these neural networks by θ. The torso is

connected to policy head and value head which output the policy πθ(at|st) and value

vθ(st), respectively. Given the current parameter θ, PPO generates N rollouts for

T timesteps by interacting with the N parallel environments. Then, PPO scans the

generated samples for K epochs as minibatches. For each minibatch, PPO computes

the loss L and updates the parameters θ to minimize the loss using the stochastic

optimization method, Adam [Kingma and Ba, 2015]. Here, L is a linear combination

of the surrogate loss Lpolicy, value loss Lvalue, and entropy loss Lentropy. The surrogate

loss Lpolicy aims to maximize the expected benefit of an action (advantage) by validating

multi-epoch updates through the use of a clipped policy ratio. The value loss Lvalue
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is the clipped mean squared error between the prediction and the target value. The

entropy loss Lentropy is the negative entropy of the policy, which encourages exploration

by maintaining the policy’s stochasticity. Note that the training (gradient updates) of

neural networks are typically performed in batches on accelerators such as GPUs or

TPUs.

2.3 Deep RL architectures

As shown in the high-level overview of PPO, roughly speaking, deep RL repeats the

following two steps: (1) generating sample sequences by the agent-environment interac-

tion and (2) learning the agent’s neural network by gradient updates. The bottleneck

in deep RL is typically not the gradient updates but the sample generation, especially

the parallel environment steps. For example, Weng et al. [2022b] reported that environ-

ment steps are the bottleneck in the PPO training on Atari with naive parallelization.

In addition, deep RL is known to be sample-inefficient, requiring a large number of

samples for learning. Therefore, previous studies have focused on parallelizing envi-

ronment execution efficiently [Weng et al., 2022b, Makoviychuk et al., 2021, Freeman

et al., 2021]. In this section, we categorises the parallelizing architectures in deep RL

into two approaches based on how to parallelize the environment execution:

• MIMD (Multiple Instruction, Multiple Data), which gives different instructions

to parallel environments, enabling flexible computation.

• SIMD (Single Instruction, Multiple Data), which shares the same instruction to

parallel environments, thus, is limited in flexibility but enables scalable compu-

tation.

We use the terms MIMD and SIMD from Flynn’s taxonomy in computer science.

These concepts are particularly important in computer architecture [Hennessy and

Patterson, 2017]. We borrow these concepts to classify parallelization in the current

deep RL architectures into two categories.
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Figure 2.1: MIMD and SIMD parallelization in environment execution. The number
of environments is six for all cases. The batch size of NN inference (i.e., agent step) is
six for MIMD (sync) and SIMD, and four for MIMD (async). MIMD (async) requires
that the number of environments is larger the batch size of training for efficient CPU
utilization.

2.3.1 MIMD parallelization in RL

In the parallel execution of the environments by MIMD, each environment indepen-

dently executes the environment step when it receives an action from the agent. Typ-

ically, each environment step is executed by a thread or a process; C++ threading or

Python multiprocessing is a common choice. This environment step has a variation

in execution time for each thread or process. On the other hand, the agent step with

NN is performed in batches on a GPU or TPU accelerator, except for a few exceptions

such as A3C [Mnih et al., 2016]. Note that this batch NN inference is executed by

SIMD. A key observation here is that, unlike the agent step with NN, the execution

time of the environment step varies for each thread or process, leading to a potentially

low CPU utilization. Therefore, in addition to the naive synchronous implementation

that waits for all environment steps to finish, asynchronous implementations have been

proposed (Figure 2.1). In asynchronous implementations, as environment steps are ex-

ecuted on the CPUs, and the agent steps (NN inferences) are executed on the GPUs,

some studies proposed to execute them on different machines [Espeholt et al., 2018,

2020], while others execute them on the same machine [Weng et al., 2022b].
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A MIMD parallelization example. As an example of parallelization in RL by

MIMD in the current computer environment, we consider parallelization in the game

of Mahjong, one of the complex game environments. Mahjong requires determining

the winning hand based on the combination of 14 hand tiles, making the environment

logic complex. The environment step written in a scripting language like Python is sig-

nificantly slower than that in a performance-oriented language like C++, making the

environment step on the CPU a bottleneck. On the other hand, Python is the lingua

franca of machine learning. Therefore, it is common to implement the environment

step in a fast language like C++ and call it from Python. For example, the Mahjong

environment written mainly in C++1(Mjx) is about 100x faster than Mjai, the envi-

ronment written in the Ruby scripting language2 (Table 2.1). In addition, the MIMD

(async) implementation is typically a distributed RL algorithm such as IMPALA [Es-

peholt et al., 2018] and SEED [Espeholt et al., 2020]. To support such distributed RL

algorithms, a distributed environment such as a server and client is required, and an

implementation using gRPC3, for example, is common as in Mjx. Such a distributed

environment eliminates the bottleneck of the environment step with (much) larger

number of environments than the batch size. The Mahjong AI Suphx [Li et al., 2020a]

uses such a distributed system and achieve better performance than 99.99% of ranked

human players on the online leaderboard. However, the distributed system introduces

significant complexity in the implementation.

Table 2.1: Runtime in Mahjong environments. Players are pass agent.

C++ (Mjx) Ruby (Mjai)

sec/game 0.0874 12.4131

1Mjx. https://github.com/mjx-project/mjx
2Mjai. https://github.com/gimite/mjai
3https://grpc.io/

https://github.com/mjx-project/mjx
https://github.com/gimite/mjai
https://grpc.io/
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2.3.2 SIMD parallelization in RL

In SIMD-based parallel environment execution, all parallel environments work with a

sequence of the same instructions. Therefore, unlike MIMD, there is no variation in

the execution time of the environment step. One can think of this as aligning the steps

with the slowest environment step among all environments. On the other hand, the

accelerators that can efficiently process SIMD instructions4, such as GPUs, may be

able to execute the environment step efficiently. SIMD is supposed to be limited in

flexibility [Weng et al., 2022b, Hessel et al., 2021] but enables scalable computation if

the environment step is compatible with SIMD instructions. In particular, in environ-

ments that use physics simulators, SIMD parallelization has been shown to be effective

because matrix operations are central [Makoviychuk et al., 2021, Freeman et al., 2021].

In this dissertation, we focus on parallelizing RL in the SIMD approach, which we refer

to as massive batching, and discuss its applicability, effectiveness, and limitations.

A SIMD parallelization example. As an example of SIMD programming, we show

SIMD programming in JAX [Bradbury et al., 2018]. JAX is a framework in Python,

the lingua franca of AI research in recent years. JAX provides an API compatible with

NumPy [Harris et al., 2020] and the JAX code can be JIT (Just-In-Time)-compiled

and optimized using XLA5. In JAX, SIMD programming is performed using pure func-

tions. A function is pure function if it has no side effects and it guarantees the same

output for the same input. To perform efficient parallel processing, it is important

that individual calculations do not interfere with each other. Pure functions always

return the same result for the same input and do not depend on external states, so they

can avoid conflicts and synchronization problems caused by parallelization. Figure 2.2

shows an example of SIMD programming in JAX. JAX can automatically vectorize

pure functions using vmap. This feature allows us to achieve SIMD parallelization by

describing the environment transition in RL as a pure function.
4Note that modern GPU architectures adopt SIMT/SIMD architecture rather than SIMD.
5https://github.com/openxla/xla

https://github.com/openxla/xla
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import jax
# state : vectorized (e.g., 1024 Go boards)
# action: vectorized (e.g., 1024-dimensional vector)
state = jax.vmap(env.step)(state, action)

Figure 2.2: SIMD programming example in JAX. JAX can automatically vectorize the
function using vmap if the step function is a pure function. JIT-compilation is also
needed for efficient execution.

2.3.3 Limitation in SIMD parallelization

true

false

input: x cond(x)

return f(x)

return g(x)

input: x y := f(x) z := g(x) return y if cond(x) else z

MIMD

SIMD

Figure 2.3: A example of branching in SIMD parallelization.

SIMD-based parallel environment execution requires that the environment step can

be efficiently executed with SIMD instructions. Examples of suitable processing in-

clude matrix operations in physics simulators. On the other hand, in environments

with brahches, parallelized environments become heterogeneous, making SIMD par-

allelization inefficient. This is because SIMD needs to evaluate all branches of the

dynamically branching process (Figure 2.3); otherwise, it cannot process all data with

a single operation. Game environments are a prominent example of environments that

include such branches. For example, the game of Go is a popular benchmark for AI

development but it has a large branching factor (Figure 2.4): Given the current state

of the board and the action, the processing branches depending on whether the action

is a pass or not. If the pass is consecutive, the process calculates the scores. If the

action is not a pass, the process further branches depending on whether the action is
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a suicide move or not and whether the opponent’s stones are captured or not. Note

that some of these procedures involve dynamic processing. For example, determining

whether stones are captured requires tracing connected stones. These observations and

the fact that SIMD programming with conditional branching (basically) needs to eval-

uate all branches demonstrate that complex state space environments like the game of

Go are not suitable for SIMD-based approaches. In Chapter 3, however, we demon-

strate that even in such environments that seem unsuitable for SIMD approaches, the

SIMD approach is more efficient than the existing tuned MIMD approach in modern

computational frameworks.

yes

no

yes

no

yes

no

yes

no

my turn pass?

both pass?

suicide?

score

opp turn

end

capture?

remove

opp turn

opp turn

Figure 2.4: A simplified diagram of the environment step in the game of Go. For
example, the calculation of the score and the determination of whether stones are
killed depend dynamically on the state of the surrounding positions of the placed stone
and may require scanning the entire board at worst, making it unsuitable for SIMD
parallelization.

2.4 Multi-agent RL

As some of the environments we consider in this dissertation are multi-agent RL (MARL)

problems, we describe the formulation of problems in MARL. There are various ways

to formulate multi-agent environments, but since all the environments we consider in

this dissertation are turn-based game environments like Chess and Go, we can for-
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mulate them simply as follows. Each state contains information about which agent

should act in that state, and the selected agent chooses an action based on this indica-

tor. The observation function and reward function are defined independently for each

agent, and each agent learns a policy that maximizes the expected cumulative reward

independently. Note that this is essentially equivalent to the definition of Agent En-

vironment Cycle (AEC) games [Terry et al., 2021]. Naively, for a given agent, we can

treat the problem as a normal RL problem by fixing the policies of other agents and

incorporating them into the environment.
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Chapter 3

Pgx: Massively Vectorized Game

Simulators on Accelerators

In this chapter, we demonstrate the effectiveness of massively vectorized environment

steps on GPU accelerators in classic game environments, which are seemingly unsuitable

for batching due to their complex branching structures. We believe that this shows

that the application range of massively batching approaches is wider than generally

thought.

3.1 Introduction

Developing algorithms for solving challenging games is a standard artificial intelligence

(AI) research benchmark. Especially building AI, which can defeat skilled professional

players in complex games like chess, shogi, and Go, has been a vital milestone. Though

reinforcement learning (RL) algorithms, which combine deep learning and tree search,

are successful in obtaining such high-level strategies [Silver et al., 2016, 2017, 2018],

complex games like chess and Go are still in the interest of AI research for developing

RL and search algorithms in discrete state environments.

On the other hand, studying algorithms for solving large state-space games such

as Go requires a huge sample size. MuZero [Schrittwieser et al., 2020], employing a
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learned model, has been successful in the domain of game AI and can significantly

reduce the number of interactions with the real environment. However, this does not

render research on approaches without a learned model like AlphaZero unnecessary.

For example, it is mentioned that AlphaZero’s learning is faster than MuZero’s in the

case of chess [Danihelka et al., 2022].

Thus, in RL research, a fast simulator of the environment, which achieves high

throughput is often required. Simulators that possess practical speed and performance

are often implemented in C++. In the machine learning community, however, Python

serves as a lingua franca. Therefore, libraries like OpenSpiel [Lanctot et al., 2019] wrap

the core C++ implementation and provide a Python API. However, this approach

presents several challenges. Efficient parallelization of the environments is important

for generating a large number of samples, but efficient parallel environments utilizing

C++ threading, such as EnvPool [Weng et al., 2022b], may not always be accessible

from Python. In fact, to our knowledge, there are no libraries publicly available in

Python that allow the use of efficient parallel environments for important game AI

benchmarks like chess and Go from the identical Python API. Also, the RL algorithm

often runs on accelerators (such as GPUs and TPUs), whereas simulation runs on

CPUs, which makes additional data transfer costs between CPUs and accelerators.

In continuous state space environments, Brax [Freeman et al., 2021] and Isaac

Gym [Makoviychuk et al., 2021] demonstrate that environments that work on acceler-

ators can dramatically improve the simulation throughput and RL training speed, re-

solving the data transfer and parallelization problems. Brax, written in JAX [Bradbury

et al., 2018], a Python library, provides hardware-accelerated environments that lever-

age JAX’s auto-vectorization, parallelization over accelerators, and Just-In-Time (JIT)

compilation optimized for individual hardware platforms.

In this chapter, we offer the hardware-accelerated environments of complex, dis-

crete state domains like chess, shogi and Go. Specifically, we introduce Pgx, a suite

of efficient game simulators developed in JAX. Thanks to JAX’s auto-vectorization
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and parallelization across multiple accelerators, Pgx can achieve high throughput on

GPUs. As of writing this paper, to our best knowledge, there is no other broad game

environment library written in JAX. Highlighted features of Pgx include:

• Fast simulation: Pgx provides high-performance simulators written in JAX

that run fast on GPU, similar to Brax. We demonstrated that Pgx is 10-100x

faster than existing Python libraries such as PettingZoo [Terry et al., 2021] and

OpenSpiel [Lanctot et al., 2019] on a DGX-A100 workstation (see Figure 3.2).

• Diverse set of games: Pgx offers over 20 games, ranging from perfect informa-

tion games like chess to imperfect information games like bridge (see Table 3.1).

Pgx also offers miniature versions of game environments (e.g., miniature chess)

to facilitate research cycles.

• Baseline models: Evaluating agents in multi-agent games is relative, requiring

baseline opponents for evaluation. Since it is not always easy to have appropriate

baselines available, Pgx provides its own baseline models. In Section 3.6, we

demonstrate the availability of them with AlphaZero training.

Pgx is open-sourced and freely available at https://github.com/sotetsuk/pgx1.

3.2 How to vectorize game environments

As mentioned in the previous chapter, game environments are not necessarily suitable

for SIMD approaches like continuous action space tasks handled by Isaac Gym/Brax.

Here, we explain how to efficiently vectorize such seemingly non-vectorizable game

environments. The key idea is to impose constraints on the program. Not all programs

can be easily vectorized, and programs that can be vectorized are not necessarily fast.

Constraints for automatic vectorization. All of our game environment state

transitions are stateless and implemented as pure functions. A pure function always
1See Section A.1 for the license.

https://github.com/sotetsuk/pgx
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returns the same output for the same input, does not depend on external state, and

has no side effects (e.g., changes to global variables or I/O operations). To efficiently

parallelize, it is important that individual calculations do not interfere with each other.

Pure functions can avoid concurrency and synchronization issues due to parallelization

because they always return the same result for the same input and do not depend

on external state. JAX can easily and efficiently vectorize such pure function im-

plementations using vmap. JAX provides a set of functions to help implement such

pure functions, including control structures like if and for based on the functional

programming paradigm, which uses pure functions.

Constraints for fast vectorized simulation. While pure function implementa-

tions are essential for efficient vectorization, they alone are not sufficient. Here, we

describe the heuristic optimizations used in the implementation of Pgx game environ-

ments, designed to run efficiently on accelerators.

1. Consider utilizing mathematical tricks. For example, in Go, mathematical short-

cuts can be applied to avoid searching when detecting suicide moves or captures.

2. Consider rewriting in the form of matrix operations, even if this introduces some

redundant calculations. For example, in Chess, the available moves for each piece

are represented as a board. While this representation is somewhat redundant, it

facilitates efficient computation on accelerators.

3. Precompute and store static information as matrices or lookup tables. In the

Chess example, the potential moves for each piece, and the relationship between

discrete actions and board positions, are stored in static precomputed matrices.

Similarly, static lookup tables can be implemented using methods like cuckoo

hashing.

4. Prefer vmap over sequential for loops or map when there are no dependencies

between iterations. For processes where sequential dependencies are not present,



39

import jax
import pgx

env = pgx.make("go_19x19")
init_fn = jax.jit(jax.vmap(env.init))
step_fn = jax.jit(jax.vmap(env.step))

batch_size = 1024
# pseudo-random number generator keys determine the first players
rng_keys = jax.random.split(jax.random.PRNGKey(9999), batch_size)

state = init_fn(rng_keys)  # vectorized initial states (1024, ...)
while not state.terminated.all():
 action = model(state.current_player, state.observation, state.legal_action_mask)
state = step_fn(state, action) # state.rewards with shape (1024, 2)

Figure 3.1: Basic usage of Pgx. The init function generates the initial state object. The
state object has an attribute current player that indicates the agent which acts next.
In this case, since we are using a batch size of 1024 for a 2-player game, current player
is a binary vector whose size is 1024. Note that current player is independent of the
colors (i.e., first player or second player). Here, current player is determined randomly
using a pseudo-random number generator. The step function takes the previous state
and an action vector, whose size is 1024, as input and returns the next state. The
observation of the current player can be accessed through state. In the case of Go, for
example, each observation has a shape of 1024× 19× 19× 17. The available actions at
the current state can be obtained through the boolean vector legal action mask. Here,
it has a shape of 1024× 362. For more detailed API description and usage, refer to the
Pgx documentation at https://sotetsuk.github.io/pgx/.

such as enumerating legal moves in Chess and checking for suicide moves, it is

preferable to vectorize these operations using vmap instead of processing them

sequentially in a loop or with map.

In Appendix, we provide the complete source code implementations of Go and Chess

based on these constraints (Section A.2).

3.3 Pgx overview

In this section, we will provide an overview of the basic usage of Pgx, along with the

fundamental principles behind the design of the Pgx API. Additionally, we will explain

the overview of the game environments currently offered by Pgx as of this publication.

https://sotetsuk.github.io/pgx/
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3.3.1 Pgx API design

Pgx does take inspiration from existing APIs, but it provides its own custom API for

game environments. Specifically, two existing Python RL libraries highly inspired Pgx

API:

• Brax [Freeman et al., 2021], a physics engine written in JAX, providing contin-

uous RL tasks, and

• PettingZoo [Terry et al., 2021], a multi-agent RL environment library available

through Gym-like API [Brockman et al., 2016].

Figure 3.1 describes an example usage of Pgx API. The main difference from the Brax

API comes from that the environments targeted by Pgx are multi-agent environments.

Therefore, in Pgx environments, the next agent to act is specified as the current player,

as in the PettingZoo API. On the other hand, the significant difference from the Pet-

tingZoo API stems from the fact that Pgx is a vectorization-oriented library. Therefore,

Pgx does not use an agent iterator like PettingZoo and does not allow the number of

agents to change. Concrete code examples comparing the Pgx API with the Brax and

PettingZoo APIs are provided in Section A.3.

While we do not focus on the design of the API, the Pgx API is sufficiently generic.

At present, all game environments implemented in Pgx can be converted to the Petting-

Zoo API and called from the PettingZoo API through the Pgx API (see Section A.3).

This fact demonstrates the practical generality of the Pgx API. However, there is a

limitation of the Pgx API in that it cannot handle environments where the number of

agents dynamically changes. This limitation arises from the fact that the Pgx API is

specialized for efficient vectorized simulation.

3.3.2 Available games in Pgx

The Pgx framework offers a diverse range of games, as summarized in Table 3.1. While

Pgx primarily emphasizes multi-agent board games, it also includes some single-agent
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Table 3.1: Available games in Pgx.

Env Name # Players Obs. shape # Actions Tag
2048 1 4× 4× 31 4 perfect info. (w/ chance)
Animal shogi 2 4× 3× 194 132 perfect info.
Backgammon 2 34 156 perfect info. (w/ chance)
Bridge bidding 4 480 38 imperfect info.
Chess 2 8× 8× 119 4672 perfect info.
Connect Four 2 6× 7× 2 7 perfect info.
Gardner chess 2 5× 5× 115 1225 perfect info.
Go 9x9 2 9× 9× 17 82 perfect info.
Go 19x19 2 19× 19× 17 362 perfect info.
Hex 2 11× 11× 4 122 perfect info.
Kuhn poker 2 7 2 imperfect info.
Leduc hold’em 2 34 3 imperfect info.
MinAtar Asterix 1 10× 10× 4 5 Atari-like
MinAtar Breakout 1 10× 10× 4 3 Atari-like
MinAtar Freeway 1 10× 10× 7 3 Atari-like
MinAtar Seaquest 1 10× 10× 10 6 Atari-like
MinAtar Space Invaders 1 10× 10× 6 4 Atari-like
Othello 2 8× 8× 2 65 perfect info.
Shogi 2 9× 9× 119 2187 perfect info.
Sparrow mahjong 3 11× 15 11 imperfect info.
Tic-tac-toe 2 3× 3× 2 9 perfect info.
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environments and Atari-like environments to assist board RL research. Thus, as we

will describe below, games implemented in Pgx span various categories, including two-

player perfect information games, games with chance events, imperfect information

games, and Atari-like games.

