

WILEY

# Convergence acceleration of preconditioned conjugate gradient solver based on error vector sampling for a sequence of linear systems

# Takeshi Iwashita<sup>1</sup> | Kota Ikehara<sup>2</sup> | Takeshi Fukaya<sup>1</sup> | Takeshi Mifune<sup>3</sup>

<sup>1</sup>Information Initiative Center, Hokkaido University, Sapporo, Japan

<sup>2</sup>Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan

<sup>3</sup>Graduate School of Engineering, Kyoto University, Kyoto, Japan

#### Correspondence

Takeshi Iwashita, Information Initiative Center, Hokkaido University, N 11 W 5, Sapporo, Japan. Email: iwashita@iic.hokudai.ac.jp

#### **Funding information**

Japan Society for the Promotion of Science, Grant/Award Numbers: JP19H04122, JP19H05662, JP20K21782, JP23H00462

#### Abstract

In this article, we focus on solving a sequence of linear systems that have identical (or similar) coefficient matrices. For this type of problem, we investigate subspace correction (SC) and deflation methods, which use an auxiliary matrix (subspace) to accelerate the convergence of the iterative method. In practical simulations, these acceleration methods typically work well when the range of the auxiliary matrix contains eigenspaces corresponding to small eigenvalues of the coefficient matrix. We develop a new algebraic auxiliary matrix construction method based on error vector sampling in which eigenvectors with small eigenvalues are efficiently identified in the solution process. We use the generated auxiliary matrix for convergence acceleration in the following solution step. Numerical tests confirm that both SC and deflation methods with the auxiliary matrix can accelerate the solution process of the iterative solver. Furthermore, we examine the applicability of our technique to the estimation of the condition number of the coefficient matrix. We also present the algorithm of the preconditioned conjugate gradient method with condition number estimation.

## K E Y W O R D S

condition number estimation, conjugate gradient method, deflation, subspace correction, vector sampling

## **1** | INTRODUCTION

A preconditioned conjugate gradient (CG) solver is widely used to solve a linear system of equations of a symmetric positive-definite (s.p.d.) matrix that arises in various applications. The computational time to solution is mostly given by the product of the number of iterations for convergence and the computational time per iteration. High performance and parallel computing techniques are effective for reducing the computational time per iteration, and the convergence acceleration of the solver is also an important topic. The convergence rate of the CG solver is affected by the condition number or the eigenvalue distribution of the coefficient matrix. In practical simulations, the coefficient matrix often has a few small isolated eigenvalues, which lead to a significant decline in convergence. For these problems, subspace correction (SC)<sup>1</sup> and deflation<sup>2</sup> methods are widely used to improve the convergence rate of the iterative solver.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

# <sup>2 of 26</sup> WILEY

The procedures of SC and deflation involve using an auxiliary matrix to specify a certain subspace, in which errors are efficiently removed. Therefore, an appropriate setting of the auxiliary matrix (subspace) is key to making these acceleration methods work well. For example, when the range of the matrix contains the eigenspaces corresponding to small isolated eigenvalues, the convergence rate of the solver is expected to be improved by the acceleration methods. However, it is difficult to identify these eigenspaces. Accordingly, in practical simulations, an effective auxiliary matrix is often derived from information about the problem. For example, coarse grid correction in the multigrid method,<sup>3,4</sup> which is regarded as one of the most successful SC methods, uses the characteristics of discretized PDE problems. Other examples of the auxiliary matrix or the subspace that is determined based on physics or models can be seen in the literature.<sup>5-9</sup> However, there are many cases in which the eigenvector with a small eigenvalue cannot be easily identified from information about the problems, an automatic (algebraic) auxiliary matrix construction method that does not use special knowledge of the problem has been investigated.

In this article, we introduce an algebraic auxiliary matrix construction method for a problem that involves a sequence of linear systems to be solved. When the coefficient matrices are identical, it is often called a multiple right-hand side problem. In our method, we construct an auxiliary matrix to specify the subspace using the sampling of error vectors in the preceding iterative solution process. The idea is based on the expectation that the error that is not efficiently removed in the solution process contains useful information about the eigenvectors associated with small eigenvalues.<sup>10</sup> Although error vector sampling during the solution process may seem difficult, we can implement it by sampling the approximate solution vectors for the targeted problem. When the solution process is complete, we can easily calculate the corresponding error vectors. We apply the Rayleigh–Ritz method using the subspace spanned by these error vectors to obtain (approximate) eigenvectors associated with small eigenvalues. In our technique, sampling plays a key role in saving the additional memory footprint and computations for SC and deflation, which is essential for many practical applications.

In this paragraph, we describe related works on algebraic auxiliary matrix construction for convergence acceleration methods. Many related works can be found in the context of recycling the Krylov subspace, deflation, the augmented Krylov subspace, subspace recycling, and spectral preconditioning. After some early activities on deflation and augmentation in a GMRES solver,<sup>11-13</sup> Morgan proposed the GMRES-DR method. In the method, basis vectors generated in the Arnoldi process in the restart period are used to determine the subspace used for deflation.<sup>14</sup> Morgan et al. also introduced some variants of the GMRES-DR method which includes an application to the flexible GMRES method.<sup>15,16</sup> Carpenter described five major methods to specify the subspace (enrichment vectors) in the context of solvers based on the GMRES method.<sup>17</sup> For CG solvers, Saad et al. introduced the deflated Lanczos algorithm and developed the deflated-CG method.<sup>18</sup> In this method, the vectors (subspace) used for deflation are based on A-orthogonal basis vectors and are updated in multiple linear system solution steps. Abdel-Rehim et al. introduced the deflated restarted Lanczos algorithm.<sup>19</sup> The techniques mentioned above were enhanced for nonlinear application problems, for example, in further research.<sup>20,21</sup> As a recently published study, we refer to the paper<sup>22</sup> in which Daas et al. introduced a method based on singular value decomposition. Moreover, we note that a block Krylov method can be used together with convergence acceleration methods, although it is a popular technique for a multiple right-hand side problem in itself.<sup>23</sup> Finally, we refer to a recent survey paper by Soodhalter et al.<sup>24</sup> The paper provides a comprehensive review of subspace recycling techniques and possibly covers most of works related to our research. For other related works that were not introduced in Reference 24, we refer to convergence acceleration techniques for AMG solvers.<sup>25-29</sup> These techniques intelligently identify (approximate) near kernel vectors using coarse grids and use for the convergence acceleration.