Two-player perfect information games Pgx provides two-player perfect informa-

tion games that range from simple games like Tic-tac-toe and Connect Four to complex

strategic games like chess, shogi, and Go 19x19. While these traditional board games

offer rich gameplay and strategic depth, they can be computationally demanding for

many RL researchers. To address this, Pgx also includes smaller versions of shogi

and chess: Animal shogi and Gardner chess. Although they have smaller board sizes

compared to their original counterparts, these games are not mere toy environments.

They retain enough complexity to provide engaging gameplay experiences for humans.

Animal shogi, in particular, was specifically designed for children, while Gardner chess

has a history of active play in Italy [Mhalla and Prost, 2013]. Additionally, Pgx offers

other medium-sized two-player perfect information games such as Go 9x9, Hex and

Othello.

Games with (stochastic) chance events Pgx supports perfect information games

with chance events, including backgammon and 2048, which are popular benchmarks

for RL algorithms in stochastic state transitions [Antonoglou et al., 2022, Paster et al.,

2022]. These games introduce elements of randomness and uncertainty, adding a layer

of complexity and decision-making under uncertainty to the gameplay.

Imperfect information games In the realm of imperfect information games, Pgx

provides several environments. These include Kuhn poker, Leduc hold’em, Sparrow

mahjong (a miniature version of mahjong), and bridge bidding. These games involve

hidden information, requiring agents to reason and strategize based on imperfect knowl-

edge of the current game state.
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Figure 3.2: Simulation throughput of PettingZoo, OpenSpiel, and Pgx. Policies are
random without learning processes. Error bars are not visible in this scale.

Atari-like games While the primary focus of Pgx is on board games, to make Pgx

all-inclusive, Pgx also implements all five environments from the MinAtar game suite:

Asterix, Breakout, Freeway, Seaquest, and Space Invaders [Young and Tian, 2019].

These Atari-like environments offer a more visually oriented and dynamic gameplay

experience compared to traditional board games. Researchers often utilize MinAtar

to conduct comprehensive ablation studies on RL methods in environments with vi-

sual inputs [Ceron and Castro, 2021, Gogianu et al., 2021]. Of these games, Freeway

and Seaquest are highlighted as significant benchmarks for assessing the exploration

capabilities of RL algorithms [Ceron and Castro, 2021]. However, as of this writing,

gymnax has not incorporated Seaquest into its suite.

For detailed descriptions of each environment, please refer to https://sotetsuk.

github.io/pgx.

3.4 Performance benchmarking: simulation through-

put

Pgx excels in efficient and scalable simulation on accelerators thanks to JAX’s auto-

vectorization, parallelization over accelerators, and JIT-compilation. In this section,

we validate it through experiments on an NVIDIA DGX-A100 workstation.

https://sotetsuk.github.io/pgx
https://sotetsuk.github.io/pgx
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3.4.1 Comparison to existing Python libraries

Experiment setup. We compare the pure simulation throughput of Pgx with ex-

isting popular RL libraries available in Python: PettingZoo [Terry et al., 2021] and

OpenSpiel [Lanctot et al., 2019]. For the evaluation, we specifically selected Tic-tac-

toe, Connect Four, chess, and Go, as these games are included in all three libraries.

To our knowledge, neither PettingZoo nor OpenSpiel provides official parallelized envi-

ronments from the Python API. Therefore, we prepared two implementations for each

library:

1. For-loop (DummyVecEnv): sequentially executes and does not parallelize actu-

ally.

2. Subprocess (SubprocVecEnv): parallelize using the multiprocessing module in

Python.

We modified and used SubprocVecEnv provided by Tianshou [Weng et al., 2022a] for

all competitor libraries. We performed all experiments on an NVIDIA DGX-A100

workstation with 256 cores; Pgx simulations used a single A100 GPU or eight A100

GPUs. We used random policies to evaluate the pure performance of simulators without

agent learning. In all implementations, the environment automatically resets to the

initial state upon reaching termination. The Pgx version used here was v0.8.0.

Results. Figure 3.2 shows the results. We found that Pgx achieves at least 10x

faster throughput than other existing Python libraries when the number of vectorized

environments (i.e., batch size) is large enough (e.g., 1024) on a single A100 GPU. Fur-

thermore, when utilizing eight A100 GPUs, Pgx achieves throughput of approximately

100x higher. This trend was identical from the simplest environment, Tic-tac-toe, to

complex environments such as 19x19 Go.
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Figure 3.3: Simulation throughput of all Pgx environments. Error bars are not visible
in this scale.

3.4.2 Throughput of other Pgx environments

The throughput of each environment is influenced by several factors, including the

complexity and nature of the game, as well as the quality of its implementation. For

instance, OpenSpiel demonstrates throughput of the same order for chess and Go 19x19.

In contrast, PettingZoo’s chess implementation exhibits a throughput approximately

10x slower than its Go 19x19 counterpart. This suggests that there might be room

for optimization in PettingZoo’s chess implementation regarding execution speed. To

ensure that all Pgx environments achieve reasonable throughput and scalability like the

four environments shown in Figure 3.2, we measured the sample throughput of all other

Pgx environments on a DGX-A100 workstation, following the same approach as in the

previous section. The number of vectorized environments was 1024 for a single A100

GPU and 8192 for eight A100 GPUs. The results are shown in Figure 3.3. From these

results, we can see that even in the slowest environment, Pgx achieves a throughput

of approximately 105 samples/second with a single A100 GPU. This demonstrates

the efficiency of Pgx, considering that achieving such throughput with other Python

libraries, as shown in the previous section, is challenging even in simpler environments

like Tic-tac-toe. Furthermore, we observe a significant improvement in throughput

when using eight A100 GPUs compared to a single A100 GPU in all environments.
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The throughput increased by an average of 7.4x across all environments (at least 6.6x

in the MinAtar Breakout environment). This highlights the excellent parallelization

performance of Pgx across multiple accelerators.

3.5 PPO training example
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Figure 3.4: PPO training in MinAtar suite using Pgx. Each model is trained up to
20M frames on a single A100 GPU. The shaded area represents the standard error of
five runs.

In Section 3.6, we conducted learning experiments with AlphaZero for two-player,

perfect information games such as 9x9 Go. Here, we present the results of RL training

using the Proximal Policy Optimization (PPO) algorithm [Schulman et al., 2017] in

the MinAtar [Young and Tian, 2019] environments as an example of model-free RL

with Pgx.

MinAtar is a miniature version of Atari, specifically used by researchers to perform

detailed ablation studies on RL methods using visual inputs (like Atari), without re-

quiring large computational resources [Ceron and Castro, 2021, Gogianu et al., 2021].

MinAtar includes five games: Asterix, Breakout, Freeway, Seaquest, and Space In-

vader. It may be worth noting that Freeway and Seaquest are highlighted as possible

useful benchmarks for exploration methods [Ceron and Castro, 2021]. Pgx has re-

implemented all five environments in JAX. The versions of pgx and pgx-minatar used

here were v0.9.0 and v0.2.1, respectively.

PPO implementation details. The implementation of PPO was based on the code

available at https://github.com/luchris429/purejaxrl [Lu et al., 2022], with some

https://github.com/luchris429/purejaxrl
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modifications. As Pgx focuses on achieving high-speed training through vectorized

simulation, we utilized a large batch size of 4096, similar to the training example

in Brax [Freeman et al., 2021]. We fine-tuned hyperparameters using the Asterix

environment in the preliminary experiments (with a different seed used in the main

experiments), and we maintained the same hyperparameters across all five games. The

hyperparameters are listed in Table 3.2. Given the large batch size, the training was

conducted up to 20M frames, which is longer compared to previous studies. However,

it should be noted that the execution time is remarkably short, as discussed later.

Table 3.2: Hyperparameters in PPO training.

Hyperparameter Value
Rollout batch size (i.e., number of vectorized environments) 4096
Rollout length 128
Training minibatch size 4096
Number of epochs 3
Optimizer Adam
Learning rate 0.0003
Gradient clipping max norm 0.5
Discount factor (γ) 0.99
GAE lambda (λ) 0.95
Clipping parameter (ε) 0.2
Value function coefficient 0.5
Entropy coefficient 0.01

Results. Figure 3.4 displays the learning results of PPO in the five MinAtar games.

We conducted five learning runs with different seeds for each game. At each point of

the learning process, we conducted 100 evaluation runs using the learned (stochastic)

policy at that time and plotted the average score. The shaded area illustrates the

standard error of the mean scores over the five runs. The runtime includes the RL

training time and JIT-compilation time of JAX code. In all games, PPO with Pgx

achieves sufficiently high scores in less than a minute, except for Seaquest, which takes

more than 80 seconds to elapse 20M frames. These results demonstrate the effectiveness

of vectorized execution in other game types than two-player, perfect information games
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implemented in Pgx.

3.6 AlphaZero on Pgx environments

In this section, we exhibit the effectiveness of RL training on accelerators using the Pgx

environments, with a specific focus on two-player perfect information games such as Go.

For demonstrations of RL training in other game types, please refer to Section 3.5. We

begin by providing a brief overview of the Gumbel AlphaZero. Next, we describe the

Pgx environments where we apply the Gumbel AlphaZero. Subsequently, we explain

the experimental setup and discuss the selection of baseline models, which serve as

anchor opponents for evaluation purposes. Finally, we present the results.

AlphaZero [Silver et al., 2018] and Gumbel AlphaZero [Danihelka et al.,

2022]. AlphaZero is an RL algorithm that leverages a combination of NNs and Monte

Carlo Tree Search (MCTS). It has achieved state-of-the-art performance in chess, shogi,

and Go, employing a unified approach. Through self-play, AlphaZero integrates MCTS

with the current parameters of NNs, continually updating them through training on the

samples generated during self-play. Gumbel AlphaZero is an adaptation of AlphaZero

that removes several heuristics present in AlphaZero, enabling it to function even with

a reduced number of simulations. In particular, Gumbel AlphaZero addressed the issue

in the original AlphaZero where utilizing Dirichlet noise at the root node during tree

search did not guarantee policy improvement. To overcome this limitation, Gumbel

AlphaZero introduced an enhancement by utilizing the Gumbel-Top-k trick to perform

sampling actions without replacement. They also proposed a MuZero version of the

algorithm but we focus on the evaluation of AlphaZero in this paper. They released

the Mctx library, which includes a JAX implementation of Gumbel AlphaZero. We

utilized this library in our experiments. From now on, unless otherwise specified, when

referring to “AlphaZero,” it refers to Gumbel AlphaZero, not the original AlphaZero.

https://github.com/google-deepmind/mctx
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Environments. While Pgx enables fast simulations on accelerators, large-scale envi-

ronments such as chess, shogi, and 19x19 Go pose significant challenges for researchers

in terms of computational resources for learning. To address this, Pgx provides sev-

eral small-scale environments, including miniature versions of shogi (Animal shogi) and

chess (Gardner chess), as well as Hex (11x11) and Othello (8x8). In addition to these

environments, we included the 9x9 Go environment to create a set of five environments

for training AlphaZero. Here, we describe these environments briefly:

• Animal shogi is a 4x3 miniature version of shogi designed originally for chil-

dren. Like shogi, players can reuse captured pieces. The small board size allows

researchers to conduct research in an environment where planning ability is im-

portant with minimal computational resources.

• Gardner chess is a 5x5 variant of minichess that uses the leftmost five columns

of the standard chessboard. It has a history of active play by human players in

Italy [Mhalla and Prost, 2013].

• Go 9x9 maintains the essential aspects of full-sized Go while being the smallest

playable board size in the game. The advantage of 9x9 Go is that several full-

sized Go AI models are also capable of playing on the 9x9 board, allowing us to

use 9x9 Go as a reliable benchmark (e.g., Danihelka et al. [2022]).

• Hex is a game played on an 11x11 board where two players take turns placing

stones, and the player who forms a connected path from one side of the board to

the other with their stones wins. Its rules are simple, making it relatively easy

to interpret for researchers.

• Othello, also known as Reversi, is played on an 8x8 board. Players take turns

placing stones and flip the opponent’s discs that are sandwiched. The game

concludes when neither player can make a valid move, and the player with the

most discs on the board wins.
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For more detailed information about each environment, please refer to https://sotetsuk.

github.io/pgx.

Training setup. We trained the models using the same network architecture and

hyperparameters across all five environments. The network architecture is 6 ResNet

blocks with policy head and value head, following the structure outlined in the original

AlphaZero study [Silver et al., 2018] basically but with a smaller model size. During the

self-play, 32 simulations were performed at each position for policy improvement. In

each iteration, we generated data for 256 steps with a self-play batch size of 1024 (i.e.,

the number of vectorized environments). We then divided this data into mini-batches

of size 4096 for gradient estimation and parameter updates. We performed training for

400 iterations (≈ 105M frames) in each environment. The choice of accelerator varied

across the environments, but for example, in the case of 9x9 Go, we trained the model

using a single A100 GPU, and the training process took approximately 8 hours.

Evaluation and baseline model selection. We trained agents using the AlphaZero

algorithm on the five environments described above and performed evaluations. How-

ever, in multi-agent games, the performance of the trained agents is relative, so we

need a reference agent for comparison. However, finding a suitable baseline model

for any environment is difficult, or even if it exists, it may not be computationally

efficient. Therefore, for researchers and practitioners using Pgx, we created our own

baseline models. It is important to note that our baseline models are not designed

to be state-of-the-art or oracle models, but rather serve the purpose of examining the

learning process within the Pgx environment. In the given learning setup, we selected

the 200-iteration (≈ 52M frames) model for 9x9 Go and the 100-iteration (≈ 26M

frames) model for other environments, considering their lower complexity compared to

9x9 Go. To evaluate the agents, we estimated the Elo rating through their pairwise

matches. We used the BayesElo program to calculate the Elo rating2[Coulom, 2008].
2https://www.remi-coulom.fr/Bayesian-Elo

https://sotetsuk.github.io/pgx
https://sotetsuk.github.io/pgx
https://www.remi-coulom.fr/Bayesian-Elo
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Figure 3.5: AlphaZero training results using Pgx. Black line represents the Elo rating of
baseline models provided by Pgx (1000 Elo). The shaded area represents the standard
errors of two runs.

We adjusted the Elo rating to ensure that our baseline models had 1000 Elo. During

the evaluation matches, the agents conducted 32 simulations for each move like during

the training.

Results. Figure 3.5 presents the learning results of AlphaZero in the five environ-

ments. We can observe that the agents successfully learn in all five environments

starting from a random policy with the same network architecture and hyperparame-

ters. Furthermore, for the baseline model in 9x9 Go, we evaluated its performance by

playing against Pachi [Baudiš and Gailly, 2012] with 10K simulations per move, which

was used as a baseline opponent in prior study [Danihelka et al., 2022]. The baseline

model conducted 800 simulations for each move. Our baseline model outperformed

Pachi with a record of 62 wins and 38 losses out of 100 matches, confirming its rea-

sonable strength as a baseline model. Although no comparisons were made with other

AIs in environments other than 9x9 Go, we trained them using the same network ar-

chitecture and hyperparameters as in 9x9 Go. Given that the baseline model obtained

in 9x9 Go exhibited reasonable strength throughout the learning process, we suppose

that the baseline models in other environments, which were trained with exactly the

same settings, have also learned reasonably. Therefore, we believe that researchers can
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accelerate their research cycles using the five environments and baseline models pre-

sented here, instead of relying on full-scale chess, shogi, and 19x19 Go, while exploring

RL algorithms such as AlphaZero.

Details. Here, we describe the details of AlphaZero training. In the AlphaZero train-

ing, we used the same hyperparameters for all games. Table 3.3 shows the hyperpa-

rameters used in the training. The network architecture is the same as the original

AlphaZero [Silver et al., 2018] except for the following points:

• We used ResNet v2 [He et al., 2016] instead of v1.

• We used a smaller network (as shown in Table 3.3).

The GPUs used for training vary depending on the game. Table 3.4 shows the GPUs

and runtime for each game. The version of Pgx used in the training is v0.8.0.

Table 3.3: Hyperparameters in AlphaZero training.

Hyperparameter Value
Number of residual blocks 6
Number of channels of conv. layer 128
Self-play batch size (i.e., number of vectorized environments) 1024
Self-play length in each iteration 256
Number of simulations per move 32
Training minibatch size 4096
Optimizer Adam
Learning rate 0.001
Completed Q-values value scale 0.1
Completed Q-values rescale values False

Table 3.4: GPUs details in AlphaZero training.

Environment GPUs Runtime (hours)
Animal shogi A4000 x 1 6.2
Gardner chess A4000 x 4 14.3
Go 9x9 A100 x 1 8.6
Hex A4000 x 1 17.6
Othello A4000 x 1 11.4
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3.7 Training scalability to multiple accelerators

In Section 3.4, we demonstrated a significant improvement in the pure throughput

of Pgx when increasing the number of accelerators using a random agent. Here, we

will show that increasing the number of cores also improves the learning speed in the

AlphaZero training on Pgx environments.

Experiment setup. To demonstrate the improvement in learning speed by increas-

ing the number of cores in AlphaZero training with Pgx, we conducted experiments

in the 9x9 Go environment. In the experiments of Section 3.6, we performed training

using a single A100 GPU in the 9x9 Go environment. Here, we conducted the exact

same number of training frames but with an increased number of GPUs and batch size

during self-play. In the experiment using a single A100 GPU, the batch size during

self-play was set to 1024. However, in training with eight A100 GPUs, we increased

the self-play batch size to 8192, which is eight times larger. It is important to note

that the training batch size, learning rate, and the other hyperparameters were kept

the same as in the single GPU case, ensuring that these hyperparameters did not affect

the learning speed. Similar to Section 3.6, we used the baseline model as an anchor

and adjusted Elo ratings so that the rating of the baseline model is 1000. Furthermore,

in this setup, we want to mention that the time spent on self-play was dominant (more

than 90%) compared to the time spent on training (gradient calculation and parameter

updates).

Results. Figure 3.6 shows the learning curves for the 9x9 Go environment using one

A100 GPU and eight A100 GPUs. The shaded regions represent the standard error of

runs with two different seeds. Based on the figure, it is evident that when both models

are trained with the same number of training frames, the model trained with eight

A100 GPUs achieves the same level of performance approximately four times faster

than the model trained with a single GPU. This experimental outcome highlights the
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Figure 3.6: Multi-GPU AlphaZero training in 9x9 Go.

fact that Pgx not only enhances throughput in random play but also accelerates the

learning process when training RL algorithms such as AlphaZero. These results feature

the practical utility of Pgx in the field of RL, providing researchers and practitioners

with a powerful tool for efficient experimentation utilizing multiple accelerators.

3.8 Related work

Games in AI research. An early study that combined neural networks (NNs) with

RL to build world-class agents in a complex board game was TD-Gammon [Tesauro,

1995]. After the breakthrough of deep learning [Krizhevsky et al., 2012], RL agents

combined with NNs performed well in the video game domain [Mnih et al., 2015] and

large state fully-observable board games, including chess, shogi, and Go [Silver et al.,

2016, 2017, 2018]. RL agents with NNs also performed well in large-scale, partially

observable games like mahjong [Li et al., 2020a]. However, these RL agents in complex

board games require a huge number of self-play samples.

Games as RL environment. Game AI studies often have to pay high engineer-

ing costs, and there are a variety of libraries behind the democratization of game AI

research. Arcade learning environment (ALE) made using Atari 2600 games as RL en-

vironments possible [Bellemare et al., 2013]. Several RL environment libraries provide

classic board game suits [Lanctot et al., 2019, Terry et al., 2021, Zha et al., 2020]. Pgx
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Table 3.5: Environments implemented in JAX. Sorted by the initial submission date
to arXiv.

Library Environments arXiv sub.

Brax [Freeman et al., 2021] Continuous control 2021/6/24
gymnax [Lange, 2022] Classic control, bsuite, MinAtar
Pgx (ours) Board Games 2023/05/29
Jumanji [Bonnet et al., 2024] Combinatorial optimization 2023/06/16
Waymax [Gulino et al., 2023] Autonomous driving 2023/10/12
JaxMARL [Rutherford et al., 2024] Multi-agent RL 2023/11/16
XLand-MiniGrid [Nikulin et al., 2024] Meta RL, Mini-grid 2023/12/19
Craftax [Matthews et al., 2024] Open-ended RL 2024/02/26
TORAX [Citrin et al., 2024] Tokamak Transport 2024/06/10
NAVIX [Pignatelli et al., 2024] Mini-grid 2024/07/28

aims to implement (classic) board game environments with high throughput utilizing

GPU acceleration.

Hardware-accelerated RL environments. While hardware acceleration is a more

specific approach compared to methods that run on CPUs, such as EnvPool [Weng

et al., 2022a], it has a major advantage of its ability to leverage accelerators for par-

allel execution, enabling high-speed simulations. Also, NN training is often performed

on GPU accelerators, and there is an advantage that there is no data transfer cost

between CPU and GPU accelerators. There is a wide range of environments avail-

able through various open-source software. In particular, JAX-based environments

have gained popularity due to their high scalability over accelerators. We summarize

these environments, including Pgx, in Table 3.5. Pgx complements these environ-

ments by offering a (classic) board game suite for (multi-agent) RL research. Other

prominent hardware-accelerated environments include, but are not limited to, Isaac

Gym [Makoviychuk et al., 2021] for continuous control and CuLE [Dalton and Frosio,

2020], a GPU-based Atari emulator.

Algorithms and architectures that can leverage Pgx. The Anakin architec-

ture [Hessel et al., 2021] is an RL architecture that enables efficient utilization of

accelerators and fast learning under the constraint that both the algorithm and en-
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vironment are written as pure JAX functions. The architecture is capable of scaling

up to (potentially) thousands of TPU cores with a simple configuration change. Since

all Pgx environments are implemented using pure JAX functions, the Anakin archi-

tecture is applicable to any Pgx environment. Gumbel AlphaZero [Danihelka et al.,

2022] improves the performance of AlphaZero when the number of simulations is small

by employing the Gumbel-Top-k trick for search. They provide JAX-based Gumbel

AlphaZero implementation3[Babuschkin et al., 2020], which allows batch planning on

accelerators. In Section 3.6, we use this implementation to show the example of Pgx

usage in AlphaZero training.

3.9 Limitations and future work

Limitations. There are several limitations users should take care of regarding Pgx,

including:

• Lack of support for Atari: One of the limitations of Pgx is that it does not

support Atari, which is an important benchmark in RL research. This limitation

arises from the difficulty of implementing the Atari emulator and re-implementing

the dynamics of each game in JAX.

• Pgx API limitation: While the games currently implemented in Pgx can be

exported to the PettingZoo API, which is regarded as a general API for multi-

agent games, Pgx API is not well-suited for handling certain types of games.

These game types include those with a varying number of agents and those that

involve chance players (nature players) such as poker.

• JAX lock-in: Although Pgx provides a convenient way to implement fast al-

gorithms in Python without directly working with C++, it has a reliance on

JAX, which may require users to be familiar with JAX. This can make it less

straightforward to utilize other frameworks like PyTorch [Paszke et al., 2019].
3https://github.com/google-deepmind/mctx

https://github.com/google-deepmind/mctx


57

Future work. Our future work for Pgx includes the following:

• Expansion of baseline algorithms and models: Currently, we are unable to

provide learning examples or models for large-scale games like chess, shogi, and

Go 19x19, making it an important area for future work. We plan to expand the

availability of strong models through proprietary training and connect with other

strong AI systems to enhance the baselines.

• Diversification of game types: The current game collection in Pgx is biased

towards (two-player) perfect information games. We plan to implement games

with imperfect information, such as Texas hold’em and mahjong, to broaden the

range of supported game types.

• Verification on TPUs: While we validated Pgx performance on an NVIDIA

DGX-A100 workstation, it is important to conduct verification using Google

TPUs as well. This will provide valuable insights into the performance and

scalability of Pgx on different hardware architectures.

• Human-vs-agent UI: Developing a user interface that enables human-versus-

agent gameplay is important future work. This will allow researchers with do-

main knowledge to conduct high-quality evaluations and experiments, fostering

improved research and assessment.

By addressing these areas in our future work, we aim to enhance the capabilities

and applicability of Pgx in the field of RL research and game AI for both researchers

and practitioners.

3.10 Conclusion

We proposed Pgx, a library of hardware-accelerated game simulators that operate

efficiently on accelerators, implemented in JAX. Pgx achieves 10-100x higher through-

put compared to other libraries available in Python and demonstrates its ability to
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scale and train using multiple accelerators in the context of AlphaZero training. By

providing smaller game environments, along with their baselines, Pgx facilitates the

development and research of RL algorithms and planning algorithms that can operate

at faster speeds. We anticipate that Pgx will contribute to advancing the field in terms

of developing efficient RL algorithms and planning algorithms in these accelerated en-

vironments.
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Chapter 4

A Demonstration: Bridge Bidding

AI

In this chapter, we show that we can achieve the state-of-the-art (SOTA) performance

in the bridge bidding AI benchmark using Pgx, developed in Chapter 3. The training

recipe we present here is a simple combination of existing techniques, except that it uses

the massively vectorized environment, which demonstrates the potential effectiveness

of massively batching approaches.

4.1 Introduction

Throughout the history of artificial intelligence (AI) research, games have played central

roles as benchmarks for measuring progress. AIs have now achieved or even surpassed

the skill levels of human experts in a variety of classic games. Notable examples

include backgammon [Tesauro, 1995], chess [Silver et al., 2018], Go [Silver et al., 2016,

2017, 2018], poker [Brown and Sandholm, 2018, 2019], mahjong [Li et al., 2020a], and

Atari 2600 [Mnih et al., 2015].

Contract bridge joins the ranks of these classic games as a significant benchmark

for AI [Ginsberg, 1999, Ventos et al., 2017, Yeh et al., 2018, Rong et al., 2019, Tian

et al., 2020, Lockhart et al., 2020]. It presents complex sets of challenges due to its
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multi-agent nature, the imperfect information available to players, and the need for

both cooperation within teams and competition against the opposing team. Bridge is

somewhat akin to the game of Hanabi [Bard et al., 2020], where information sharing is

essential, though bridge also incorporates the competitive element of playing against

another team like DouDiZhu [Zha et al., 2021]. Despite extensive research efforts, to

our best knowledge, no AI has yet been demonstrated to consistently outperform top

human players in bridge.

The game of bridge is structured around two main phases: bidding and playing.

The bidding phase, in particular, is critical to success in the game [Yeh et al., 2018]

and is the focus of our study. Our contributions to this area are twofold:

• We have discovered that a straightforward integration of existing techniques can

achieve state-of-the-art (SOTA) performance in the bidding phase, specifically in

tests against WBridge51. This program is a multiple-time winner of the World

Computer-Bridge Championship (2005, 2007, 2008, and 2016-2018) and serves as

the standard benchmark for bridge AI research.

• To foster further advancements in the field, we have made our code and trained

models open-source. This allows our work to be easily reproduced and verified

by others, offering a new baseline for future research in bridge AI, beyond the

traditional evaluations using WBridge5.

4.2 Background: bridge overview

Here, we provide a simplified overview of the game’s flow rather than detailing all its

rules. Bridge is a card game for four players, divided into two teams. Each player

receives 13 cards from a standard 52-card deck, and these cards are kept secret from

the other players. The game unfolds in two main stages: the bidding phase and the

playing phase.
1http://www.wbridge5.com/

http://www.wbridge5.com/
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• Bidding phase. In this auction-style stage, players predict how many tricks

(sets of four cards, one from each player) their team can win, using bids as a

form of communication to signal their hand’s strength and potential to their

partner. Additionally, they select a suit to serve as trump, which can override

other suits to win tricks. They make bids to set a “contract,” which outlines the

number of tricks the team aims to win and identifies the “declarer” (the player

who made the bid that established the final contract).

• Playing phase. Players take turns playing one card at a time, with the highest

card of the led suit or trump winning the trick. This process repeats for all 13

tricks.

The team’s score depends on meeting or exceeding their contract in tricks won, with

penalties for falling short. Effective communication and strategy are key, as players

must signal their hand’s potential to their partner through their bids to form a winning

contract.

4.3 Related work

While advancements like those by Jack2, WBridge5, and in the work of Ginsberg

[1999] have seen AI reach human-level performance in the playing phase, the bidding

phase remains a more formidable challenge [Yeh et al., 2018]. This complexity has

guided much of the recent focus towards improving AI performance in the bidding

aspect of bridge: Yeh et al. [2018] pioneered the application of neural networks to

bridge bidding, albeit under some simplified conditions such as a restricted number of

bids and opponents that always pass. Rong et al. [2019] developed a neural network-

based bidding system free from these constraints. Their approach included both a

policy network for decision-making and an estimation network to predict unseen hands,

initially trained on data from human experts and later refined through reinforcement
2https://www.jackbridge.com/eindex.htm

https://www.jackbridge.com/eindex.htm
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learning (RL) and self-play. Gong et al. [2019] were the first to claim the creation of

a strong bidding system developed without relying on human game data, achieving

significant improvements over WBridge5. They utilized the A3C algorithm [Mnih

et al., 2016] for training their policy-value network entirely through self-play. Tian

et al. [2020] introduced a joint policy search (JPS) algorithm tailored for cooperative

games, offering theoretical assurances that JPS-derived policies would at least match

the performance of baseline strategies in purely cooperative settings. Despite these

guarantees not strictly applying to bridge, their application of JPS led to enhanced

bidding strategies. Lockhart et al. [2020] focused on developing AI policies capable of

cooperating with human players, achieving SOTA results against WBridge5 through

the use of search techniques and policy iteration on a pretrained model. To the best

of our knowledge, their work represents the current benchmark in AI performance for

bridge bidding.

4.4 Methods: training recipe

This section outlines the training process for our bridge bidding model, which involves

two main stages:

• Initially, we pretrain the neural network using supervised learning (SL). Further

information is given in Section 4.4.2.

• Next, we enhance the model using the Proximal Policy Optimization (PPO) al-

gorithm [Schulman et al., 2017], a popular reinforcement learning (RL) method,

combined with fictitious self-play (FSP) [Heinrich et al., 2015]. Details are pro-

vided in Section 4.4.3.

4.4.1 Network architecture and input features

Our model processes a 480-dimensional binary input vector, consistent with standards

set by OpenSpiel [Lanctot et al., 2019] and Pgx [Koyamada et al., 2023]. The input fea-
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Table 4.1: Input features in bridge bidding.

Feature Size
Vulnerability 4
Pass before the opening bid 4
For each bid, who made it? (35 4-dim one-hot vector) 140
For each double, who made it? (35 4-dim one-hot vector) 140
For each redouble, who made it? (35 4-dim one-hot vector) 140
Current player’s hand 52
Total 480

tures are detailed in Table 4.1. The network architecture comprises a 4-layer multi-layer

perceptron (MLP), each layer containing 1024 neurons and employing ReLU activation

functions [Glorot et al., 2011], following the design of Lockhart et al. [Lockhart et al.,

2020]. Outputs include a policy head for 38 actions (35 bids, pass, double, redouble)

and a value head.

4.4.2 Model pretraining by Supervised Learning (SL)

Initial training utilizes a dataset from OpenSpiel3, also employed by Lockhart et

al. [Lockhart et al., 2020]. This dataset, generated with WBridge5 but based on the

SAYC bidding system4, a simple bidding system different fromWBridge5’s own system.

It includes 1M boards for training and 10K for evaluation, with 12.8M state-action pairs

for training and 110K for evaluation. We used Adam [Kingma and Ba, 2015] with a

learning rate of 1.0×10−4 and a batch size of 128, running the training over 40 epochs.

4.4.3 Reinforcement Learning (RL)

For model enhancement, we applied the PPO algorithm [Schulman et al., 2017], ef-

fective in cooperative multi-agent settings [Yu et al., 2022], and includes A2C as a

special case [Huang et al., 2022b]. To alleviate policy cycling common in self-play, we

incorporated FSP [Heinrich et al., 2015], which samples the opponent uniformly from
3https://console.cloud.google.com/storage/browser/openspiel-data/bridge
4https://web2.acbl.org/documentlibrary/play/SP3%20(bk)%20single%20pages.pdf

https://console.cloud.google.com/storage/browser/openspiel-data/bridge
https://web2.acbl.org/documentlibrary/play/SP3%20(bk)%20single%20pages.pdf
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the checkpoints.

Reward function. Non-zero rewards are assigned only at the end of each game.

The reward z is calculated by z = score/7600, where the score is derived from the

double dummy solver (DDS)5, a standard approximator for the playing phase, and

7600 represents the maximum absolute score.

DDS dataset. To bypass real-time DDS calculations during RL, we used a pre-

computed DDS dataset from Pgx [Koyamada et al., 2023], containing 12.5M boards

for training and 100K for evaluation.

Invalid action masking. This technique, aimed at preventing the agent from

selecting illegal actions, has been widely adopted in AI research; including well-known

implementations like Suphx [Li et al., 2020a], OpenAI Five [Berner et al., 2019], and

AlphaStar [Vinyals et al., 2019], among others. For detailed insights, see [Huang and

Ontañón, 2022].

Other details. Our PPO implementation is a fork of PureJaxRL6 [Lu et al., 2022].

After conducting preliminary tests without using the test DDS data, we established

the following hyperparameters: 8192 vectorized environments, a rollout length of 32,

GAE λ of 0.95, a discount factor of 1.0, a clip ratio of 0.2, a value loss coefficient of 0.5,

an entropy coefficient of 1.0× 10−3, a batch size of 1024, using Adam, with a learning

rate of 1.0× 10−6. We trained the model for 104 PPO update steps, in which each step

has 10 epochs over rollout data.

4.5 Results

4.5.1 Performance against WBridge5

To assess our model’s effectiveness, trained as described in Section 4.4, we tested it

against WBridge5, the leading benchmark in computer bridge. We utilized WBridge5

5https://github.com/dds-bridge/dds
6https://github.com/luchris429/purejaxrl

https://github.com/dds-bridge/dds
https://github.com/luchris429/purejaxrl
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Table 4.2: Performance against WBridge5.

Paper IMPs/board (±SE) # games
Rong et al. [2019] +0.25 (±N/A) 64
Gong et al. [2019] +0.41 (±0.27) 64
Tian et al. [2020] +0.63 (±0.22) 1K
Lockhart et al. [2020] +0.85 (±0.05) 10K
Qiu et al. [2024] +0.98 (±0.05) 10K
Ours +1.24 (±0.19) 1K

at its highest difficulty setting and with its native bidding system, which differs from

the SAYC system used during our SL pretraining phase. The evaluation comprised 1K

games, conducted over a day, reflecting the significant time needed because WBridge5

operates with a GUI and includes a playing phase.

The outcomes, detailed in Table 4.2, also compare our model’s performance with

that reported in prior studies. Our approach achieved an average of +1.24 International

Match Points (IMPs)7 per board against WBridge5 across these games, surpassing the

previous SOTA performance of +0.85 IMPs/board by Lockhart et al. [Lockhart et al.,

2020]. This improvement of 0.39 IMPs/board is significant in the context of computer

bridge competitiveness [Ventos et al., 2017]. We also note that a concurrent study by

Qiu et al. [2024] achieved +0.98 IMPs/board around the same time as our study8.

4.5.2 Ablation study

Our method combines SL pretraining with RL model improvement through FSP. To

dissect the contribution of each component, we tested variations of our model lacking

one of these elements against WBridge5, with findings summarized in Figure 4.1. We

used a learning rate 10 times larger for the model from scratch (i.e., w/o SL), as we

found that it performs better than the original learning rate in those settings. We also

trained the model from scratch with twice the number of steps to compensate for the

7Law 78B: https://web2.acbl.org/documentlibrary/play/laws-of-duplicate-bridge.pdf.
8Our study [Kita et al., 2024] was published in Aug. 2024, while Qiu et al. [2024] was published in

Sep. 2024

https://web2.acbl.org/documentlibrary/play/laws-of-duplicate-bridge.pdf
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Figure 4.1: Ablation of each training component.

lack of SL pretraining.

Key observations include:

1. Removing SL pretraining drastically reduces performance, rendering the model

unable to surpass the WBridge5 baseline.

2. Integrating FSP enhances results post-SL pretraining but is ineffective on its own.

The first insight challenges Gong et al. [2019]’s assertion that a model can outperform

WBridge5 without SL pretraining, a claim we could not replicate despite extensive

hyperparameter testing. We leave further exploration of this discrepancy for future

work. We can offer a plausible explanation for the second observation. Starting from

scratch, facing a random (or nearly random) opponent policy might slow the learning

process. It is important to note that the bidding system used to create the dataset for

SL pretraining differs from WBridge5’s system. Therefore, the model enhanced with

FSP is not just learning to outperform a version that mimics WBridge5.

To verify the mitigation of policy cycling by FSP, we organized a round-robin tour-

nament among training checkpoints. Figure 4.2 shows the results. Unlike standard

self-play, where some later-stage models might struggle against earlier ones, FSP con-

sistently demonstrated the ability to outperform its predecessors, indicating its value

in stable training.
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4.5.3 Multi-GPU training

As we have demonstrated in Chapter 3, extending RL training to multi-GPU with

hardware-accelerated environments is straightforward. We tested how long it takes to

train a model with the same performance as the best model trained in Section 4.5.1 on

NVIDIA A100 8 GPUs. As a result, we found that it would take less than an hour to

beat the model presented in Section 4.5.1 from the pretrained model. Here, we changed

the learning rate from 1.0× 10−6 to 1.0× 10−5 and used larger DDS datasets (100M).

4.6 Open-source software and models

Our straightforward approach, as detailed in Section 4.4, has demonstrated SOTA per-

formance against the most recognized benchmark in computer bridge. While effective,

this method is not specifically optimized for bridge’s unique aspects, indicating poten-

tial areas for enhancement. To encourage continued advancement in bridge AI research,
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we made our code, dataset, and trained models public as open-source resources.9

This new baseline aims to overcome certain limitations associated with the current

WBridge5 benchmark:

1. SlowWBridge5 evaluation. Primarily designed for human interaction, WBridge5’s

evaluation process, which relies on GUI operations and includes a playing phase,

is notably time-consuming and resource-intensive. This was highlighted by Rong

et al. [2019], who manually tested their model against WBridge5.

2. Potential weakness of WBridge5. As evidenced in Table 4.2, recent ad-

vancements have significantly outperformed WBridge5, raising questions about

the benchmark’s current competitiveness. Moreover, fairness in evaluation is a

concern since WBridge5 does not incorporate DDS strategies, although recent

studies trained their models with DDS datasets.

By addressing these issues, our baseline not only offers a more efficient and equitable

framework for assessment but also enhances the diversity of bidding systems under

consideration.

4.7 Limitations, future work, and conclusion

Our study demonstrates that straightforward integration of existing techniques can

outperform WBridge5, a leading benchmark in computer bridge bidding systems. How-

ever, our approach relies on SL pretraining to surpass WBridge5, contrasting with Gong

et al. [2019], who claimed to achieve superior results without SL, using only RL from

scratch. Exploring the reasons behind this discrepancy presents a valuable opportunity

for future research.

Additionally, our methodology, while effective, is not specifically designed with

the unique aspects of bridge in mind. This suggests there may be room for further
9Our code with multi-gpu training and models are available at: https://github.com/sotetsuk/

brl. DDS dataset is available at: https://huggingface.co/datasets/sotetsuk/dds_dataset.

https://github.com/sotetsuk/brl
https://github.com/sotetsuk/brl
https://huggingface.co/datasets/sotetsuk/dds_dataset


69

optimization and refinement tailored to bridge’s strategic complexities.