To the best of our knowledge, the above related papers do not explicitly discuss our approach, which is based on error vector sampling, especially for a preconditioned CG solver. For example, the methods introduced in References 30 and 31 focus on the GMRES method and are different from our method, though they use approximate error vectors. In this article, we describe the auxiliary matrix construction method based on vector sampling for subspace preconditioning and the deflation method. We also introduce a cost model for convergence acceleration. Finally, we report the numerical results using test matrices in various application areas that we derived from the SuiteSparse Matrix Collection,<sup>32</sup> although, in our preliminary analyses, we only considered two computational electromagnetic problems.<sup>33</sup> The numerical results confirmed the effectiveness of our method in terms of convergence (# iterations) and computational time. The numerical tests also verified our cost model and demonstrated how the small eigenvalues were captured. Furthermore, we demonstrated that our method can be used for condition number estimation without significant additional computations in the iterative solution process.

This article is structured as follows: In Section 2, we introduce the target problem in this article. In Section 3, we introduce SC preconditioning and the deflation method to accelerate the convergence of iterative solvers. In Section 4, we explain our auxiliary matrix construction method using error vector sampling. We also introduce the cost models for the

convergence acceleration technique and auxiliary matrix construction. In Section 5, we discuss the numerical results. In Section 6, we provide a summary of this study.

# **2** | **PROBLEM DEFINITION**

In this article, we consider solving a sequence of *n*-dimensional linear systems:

$$A_k \boldsymbol{x}_k = \boldsymbol{b}_k, (k = 1, 2, \dots, k_t), \tag{1}$$

where the coefficient matrix  $A_k \in \mathbb{R}^{n \times n}$  is a real s.p.d. matrix. We assume that the right-hand side vector  $\mathbf{b}_k \in \mathbb{R}^n$  depends on the previous solution vectors. Consequently, we solve the linear systems sequentially. In this article, we discuss the case in which the coefficient matrices are all identical:

$$A_k = A, (k = 1, 2, \dots, k_t).$$
 (2)

However, we expect that the technique introduced in the following sections will work when the coefficient matrix changes, but not dramatically. More precisely, when the coefficient matrices have identical eigenvectors associated with small eigenvalues, the technique is possibly effective. We solve the linear system of equations (1) using a preconditioned CG solver.

# **3** | CONVERGENCE ACCELERATION FOR ITERATIVE LINEAR SOLVERS

## 3.1 | Convergence acceleration methods

In an iterative linear solver, its convergence rate directly affects the solution time. We focus on convergence acceleration methods that use a (user-specified) subspace different from the subspace designated by the coefficient matrix, such as the Krylov subspace. In these methods, the dimension of the subspace used is typically much smaller than *n*, and the error component involved in the subspace is efficiently removed using a special procedure. A multigrid method can be regarded as a typical example of this type of convergence acceleration method. In this article, we discuss SC and deflation methods, both of which use a user-specified subspace to accelerate convergence.

## 3.2 | Subspace correction method

SC is a generalized version of the coarse grid correction of the multigrid method. We describe its procedure for an *n*-dimensional linear system;  $A\mathbf{x} = \mathbf{b}$ , where  $\mathbf{x} \in \mathbb{R}^n$  is the unknown vector, and  $\mathbf{b} \in \mathbb{R}^n$  is the right-hand-side vector.

In the SC method, an approximate solution vector  $\tilde{x}$  is updated as follows:

- 1. Step 1: Compute  $\mathbf{f} = W^{\top}(\mathbf{b} A\tilde{\mathbf{x}})$ .
- 2. Step 2: Solve  $(W^{\mathsf{T}}AW)\boldsymbol{u} = \boldsymbol{f}$ .
- 3. Step 3: Update  $\tilde{x} \leftarrow \tilde{x} + Wu$ .

W is the auxiliary matrix used to designate the user-specified subspace. The number of columns of W is typically much less than n.

When we use the SC method together with a Krylov subspace method, we construct the preconditioner based on the correction similar to the multigrid (two-level) preconditioning.<sup>3</sup> SC preconditioning<sup>1</sup> can be combined with any other (standard) preconditioning technique in the additive/multiplicative Schwarz preconditioning manner. When the stand-alone preconditioner is denoted by  $M^{-1}$ , the additive Schwarz SC preconditioner  $M_{sc}^{-1}$  is given by

$$M_{\rm sc}^{-1} = M^{-1} + W(W^{\rm T}AW)^{-1}W^{\rm T}.$$
(3)

When only subspace preconditioning is used, M is given by the identity matrix I.