Despite these limitations, we are confident our work lays a solid foundation for

subsequent studies in bridge AI. By providing our code and models as open-source

resources, we aim to facilitate the development of more advanced AI systems capable

of exceeding human expertise in bridge.
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Chapter 5

A Potential Disadvantage of

Massive Batching

In this chapter, we discuss the potential disadvantage of massive batching. While

batching improves computational efficiency, the performance may degrade compared

to the sequential case due to delayed feedback. We consider the pure exploration

problem in stochastic bandit tasks, which is a simple form of RL to investigate this

potential disadvantage. We show that one of the most popular algorithms, Sequential

Halving (SH; Karnin et al. [2013]), does not actually degrade performance under realis-

tic conditions. Finally, we combine batched SH with Monte Carlo tree search (MCTS)

and empirically demonstrated its effectiveness in 9x9 Go.

5.1 Introduction

In this chapter, we consider the pure exploration problem in the field of stochastic multi-

armed bandits, which aims to identify the best arm within a given budget [Audibert

et al., 2010]. Specifically, we concentrate on the fixed-size batch pulls setting, where

we pull a fixed number of arms simultaneously. Batch computation plays a central

role in improving computational efficiency, especially in large-scale bandit applications

where reward computation can be expensive. For instance, consider applying this
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to tree search algorithms like Monte Carlo tree search [Tolpin and Shimony, 2012].

The reward computation here typically involves the value network evaluation [Silver

et al., 2016, 2017], which can be computationally expensive. By leveraging batch

computation and hardware accelerators (e.g., GPUs), we can significantly reduce the

computational cost of the reward computation. However, while batch computation

enhances computational efficiency, its performance (e.g., simple regret) may not match

that of sequential computation with the same total budget, due to delayed feedback

reducing adaptability. Therefore, the objective here is to develop a pure exploration

algorithm that maintains its performance regardless of the batch size.

We focus on the Sequential Halving (SH) algorithm [Karnin et al., 2013], a popular

and well-analyzed pure exploration algorithm. Due to its simplicity, efficiency, and

lack of task-dependent hyperparameters, SH finds practical applications in, but not

limited to, hyperparameter tuning [Jamieson and Talwalkar, 2016], recommendation

systems [Aziz et al., 2022], and state-of-the-art AlphaZero [Silver et al., 2018] and

MuZero [Schrittwieser et al., 2020] family [Danihelka et al., 2022]. In this chapter,

we aim to extend SH to a batched version that matches the original SH algorithm’s

performance, even with large batch sizes. To date, Jun et al. [2016] introduced a simple

batched extension of SH and reported that it performed well in their experiments.

However, the theoretical properties of batched SH have not yet been well-studied in

the setting of fixed-size batch pulls.

We consider two simple and natural batched variants of SH (Section 5.3): Breadth-

first Sequential Halving (BSH) and Advance-first Sequential Halving (ASH). We intro-

duce BSH as an intermediate step to understanding ASH, which is our main focus.

Our main contribution is providing a theoretical guarantee for ASH (Section 5.4),

showing that it is algorithmically equivalent to SH as long as the batch budget is not

extremely small — For example, in a 32-armed stochastic bandit problem, ASH can

match SH’s choice with 100K sequential pulls using just 20 batch pulls, each of size

5K. This means that ASH can achieve the same performance as SH with significantly
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fewer pulls when the batch size is reasonably large. Moreover, one can understand the

theoretical properties of ASH using the theoretical properties of SH, which have been

well-studied [Karnin et al., 2013, Zhao et al., 2023]. In our experiments, we validate

our claim by comparing the behavior of ASH and SH (Section 5.5.1) and analyze the

behavior of ASH with the extremely small batch budget as well (Section 5.5.2).

5.2 Preliminary

Pure Exploration Problem. Consider a pure exploration problem involving n arms

and a budget T . We define a reward matrix R ∈ [0, 1]n×T , where each element Ri,j ∈

[0, 1] represents the reward of the j-th pull of arm i ∈ [n] := {1, . . . , n}, with j being

counted independently for each arm. Each element in the i-th row is an i.i.d. sample

from an unknown reward distribution of i-th arm with mean µi. Without loss of

generality, we assume that 1 ≥ µ1 ≥ µ2 ≥ . . . ≥ µn ≥ 0. In the standard sequential

setting, a pure exploration algorithm sequentially observes T elements from R by

pulling arms one by one for T times. The algorithm then selects one arm as the best

arm candidate. Note that we only consider deterministic pure exploration algorithms in

this chapter. Such an algorithm can be characterized by a mapping π : [0, 1]n×T → [n]

that takes R as input and outputs the selected arm aT . The natural performance

measure in pure exploration is the simple regret, defined as ER[µ1 − µaT
] [Bubeck

et al., 2009], which compares the performance of the selected arm aT with the best arm

1.

Sequential Halving (SH; Karnin et al. [2013]) is a sequential elimination algo-

rithm designed for the pure exploration problem. It begins by initializing the set of

best arm candidates as S0 := [n]. In each of the dlog2 ne rounds, the algorithm halves

the set of candidates (i.e., |Sr+1| = d|Sr|/2e) until it narrows down the candidates to

a single arm in Sdlog2 ne. During each round r ∈ {0, . . . , dlog2 ne − 1}, the arms in

the active arm set Sr are pulled equally Jr :=
⌊

T
|Sr|dlog2 ne

⌋
times, and the total budget
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Algorithm 2 SH: Sequential Halving [Karnin et al., 2013]
1: input number of arms: n, budget: T
2: initialize best arm candidates S0 := [n]
3: for round r = 0, . . . , dlog2 ne − 1 do
4: pull each arm a ∈ Sr for Jr =

⌊
T

|Sr|dlog2 ne

⌋
times

5: Sr+1 ← top-d|Sr|/2e arms in Sr w.r.t. the empirical rewards
6: return the only arm in Sdlog2 ne

consumed for round r is Tr := Jr×|Sr|. The SH algorithm is described in Algorithm 2.

We denote the mapping induced by the SH algorithm as πSH. It has been shown that

the simple regret of SH satisfies ER[µ1−µaT
] ≤ Õ(

√
n/T ), where Õ(·) ignores the log-

arithmic factors of n [Zhao et al., 2023]. Note that the consumed budget ∑r<dlog2 ne Tr

might be less than T . We assume that the remaining budget is consumed equally by

the last two arms in the final round.

5.3 Batch SH algorithms

We consider the fixed-size batch pulls setting, where we simultaneously pull b arms for

B times, with b being the fixed batch size and B being the batch budget [Jun et al.,

2016]. The standard sequential case corresponds to b = 1 and B = T . Our interest is

to compare the performance of the batch SH algorithms with a large batch size b and a

small batch budget B to that of the standard SH algorithm when pulling sequentially

T times. Therefore, we compare the performance of the batch SH algorithms under

the assumption that T = b×B holds, so that the total budget is the same in both the

sequential and batch settings. In this section, we first reconstruct the SH algorithm so

that it can be easily extended to the batched setting (Section 5.3.1). Then, we consider

Breadth-first Sequential Halving (BSH), one of the simplest batched extensions of SH,

as an intermediate step (Section 5.3.2). Finally, we introduce Advance-first Sequential

Halving (ASH) as a further extension (Section 5.3.3).
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Algorithm 3 SH [Karnin et al., 2013] implementation with target pulls LB/LA

1: input number of arms: n, budget: T
2: initialize empirical mean µ̄a := 0 and arm pulls Na := 0 for all a ∈ [n]
3: for t = 0, . . . , T − 1 do
4: let At be {a ∈ [n] | Na = Lt} . Lt is either LB

t (5.1) or LA
t (5.2)

5: pull arm at := argmaxa∈At
µ̄a

6: update µ̄at and Nat ← Nat + 1
7: return argmaxa∈[n](Na, µ̄a)

Algorithm 4 Breadth-first target pulls
LB

1: input number of arms: n, budget: T
2: initialize empty LB, K := n, J := 0
3: for r = 0, . . . dlog2 ne − 1 do
4: for B j = 0, . . . , Jr − 1 do
5: for I k = 0, . . . , K − 1 do
6: append J + j to LB

7: K ← dK/2e and J ← J + Jr

8: return LB . (0,0,0,...)

Algorithm 5 Advance-first target pulls
LA

1: input number of arms: n, budget: T
2: initialize empty LA, K := n, J := 0
3: for r = 0, . . . dlog2 ne − 1 do
4: for I k = 0, . . . , K − 1 do
5: for B j = 0, . . . , Jr − 1 do
6: append J + j to LA

7: K ← dK/2e and J ← J + Jr

8: return LA . (0,1,2,...)

5.3.1 SH implementation with target pulls

Since BSH/ASH is a natural batched extension of SH, we first reconstruct the im-

plementation of the SH algorithm as Algorithm 3 so that it can be easily extended

to BSH/ASH. Note that, here, the operation argmaxx∈X (`x,mx) selects the element

x ∈ X that maximizes `x first. If multiple elements achieve this maximum, it then

selects among these the one that maximizes mx. At the t-th arm pull, SH selects the

arm at that has the highest empirical reward µ̄a among the candidates At:

at := argmaxa∈At
µ̄a,

where At := {a ∈ [n] | Na = Lt} are the candidates at the t-th arm pull, Na is the

total number of pulls of arm a, and Lt is the number of target pulls at t, defined as
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either breadth-first manner

LB
t :=

∑
r′<r(t)

Jr′

︸ ︷︷ ︸
pulls before r(t)

+
⌊
t−∑r′<r(t) Tr′

|Sr(t)|

⌋
︸ ︷︷ ︸

pulls in r(t)

, (5.1)

or advance-first manner

LA
t :=

∑
r′<r(t)

Jr′

︸ ︷︷ ︸
pulls before r(t)

+
t− ∑

r′<r(i)
Tr′

 mod Jr(t)


︸ ︷︷ ︸

pulls in r(t)

, (5.2)

where r(t) is the round of the t-th arm pull. This LB
t /LA

t represents the cumulative

number of pulls of the arm selected at the t-th pull before the t-th arm pull. We omitted

the dependency on n and T for simplicity. The definition of LB
t /LA

t is somewhat

complicated, and it may be straightforward to write down the algorithm that constructs

LB := (LB
0 , . . . , L

B
T ) and LA := (LA

0 , . . . , L
A
T ) as shown in Algorithm 4 and Algorithm 5,

respectively. Note that the choice between LB and LA is arbitrary and does not affect

the behavior of SH — as long as the arm pull is sequential (not batched). Python code

for this SH implementation is available in Section B.1. Note that using target pulls to

implement SH is natural and not new. For example, Mctx1 [Babuschkin et al., 2020]

has a similar implementation.

5.3.2 BSH: Breadth-first Sequential Halving

Now, we extend SH to BSH, in which we select arms so that the number of pulls of

each arm becomes as equal as possible using LB. Note that LB uses T = b×B as the

scheduled total budget. When pulling arms in a batch, we need to consider not only

the number of pulls of the arms but also the number of scheduled pulls in the current

batch. Therefore, we introduce virtual arm pulls Ma, the number of scheduled pulls

of arm a in the current batch. For each batch pull, we sequentially select b arms with

1https://github.com/google-deepmind/mctx

https://github.com/google-deepmind/mctx
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Algorithm 6 BSH: Breadth-first Sequential Halving
1: input number of arms: n, batch size: b, batch budget: B
2: initialize counter t := 0, empirical mean µ̄a := 0, and arm pulls Na := 0 for all
a ∈ [n]

3: for B times do
4: initialize empty batch B and virtual arm pulls Ma = 0 for all a ∈ [n]
5: for b times do
6: let At be {a ∈ [n] | Na +Ma = LB

t }
7: push at := argmaxa∈At

µ̄a to B
8: update t← t+ 1 and Mat ←Mat + 1
9: batch pull arms in B
10: update µ̄a and Na ← Na +Ma for all a ∈ B
11: return argmaxa∈[n](Na, µ̄a)

Algorithm 7 ASH: Advance-first Sequential Halving
1: input number of arms: n, batch size: b, batch budget: B
2: initialize counter t := 0, empirical mean µ̄a := 0, and arm pulls Na := 0 for all
a ∈ [n]

3: for B times do
4: initialize empty batch B and virtual arm pulls Ma = 0 for all a ∈ [n]
5: for b times do
6: let At be {a ∈ [n] | Na +Ma = LA

t } . BSH uses LB
t instead

7: push at := argmaxa∈At
(Na, µ̄a) to B . BSH uses argmaxa∈At

µ̄a instead
8: update t← t+ 1 and Mat ←Mat + 1
9: batch pull arms in B
10: update µ̄a and Na ← Na +Ma for all a ∈ B
11: return argmaxa∈[n](Na, µ̄a)

the highest empirical rewards from the candidates {a ∈ [n] | Na +Ma = LB
t } and pull

them as a batch. The BSH algorithm is described in Algorithm 6. BSH is similar to

a batched extension of SH introduced in Jun et al. [2016] in the sense that it selects

arms so that the number of pulls of each arm becomes as equal as possible.

5.3.3 ASH: Advance-first Sequential Halving

We further extend SH to ASH in a manner similar to BSH. The ASH algorithm is

described in Algorithm 7. Figure 5.1 shows the pictorial representation of BSH and

ASH. Python code for this ASH implementation is available in Section B.1. The

differences between BSH and ASH are that:
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The 3rd batch pull spans two rounds and
the arm promotion is determined based solely 
on the completion of 6 out of 8 pulls.

The 3rd batch pull selects the arm to be 
promoted from among those that have completed
the pulling (thanks to Algorithm 5, line 7).

1st round 2nd round 3rd round Example

Figure 5.1: Pictorial representation of breadth-first SH (BSH; Section 5.3.2) and
advance-first SH (ASH; Section 5.3.3) for an 8-armed bandit problem. Batch size b
is 24 and batch budget B is 8. The same color indicates the same batch pull — For
example, in the first batch pull (blue), BSH pulls each of the 8 arms 3 times, while
ASH pulls 3 arms 8 times each. BSH selects arms so that the number of pulls of each
active arm becomes as equal as possible, while ASH selects arms so that once an arm
is selected, it is pulled until the budget for the arm in the round is exhausted.

1. ASH selects arms in advance-first manner using LA instead of LB (line 6), and

2. ASH considers not only the empirical rewards µ̄a but also the number of actual

pulls Na when selecting arms in a batch (line 7).

The second difference ensures that, when the batch spans two rounds, the arm to

be promoted is selected from the arms that have completed pulling (e.g., see the 3rd

batch pull in Figure 5.1). Note that this second modification is not useful for BSH. Let

πASH : [0, 1]n×T → [n] be the mapping induced by the ASH algorithm. In Section 5.4,

we will show that ASH is algorithmically equivalent to SH with the same total budget

T = b×B — πASH is identical to πSH.

5.4 Algorithmic equivalence of SH and ASH

This section presents a theoretical guarantee for the ASH algorithm.

Theorem 1 Given a stochastic bandit problem with n ≥ 2 arms, let b ≥ 2 be the

batch size and B be the batch budget satisfying B ≥ max{4, n
b
}dlog2 ne. Then, the ASH

algorithm (Algorithm 7) is algorithmically equivalent to the SH algorithm (Algorithm 3)

with the same total budget T = b×B — the mapping πASH is identical to πSH.
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RHS

LHS

Figure 5.2: Visualization of inequality (5.3).

Proof sketch A key observation is that ASH and SH differ only when a batch pull

spans two rounds, like the 3rd batch pull in Figure 5.1. In this case, ASH may promote

an incorrect arm to the next round that would not have been promoted in SH. We

can prove that such incorrect promotion does not occur under the condition B ≥

max{4, n
b
}dlog2 ne. This is done by demonstrating that the inequality (5.3) holds for

any z < b, the number of pulls for the current round r in the batch. Figure 5.2

illustrates (5.3).

Proof. The condition B ≥ max{4, n
b
}dlog2 ne is divided into two separate condi-

tions:

B ≥ n

b
dlog2 ne, (C1)

and

B ≥ 4dlog2 ne. (C2)

We focus on the scenario where a batch pull spans two rounds. In this case, let

z < b be the number of pulls that consume the budget for round r, and b − z be the

number of pulls that consume the budget for round r+ 1. The following proposition is

demonstrated: ∀n ≥ 2,∀b ≥ 2, ∀r < dlog2 ne − 1, ∀z < b, if (C1) and (C2) hold, then

|Sr+1| −
⌈
b− z
Jr+1

⌉
≥
⌈
z

Jr

⌉
. (5.3)
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The left-hand side (LHS) of (5.3) represents the number of arms promoting to the

subsequent round post-batch pull, whereas the right-hand side (RHS) quantifies the

arms pending completion of their pulls at the batch pull juncture. This inequality, if

satisfied, ensures that, even when a batch spans two rounds, arms supposed to advance

to the next round in SH are not left behind in ASH, i.e., no incorrect promotion

occurs. Considering the scenario where z = b − 1 suffices, as it represents the worst-

case condition. Let x := |Sr| ≥ 3 for the given r < dlog2 ne − 1. Two cases are

considered. Case 1: when n ≤ 4b. Given that Jr =
⌊

b×B
xdlog2 ne

⌋
≥ b4b/xc as derived

from (C2), it is sufficient to show

⌈
x

2

⌉
− 1 ≥

⌈
b− 1
b4b/xc

⌉
(5.4)

in x ∈ [3, 4b]. This assertion is directly supported by Lemma 1. Case 2: when 4b < n.

Given that Jr =
⌊

b×B
xdlog2 ne

⌋
≥ bn/xc as derived from (C1), it is sufficient to show⌈

x
2

⌉
− 1 ≥

⌈
n/4−1
bn/xc

⌉
in x ∈ [3, n]. This conclusion follows by the same reasoning applied

in Case 1. �

Lemma 1 For any integer b ≥ 2, the inequality
⌈
x
2

⌉
−1 ≥

⌈
b−1
b4b/xc

⌉
holds for all integers

x ∈ [3, 4b].

3 128
0

60

Figure 5.3: Visualization of Lemma 1.

The proof of Lemma 1 is in Section B.2. Here, we provide the visualization of (5.4) in

Fig. 5.3 to intuitively show that Lemma 1 holds. Each colored line represents the RHS

for different b ≤ 32. One can see that the LHS is always greater than the RHS for any

x ∈ [3, 4b].
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Remark 1 The condition (C1) is common to both SH and ASH — SH implicitly

assumes T ≥ ndlog2 ne as the minimum condition to execute. This is because we need

to pull each arm at least once in the first round (i.e., J1 ≥ 1). With the same argument,

the batch budget B must satisfy (C1). On the other hand, (C2) is specific to ASH and

is required to ensure the equivalence. As we discuss in the Section 5.4.1, we argue that

this additional (C2) is not practically problematic.

Remark 2 Note that the condition (C2) is tight; Theorem 1 does not hold even if

B ≥ αdlog2 ne for any positive value α < 4.

Proof. We aim to demonstrate the existence of a value x such that
⌈
x
2

⌉
− 1 −⌈

b−1
bαb/xc

⌉
< 0 when n ≤ αb. Consider the case when x = 4. In this scenario, the LHS

of the inequality can be rewritten as 1−
⌈

b−1
bαb/4c

⌉
≤ 1− b−1

bαb/4c ≤ 1− 4
α
b−1
b
→ 1− 4

α
as

b→∞. As α < 4, it follows that LHS < 0 for sufficiently large values of b. �

Remark 3 When b is sufficiently large, the minimum B that satisfies both (C1)

and (C2) is 4dlog2 ne. Theorem 1 implies that for arbitrarily large target budget T ,

ASH can achieve the same performance as SH by increasing the batch size b without

increasing the batch budget B from 4dlog2 ne— ASH guarantees its scalability in batch

computation.

Remark 4 Theorem 1 allows us to understand the properties of ASH based on ex-

isting theoretical research on SH, such as the simple regret bound [Zhao et al., 2023].

5.4.1 Discussion on the conditions

To show that SH and ASH are algorithmically equivalent, we used an additional con-

dition (C2) of O(log n). However, we argue that this condition is not practically prob-

lematic because the condition (C1), the minimum condition required to execute (un-

batched) SH, is dominant (O(n log n)). This condition (C1) is dominant over (C2) as

shown in Figure 5.4. We can see that the condition (C2) only affects the algorithm
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when the batch size is sufficiently larger than the number of arms (b � n). This is

a reasonable result, meaning that we cannot guarantee the equivalent behavior to SH

with an extremely small batch budget, such as B = 1. On the other hand, if the user

secures the minimum budget B = 4dlog2 ne that depends only on the number of arms n

and increases only logarithmically, regardless of the batch size b, they can increase the

batch size arbitrarily and achieve the same result as when SH is executed sequentially

with the same total budget, with high computational efficiency.

0 512 1024
n

0

512

1024 b = 1024

0 512 1024
n

0

512

b = 641024

0 512 1024
n

0

512

1024

B

b = 4

.

Both (C1) and (C2) hold (i.e., ASH is equivalent to SH).
Only (C1) holds (i.e., SH is executable but ASH may not be equivalent to SH).
Only (C2) holds (i.e., SH is not executable).
Neither (C1) nor (C2) holds.

Figure 5.4: Visualization of conditions (C1) and (C2).

5.5 Empirical validation

1 100Arm

0

1

min

max

= 0.5
= 1.0
= 2.0

Figure 5.5: Polynomial(α) bandit problem instances.

We conducted experiments to empirically demonstrate that ASH maintains its per-

formance for large batch size b, in comparison to its sequential counterpart SH. To

evaluate this, we utilized a polynomial family parameterized by α as a representative

bandit problem instance, where the reward gap ∆a := µ1 − µa follows a polynomial

distribution with parameter α: ∆a ∝ (a/n)α [Jamieson et al., 2013, Zhao et al., 2023].
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This choice is motivated by the observation that real-world applications exhibit poly-

nomially distributed reward gaps, as mentioned in [Zhao et al., 2023]. In our study,

we considered three different values of α (0.5, 1.0, and 2.0) to capture various reward

distributions (see Figure 5.5). Additionally, we characterized each bandit problem in-

stance by specifying the minimum and maximum rewards, denoted as µmin and µmax

respectively. Hence, we denote a bandit problem instance as T (n, α, µmin, µmax).

We also implemented a simple batched extension of SH introduced by Jun et al.

[2016] as a baseline for comparison. We refer to this algorithm as Jun+16. The

implementation of Jun+16 is described in Algorithm 8. Jun et al. [2016] did not

provide a theoretical guarantee for Jun+16, but it has shown performance comparable

to or better than their proposed algorithm in their experiments.

Algorithm 8 Batched Sequential Halving introduced in Jun et al. [2016]
1: input number of arms: n, batch budget: B, batch size: b
2: initialize best arm candidates S0 := [n]
3: for round r = 0, . . . , dlog2 ne − 1 do
4: for

⌊
B/dlog2 ne

⌋
times do

5: select batch actions B so that the number of pulls of each arm in Sr is as
equal as possible

6: pull arms B in the batch
7: Sr+1 ← top-d|Sr|/2e arms in Sr w.r.t. the empirical rewards
8: return the only arm in Sdlog2 ne

5.5.1 Large batch budget scenario: B ≥ 4dlog2 ne

First, we empirically confirm that, as we claimed in Section 5.4, ASH is indeed equiv-

alent to SH under the condition (C2). We generated 10K instances of bandit prob-

lems and applied ASH and SH to each instance with 100 different seeds. We ran-

domly sampled n from {2, . . . , 1024}, α from {0.5, 1.0, 2.0}, and µmin and µmax from

{0.1, 0.2, . . . , 0.9}. For each instance T (n, α, µmin, µmax), we randomly sampled the

batch budget B ≤ 10dlog2 ne and the batch size b ≤ 5n so that the condition (C1)

and (C2) are satisfied. As a result, we confirmed that the selected arms of ASH and SH
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Figure 5.6: Single regret of BSH, ASH, and Jun+16 against SH when B ≥ 4dlog2 ne.
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Figure 5.7: Single regret of BSH, ASH, and Jun+16 against SH when B < 4dlog2 ne.

are identical in all 10K instances and 100 seeds for each instance. We also conducted

the same experiment for BSH and Jun+16. We plotted the simple regret of BSH,

ASH, and Jun+16 against SH in Figure 5.6. There are 10K instances, and each point

represents the average simple regret of 100 seeds for each instance. To compare the

performance, we fitted a linear regression model to the simple regret of BSH, ASH, and

Jun+16 against SH as y = βx, where y is the simple regret of BSH, ASH, or Jun+16,

x is the simple regret of SH. The slope β is estimated by the least squares method.

The estimated slope β is 1.008 for BSH, 1.000 for ASH, and 0.971 for Jun+16, which

indicates that the simple regret of ASH, BSH, and Jun+16 is comparable to SH on

average.

5.5.2 Small batch budget scenario: B < 4dlog2 ne

Next, we examined the performances of BSH, ASH, and Jun+16 against SH when

the additional condition (C2) is not satisfied, i.e., when the batch budget is extremely

small B < 4dlog2 ne and thus Theorem 1 does not hold. We conducted the same

experiment as in Section 5.5.1 except the batch budget B < 4dlog2 ne. We sampled B
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so that B is larger than the number of rounds. The results are shown in Figure 5.7. The

slope β is estimated as 1.059 for BSH, 1.011 for ASH, and 1.017 for Jun+16. All the

estimated slopes are worse than when B ≥ 4dlog2 ne. However, the estimated slopes

are still close to 1, which indicates that while we do not have a theoretical guarantee,

the performance of BSH, ASH, and Jun+16 is comparable to SH on average.

5.6 Application to Monte Carlo tree search

We have theoretically and empirically shown that SH is robust against performance

degradation due to batch computation. This allows us to enjoy the computational effi-

ciency improvement by batch computation while suppressing performance degradation.

In this section, we consider applying this property of SH to more practical applications.

Monte Carlo tree search (MCTS) is a representative planning algorithm, as ex-

emplified by its application to the AlphaZero family [Silver et al., 2016, 2017, 2018,

Schrittwieser et al., 2020]. On the other hand, the MCTS algorithm is inherently se-

quential — It has been pointed out that it is not suitable for parallel computation [Liu

et al., 2020, Hafner et al., 2021]. Here, we review the MCTS algorithm and the most

popular method for parallelizing MCTS, virtual loss [Chaslot et al., 2008, Segal, 2010],

and experimentally examine the performance of the batch MCTS algorithm using SH.

Monte Carlo tree search (MCTS). Here, we focus on MCTS using policy net

and value net as used in the AlphaZero family. There are various variations of MCTS,

but basically, it is an algorithm that grows a tree from the root node corresponding to

the current state (e.g., board) as follows (see Silver et al. [2017]):

1. Selection. Traverse the tree based on a selection criterion at each node from

the root node to reach the leaf node.

2. Expand and evaluate. When reaching the leaf node, apply the action selected

based on the prior from the state corresponding to the leaf node (e.g., board) and
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transition to the next state. Then, add the state after the transition as a new

leaf node to the tree and calculate the prior and value of the state corresponding

to the node by policy and value net.

3. Backup. Backpropagate the leaf value from the new leaf node to the root. In

two-player zero-sum games like Go, the value is multiplied by -1.0 when passed

to the parent node.

As a convention, this cycle is called one simulation, and this is repeated for the number

of simulations (i.e., budget). Finally, it is common to select the action with the most

visits at the root node.

Virtual loss. A typical bottleneck in MCTS is the expand and evaluate step, which

involves the NN inference and environment state transition. This step can be easily

batched by batch NN inference and batch state transition (by Pgx). Therefore, the

problem is how to select the leaf nodes to expand in batch. Virtual loss [Chaslot et al.,

2008, Segal, 2010] is a technique to avoid selecting the same leaf node and makes it

possible to parallelize (or vectorize) the expand and evaluate step. In virtual loss, a

batch size of leaf nodes is sequentially selected. Given the current search tree, a leaf

node is selected in the usual selection step, and the value is temporarily set as if it lost

at the leaf node, and then backed up. This makes it less likely to select the same leaf

node. This is repeated until the batch size of leaf nodes is selected. The virtual loss is

canceled out during the backup step. Virtual loss is a popular choice, but it has been

pointed out that it has problems such as excessive diversity [Liu et al., 2020].

Combining SH into MCTS. Here, we consider applying SH by treating the action

selection at the root node as a pure exploration problem of the multi-armed ban-

dit problem. Using SH for the action selection at the root node of MCTS is not

new [Cazenave, 2014, Danihelka et al., 2022], but we aim to demonstrate that using

SH for the action selection at the root node is particularly effective in batch computa-
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tion. Note that while we treat the action selection at the root node as a pure exploration

problem, the values of the child nodes are updated as the tree grows. Therefore, it is

necessary to be aware that the theoretical properties of ASH, as shown in Section 5.4,

do not hold because the i.i.d. assumption of the arm reward distribution does not hold.

Experimental setup. We implemented two batch MCTS algorithms:

• virtual loss: A batch version of the MCTS algorithm used in MuZero [Schrit-

twieser et al., 2020] with virtual loss applied.

• virtual loss + SH: A batch MCTS algorithm with SH at the root node in

addition to the virtual loss.

The only difference between the two algorithms is the action selection at the root node.

We implemented the algorithms by forking the Mctx library 2. The SH implementation

also followed the Mctx implementation. The score function used by SH is the same as

the Gumbel-MuZero [Danihelka et al., 2022]. We conducted experiments using the 9x9

Go environment and the baseline model developed in Chapter 3. First, we prepared

an evaluation opponent by applying the Mctx’s MuZero version MCTS to the baseline

model with a 100 simulation budget. We evaluated the two batch MCTS algorithms by

playing against the evaluation opponent with a fixed total budget of 1024 and varying

the batch size and batch budget. To guarantee the diversity of evaluations, we used

the sampling from the policy net for the first 20 steps of each game and then used the

MCTS algorithms for playing. Each algorithm played 512 games for each batch size

and batch budget setting, and we compared the average performance.

Results. The results are shown in Figure 5.8. As expected, when the batch size b is

1 and the batch budget B is 1024, i.e., when MCTS is executed sequentially without

batch computation, both algorithms significantly outperform the evaluation opponent

because the budget is sufficiently larger than the opponent’s budget (T = 100). On
2https://github.com/google-deepmind/mctx

https://github.com/google-deepmind/mctx


88

1 2 4 8 16 32 64 128 256

Batch size

1.0

0.5

0.0

0.5

1.0

Re
tu

rn

(Batch budget)

virtual loss
virtual loss + SH

(512) (128) (64)       (16) (4)(32)(1024) (256) (8)

Figure 5.8: Performance of the batch MCTS algorithms w/ and w/o SH against the (un-
batched) MCTS opponent with T = 100. The total budget of batch MCTS algorithms
is fixed to T = 1024. The batch size b (and the corresponding batch budget B) is
varied from 1 to 256 (and 1024 to 4). The shaded area represents the standard error
of the mean over 512 games.

the other hand, as the batch size b increases, the performance of both virtual loss and

virtual loss + SH decreases. The performance degradation of virtual loss + SH is less

severe than that of virtual loss. In this experimental setting, virtual loss + SH achieves

comparable performance to the opponent (with a simulation budget of 100) with only

8 batch budgets.

5.7 Related work

Sequential Halving. Among the algorithms for the pure exploration problem in

multi-armed bandits [Audibert et al., 2010], Sequential Halving (SH; Karnin et al.

[2013]) is one of the most popular algorithms. The theoretical properties of SH have

been well studied [Karnin et al., 2013, Zhao et al., 2023]. Due to its simplicity, SH

has been widely used for these (but is not limited to) applications: In the context of

tree-search algorithms, as the root node selection of Monte Carlo tree search can be

regarded as a pure exploration problem [Tolpin and Shimony, 2012], Danihelka et al.

[2022] incorporated SH into the root node selection and significantly reduced the num-
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ber of simulations to improve the performance during AlphaZero/MuZero training.

From the min-max search perspective, some studies recursively applied SH to the in-

ternal nodes of the search tree [Cazenave, 2014, Pepels et al., 2014]. SH is also used

for hyperparameter optimization; Jamieson and Talwalkar [2016] formalized the hyper-

parameter optimization problem in machine learning as a non-stochastic multi-armed

bandit problem, where the reward signal is not from stochastic stationary distributions

but from deterministic function changing over training steps. Li et al. [2018, 2020b]

applied SH to hyperparameter optimization in asynchronous parallel settings, which

is similar to our batch setting. Their asynchronous approach may have incorrect pro-

motions to the next rounds but is more efficient than the synchronous approach. Aziz

et al. [2022] applied SH to recommendation systems, which identify appealing podcasts

for users.

Batched bandit algorithms. Batched bandit algorithms have been studied in var-

ious contexts [Perchet et al., 2016, Gao et al., 2019, Esfandiari et al., 2021, Jin et al.,

2021a,b, Kalkanli and Ozgur, 2021, Karbasi et al., 2021, Provodin et al., 2022]. Among

the batched bandit studies for the pure exploration problem [Agarwal et al., 2017,

Grover et al., 2018, Jun et al., 2016], Jun et al. [2016] is the most relevant to our work

as they also consider the fixed-size batch pulls setting. To the best of our knowledge,

the first batched SH variant with a fixed batch size b was introduced by Jun et al. [2016]

as a baseline algorithm in their study (Jun+16). It is similar to BSH and it pulls arms

so that the number of pulls of the arms is as equal as possible (breadth-first manner).

They reported that Jun+16 experimentally performs comparably to or better than

their proposed method but did not provide a theoretical guarantee for Jun+16. Our

ASH is different from their batch variant in that ASH pulls arms in an advance-first

manner instead of a breadth-first manner.
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5.8 Limitation

Our batched variants of SH assume that the reward distributions of the arms are from

i.i.d. distributions. This property is essential to allow batch pulls. One limitation is

that it may be difficult to apply our algorithms to bandit problems where the reward

distribution is non-stationary. For example, Jamieson and Talwalkar [2016] applied SH

to hyperparameter tuning, where rewards are time-series losses during model training.

We cannot apply our batched variants to this problem because we cannot observe

“future losses” in a batch.

5.9 Conclusion

In this paper, we proposed ASH as a simple and natural extension of the SH algorithm.

We theoretically showed that ASH is algorithmically equivalent to SH as long as the

batch budget is not excessively small. This allows ASH to inherit the well-studied

theoretical properties of SH, including the simple regret bound. Our experimental

results confirmed this claim and demonstrated that ASH and other batched variants

of SH, like Jun+16, perform comparably to SH in terms of simple regret. These

findings suggest that we can utilize simple batched variants of SH for efficient evaluation

of arms with large batch sizes while avoiding performance degradation compared to

the sequential execution of SH. By providing a practical solution for efficient arm

evaluation, our study opens up new possibilities for applications that require large

budgets. Overall, our work highlights the batch robust nature of SH and its potential

for large-scale bandit problems.
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Chapter 6

Conclusion, Limitations, and

Future Directions

6.1 Conclusion

In this dissertation, we explored the potential of RL with massively batched sample

generation on accelerators using SIMD programming. Our research is motivated by

the R. Sutton’s observation — leveraging computation are ultimately the most effective

in AI research [Sutton, 2019].

• In Chapter 3, we found that massive batching with SIMD programming is effec-

tive even in environments with complex branching like (classic) game environ-

ments that seem to be incompatible with SIMD programming. Also, we demon-

strated this by implementing a game environment suite, Pgx, that allows us

to implement fully vectorized RL on GPUs. We showed that not only sample

generation but also end-to-end RL algorithms like PPO and AlphaZero can run

efficiently on GPUs.

• In Chapter 4, we demonstrated that a simple combination of existing methods

implemented using Pgx can achieve the state-of-the-art (SOTA) performance in

the bridge bidding AI benchmark. This demonstrates the effectiveness of this
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approach and Pgx.

• In Chapter 5, we discussed the potential disadvantage of massive batching. While

batching improves computational efficiency, performance may degrade compared

to the sequential case due to delayed feedback. However, we showed that the

Sequential Halving (SH) algorithm, one of the most popular pure exploration

algorithms, does not degrade performance under realistic conditions (i.e., the

batch budget should not be extremely small). We also empirically demonstrated

that batched SH when combined with the Monte Carlo tree search (MCTS)

algorithm is more robust against large batch size in 9x9 Go.

Overall, through this dissertation, we empirically showed that the application range

of massively vectorized RL environments on accelerators is wider than thought and

demonstrated its effectiveness.

6.2 Limitations

We have demonstrated the effectiveness of massive batching to some extent and that

the range of its application was broader than thought. However, we have several

limitations that have not been verified in this dissertation.

• Our approach, massively vectorized environment step on accelerators, has some

specific classes of problems where such an approach is impossible. Concrete

examples include video game environments like StarCraft II [Vinyals et al., 2019],

environments with another binary execution, or real-world robotics problems.

• We cannot ignore the cost of human pay for implementing environments. Imple-

menting environments that run on GPUs has some constraints, making it more

difficult than normal programming. It is a significant burden if humans need to

implement an environment for each problem they want to solve, especially when
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the number of problems to be solved is large or the environment implementation

is complicated and difficult.

• The theoretical robustness against massive batching of SH shown in Chapter 5

requires the reward distribution to be stationary. This does not hold in more in-

teresting applications, such as applying SH to root node selection in MCTS [Dani-

helka et al., 2022] or hyperparameter search [Jamieson and Talwalkar, 2016].

6.3 Future directions

Our findings in this dissertation and their limitations suggest several directions for

future research. They include but are not limited to the following:

• Automation of implementation. As we mentioned in the limitations, the

cost of implementation is one of the problems. As the cost of obtaining a normal

implementation that runs on CPUs is relatively low, given the recent advances

in large language models (LLMs), an approach such as automatic translation to

an implementation that runs on GPUs is also a promising direction.

• Expansion of the applicable range. In the concurrent and subsequent studies,

the effectiveness of vectorized RL on accelerators has been demonstrated in other

domains than (classic) games [Bonnet et al., 2024, Nikulin et al., 2024, Rutherford

et al., 2024, Matthews et al., 2024, Gulino et al., 2023], but there are still areas

where it is unclear whether it is applicable. It is important to investigate problems

in such areas and expand the border.

• Combination with model-based RL. As we mentioned in the limitations,

there are environments where vectorized environment step on accelerators is

clearly inapplicable. However, an intermediate approach combined with model-

based RL may expand the applicable range. For example, combining a vectorized
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simulator that handles relatively low-dimensional spaces with a model that han-

dles high-dimensional spaces like image inputs may expand the applicable range.

• Algorithms that exploit the property of massively vectorized environ-

ments. We believe that the fact that RL may be executed on massively par-

allelized environments will also affect the design of algorithms. In particular,

planning algorithms like MCTS are known to have sequential nature [Hafner

et al., 2021], and there is room for improvement in this area.

Compared to the complexity of previous parallelized RL architectures, paralleliza-

tion using massively vectorized environments is straightforward and simple. It signif-

icantly improves the implementation and experimental experience for RL researchers

and practitioners. We have demonstrated the effectiveness of massively vectorized envi-

ronments and identified algorithms that are well-suited for such environments (such as

SH), as well as those that are not. Based on these findings, future RL research should

assume that massively vectorized environments are the default and focus on designing

algorithms, such as SH, that can fully exploit the advantages of these environments.
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Appendix A

Appendix of Chapter 3

A.1 License

The source code of Pgx is available at https://github.com/sotetsuk/pgx under the

Apache-2.0 license. However, since the original source code of the MinAtar game suite

is released under the GPL 3.0 license, a separate extension for Pgx called pgx-minatar

is provided at https://github.com/sotetsuk/pgx-minatar, which adheres to the

GPL 3.0 license.