# 3.3 | Deflation method

In this section, we describe the procedure of the deflated CG method<sup>18</sup> for Ax = b. In the deflation method, we use the projector given by

$$P = I - W(W^{\mathsf{T}}AW)^{-1}(AW)^{\mathsf{T}}.$$
(4)

*P* decomposes *n*-dimensional space  $\mathbb{R}^n$  into two *A*-orthogonal spaces  $\mathcal{W}$  and  $\mathcal{W}^{\perp}$ . Using the projector, we can split solution vector  $\mathbf{x}$  into two components:

$$\boldsymbol{x} = \boldsymbol{y} + \boldsymbol{z}, \ \boldsymbol{y} = (I - P)\boldsymbol{x}, \ \boldsymbol{z} = P\boldsymbol{x}.$$
(5)

In the deflation method, we calculate two vector components y and z individually. Vector y is in lower-dimensional space range(W) and is given by

$$\boldsymbol{y} = (I - P)\boldsymbol{x} = W(W^{\mathsf{T}}AW)^{-1}W^{\mathsf{T}}\boldsymbol{b}.$$
(6)

Because  $P^{\mathsf{T}}A(I-P) = O$  holds, we compute the second component z by solving the deflated system

$$P^{\mathsf{T}} A \boldsymbol{z} = P^{\mathsf{T}} \boldsymbol{b}.$$

In this article, we solve the deflated system with a semi-positive definite coefficient matrix (7) using a preconditioned CG solver. Algorithm 1 shows the algorithm of the deflated CG method. We note that projector P is not explicitly constructed in practical implementations.

# Algorithm 1. Deflated PCG method

```
Input: A, b, M, W, P, \mathbf{x}_0, \boldsymbol{\varepsilon}
   1: \boldsymbol{r}_0 = P^{\mathsf{T}}(\boldsymbol{b} - A\boldsymbol{x}_0)
   2: p_0 = M^{-1} r_0
    3: for i = 0, 1, 2, ... until ||\mathbf{r}_i||_2 \le \varepsilon ||\mathbf{b}||_2 do
                       \alpha_i = \frac{(M^{-1}\boldsymbol{r}_i, \boldsymbol{r}_i)}{(M^{-1}\boldsymbol{r}_i, \boldsymbol{r}_i)}
    4:
                                       \overline{(\boldsymbol{p}_i, P^{\mathsf{T}} A \boldsymbol{p}_i)}
                       \boldsymbol{x}_{i+1} = \boldsymbol{x}_i + \alpha_i \boldsymbol{p}_i
    5:
                       \boldsymbol{r}_{i+1} = \boldsymbol{r}_i - \alpha_i P^{\mathsf{T}} A \boldsymbol{p}_i
    6:
                       \beta_i = -\frac{(M^{-1} \mathbf{r}_{i+1}, \mathbf{r}_{i+1})}{(M^{-1} \mathbf{r}_i, \mathbf{r}_i)}
    7:
                       \boldsymbol{p}_{i+1} = M^{-1}\boldsymbol{r}_{i+1} + \beta_i \boldsymbol{p}_i
    8:
    9: end for
 10: \boldsymbol{x} = P\boldsymbol{x}_i + W(W^{\mathsf{T}}AW)^{-1}W^{\mathsf{T}}\boldsymbol{b}
Output: x
```

# 4 | AUXILIARY MATRIX CONSTRUCTION METHOD BASED ON ERROR VECTOR SAMPLING

# 4.1 | Auxiliary matrix based on eigenvectors

In SC and deflation methods, the key to convergence acceleration is the proper setting of the auxiliary matrix *W*. Typically, when the range of *W* contains eigenspaces corresponding to small eigenvalues of the coefficient matrix, the methods work. In practical problems, a coefficient matrix often has a few isolated small eigenvalues, which worsens the convergence of the iterative solver. These eigenvalues typically arise from the physical property of the targeted problem.

For a simple example, we consider the case that *W* is an  $n \times 1$  matrix and  $W = [\mathbf{u}_s]$ , where  $\mathbf{u}_s$  is the eigenvector associated with the smallest eigenvalue  $\lambda_s$ . We assume that  $\lambda_s \ll 1$  and is isolated. We also assume that the coefficient matrix has an eigenvalue close to or larger than 1. In this case, SC preconditioning  $M_{sc}^{-1}$  with M = I only shifts the eigenvalue  $\lambda_s$  to  $\lambda_s+1$ ; that is, the preconditioned coefficient matrix has an eigenvalue of  $\lambda_s+1$  and n-1 eigenvalues that are identical to those of *A* and larger than  $\lambda_s$ . Consequently, the condition number of the preconditioned coefficient matrix is better than that of *A*, which results in better convergence for the preconditioned system.

When we use the deflation method with the above setting for W,  $\lambda_s$  is removed in the coefficient matrix of (7),  $P^{\mathsf{T}}A$ .  $P^{\mathsf{T}}A$  has a zero eigenvalue which is associated with  $u_s$ , and other eigenvalues and eigenvectors are the same as A. The (preconditioned) CG method can be applied to (7) because  $P^{\mathsf{T}}b$  is involved in range( $P^{\mathsf{T}}A$ ), and its convergence rate is improved from that for the original linear system, Ax = b.

The above discussion is straightforwardly extended to the case that *W* consists of multiple eigenvectors associated with small eigenvalues. However, calculation of eigenvalues and eigenvectors typically requires more computational efforts than solving the linear system itself. Consequently, in practical simulations, the knowledge of the problem is often used for identifying the eigenvectors associated with small eigenvalues and constructing a proper auxiliary matrix. But, there are problems in which the origin of the small eigenvalue is unclear from the viewpoint of physics or simulation models. In this article, we focus on a problem of solving a sequence of linear systems, and intend to develop an automatic auxiliary matrix construction method for the problem.