A.2 Example implementation of Go and Chess

We provide examples of Go and Chess implementations in JAX. These implementa-

tions are self-contained and single-file without dependencies other than JAX. Note that

these implementations have much fewer lines of code than the C++ threading imple-

mentation that we compare with. The Go implementation is about 200 lines, and the

chess implementation is about 350 lines. In contrast, the OpenSpiel Go and Chess

implementations are composed of several thousand lines of code.

https://github.com/sotetsuk/pgx
https://github.com/sotetsuk/pgx-minatar
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Go

1 from typing import NamedTuple
2 import jax
3 from jax import Array, lax
4 from jax import numpy as jnp
5
6 ZOBRIST_BOARD = jax.random.randint(jax.random.PRNGKey(12345), (3, 19 * 19, 2), 0, 2**31 - 1, jnp.uint32)
7
8 class State(NamedTuple):
9 step_count: Array = jnp.int32(0)

10 # ids of representative stone (smallest) in the connected stones
11 board: Array = jnp.zeros(19 * 19, dtype=jnp.int32) # b > 0, w < 0, empty = 0
12 board_history: Array = jnp.full((8, 19 * 19), 2, dtype=jnp.int32) # for obs
13 num_captured: Array = jnp.zeros(2, dtype=jnp.int32) # (b, w)
14 consecutive_pass_count: Array = jnp.int32(0)
15 ko: Array = jnp.int32(-1) # by SSK
16 is_psk: Array = jnp.bool_(False)
17 hash_history: Array = jnp.zeros((19 * 19 * 2, 2), dtype=jnp.uint32)
18
19 @property
20 def color(self) -> Array:
21 return self.step_count % 2
22
23 class Game:
24 def __init__(
25 self, size: int = 19, komi: float = 7.5, history_length: int = 8, max_termination_steps: int | None = None
26 ):
27 self.size = size
28 self.komi = komi
29 self.history_length = history_length
30 self.max_termination_steps = size * size * 2 if max_termination_steps is None else max_termination_steps
31
32 def init(self) -> State:
33 return State(
34 board=jnp.zeros(self.size**2, dtype=jnp.int32),
35 board_history=jnp.full((self.history_length, self.size**2), 2, dtype=jnp.int32),
36 hash_history=jnp.zeros((self.max_termination_steps, 2), dtype=jnp.uint32),
37 )
38
39 def step(self, state: State, action: Array) -> State:
40 state = state._replace(ko=jnp.int32(-1))
41 # update state
42 state = lax.cond(
43 (action < self.size * self.size),
44 lambda: _apply_action(state, action, self.size),
45 lambda: _apply_pass(state),
46 )
47 # update board history
48 board_history = jnp.roll(state.board_history, self.size**2)
49 board_history = board_history.at[0].set(jnp.clip(state.board, -1, 1).astype(jnp.int32))
50 state = state._replace(board_history=board_history)
51 # check PSK
52 hash_ = _compute_hash(state)
53 state = state._replace(hash_history=state.hash_history.at[state.step_count].set(hash_))
54 state = state._replace(is_psk=_is_psk(state))
55 # increment turns
56 state = state._replace(step_count=state.step_count + 1)
57 return state
58
59 def observe(self, state: State, color: Array | None = None) -> Array:
60 if color is None:
61 color = state.color
62 my_sign, _ = _signs(color)
63
64 def _make(i):
65 c = jnp.int32([1, -1])[i % 2] * my_sign
66 return state.board_history[i // 2] == c
67
68 log = jax.vmap(_make)(jnp.arange(self.history_length * 2))
69 color = jnp.full_like(log[0], color) # b = 0, w = 1
70 return jnp.vstack([log, color]).transpose().reshape((self.size, self.size, -1))
71
72 def legal_action_mask(self, state: State) -> Array:
73 # some logic is inspired by OpenSpiel's Go implementation
74 is_empty = state.board == 0
75 my_sign, opp_sign = _signs(state.color)
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76 num_pseudo, idx_sum, idx_squared_sum = _count(state, self.size)
77 chain_ix = jnp.abs(state.board) - 1
78 in_atari = (idx_sum[chain_ix] ** 2) == idx_squared_sum[chain_ix] * num_pseudo[chain_ix]
79 has_liberty = (state.board * my_sign > 0) & ~in_atari
80 can_kill = (state.board * opp_sign > 0) & in_atari
81
82 def is_adj_ok(xy):
83 adj_ixs = _adj_ixs(xy, self.size)
84 on_board = adj_ixs != -1
85 return (on_board & (is_empty[adj_ixs] | can_kill[adj_ixs] | has_liberty[adj_ixs])).any()
86
87 mask = is_empty & jax.vmap(is_adj_ok)(jnp.arange(self.size**2))
88 mask = lax.select(state.ko == -1, mask, mask.at[state.ko].set(False))
89 return jnp.append(mask, True) # pass is always legal
90
91 def is_terminal(self, state: State) -> Array:
92 two_consecutive_pass = state.consecutive_pass_count >= 2
93 timeover = self.max_termination_steps <= state.step_count
94 return two_consecutive_pass | state.is_psk | timeover
95
96 def rewards(self, state: State) -> Array:
97 scores = _count_scores(state, self.size)
98 is_black_win = scores[0] - self.komi > scores[1]
99 rewards = lax.select(is_black_win, jnp.float32([1, -1]), jnp.float32([-1, 1]))

100 to_play = state.color
101 rewards = lax.select(state.is_psk, jnp.float32([-1, -1]).at[to_play].set(1.0), rewards)
102 rewards = lax.select(self.is_terminal(state), rewards, jnp.zeros(2, dtype=jnp.float32))
103 return rewards
104
105 def _apply_pass(state: State) -> State:
106 return state._replace(consecutive_pass_count=state.consecutive_pass_count + 1)
107
108 def _apply_action(state: State, action, size) -> State:
109 state = state._replace(consecutive_pass_count=0)
110 my_sign, opp_sign = _signs(state.color)
111
112 # remove killed stones
113 adj_ixs = _adj_ixs(action, size)
114 adj_ids = state.board[adj_ixs]
115 num_pseudo, idx_sum, idx_squared_sum = _count(state, size)
116 chain_ix = jnp.abs(adj_ids) - 1
117 is_atari = (idx_sum[chain_ix] ** 2) == idx_squared_sum[chain_ix] * num_pseudo[chain_ix]
118 single_liberty = (idx_squared_sum[chain_ix] // idx_sum[chain_ix]) - 1
119 is_killed = (adj_ixs != -1) & (adj_ids * opp_sign > 0) & is_atari & (single_liberty == action)
120 surrounded_stones = (state.board[:, None] == adj_ids) & (is_killed[None, :])
121 num_captured = jnp.count_nonzero(surrounded_stones)
122 ko_ix = jnp.nonzero(is_killed, size=1)[0][0]
123 ko_may_occur = ((adj_ixs == -1) | (state.board[adj_ixs] * opp_sign > 0)).all()
124 state = state._replace(
125 board=jnp.where(surrounded_stones.any(axis=-1), 0, state.board),
126 num_captured=state.num_captured.at[state.color].add(num_captured),
127 ko=lax.select(ko_may_occur & (num_captured == 1), adj_ixs[ko_ix], -1),
128 )
129
130 # set stone
131 state = state._replace(board=state.board.at[action].set((action + 1) * my_sign))
132
133 # merge adjacent chains
134 is_my_chain = state.board[adj_ixs] * my_sign > 0
135 should_merge = (adj_ixs != -1) & is_my_chain
136 new_id = state.board[action]
137 tgt_ids = state.board[adj_ixs]
138 smallest_id = jnp.min(jnp.where(should_merge, jnp.abs(tgt_ids), 9999))
139 smallest_id = jnp.minimum(jnp.abs(new_id), smallest_id) * my_sign
140 mask = (state.board == new_id) | (should_merge[None, :] & (state.board[:, None] == tgt_ids[None, :])).any(axis=-1)
141 state = state._replace(board=jnp.where(mask, smallest_id, state.board))
142
143 return state
144
145 def _count(state: State, size):
146 board = jnp.abs(state.board)
147 is_empty = board == 0
148 idx_sum = jnp.where(is_empty, jnp.arange(1, size**2 + 1), 0)
149 idx_squared_sum = jnp.where(is_empty, jnp.arange(1, size**2 + 1) ** 2, 0)
150
151 def _count_neighbor(xy):
152 adj_ixs = _adj_ixs(xy, size)
153 on_board = adj_ixs != -1
154 return (
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155 jnp.where(on_board, is_empty[adj_ixs], 0).sum(),
156 jnp.where(on_board, idx_sum[adj_ixs], 0).sum(),
157 jnp.where(on_board, idx_squared_sum[adj_ixs], 0).sum(),
158 )
159
160 idx = jnp.arange(size**2)
161 num_pseudo, idx_sum, idx_squared_sum = jax.vmap(_count_neighbor)(idx)
162
163 def count_all(x):
164 return (
165 jnp.where(board == x + 1, num_pseudo, 0).sum(),
166 jnp.where(board == x + 1, idx_sum, 0).sum(),
167 jnp.where(board == x + 1, idx_squared_sum, 0).sum(),
168 )
169
170 return jax.vmap(count_all)(idx)
171
172 def _signs(color):
173 return jnp.int32([[1, -1], [-1, 1]])[color] # (my_sign, opp_sign)
174
175 def _adj_ixs(xy, size):
176 dx, dy = jnp.int32([-1, +1, 0, 0]), jnp.int32([0, 0, -1, +1])
177 xs, ys = xy // size + dx, xy % size + dy
178 on_board = (0 <= xs) & (xs < size) & (0 <= ys) & (ys < size)
179 return jnp.where(on_board, xs * size + ys, -1) # -1 if out of board
180
181 def _compute_hash(state: State):
182 board = jnp.clip(state.board, -1, 1)
183 to_reduce = ZOBRIST_BOARD[board, jnp.arange(board.shape[-1])]
184 return lax.reduce(to_reduce, 0, lax.bitwise_xor, (0,))
185
186 def _is_psk(state: State):
187 not_passed = state.consecutive_pass_count == 0
188 curr_hash = state.hash_history[state.step_count]
189 has_same_hash = (curr_hash == state.hash_history).all(axis=-1).sum() > 1
190 return not_passed & has_same_hash
191
192 def _count_scores(state: State, size):
193 def calc_point(c):
194 return _count_ji(state, c, size) + jnp.count_nonzero(state.board * c > 0)
195
196 return jax.vmap(calc_point)(jnp.int32([1, -1]))
197
198 def _count_ji(state: State, color: int, size: int):
199 board = jnp.clip(state.board * color, -1, 1) # my stone: 1, opp stone: -1
200 adj_mat = jax.vmap(_adj_ixs, in_axes=(0, None))(jnp.arange(size**2), size) # (size**2, 4)
201
202 def fill_opp(x):
203 b, _ = x
204 # true if empty and adjacent to opponent's stone
205 mask = (b == 0) & ((adj_mat != -1) & (b[adj_mat] == -1)).any(axis=1)
206 return jnp.where(mask, -1, b), mask.any()
207
208 board, _ = lax.while_loop(lambda x: x[1], fill_opp, (board, True))
209 return (board == 0).sum()
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Implementation details. To efficiently detect a single liberty in a string (see Tromp

[1995] for definitions), we introduce the concept of pseudo liberty. Let a1, . . . , an rep-

resent the positions of the n pseudo liberties in the string. Unlike liberties, pseudo

liberty allows duplicates. According to the Cauchy–Schwarz inequality: (∑n
i=1 ai)

2 =

(∑n
i=1 ai · 1)2 ≤ (∑n

i=1 a
2
i ) (∑n

i=1 12) = n
∑n
i=1 a

2
i . Equality holds if and only if a1 =

a2 = . . . = an, meaning there is a single distinct pseudo liberty a. This position can be

determined by a = (∑n
i=1 a

2
i ) / (∑n

i=1 ai). Note that the concept of pseudo liberty is not

new and has already been applied in OpenSpiel [Lanctot et al., 2019]. We used this

concept to efficiently detect a single liberty with accelerators like GPUs.
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Chess

1 from typing import NamedTuple
2 import jax
3 import jax.numpy as jnp
4 import numpy as np
5 from jax import Array, lax
6
7 EMPTY, PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING = tuple(range(7)) # opponent: -1 * piece
8 MAX_TERMINATION_STEPS = 512 # from AlphaZero paper
9

10 # ************* precomputed values *************
11
12 # index: a1: 0, a2: 1, ..., h8: 63
13 INIT_BOARD = jnp.int32([
14 4, 1, 0, 0, 0, 0, -1, -4,
15 2, 1, 0, 0, 0, 0, -1, -2,
16 3, 1, 0, 0, 0, 0, -1, -3,
17 5, 1, 0, 0, 0, 0, -1, -5,
18 6, 1, 0, 0, 0, 0, -1, -6,
19 3, 1, 0, 0, 0, 0, -1, -3,
20 2, 1, 0, 0, 0, 0, -1, -2,
21 4, 1, 0, 0, 0, 0, -1, -4,
22 ])
23
24 # Action: AlphaZero style label (4672 = 64 x 73)
25 # * [0:9] underpromotions
26 # plane // 3 == 0: rook, 1: bishop, 2: knight
27 # plane % 3 == 0: up , 1: right, 2: left
28 # * [9:73] normal moves (queen:56 + knight:8)
29 FROM_PLANE = -np.ones((64, 73), dtype=np.int32)
30 TO_PLANE = -np.ones((64, 64), dtype=np.int32) # ignores underpromotion
31 zeros, seq, rseq = [0] * 7, list(range(1, 8)), list(range(-7, 0))
32 # down, up, left, right, down-left, down-right, up-right, up-left, knight, and knight
33 dr = rseq[::] + seq[::] + zeros[::] + zeros[::] + rseq[::] + seq[::] + seq[::-1] + rseq[::-1]
34 dc = zeros[::] + zeros[::] + rseq[::] + seq[::] + rseq[::] + seq[::] + rseq[::] + seq[::]
35 dr += [-1, +1, -2, +2, -1, +1, -2, +2]
36 dc += [-2, -2, -1, -1, +2, +2, +1, +1]
37 for from_ in range(64):
38 for plane in range(73):
39 if plane < 9: # underpromotion
40 to = from_ + [+1, +9, -7][plane % 3] if from_ % 8 == 6 else -1
41 if 0 <= to < 64:
42 FROM_PLANE[from_, plane] = to
43 else: # normal moves
44 r = from_ % 8 + dr[plane - 9]
45 c = from_ // 8 + dc[plane - 9]
46 if 0 <= r < 8 and 0 <= c < 8:
47 to = c * 8 + r
48 FROM_PLANE[from_, plane] = to
49 TO_PLANE[from_, to] = plane
50
51 INIT_LEGAL_ACTION_MASK = np.zeros(64 * 73, dtype=np.bool_)
52 ixs = [89, 90, 652, 656, 673, 674, 1257, 1258, 1841, 1842, 2425, 2426, 3009, 3010, 3572, 3576, 3593, 3594, 4177, 4178]
53 INIT_LEGAL_ACTION_MASK[ixs] = True
54
55 LEGAL_DEST = -np.ones((7, 64, 27), np.int32) # LEGAL_DEST[0, :, :] == -1
56 CAN_MOVE = np.zeros((7, 64, 64), dtype=np.bool_)
57 for from_ in range(64):
58 legal_dest = {p: [] for p in range(7)}
59 for to in range(64):
60 if from_ == to:
61 continue
62 r0, c0, r1, c1 = from_ % 8, from_ // 8, to % 8, to // 8
63 if (r1 - r0 == 1 and abs(c1 - c0) <= 1) or ((r0, r1) == (1, 3) and abs(c1 - c0) == 0):
64 legal_dest[PAWN].append(to)
65 if (abs(r1 - r0) == 1 and abs(c1 - c0) == 2) or (abs(r1 - r0) == 2 and abs(c1 - c0) == 1):
66 legal_dest[KNIGHT].append(to)
67 if abs(r1 - r0) == abs(c1 - c0):
68 legal_dest[BISHOP].append(to)
69 if abs(r1 - r0) == 0 or abs(c1 - c0) == 0:
70 legal_dest[ROOK].append(to)
71 if (abs(r1 - r0) == 0 or abs(c1 - c0) == 0) or (abs(r1 - r0) == abs(c1 - c0)):
72 legal_dest[QUEEN].append(to)
73 if from_ != to and abs(r1 - r0) <= 1 and abs(c1 - c0) <= 1:
74 legal_dest[KING].append(to)
75 for p in range(1, 7):
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76 LEGAL_DEST[p, from_, : len(legal_dest[p])] = legal_dest[p]
77 CAN_MOVE[p, from_, legal_dest[p]] = True
78
79 LEGAL_DEST_ANY = -np.ones((64, 35), np.int32)
80 for from_ in range(64):
81 legal_dest_any = [x for x in list(LEGAL_DEST[5, from_]) + list(LEGAL_DEST[2, from_]) if x >= 0]
82 LEGAL_DEST_ANY[from_, : len(legal_dest_any)] = legal_dest_any
83
84 BETWEEN = -np.ones((64, 64, 6), dtype=np.int32)
85 for from_ in range(64):
86 for to in range(64):
87 r0, c0, r1, c1 = from_ % 8, from_ // 8, to % 8, to // 8
88 if not (abs(r1 - r0) == 0 or abs(c1 - c0) == 0 or abs(r1 - r0) == abs(c1 - c0)):
89 continue
90 dr, dc = max(min(r1 - r0, 1), -1), max(min(c1 - c0, 1), -1)
91 for i in range(6):
92 r, c = r0 + dr * (i + 1), c0 + dc * (i + 1)
93 if r == r1 and c == c1:
94 break
95 BETWEEN[from_, to, i] = c * 8 + r
96
97 FROM_PLANE, TO_PLANE, INIT_LEGAL_ACTION_MASK, LEGAL_DEST, LEGAL_DEST_ANY, CAN_MOVE, BETWEEN = (
98 jnp.array(x) for x in (FROM_PLANE, TO_PLANE, INIT_LEGAL_ACTION_MASK, LEGAL_DEST, LEGAL_DEST_ANY, CAN_MOVE, BETWEEN)
99 )

100
101 keys = jax.random.split(jax.random.PRNGKey(12345), 4)
102 ZOBRIST_BOARD = jax.random.randint(keys[0], shape=(64, 13, 2), minval=0, maxval=2**31 - 1, dtype=jnp.uint32)
103 ZOBRIST_SIDE = jax.random.randint(keys[1], shape=(2,), minval=0, maxval=2**31 - 1, dtype=jnp.uint32)
104 ZOBRIST_CASTLING = jax.random.randint(keys[2], shape=(4, 2), minval=0, maxval=2**31 - 1, dtype=jnp.uint32)
105 ZOBRIST_EN_PASSANT = jax.random.randint(keys[3], shape=(65, 2), minval=0, maxval=2**31 - 1, dtype=jnp.uint32)
106 INIT_ZOBRIST_HASH = jnp.uint32([1455170221, 1478960862])
107
108 # **********************************************
109
110 class State(NamedTuple):
111 color: Array = jnp.int32(0) # w: 0, b: 1
112 board: Array = INIT_BOARD # (64,)
113 castling_rights: Array = jnp.ones([2, 2], dtype=jnp.bool_) # my queen, my king, opp queen, opp king
114 en_passant: Array = jnp.int32(-1)
115 halfmove_count: Array = jnp.int32(0) # number of moves since the last piece capture or pawn move
116 fullmove_count: Array = jnp.int32(1) # increase every black move
117 hash_history: Array = jnp.zeros((MAX_TERMINATION_STEPS + 1, 2), dtype=jnp.uint32).at[0].set(INIT_ZOBRIST_HASH)
118 board_history: Array = jnp.zeros((8, 64), dtype=jnp.int32).at[0, :].set(INIT_BOARD)
119 legal_action_mask: Array = INIT_LEGAL_ACTION_MASK
120 step_count: Array = jnp.int32(0)
121
122 class Action(NamedTuple):
123 from_: Array = jnp.int32(-1)
124 to: Array = jnp.int32(-1)
125 underpromotion: Array = jnp.int32(-1) # 0: rook, 1: bishop, 2: knight
126
127 @staticmethod
128 def _from_label(label: Array):
129 from_, plane = label // 73, label % 73
130 underpromotion = lax.select(plane >= 9, -1, plane // 3)
131 return Action(from_=from_, to=FROM_PLANE[from_, plane], underpromotion=underpromotion)
132
133 def _to_label(self):
134 return self.from_ * 73 + TO_PLANE[self.from_, self.to]
135
136 class Game:
137 def init(self) -> State:
138 return State()
139
140 def step(self, state: State, action: Array) -> State:
141 state = _apply_move(state, Action._from_label(action))
142 state = _flip(state)
143 state = _update_history(state)
144 state = state._replace(legal_action_mask=_legal_action_mask(state))
145 state = state._replace(step_count=state.step_count + 1)
146 return state
147
148 def observe(self, state: State, color: Array | None = None) -> Array:
149 if color is None:
150 color = state.color
151 ones = jnp.ones((1, 8, 8), dtype=jnp.float32)
152
153 def make(i):
154 board = jnp.rot90(state.board_history[i].reshape((8, 8)), k=1)
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155
156 def piece_feat(p):
157 return (board == p).astype(jnp.float32)
158
159 my_pieces = jax.vmap(piece_feat)(jnp.arange(1, 7))
160 opp_pieces = jax.vmap(piece_feat)(-jnp.arange(1, 7))
161
162 h = state.hash_history[i, :]
163 rep = (state.hash_history == h).all(axis=1).sum() - 1
164 rep = lax.select((h == 0).all(), 0, rep)
165 rep0 = ones * (rep == 0)
166 rep1 = ones * (rep >= 1)
167 return jnp.vstack([my_pieces, opp_pieces, rep0, rep1])
168
169 return jnp.vstack(
170 [
171 jax.vmap(make)(jnp.arange(8)).reshape(-1, 8, 8), # board feature
172 color * ones, # color
173 (state.step_count / MAX_TERMINATION_STEPS) * ones, # total move count
174 state.castling_rights.flatten()[:, None, None] * ones, # (my queen, my king, opp queen, opp king)
175 (state.halfmove_count.astype(jnp.float32) / 100.0) * ones, # no progress count
176 ]
177 ).transpose((1, 2, 0))
178
179 def legal_action_mask(self, state: State) -> Array:
180 return state.legal_action_mask
181
182 def is_terminal(self, state: State) -> Array:
183 terminated = ~state.legal_action_mask.any()
184 terminated |= state.halfmove_count >= 100
185 terminated |= has_insufficient_pieces(state)
186 rep = (state.hash_history == _zobrist_hash(state)).all(axis=1).sum() - 1
187 terminated |= rep >= 2
188 terminated |= MAX_TERMINATION_STEPS <= state.step_count
189 return terminated
190
191 def rewards(self, state: State) -> Array:
192 is_checkmate = (~state.legal_action_mask.any()) & _is_checked(state)
193 return lax.select(
194 is_checkmate,
195 jnp.ones(2, dtype=jnp.float32).at[state.color].set(-1),
196 jnp.zeros(2, dtype=jnp.float32),
197 )
198
199 def _update_history(state: State):
200 board_history = jnp.roll(state.board_history, 64)
201 board_history = board_history.at[0].set(state.board)
202 hash_hist = jnp.roll(state.hash_history, 2)
203 hash_hist = hash_hist.at[0].set(_zobrist_hash(state))
204 return state._replace(board_history=board_history, hash_history=hash_hist)
205
206 def has_insufficient_pieces(state: State):
207 # uses the same condition as OpenSpiel
208 num_pieces = (state.board != EMPTY).sum()
209 num_pawn_rook_queen = ((jnp.abs(state.board) >= ROOK) | (jnp.abs(state.board) == PAWN)).sum() - 2 # two kings
210 num_bishop = (jnp.abs(state.board) == BISHOP).sum()
211 coords = jnp.arange(64).reshape((8, 8))
212 black_coords = jnp.hstack((coords[::2, ::2].ravel(), coords[1::2, 1::2].ravel()))
213 num_bishop_on_black = (jnp.abs(state.board[black_coords]) == BISHOP).sum()
214 is_insufficient = False
215 # king vs king
216 is_insufficient |= num_pieces <= 2
217 # king vs king + (knight or bishop)
218 is_insufficient |= (num_pieces == 3) & (num_pawn_rook_queen == 0)
219 # king + bishop* vs king + bishop* (bishops are on same color tile)
220 is_bishop_all_on_black = num_bishop_on_black == num_bishop
221 is_bishop_all_on_white = num_bishop_on_black == 0
222 is_insufficient |= (num_pieces == num_bishop + 2) & (is_bishop_all_on_black | is_bishop_all_on_white)
223
224 return is_insufficient
225
226 def _apply_move(state: State, a: Action) -> State:
227 piece = state.board[a.from_]
228 # en passant
229 is_en_passant = (state.en_passant >= 0) & (piece == PAWN) & (state.en_passant == a.to)
230 removed_pawn_pos = a.to - 1
231 state = state._replace(
232 board=state.board.at[removed_pawn_pos].set(lax.select(is_en_passant, EMPTY, state.board[removed_pawn_pos]))
233 )
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234 is_en_passant = (piece == PAWN) & (jnp.abs(a.to - a.from_) == 2)
235 state = state._replace(en_passant=lax.select(is_en_passant, (a.to + a.from_) // 2, -1))
236 # update counters
237 captured = (state.board[a.to] < 0) | is_en_passant
238 state = state._replace(
239 halfmove_count=lax.select(captured | (piece == PAWN), 0, state.halfmove_count + 1),
240 fullmove_count=state.fullmove_count + jnp.int32(state.color == 1),
241 )
242 # castling
243 board = state.board
244 is_queen_side_castling = (piece == KING) & (a.from_ == 32) & (a.to == 16)
245 board = lax.select(is_queen_side_castling, board.at[0].set(EMPTY).at[24].set(ROOK), board)
246 is_king_side_castling = (piece == KING) & (a.from_ == 32) & (a.to == 48)
247 board = lax.select(is_king_side_castling, board.at[56].set(EMPTY).at[40].set(ROOK), board)
248 state = state._replace(board=board)
249 # update castling rights
250 cond = jnp.bool_([[(a.from_ != 32) & (a.from_ != 0), (a.from_ != 32) & (a.from_ != 56)], [a.to != 7, a.to != 63]])
251 state = state._replace(castling_rights=state.castling_rights & cond)
252 # promotion to queen
253 piece = lax.select((piece == PAWN) & (a.from_ % 8 == 6) & (a.underpromotion < 0), QUEEN, piece)
254 # underpromotion
255 piece = lax.select(a.underpromotion < 0, piece, jnp.int32([ROOK, BISHOP, KNIGHT])[a.underpromotion])
256 # actually move
257 state = state._replace(board=state.board.at[a.from_].set(EMPTY).at[a.to].set(piece))
258 return state
259
260 def _flip_pos(x: Array): # e.g., 37 <-> 34, -1 <-> -1
261 return lax.select(x == -1, x, (x // 8) * 8 + (7 - (x % 8)))
262
263 def _flip(state: State) -> State:
264 return state._replace(
265 board=-jnp.flip(state.board.reshape(8, 8), axis=1).flatten(),
266 color=(state.color + 1) % 2,
267 en_passant=_flip_pos(state.en_passant),
268 castling_rights=state.castling_rights[::-1],
269 board_history=-jnp.flip(state.board_history.reshape(-1, 8, 8), axis=-1).reshape(-1, 64),
270 )
271
272 def _legal_action_mask(state: State) -> Array:
273 def legal_normal_moves(from_):
274 piece = state.board[from_]
275
276 def legal_label(to):
277 ok = (from_ >= 0) & (piece > 0) & (to >= 0) & (state.board[to] <= 0)
278 between_ixs = BETWEEN[from_, to]
279 ok &= CAN_MOVE[piece, from_, to] & ((between_ixs < 0) | (state.board[between_ixs] == EMPTY)).all()
280 c0, c1 = from_ // 8, to // 8
281 pawn_should = ((c1 == c0) & (state.board[to] == EMPTY)) | ((c1 != c0) & (state.board[to] < 0))
282 ok &= (piece != PAWN) | pawn_should
283 return lax.select(ok, Action(from_=from_, to=to)._to_label(), -1)
284
285 return jax.vmap(legal_label)(LEGAL_DEST[piece, from_])
286
287 def legal_en_passants():
288 to = state.en_passant
289
290 def legal_labels(from_):
291 ok = (from_ >= 0) & (from_ < 64) & (to >= 0) & (state.board[from_] == PAWN) & (state.board[to - 1] == -PAWN)
292 a = Action(from_=from_, to=to)
293 return lax.select(ok, a._to_label(), -1)
294
295 return jax.vmap(legal_labels)(jnp.int32([to - 9, to + 7]))
296
297 def is_not_checked(label):
298 a = Action._from_label(label)
299 return ~_is_checked(_apply_move(state, a))
300
301 def legal_underpromotions(mask):
302 def legal_labels(label):
303 a = Action._from_label(label)
304 ok = (state.board[a.from_] == PAWN) & (a.to >= 0)
305 ok &= mask[Action(from_=a.from_, to=a.to)._to_label()]
306 return lax.select(ok, label, -1)
307
308 labels = jnp.int32([from_ * 73 + i for i in range(9) for from_ in [6, 14, 22, 30, 38, 46, 54, 62]])
309 return jax.vmap(legal_labels)(labels)
310
311 # normal move and en passant
312 possible_piece_positions = jnp.nonzero(state.board > 0, size=16, fill_value=-1)[0]
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313 a1 = jax.vmap(legal_normal_moves)(possible_piece_positions).flatten()
314 a2 = legal_en_passants()
315 actions = jnp.hstack((a1, a2)) # include -1
316 actions = jnp.where(jax.vmap(is_not_checked)(actions), actions, -1)
317 mask = jnp.zeros(64 * 73 + 1, dtype=jnp.bool_) # +1 for sentinel
318 mask = mask.at[actions].set(True)
319
320 # castling
321 b = state.board
322 can_castle_queen_side = state.castling_rights[0, 0]
323 can_castle_queen_side &= (b[0] == ROOK) & (b[8] == EMPTY) & (b[16] == EMPTY) & (b[24] == EMPTY) & (b[32] == KING)
324 can_castle_king_side = state.castling_rights[0, 1]
325 can_castle_king_side &= (b[32] == KING) & (b[40] == EMPTY) & (b[48] == EMPTY) & (b[56] == ROOK)
326 not_checked = ~jax.vmap(_is_attacked, in_axes=(None, 0))(state, jnp.int32([16, 24, 32, 40, 48]))
327 mask = mask.at[2364].set(mask[2364] | (can_castle_queen_side & not_checked[:3].all()))
328 mask = mask.at[2367].set(mask[2367] | (can_castle_king_side & not_checked[2:].all()))
329
330 # set underpromotions
331 actions = legal_underpromotions(mask)
332 mask = mask.at[actions].set(True)
333
334 return mask[:-1]
335
336 def _is_attacked(state: State, pos: Array):
337 def can_move(to):
338 ok = (to >= 0) & (state.board[to] < 0) # should be opponent's
339 piece = jnp.abs(state.board[to])
340 between_ixs = BETWEEN[pos, to]
341 ok &= CAN_MOVE[piece, pos, to] & ((between_ixs < 0) | (state.board[between_ixs] == EMPTY)).all()
342 ok &= ~((piece == PAWN) & (to // 8 == pos // 8)) # should move diagonally to capture
343 return ok
344
345 return jax.vmap(can_move)(LEGAL_DEST_ANY[pos, :]).any()
346
347 def _is_checked(state: State):
348 king_pos = jnp.argmin(jnp.abs(state.board - KING))
349 return _is_attacked(state, king_pos)
350
351 def _zobrist_hash(state: State) -> Array:
352 hash_ = lax.select(state.color == 0, ZOBRIST_SIDE, jnp.zeros_like(ZOBRIST_SIDE))
353 to_reduce = ZOBRIST_BOARD[jnp.arange(64), state.board + 6] # 0, ..., 12 (w:pawn, ..., b:king)
354 hash_ ^= lax.reduce(to_reduce, 0, lax.bitwise_xor, (0,))
355 to_reduce = jnp.where(state.castling_rights.reshape(-1, 1), ZOBRIST_CASTLING, 0)
356 hash_ ^= lax.reduce(to_reduce, 0, lax.bitwise_xor, (0,))
357 hash_ ^= ZOBRIST_EN_PASSANT[state.en_passant]
358 return hash_



105

A.3 Comparison to Brax and PettingZoo APIs

The Pgx API draws inspiration from the Brax and PettingZoo APIs, and we illustrate

this with actual code examples. Figure A.1 and Figure A.2 present the code examples

for the Pgx and Brax APIs, respectively. While both APIs share similarities, the Pgx

API handles multi-agent environments and the current player vector specifies which

agents are to act. Similar to Pgx, the PettingZoo API (Figure A.3) designates the next

agent to act using the agent iterator concept. However, since Pgx is a library centered

on environment vectorization, we prefer a vectorized current player to a flexible but

dynamic iterator.

To prove the practical generality of the Pgx API, we provide a demonstration

illustrating the conversion from Pgx API to PettingZoo API, available at https://

github.com/sotetsuk/pgx/blob/main/colab/pgx2pettingzoo.ipynb.

https://github.com/sotetsuk/pgx/blob/main/colab/pgx2pettingzoo.ipynb
https://github.com/sotetsuk/pgx/blob/main/colab/pgx2pettingzoo.ipynb
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import jax
import pgx

env = pgx.make("go_19x19")
init_fn = jax.jit(jax.vmap(env.init))
step_fn = jax.jit(jax.vmap(env.step))

batch_size = 1024
rng_keys = jax.random.split(jax.random.PRNGKey(9999), batch_size)

state = init_fn(rng_keys)
while not state.terminated.all():
  action = model(state.current_player, state.observation, state.legal_action_mask)
  state = step_fn(state, action)

Figure A.1: Example usage of Pgx API.

import jax
from brax import envs

env = envs.get_environment("ant")
reset_fn = jax.jit(jax.vmap(env.reset))
step_fn = jax.jit(jax.vmap(env.step))

batch_size = 1024
rng_keys = jax.random.split(jax.random.PRNGKey(9999), batch_size)

state = reset_fn(rng_keys)
while not state.done.all():

action = model(state)
state = step_fn(state, action)

Figure A.2: Example usage of Brax API.

from pettingzoo.classic import go_v5

env = go_v5.env()
env.reset()
for agent in env.agent_iter():

observation, reward, terminated, truncated, info = env.last()
action = model(agent, observation["observation"], observation["action_mask"])
env.step(action)

env.close()

Figure A.3: Example usage of PettingZoo API.
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A.4 Game explanations

This section describes the short summary of each game implemented in Pgx (as of

v1.4.0), except the MinAtar suite. See Young and Tian [2019] for the description

of the MinAtar suite. For the full description of each game, please refer to the Pgx

documentation from https://github.com/sotetsuk/pgx.

2048

4 4 2 2

8 4 16

2

4

The game of 2048 [Cirulli, 2014] is a single-player perfect information game with chance

events on a 4x4 board. The rules are simple, but to play well, agents need planning

ability in stochastic dynamics.

Rules. The objective is to create larger-numbered tiles by merging tiles. The player

can take four actions: left, up, right, or down. All tiles move in the chosen direction,

and when tiles with the same number collide, they merge, forming a new tile with

twice the value (e.g., 4 + 4 = 8). When a new tile is created, the new tile number is

rewarded. After the tiles have moved, a new tile whose value is either two or four is

randomly placed in empty positions. The probability of a two appearing is 0.9, and

the probability of a four appearing is 0.1. The game ends when no legal move exists.

Observation. Shape is 4× 4× 31. The observation design follows Antonoglou et al.

[2022]. Each plane represents a 4×4 board, and each tile number is encoded in a 31-bit

binary representation.

Action. There are 4 actions: left (0), up (1), right (2), or down (3).

https://github.com/sotetsuk/pgx
https://sotetsuk.github.io/pgx/play2048/
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Reward. The sum of merged tiles.

Animal shogi

R

P

KB
P:0
R:0
B:0

BK

P

R
P:0
R:0
B:0

Animal shogi is a miniature version of the traditional Japanese board game, shogi,

played on a small 4x3 board. It is a two-player perfect information game. Originally

developed for children, it possesses sufficient complexity for human play, making it

more than just a toy environment.

Rules. Two players take turns moving their pieces, aiming to achieve checkmate – a

situation where the king is attacked and cannot make a legal move to escape the threat.

The pieces used in Animal shogi are Lion (King), Giraffe (Rook), Elephant (Bishop),

and Chick (Pawn). The available directions for movement are indicated by circular

dots for each piece. Note that each piece can move only one square at a time, even

if the piece is a Giraffe (Rook). The Chick (Pawn) can be promoted to a Hen (Gold)

by entering the opponent’s territory (the farthest rank). Similar to ordinary shogi,

captured opponent pieces can be reused by dropping them on the board. A player can

win by checkmating the opponent’s Lion (King) or by having their Lion (King) enter

the opponent’s territory (Try rule). If the same position occurs three times, it results

in a repetition draw.

Observation. Shape is 4×3×194. The observation design follows AlphaZero [Silver

et al., 2018]. Each plane represents a 4× 3 board and encodes the position-dependent

features in Table A.1. P1 represents the current player, and P2 represents the opponent

player. As in AlphaZero, the last 8-step history is encoded (24 × 8 = 192 planes in

https://sotetsuk.github.io/pgx/animal_shogi/
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Table A.1: Animal shogi position-dependent features.

Feature # Planes
P1 piece 5
P2 piece 5
P1 prisoner piece count 6
P2 prisoner piece count 6
Repetitions 2
Total 24

total). Also, Table A.2 shows the position-independent features. Each plane has the

same values for all positions.

Table A.2: Animal shogi position-independent features.

Feature # Planes
Color 1
Elapsed timesteps (normalized to [0, 1]) 1

Action. Action consists of (1) the source position of the piece to move and the

direction to move (12× 8 = 96), and (2) the position of the piece to drop and the type

of piece to drop (12× 3 = 36), for a total of 132 discrete actions.

Reward. Each player gets +1 (win), −1 (lose), or 0 (draw).

Backgammon

×0

×0

Backgammon is a two-player game with perfect information that also incorporates

chance events. It serves as an important benchmark for RL in stochastic environ-

https://sotetsuk.github.io/pgx/backgammon/
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ments [Tesauro, 1995, Antonoglou et al., 2022]. To excel, agents require a high planning

capability within stochastic environments.

Rules. Players, represented by white and black colors, aim to move their set of 15

checkers across a board consisting of 24 points. The objective is to be the first to bear

off all their checkers, moving in the opposite direction. Each turn involves rolling two

dice, determining the number of points a player can move their checkers. If both dice

show the same number, the player can make four moves of that number. The game

has several constraints on legal actions:

• Checkers cannot bear off until all of them have reached the home board (an area

one-quarter of the distance from the goal).

• A point with two or more opponent’s checkers stacked on it is blocked, and the

player cannot move their checkers onto that point.

• By moving a checker to a point where the opponent has only one checker, the

player can hit the opponent’s checker and send it to the central bar. A player

with checkers on the bar must first move those checkers before moving any other

checkers.

The game ends when one of the players has borne off all their checkers. Victory rewards

differ:

• A gammon win (2 points) is when the opponent has not borne off any checkers.

• A backgammon win (3 points) is a gammon win where the opponent has checkers

left on the bar or within the winner’s home board.

• All other victories are termed single wins (1 point).

Observation. Shape is 34. Table A.3 shows the backgammon features. The first 28

features are the same as in Antonoglou et al. [2022]. The last 6 features encode the

number of playable die number.
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Table A.3: Backgammon features.

Feature Size
Checkers on points 24
Checkers on bar 2
Checkers borne off 2
Number of available moves for each die number 6
Total 34

Action. There are 26×6 = 156 discrete actions. Action design in Pgx follows Antonoglou

et al. [2022]. Each action consists of 26 source positions and die number. The first

source position is a no-op when there is no movable checker, the second source is the

bar, and the remaining 24 sources represent each point on board.

Reward. Each player gets the game payoff as a reward.

Bridge bidding

♠ Q 10 4

♥ Q 8 7

♦ Q 6

♣ 9 7 5 4 3

North Vul.

♠ J 9 3

♥ K 9 5 2

♦ 9 8 2

♣ K J 8

East(Dealer) Vul.

♠ A 8 6 5

♥ J 6

♦ K J 10 5 4 3

♣ 10

South Vul.

♠ K 7 2

♥ A 10 4 3

♦ A 7

♣ A Q 6 2

West Vul.
3♠ 4♦ 7N P
P

E(D)S W N

Contract bridge is an imperfect information game played by four people in teams of

two. Cooperation within the team is required to win.

Game flow. In the contract bridge, after each player is dealt 13 cards, there are two

phases: (1) bidding and (2) playing.

• Bidding: Each player bids in an auction format to determine the contract, the

target number of tricks their team will try to achieve in the next playing phase.

• Playing: Each player plays a card, and the player who plays the “strongest”

card wins the trick. This process is repeated 13 times, aiming to maximize the

https://sotetsuk.github.io/pgx/bridge_bidding/


112

number of tricks won by the team and achieve the target number of tricks for

their team or prevent the opponent team from achieving their target number of

tricks.

Bidding is considered more challenging than playing and is believed to have a significant

impact on the outcome of the game. Therefore, previous studies [Rong et al., 2019,

Tian et al., 2020, Lockhart et al., 2020] have often focused only on the bidding part by

replacing the playing part results using a double dummy solver1. Pgx also follows this

setting.

Rules of bidding. The four players take turns to act. The available actions for each

player are as follows: (1) Bid “higher” than the previous bid, (2) Pass, (3) Double

the opponent’s last bid, or (4) Redouble in response to the opponent team’s double.