# 4.2 | Auxiliary matrix construction method based on error vector sampling

In this section, we describe our auxiliary matrix construction method based on error vector sampling for a sequence of linear systems (1). During the first iterative solution process for  $A\mathbf{x}_1 = \mathbf{b}_1$ , we preserve *m* approximate solution vectors  $\tilde{\mathbf{x}}_1^{(s)}(s = 1, 2, ..., m)$ . Typically, *m* is much smaller than *n*. When the solution process is complete, we obtain the solution vector  $\mathbf{x}_1$ . Consequently, we can calculate the exact error vectors that correspond to  $\tilde{\mathbf{x}}_1^{(s)}$  using

$$\boldsymbol{e}^{(s)} = \boldsymbol{x}_1 - \tilde{\boldsymbol{x}}_1^{(s)} \ (s = 1, 2, \dots, m).$$
(8)

Applying the Gram-Schmidt process to these error vectors, we obtain the mutually orthogonal  $\overline{m} (\leq m)$  normal basis vectors:

$$\overline{\boldsymbol{e}}^{(1)}, \ \overline{\boldsymbol{e}}^{(2)}, \ \dots, \ \overline{\boldsymbol{e}}^{(\overline{m})}.$$
 (9)

In our technique, we use the Rayleigh–Ritz method based on the space spanned by  $\overline{e}^{(s)}$  to identify approximate eigenvectors associated with small eigenvalues of *A*.

The auxiliary matrix construction method is given as follows:

Step 1: Solve the  $\overline{m}$ -dimensional eigenvalue problem <sup>2</sup>:

$$E^{\mathsf{T}}AE\mathbf{t} = \lambda \mathbf{t},\tag{10}$$

where

$$E = [\overline{\boldsymbol{e}}^{(1)} \ \overline{\boldsymbol{e}}^{(2)} \ \cdots \ \overline{\boldsymbol{e}}^{(\overline{m})}]. \tag{11}$$

Step 2: When the Ritz value  $\lambda$  is less than the preset threshold  $\theta$ , adopt Ritz vector Et as a column vector of W. The number of Ritz values less than  $\theta$  is denoted by  $\tilde{m}$ , and the Ritz vector that corresponds to each small Ritz value is written as  $Et_i$  ( $i = 1, 2, ..., \tilde{m}$ ). Finally, the auxiliary matrix W is given by

$$W = [E\boldsymbol{t}_1 \ E\boldsymbol{t}_2 \ \cdots \ E\boldsymbol{t}_{\tilde{m}}]. \tag{12}$$

The threshold is typically much less than 1; that is,  $(0 < \theta \ll 1)$  when the coefficient matrix is diagonally (or properly) scaled.

# 4.3 | Selection method for stored approximate solution vectors

In practical analyses, to avoid an excessive additional cost (in memory space and computations), the number of stored vectors, *m*, should be substantially small. We use a selection method based on "sampling." We store approximate solution vectors with a certain interval in the solution process. Considering the difficulty of predicting the number of iterations for convergence, we use the following two methods for sampling. In sampling method A, we use the algorithm shown in Appendix A. When we set *m* to 4 and the (preconditioned) CG solver attains convergence at the 1000th iteration, the sampling method preserves the approximate solution vectors at 256, 384, 512, and 768th iterations. The other method (sampling method B) is based on the relative residual norm. We take a sample of approximate solution vectors when the relative residual norm first reaches  $10^{-s\alpha/(m+1)}$ , (s = 1, 2, ..., m), when the convergence criterion is given by  $10^{-\alpha}$ . Based on the preliminary test results, we use sampling method A when we do not explicitly mention the sampling method.

# 4.4 | Computational cost for subspace correction preconditioning and deflation

In this section, we discuss the additional computational cost for two convergence acceleration techniques. We split the computational time per iteration of preconditioned CG solver *T* into two parts:

$$T = T_{\rm pre} + T_{\rm cg},\tag{13}$$

where  $T_{pre}$  and  $T_{cg}$  are the computational time for the preconditioning and CG solver parts, respectively. Because the total data amount for matrices and vectors is typically larger than the cache memory in practical simulations, most of the computational kernels of the solver become memory bound. Consequently, we estimate the computational time using the amount of transferred data from the main memory. In the analysis, we use double precision floating point numbers for matrices and vectors. The main part of the CG solver is a sparse matrix vector multiplication (SpMV) kernel. We estimate the amount of transferred data for SpMV as 20n + 12nnz, where nnz is the number of nonzero elements of *A* and the unit is byte. Although the cache hit ratio for elements of the source vector depends on the nonzero pattern of *A*, we use a relatively optimistic estimation. We estimate the transferred data for other parts that consist of inner products and vector updates as 56n. When the effective memory bandwidth is denoted by  $b_m$  Byte/s,  $T_{cg}$  is estimated as

$$T_{\rm cg} = (76n + 12nnz)/b_m.$$
(14)

When we use IC preconditioning, the transferred data for preconditioning is almost the same as that for SpMV. Finally, the computational time for an incomplete Cholesky CG (ICCG) iteration that is denoted by  $T_{iccg}$  is approximately given by

$$T_{\rm iccg} = (100n + 24nnz)/b_m.$$
 (15)

When we consider SC preconditioning, the additional cost for  $W(W^{\top}AW)^{-1}W^{\top}$  should be taken into account. In the estimation, we ignore the cost for  $(W^{\top}AW)^{-1}$  because the dimension  $\tilde{m}$  is much smaller than n for the setting of  $m \ll n$ . The additional transferred data for the SC preconditioning is mainly for the  $n \times \tilde{m}$  dense matrix W, and we estimate it as  $16\tilde{m}n + 16n$ . When we use SC preconditioning together with IC preconditioning, we estimate the computational time for an SC-ICCG iteration that is denoted by  $T_{\text{sciccg}}$  as

$$T_{\rm sciccg} = (116n + 16\tilde{m}n + 24nnz)/b_m.$$
 (16)

From (15) and (16), we can (roughly) estimate the ratio of the computational cost per iteration for two solvers, SC-ICCG and ICCG, which is denoted by  $\gamma_{\text{sciccg}}$ , as follows:

$$\gamma_{\text{sciccg}} = (116 + 16\tilde{m} + 24nnz_{\text{av}})/(100 + 24nnz_{\text{av}}), \tag{17}$$

where  $nnz_{av}$  is the average number of nonzero elements per row. When the number of iterations of SC-ICCG is less than  $1/\gamma_{sciccg}$  that of ICCG, we expect SC-ICCG to outperform ICCG. More details of the cost models are given in Appendix B.

#### TABLE 1 Matrix information for the test problems.

WILEY 7 of 26

| Data set      | Problem type                         | Dimension | # nonzero   | nnz <sub>av</sub> |
|---------------|--------------------------------------|-----------|-------------|-------------------|
| Queen_4147    | 2D/3D problem                        | 4,147,110 | 316,548,962 | 76.3              |
| Bump_2911     | 2D/3D problem                        | 2,911,419 | 127,729,899 | 43.9              |
| G3_circuit    | Circuit simulation problem           | 1,585,478 | 7,660,826   | 4.8               |
| Flan_1565     | Structural problem                   | 1,564,794 | 114,165,372 | 73.0              |
| Hook_1498     | Structural problem                   | 1,498,023 | 59,374,451  | 40.0              |
| StocF-1465    | Computational fluid dynamics problem | 1,465,137 | 21,005,389  | 14.3              |
| Geo_1438      | Structural problem                   | 1,437,960 | 60,236,322  | 41.9              |
| Serena        | Structural problem                   | 1,391,349 | 64,131,971  | 46.1              |
| thermal2      | Thermal problem                      | 1,228,045 | 8,580,313   | 7.0               |
| ecology2      | 2D/3D problem                        | 999,999   | 4,995,991   | 5.0               |
| bone010       | Model reduction problem              | 986,703   | 47,851,783  | 48.5              |
| ldoor         | Structural problem                   | 952,203   | 42,493,817  | 44.6              |
| audikw_1      | Structural problem                   | 943,695   | 77,651,847  | 82.3              |
| Emilia_923    | Structural PROBLEM                   | 923,136   | 40,373,538  | 43.7              |
| boneS10       | Model Reduction problem              | 914,898   | 40,878,708  | 44.7              |
| PFlow_742     | 2D/3D problem                        | 742,793   | 37,138,461  | 50.0              |
| tmt_sym       | Electromagnetics problem             | 726,713   | 5,080,961   | 7.0               |
| apache2       | Structural problem                   | 715,176   | 4,817,870   | 6.7               |
| Fault_639     | Structural problem                   | 638,802   | 27,245,944  | 42.7              |
| parabolic_fem | Computational fluid dynamics problem | 525,825   | 3,674,625   | 7.0               |
| bundle_adj    | Computer vision problem              | 513,351   | 20,207,907  | 39.4              |
| af_shell8     | Subsequent structural problem        | 504,855   | 17,579,155  | 34.8              |
| af_shell4     | Subsequent structural problem        | 504,855   | 17,562,051  | 34.8              |
| af_shell3     | Subsequent structural problem        | 504,855   | 17,562,051  | 34.8              |
| af_shell7     | Subsequent structural problem        | 504,855   | 17,579,155  | 34.8              |
| inline_1      | Structural problem                   | 503,712   | 36,816,170  | 73.1              |
| af_0_k101     | Structural problem                   | 503,625   | 17,550,675  | 34.8              |
| af_4_k101     | Structural problem                   | 503,625   | 17,550,675  | 34.8              |
| af_3_k101     | Structural problem                   | 503,625   | 17,550,675  | 34.8              |
| af_2_k101     | Structural problem                   | 503,625   | 17,550,675  | 34.8              |

Next, we consider the deflation method. When we use the deflation method, the additional cost is in calculating  $P^{T}A$ . We estimate the data transferred for  $P^{T}A$  to be almost the same as that for SC preconditioning because both AW and W are dense matrices of identical size. Consequently, we can use (17) for the ICCG solver with deflation.

Based on our expectation for the reduction of the iteration count and (17), we can set the number of sample vectors, *m*. For example, when we expect a 40% reduction as a result of using the convergence acceleration method for the problem of  $nnz_{av} = 30$ ,  $\tilde{m} (\leq m)$  should be less than 20.