There are 35 possible bid combinations, including the target trick number (1-7) and

the suit (club, diamond, heart, spade, no trump). If three consecutive passes occur

after someone’s last bid, the bidding phase ends, and the bidding team, target number

of tricks, and trump suit are determined (if no one bids and there are four consecutive

passes, the game ends in a draw). The rewards are based on the achievement of the

target, the magnitude of the target trick number, and whether a double or redouble is

present.

Observation. Shape is 480. Table A.4 shows the bridge bidding features. Observa-

tion design follows Lockhart et al. [2020] and Lanctot et al. [2019].

Action. There are 38 discrete actions: pass, double, redouble, and 35 bids.

Reward. Each player gets the game payoff as a reward.

1https://github.com/dds-bridge/dds

https://github.com/dds-bridge/dds
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Table A.4: Bridge bidding features.

Feature Size
Vulnerability 4
Pass before the opening bid 4
Bidding history (35× 4× 3) 420
Current player’s hand 52
Total 480

Chess

8

a
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b
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c
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d
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Chess is a two-player perfect information game on an 8x8 board.

Rules. Two players take turns moving their pieces, aiming to achieve checkmate –

a situation where the king is attacked and cannot make a legal move to escape the

threat. Each piece has its own specific movement rules. While capturing the opponent’s

pieces is allowed, unlike in shogi, the captured pieces cannot be reused. In addition to

checkmate, there are other terminal conditions for a draw, such as a threefold repetition

of the same position or a stalemate (when the king is not in check but has no legal

moves). There are also special moves called pawn promotion, en passant, and castling.

Observation. Shape is 8×8×119. The observation design follows AlphaZero [Silver

et al., 2018]. Each plane represents an 8×8 board and encodes the position-dependent

features (Table A.5). As in AlphaZero, the last 8-step history is encoded (14×8 = 112

planes in total). Also, Table A.6 shows the 7 position-independent feature planes.

Action. There are 64 × 73 = 4672 discrete actions. Action design also follows Alp-

haZero [Silver et al., 2018]. Each action consists of 64 source positions and 73 moves,

https://sotetsuk.github.io/pgx/chess/
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Table A.5: Chess position-dependent features.

Feature # Planes
P1 piece 6
P2 piece 6
Repetitions 2
Total 14

Table A.6: Chess position-independent features.

Feature # Planes
Color 1
Total move count 1
P1 castling 2
P2 castling 2
No progress count 1
Total 7

where 56 moves are queen moves, 8 moves are knight moves, and 9 moves are under-

promotions.

Reward. Each player gets +1 (win), −1 (lose), or 0 (draw).

Connect Four

Connect Four is a two-player perfect information game played on a 7x6 board.

Rules. Players take turns dropping discs into any of the seven columns. The objective

is to create a line of four of their own discs either vertically, horizontally, or diagonally.

https://sotetsuk.github.io/pgx/connect_four/
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The player who achieves this first is declared the winner. If all the spaces on the board

are filled, and neither player has managed to create a line of four discs, the game ends

in a draw.

Observation. Shape is 6×7×2. Observation consists of two 6×7 feature planes (Ta-

ble A.7).

Table A.7: Connect Four features.

Feature # Planes
P1 discs 1
P2 discs 1

Action. There are 7 discrete actions. Each action represents the column index into

which the player drops the token.

Reward. Each player gets +1 (win), −1 (lose), or 0 (draw).

Gardner chess

5
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b
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Gardner chess is a two-player perfect information game played on a 5x5 board. It uses

the pieces corresponding to the leftmost 5 columns of standard chess.

Rules. The rules are the same as in regular chess, except that double pawn moves,

en passant, and castling are not allowed.

https://sotetsuk.github.io/pgx/gardner_chess/
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Table A.8: Gardner chess position-dependent features.

Feature # Planes
P1 piece 6
P2 piece 6
Repetitions 2
Total 14

Observation. Shape is 5×5×115. The observation design follows AlphaZero [Silver

et al., 2018]. Each plane represents a 5 × 5 board and encodes position-dependent

features (Table A.8). As in AlphaZero, the last 8-step history is encoded (14×8 = 112

planes in total). Also, Table A.9 shows position-independent feature planes.

Table A.9: Gardner chess position-independent features.

Feature # Planes
Color 1
Total move count 1
No progress count 1
Total 3

Action. There are 25 × 49 = 1225 discrete actions. Action design also follows Alp-

haZero [Silver et al., 2018]. Each action consists of 25 source positions and 49 moves,

where 32 moves are queen moves, 8 moves are knight moves, and 9 moves are under-

promotions.

Reward. Each player gets +1 (win), −1 (lose), or 0 (draw).

Go

https://sotetsuk.github.io/pgx/go/
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Go is a two-player perfect information game played on a 19x19 board. The essential

strategic aspects of Go can be preserved even on smaller boards like 9x9. There are

variations of the Go rules, such as Chinese rules and Japanese rules. In computer Go,

the Tromp-Taylor rules [Tromp, 1995] are commonly used, and Pgx also follows them.

To address the inherent advantage of the first player (black), it is common to add a

scoring adjustment called komi (e.g., 6.5) to the final score of the second player (white).

This improves fairness and helps to avoid a draw. Pgx uses a komi of 6.5 by default.

Observation. Shape is 9× 9× 17 (or 19× 19× 17). The observation design follows

the AlphaGo Zero observation design [Silver et al., 2017]. Each plane represents a

9× 9 (or 19× 19) board and encodes the position-dependent features (Table A.10). As

Table A.10: Go features.

# Planes Description
P1 stones 1
P2 stones 1

is the case with AlphaGo Zero, the last 8-step history is encoded (2× 8 = 16 planes in

total). An additional plane encodes the color of the current player. This is necessary

for the agent to know the komi information.

Action. There are 82 (9x9) or 362 (19x19) discrete actions. Each action represents

the position on the board to place a stone. The last action represents pass.

Reward. Each player gets +1 (win), −1 (lose), or 0 (draw).

Hex

https://sotetsuk.github.io/pgx/hex/
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Hex is a two-player perfect information game played on an 11x11 board.

Rules. Players take turns placing stones on a board, aiming to connect one side of

the board to the opposite side with their stones. A draw does not occur because both

players cannot simultaneously connect their sides of the board. To balance the first-

player advantage, the swap rule is implemented. This rule allows the second player,

instead of placing a stone, to replace the color of the first player’s stone with their own

color at the mirrored position.

Observation. Shape is 11 × 11 × 4. Each plane represents an 11 × 11 board and

encodes position-dependent features (Table A.11). The last two planes encode the

Table A.11: Hex position-dependent features.

Feature # Planes
P1 stones 1
P2 stones 1

color of the current player and whether the swap is a legal action (Table A.12). Color

information is necessary for the agent to know the side to connect.

Table A.12: Hex position-independent features.

Feature # Planes
Color 1
Swap 1

Action. There are 122 discrete actions. The first 121 actions represent placing a

stone on each cell of the board. The final action 121 is the swap action available only

at the second turn.

Reward. Each player gets +1 (win) or −1 (lose).
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Kuhn poker

K

chip 1

J
chip 1

Kuhn poker is a two-player imperfect information game designed for research pur-

poses [Kuhn, 1950].

Rules. The deck has three cards: Jack, Queen, and King. Each player is dealt one

card, and the remaining card is unused. Players have two actions available: bet and

pass. The following scenarios can occur, with player A being the first to play and player

B being the second:

• bet (A) - bet (B): Showdown, and the winner takes +2.

• bet (A) - pass (B): A takes +1.

• pass (A) - pass (B): Showdown, and the winner takes +1.

• pass (A) - bet (B) - bet (A): Showdown, and the winner takes +2.

• pass (A) - bet (B) - pass (A): B takes +1.

As Kuhn poker is a zero-sum game, the loser of the game receives the negative of the

winner’s payoff.

Observation. Shape is 7. The observation consists of a binary vector of size 7 (Ta-

ble A.13).

Action. There are 2 discrete actions: bet (0) and pass (1).

Reward. Each player gets +2, +1, −1, or −2, depending on the game payoff.

https://sotetsuk.github.io/pgx/kuhn_poker/
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Table A.13: Kuhn poker features.

Feature Size
P1 hand 3
P1 chip 2
P2 chip 2
Total 7

Leduc hold’em

Q

chip +1

Q

chip +1

J

Leduc hold’em is a two-player imperfect information game designed for research pur-

poses [Southey et al., 2005].

Rules. The deck consists of six cards: two Jacks, two Queens, and two Kings. Each

player starts with a bet of 1 chip. The game consists of two rounds. In the first round,

each player is dealt one private card, and in the second round, one public card is

revealed. In each round, players have the option to call, raise, or fold. If either player

folds, the hand ends, and the opponent takes the pot. If both players call, the game

proceeds to the next round. In the second round, it advances to showdown, where the

winner is determined by the strength of their cards. Each player can raise 2 chips in

the first round and 4 chips in the second round. In each round, each player is allowed

to raise only once (a total of 2 raises per round). Therefore, the maximum number of

chips that can be bet for each player is 1 + 2× 2 + 4× 2 = 13.

Observation. The observation consists of a binary vector of size 34 (Table A.14).

Action. There are 3 discrete actions: call (0), raise (1), or fold (2).

Reward. Each player gets the game payoff as a reward.

https://sotetsuk.github.io/pgx/leduc_holdem/
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Table A.14: Leduc hold’em features.

Feature Size
P1 hand 3
Public cards 3
P1 chip 14
P2 chip 14
Total 34

Othello

Othello is a two-player perfect information game played on an 8x8 board.

Rules. Players take turns placing discs. The player with more discs at the end wins.

Players can place a disc in an empty position where it can sandwich the opponent’s

discs between their own discs, and the sandwiched discs are flipped to their own color.

If a player has no valid move to make, they must pass. The game ends when neither

player can make a legal move.

Observation. Shape is 8× 8× 2. Each plane represents an 8× 8 board and encodes

the features in Table A.15.

Table A.15: Othello features.

Feature # Planes
P1 discs 1
P2 discs 1

Action. There are 65 discrete actions. The first 64 actions represent placing a disc

on each square of the board. The last action represents pass.

https://sotetsuk.github.io/pgx/othello/
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Reward. Each player gets +1 (win), −1 (lose), or 0 (draw).

Shogi

⼀

1

⼆

2

三

3

四

4
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5
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後
⼿

Shogi is a two-player perfect information game on a 9x9 board.

Rules. Two players take turns moving their pieces, aiming to achieve checkmate –

a situation where the king is attacked and cannot make a legal move to escape the

threat. Each piece has its own specific movement rules. Captured pieces can be reused

by dropping them to the board (instead of moving a piece) on the player’s turn. The

game ends when a player achieves checkmate or when the game reaches a draw by

four-fold repetition. Unlike chess, shogi does not have a draw by stalemate (when the

king is not in check but has no legal moves). Not only pawns but also other pieces

(except Gold and King) can promote by entering the opponent’s territory (1-3 rows).

Observation. Shape is 9 × 9 × 119. The observation design follows the dlshogi

observation design [Yamaoka, 2017]. Each plane represents a 9× 9 board and encodes

the position-dependent features in Table A.16. Also, the observation has the position-

independent feature planes (Table A.17).

Action. There are 81 × 27 = 2187 distinct actions. The action design also follows

the dlshogi action design [Yamaoka, 2017]. Each action consists of 81 destination to

which the piece moves and 27 directions from which the piece moves. The direction is

one of 10 moves (8 King moves and 2 Knight moves), 10 moves with promotion, or 7

drops.

https://sotetsuk.github.io/pgx/shogi/
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Table A.16: Shogi position-dependent features.

# Planes Description
P1 piece 14
Attacked by P1 piece 14
Attacked by N or more P1 pieces (N = 1, 2, 3) 3
P2 piece 14
Attacked by P2 piece 14
Attacked by N or more P2 pieces (N = 1, 2, 3) 3
Total 62

Table A.17: Shogi position-independent features.

# Planes Description
P1 hand 28
P2 hand 28
P1 king is checked 1
Total 57

Reward. Each player gets +1 (win), −1 (lose), or 0 (draw).

Sparrow mahjong

× 22

Sparrow mahjong is an imperfect information game played with 44 tiles. It is a sim-

plified version of Japanese mahjong. Sparrow mahjong is designed for human players

who are not familiar with the rules of full-size Japanese mahjong but requires the same

essential skills as Japanese mahjong. It can be played with 2 to 6 players, but Pgx uses

a 3-player version.

https://sotetsuk.github.io/pgx/sparrow_mahjong/
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Rules. Sparrow mahjong has 11 types of tiles, and each tile has 4 copies, for a total

of 44 tiles. The 11 types of tiles are bamboo 1-9 (1s-9s) and red dragon (rd), green

dragon (gd). Each player starts with 5 tiles in their hand, and the game proceeds by

each player drawing a tile from the deck and discarding one tile from their hand to

a public river. The objective is to “accomplish” a hand of 6 tiles faster than other

players and with a higher score. There are two ways to win the game: ron (winning by

using a tile discarded by another player) and tsumo (winning by drawing a tile from

the deck). A hand is “accomplished” when the hand consists of either (1) one chow (a

sequence of three tiles) and one pung (a set of three identical tiles), (2) two chows, or

(3) two pungs. For example, “2s 3s 4s 6s 6s 6s” (one chow and one pung), “1s 2s 3s

7s 8s 9s” (two chows), and “1s 1s 1s rd rd rd” (two pungs) are accomplished hands.

The accomplished hand is scored according to its difficulty. There is a minimum score

required to win, and it is key to infer the opponent’s hand. There is a unique rule

in Japanese mahjong called furiten: a player cannot win by ron with a tile discarded

previously by themselves. The game ends when a player wins or when the deck is

empty.

Observation. Shape is 11×15. The observation consists of 15 feature planes, where

each plane represents 11 tile types (Table A.18). P1 represents the current player,

while P2 and P3 represent the opponents.

Table A.18: Sparrow mahjong features.

Feature # Planes
P1 hand 4
Red dora in P1 hand 1
Dora 1
All discarded tiles by P1 1
All discarded tiles by P2 1
All discarded tiles by P3 1
Discarded tiles in the last 3 steps by P2 3
Discarded tiles in the last 3 steps by P3 3
Total 15
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Action. There are 11 discrete actions, each representing a tile to discard.

Reward. Each player gets the game payoff normalized to [−1, 1].

Tic-tac-toe

Tic-tac-toe is a two-player perfect information game played on a 3x3 board.

Rules. Players take turns, with one marking X and the other marking O. The objec-

tive is for a player to place their mark in a vertical, horizontal, or diagonal line. The

player who achieves this first is the winner. If all nine squares are filled and neither

player has made a line, the game ends with a draw.

Observation. Shape is 3× 3× 2. Each plane represents a 3× 3 board and encodes

the features in Table A.19.

Table A.19: Tic-tac-toe features.

Feature # Planes
Marked by P1 1
Marked by P2 1

Action. There are 9 discrete actions, each representing a square index to place a

mark.

Reward. Each player gets +1 (win), −1 (lose), or 0 (draw).

https://sotetsuk.github.io/pgx/tic_tac_toe/
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Appendix B

Appendix of Chapter 5

B.1 Python implementation of SH and ASH

For the sake of reproducibility and a better understanding, we provide Python code

for the Sequential Halving (SH) algorithm using advance-first target pulls and the

Advance-first Sequential Halving (ASH) algorithm in Figure B.1.
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from math import log2, ceil, floor
import numpy as np

def sh(bandit: BanditProblem, n: int, T: int) -> int:
 L = _get_target_pulls(n, T)                  # L: target pulls
 N = np.append(np.zeros(n, dtype=int), -1e9)  # N: pull counts
R = np.append(np.zeros(n, dtype=float), 0.) # R: avg rewards
 for i in range(T):
   a = np.argmax(np.where(N == L[i], R, -np.inf))
   r = bandit.pull(a)

R[a] = (R[a] * N[a] + r) / (N[a] + 1)
   N[a] += 1
 return int(np.argmax(np.where(N >= max(N), R, -np.inf)))

def ash(bandit: BanditProblem, n: int, B: int, b: int = 1) -> int:
 L = _get_target_pulls(n, b * B)              # L: target pulls
 N = np.append(np.zeros(n, dtype=int), -1e9)  # N: pull counts
 R = np.append(np.zeros(n, dtype=float), 0.)  # R: avg rewards
for i in range(B):
   batch = []
   M = np.zeros_like(N)                       # M: virtual pull counts
   for j in range(b):

t = i * b + j
     N_max = np.max(np.where(N + M == L[t], N, -np.inf))
     a = np.argmax(np.where((N + M == L[t]) & (N == N_max), R, -np.inf))
     batch.append(a)

M[a] += 1
   rewards = bandit.batch_pull(batch)
   for a, r in zip(batch, rewards):
     R[a] = (R[a] * N[a] + r) / (N[a] + 1)

N[a] += 1
 return int(np.argmax(np.where(N >= max(N), R, -np.inf)))

def _get_target_pulls(n: int, T: int) -> list[int]:
target_pulls = []
 num_rounds = ceil(log2(n))
 num_active_arms = n
 cum_pulls = 0
for r in range(num_rounds):
   J = floor(T / (num_active_arms * num_rounds))
   if r == num_rounds - 1:
     remaining_pulls = T - len(target_pulls)

J = remaining_pulls // 2
   for _ in range(num_active_arms):
     for i in range(J):
       target_pulls.append(cum_pulls + i)

cum_pulls += J
   num_active_arms = ceil(num_active_arms / 2)  # halving
 return target_pulls + [int(-1e9)] * (T - len(target_pulls))

Figure B.1: Python implementation of SH (Algorithm 3) and ASH (Algorithm 7).
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B.2 Proof of Lemma 1

Lemma 1 For any integer b ≥ 2, the inequality

⌈
x

2

⌉
− 1 ≥

⌈
b− 1
b4b/xc

⌉
(B.1)

holds for all integers x ∈ [3, 4b].

Proof. This proof demonstrates that for any integer b ≥ 2 and x ∈ [3, 4b], the

inequality (B.1) is satisfied. Given z ≥ c =⇒ z ≥ dce for any integer z and real

number c, it suffices to demonstrate that

⌈
x

2

⌉
− 1 ≥ b− 1

b4b/xc ⇐⇒
⌈
x

2

⌉
− 1− b− 1

b4b/xc ≥ 0.

Given that
⌊

4b
x

⌋
> 0, it follows that

(⌈
x

2

⌉
− 1

)⌊4b
x

⌋
− (b− 1) ≥ 0, (B.2)

for any integer b ≥ 2 and x ∈ [3, 4b]. Two cases are considered:

Case 1: x is even. Suppose x = 2y, with y ∈ [2, 2b]. We aim to show that

(y − 1)
⌊

2b
y

⌋
− (b− 1) ≥ 0. (B.3)

Two sub-cases are considered:

1. For y ∈ [b+ 1, 2b], as
⌊

2b
y

⌋
= 1, LHS = (y − 1)− (b− 1) ≥ 0.

2. For y ∈ [2, b], as bcc > c−1 for any real number c, we have LHS > (y − 1)
(

2b
y
− 1

)
−

(b − 1) = − (y−2)(y−b)
y

. As y > 0 and −(y − 2)(y − b) ≥ 0 in y ∈ [2, b], we have

LHS ≥ 0.

Consequently, it has been established that for even values of x, the inequality (B.3) is

upheld.
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Case 2: x is odd. Suppose x = 2y + 1, with y ∈ [1, 2b− 1]. We aim to show that

y

⌊
4b

2y + 1

⌋
− (b− 1) ≥ 0. (B.4)

Two sub-cases are considered:

1. For y ∈ [b, 2b− 1], as
⌊

4b
2y+1

⌋
= 1, LHS = y − (b− 1) ≥ 0.

2. For y ∈ [1, b − 1], as bcc > c − 1 for any real number c, we have LHS >

y
(

4b
2y+1 − 1

)
− (b − 1) = 2by−b−2y2+y+1

2y+1 = −2y(y−(b+ 1
2 ))−(b−1)

2y+1 ≥ 0. As 2y + 1 > 0

and −2y(y − (b+ 1
2))− (b− 1) ≥ 0 in y ∈ [1, b− 1], we have LHS ≥ 0.

Similarly, it has been demonstrated that for odd values of x, the inequality (B.4) is

upheld.

Therefore, through the analysis of these two cases, it is proven that for any integer

b ≥ 2 and x ∈ [3, 4b], the inequality (B.2) is satisfied, thereby confirming the validity

of (B.1). �
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