Next, we discuss the setup cost for the auxiliary matrices. The dominant part of the cost is given by the Gram–Schmidt process, the  $\tilde{m}$  times sparse matrix-vector multiplication for AE, the dense matrix-matrix product of  $E^{T}$  and (AE), and the dense matrix-vector product for (12). Because  $\tilde{m}$  is typically much smaller than n, the cost to solve the  $\tilde{m}$ -dimensional eigenvalue problem is negligible compared with the computational costs for the above four kernels. Because the kernel

| TABLE 2                                                                      | Numeric                                                                                                                                                                                                                                                         | arrese                                                                                                                                   | nto (seque                                                                                                                          | Jinnar 50                                                                                                                                                                               | ,                                                                                                                                                                                                                                                   | / = (1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , _/                                                                                                                                                                                    | <i>)</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                              |                                                                                                                                                                                                                                                                 | Que                                                                                                                                      | een_4147                                                                                                                            |                                                                                                                                                                                         | Bu                                                                                                                                                                                                                                                  | mp_2911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                       | G3_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _circuit                                                                                                                                                                                                                                                                  |                                                                                                                                                                                         | Fla                                                                                                                                                                                                                                        | an_1565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         | Ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ook_1498                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Solver                                                                       | θ                                                                                                                                                                                                                                                               | ñ                                                                                                                                        | #Ite.                                                                                                                               | $T_t$                                                                                                                                                                                   | ñ                                                                                                                                                                                                                                                   | #Ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $T_t$                                                                                                                                                                                   | ñ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | #Ite.                                                                                                                                                                                                                                                                     | $T_t$                                                                                                                                                                                   | ñ                                                                                                                                                                                                                                          | #Ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $T_t$                                                                                                                                                                   | ñ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #Ite.                                                                                                                                         | $T_t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ICCG                                                                         |                                                                                                                                                                                                                                                                 | -                                                                                                                                        | 3128                                                                                                                                | 2763                                                                                                                                                                                    | -                                                                                                                                                                                                                                                   | 1551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 584                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 898                                                                                                                                                                                                                                                                       | 44.8                                                                                                                                                                                    | -                                                                                                                                                                                                                                          | 3124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 996                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1617                                                                                                                                          | 287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ES-SC-ICCG                                                                   | $10^{-3}$                                                                                                                                                                                                                                                       | 20                                                                                                                                       | 995                                                                                                                                 | 1039                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                  | 526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 249                                                                                                                                                                                     | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 705                                                                                                                                                                                                                                                                       | 70.1                                                                                                                                                                                    | 20                                                                                                                                                                                                                                         | 1082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 398                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 472                                                                                                                                           | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                              | $10^{-4}$                                                                                                                                                                                                                                                       | 19                                                                                                                                       | 2041                                                                                                                                | 2121                                                                                                                                                                                    | 18                                                                                                                                                                                                                                                  | 824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 382                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 707                                                                                                                                                                                                                                                                       | 54.8                                                                                                                                                                                    | 19                                                                                                                                                                                                                                         | 1212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 449                                                                                                                                                                     | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 676                                                                                                                                           | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                              | $10^{-5}$                                                                                                                                                                                                                                                       | 7                                                                                                                                        | 2816                                                                                                                                | 2667                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                   | 1118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 445                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 887                                                                                                                                                                                                                                                                       | 49.6                                                                                                                                                                                    | 8                                                                                                                                                                                                                                          | 1766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 596                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1080                                                                                                                                          | 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ES-D-ICCG                                                                    | $10^{-3}$                                                                                                                                                                                                                                                       | 20                                                                                                                                       | 993                                                                                                                                 | 1036                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                  | 459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 218                                                                                                                                                                                     | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 702                                                                                                                                                                                                                                                                       | 70.1                                                                                                                                                                                    | 20                                                                                                                                                                                                                                         | 942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 347                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 469                                                                                                                                           | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                              | $10^{-4}$                                                                                                                                                                                                                                                       | 19                                                                                                                                       | 2044                                                                                                                                | 2120                                                                                                                                                                                    | 18                                                                                                                                                                                                                                                  | 821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 381                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 706                                                                                                                                                                                                                                                                       | 54.1                                                                                                                                                                                    | 19                                                                                                                                                                                                                                         | 1213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 443                                                                                                                                                                     | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 675                                                                                                                                           | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                              | $10^{-5}$                                                                                                                                                                                                                                                       | 7                                                                                                                                        | 2818                                                                                                                                | 2670                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                   | 1117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 449                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 887                                                                                                                                                                                                                                                                       | 49.8                                                                                                                                                                                    | 8                                                                                                                                                                                                                                          | 1762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 595                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1078                                                                                                                                          | 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                              |                                                                                                                                                                                                                                                                 | Stoc                                                                                                                                     | F-1465                                                                                                                              |                                                                                                                                                                                         | Ge                                                                                                                                                                                                                                                  | o_1438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                         | Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rena                                                                                                                                                                                                                                                                      |                                                                                                                                                                                         | the                                                                                                                                                                                                                                        | ermal2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         | eco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ology2                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Solver                                                                       | θ                                                                                                                                                                                                                                                               | ñ                                                                                                                                        | #Ite.                                                                                                                               | T <sub>t</sub>                                                                                                                                                                          | ñ                                                                                                                                                                                                                                                   | #Ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $T_t$                                                                                                                                                                                   | ñ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | #Ite.                                                                                                                                                                                                                                                                     | T <sub>t</sub>                                                                                                                                                                          | ñ                                                                                                                                                                                                                                          | #Ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T <sub>t</sub>                                                                                                                                                          | ñ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #Ite.                                                                                                                                         | T <sub>t</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ICCG                                                                         |                                                                                                                                                                                                                                                                 | -                                                                                                                                        | 56,109                                                                                                                              | 4741                                                                                                                                                                                    | -                                                                                                                                                                                                                                                   | 443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79.6                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 301                                                                                                                                                                                                                                                                       | 55.7                                                                                                                                                                                    | -                                                                                                                                                                                                                                          | 2281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 141                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1823                                                                                                                                          | 49.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ES-SC-ICCG                                                                   | $10^{-3}$                                                                                                                                                                                                                                                       | 20                                                                                                                                       | 14,780                                                                                                                              | 2011                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                  | 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58.2                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 243                                                                                                                                                                                                                                                                       | 49.6                                                                                                                                                                                    | 20                                                                                                                                                                                                                                         | 849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 813                                                                                                                                           | 50.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                              | $10^{-4}$                                                                                                                                                                                                                                                       | 20                                                                                                                                       | 14,775                                                                                                                              | 2001                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                   | 387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72.5                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                       | 17                                                                                                                                                                                                                                         | 994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99                                                                                                                                                                      | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 902                                                                                                                                           | 48.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                              | $10^{-5}$                                                                                                                                                                                                                                                       | 20                                                                                                                                       | 14,775                                                                                                                              | 1998                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                       | 4                                                                                                                                                                                                                                          | 1523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1329                                                                                                                                          | 50.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ES-D-ICCG                                                                    | $10^{-3}$                                                                                                                                                                                                                                                       | 20                                                                                                                                       | 14,731                                                                                                                              | 1992                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                  | 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55.9                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 242                                                                                                                                                                                                                                                                       | 49.5                                                                                                                                                                                    | 20                                                                                                                                                                                                                                         | 847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 808                                                                                                                                           | 49.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                              | $10^{-4}$                                                                                                                                                                                                                                                       | 20                                                                                                                                       | 14,717                                                                                                                              | 1988                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                   | 386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72.9                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                       | 17                                                                                                                                                                                                                                         | 992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99                                                                                                                                                                      | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 899                                                                                                                                           | 48.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                              | $10^{-5}$                                                                                                                                                                                                                                                       | 20                                                                                                                                       | 14,717                                                                                                                              | 2001                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                       | 4                                                                                                                                                                                                                                          | 1519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1328                                                                                                                                          | 49.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                              |                                                                                                                                                                                                                                                                 |                                                                                                                                          |                                                                                                                                     |                                                                                                                                                                                         |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                              |                                                                                                                                                                                                                                                                 | bon                                                                                                                                      | e010                                                                                                                                |                                                                                                                                                                                         | ldoo                                                                                                                                                                                                                                                | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                         | audi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kw_1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                         | Emil                                                                                                                                                                                                                                       | ia_923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         | bone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eS10                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Solver                                                                       | θ                                                                                                                                                                                                                                                               | bon<br><i>m</i>                                                                                                                          | e010<br>#Ite.                                                                                                                       | T <sub>t</sub>                                                                                                                                                                          | ldoo<br><i>m</i>                                                                                                                                                                                                                                    | r<br>#Ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $T_t$                                                                                                                                                                                   | audi<br><i>m</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kw_1<br>#Ite.                                                                                                                                                                                                                                                             | T <sub>t</sub>                                                                                                                                                                          | Emil<br><i>ñ</i>                                                                                                                                                                                                                           | ia_923<br>#Ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $T_t$                                                                                                                                                                   | bone<br><i>m</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eS10<br>#Ite.                                                                                                                                 | T <sub>t</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Solver<br>ICCG                                                               | θ                                                                                                                                                                                                                                                               | bon<br><i>m</i>                                                                                                                          | <b>#Ite.</b> 4162                                                                                                                   | <i>T</i> <sub>t</sub><br>801                                                                                                                                                            | 1doo<br><i>m</i><br>-                                                                                                                                                                                                                               | <b>r</b><br><b>#Ite.</b><br>2160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>T<sub>t</sub></i> 293                                                                                                                                                                | audi<br><i>m̃</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>kw_1</b><br><b>#Ite.</b><br>2629                                                                                                                                                                                                                                       | <b>T</b> <sub>t</sub><br>583                                                                                                                                                            | Emil<br><i>ñ</i>                                                                                                                                                                                                                           | <b>iia_923</b><br><b>#Ite.</b><br>462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>T<sub>t</sub></i> 53.6                                                                                                                                               | bone<br><i>m̃</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>#Ite.</b> 8532                                                                                                                             | <i>T<sub>t</sub></i> 1275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Solver<br>ICCG<br>ES-SC-ICCG                                                 | $	heta$ $10^{-3}$                                                                                                                                                                                                                                               | bon<br><i>m̃</i><br>-<br>20                                                                                                              | <b>#Ite.</b><br>4162<br>943                                                                                                         | <i>T<sub>t</sub></i><br>801<br>213                                                                                                                                                      | 1doo<br><i>m</i><br>-<br>20                                                                                                                                                                                                                         | <b>r</b><br><b>#Ite.</b><br>2160<br>658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T <sub>t</sub> 293       111                                                                                                                                                            | <b>audi</b><br><i>m</i><br>-<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>kw_1</b><br><b>#Ite.</b><br>2629<br>745                                                                                                                                                                                                                                | <i>T<sub>t</sub></i> 583 185                                                                                                                                                            | <b>Emil</b><br><i>m</i><br>-<br>20                                                                                                                                                                                                         | <b>#Ite.</b><br>462<br>218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>T<sub>t</sub></i> 53.6 32.2                                                                                                                                          | <b>bond</b><br><i>m</i><br>-<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>#Ite.</b><br>8532<br>2688                                                                                                                  | <i>T<sub>t</sub></i><br>1275<br>486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Solver<br>ICCG<br>ES-SC-ICCG                                                 | heta<br>$10^{-3}$<br>$10^{-4}$                                                                                                                                                                                                                                  | bon<br><i>m</i><br>-<br>20<br>18                                                                                                         | <b>#Ite.</b><br>4162<br>943<br>967                                                                                                  | <i>T</i> <sub>t</sub><br>801<br>213<br>216                                                                                                                                              | <b>Idoo</b><br><i>m</i><br>-<br>20<br>16                                                                                                                                                                                                            | r<br>#Ite.<br>2160<br>658<br>1073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T <sub>t</sub> 293           111           174                                                                                                                                          | <b>audi</b><br><i>m</i><br>-<br>20<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>kw_1</b><br><b>#Ite.</b><br>2629<br>745<br>1138                                                                                                                                                                                                                        | <i>T</i> <sub>t</sub><br>583<br>185<br>265                                                                                                                                              | Emil<br><i>m</i><br>-<br>20<br>19                                                                                                                                                                                                          | <b>ia_923 #Ite.</b> 462 218 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>T</i> <sub>t</sub><br>53.6<br>32.2<br>38.9                                                                                                                           | <b>bond</b><br><i>m</i><br>-<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>#Ite.</b><br>8532<br>2688<br>2688                                                                                                          | <i>T<sub>t</sub></i><br>1275<br>486<br>487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Solver<br>ICCG<br>ES-SC-ICCG                                                 | heta<br>10 <sup>-3</sup><br>10 <sup>-4</sup><br>10 <sup>-5</sup>                                                                                                                                                                                                | bon<br><i>m</i><br>-<br>20<br>18<br>13                                                                                                   | e010<br>#Ite.<br>4162<br>943<br>967<br>1302                                                                                         | <i>T<sub>t</sub></i><br>801<br>213<br>216<br>280                                                                                                                                        | 1doo<br><i>m̃</i><br>-<br>20<br>16<br>3                                                                                                                                                                                                             | r<br>#Ite.<br>2160<br>658<br>1073<br>1663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T <sub>t</sub> 293       111       174       238                                                                                                                                        | <b>audi</b><br><b>m̃</b><br>-<br>20<br>9<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>kw_1</b><br><b>#Ite.</b><br>2629<br>745<br>1138<br>1521                                                                                                                                                                                                                | <i>T<sub>t</sub></i><br>583<br>185<br>265<br>343                                                                                                                                        | <b>Emil</b><br><i>m̃</i><br>-<br>20<br>19<br>5                                                                                                                                                                                             | ia_923<br>#Ite.<br>462<br>218<br>266<br>373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>T<sub>t</sub></i><br>53.6<br>32.2<br>38.9<br>46.5                                                                                                                    | <b>bone</b><br><b>m̃</b><br>-<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>*110</b><br><b>*11e.</b><br>8532<br>2688<br>2688<br>2688                                                                                   | T <sub>t</sub> 1275         486         487         488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG                                    | $\theta$<br>10 <sup>-3</sup><br>10 <sup>-4</sup><br>10 <sup>-5</sup><br>10 <sup>-3</sup>                                                                                                                                                                        | bon<br><i>m</i> - 20 18 13 20                                                                                                            | e010<br>#Ite.<br>4162<br>943<br>967<br>1302<br>935                                                                                  | Tt           801           213           216           280           211                                                                                                                | 1doo<br><i>m̃</i><br>-<br>20<br>16<br>3<br>20                                                                                                                                                                                                       | r<br>#Ite.<br>2160<br>658<br>1073<br>1663<br>655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T <sub>t</sub> 293           111           174           238           110                                                                                                              | <b>audi</b><br><b>m̃</b><br>20<br>9<br>4<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kw_1<br>#Ite.<br>2629<br>745<br>1138<br>1521<br>756                                                                                                                                                                                                                       | T <sub>t</sub> 583           185           265           343           188                                                                                                              | Emil<br><i>m̃</i><br>-<br>20<br>19<br>5<br>20                                                                                                                                                                                              | ia_923       #Ite.       462       218       266       373       201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T <sub>t</sub> 53.6           32.2           38.9           46.5           29.7                                                                                         | <b>bond</b><br><b>m</b><br>-<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>*\$10</b><br><b>#Ite.</b><br>8532<br>2688<br>2688<br>2688<br>2682                                                                          | T <sub>t</sub> 1275           486           487           488           485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG                                    | heta<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-5}$<br>$10^{-3}$<br>$10^{-4}$                                                                                                                                                                                           | bon<br><i>m̃</i><br>-<br>20<br>18<br>13<br>20<br>18                                                                                      | e010<br>#Ite.<br>943<br>967<br>1302<br>935<br>962                                                                                   | T <sub>t</sub> 801           213           216           280           211           215                                                                                                | 1doo<br><i>m̃</i><br>-<br>20<br>16<br>3<br>20<br>16                                                                                                                                                                                                 | r<br>#Ite.<br>2160<br>658<br>1073<br>1663<br>655<br>1072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T <sub>t</sub> 293           111           174           238           110           173                                                                                                | audi<br>m - 20 4 20 20 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kw_1<br>#Ite.<br>2629<br>745<br>1138<br>1521<br>756<br>1084                                                                                                                                                                                                               | T <sub>t</sub> 583           185           265           343           188           253                                                                                                | Emil<br><i>ñ</i> -         20         19         20         20         19         20         19                                                                                                                                            | ia_923       #Ite.       462       218       266       373       201       265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T <sub>t</sub> 53.6           32.2           38.9           46.5           29.7           38.9                                                                          | bons <i>m</i> -           20           20           20           20           20           20           20           20           20           20           20           20           20           20                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | still           #Ite.           8532           2688           2688           2688           2688           2688           2682           2682 | Tt           1275           486           487           488           485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG                                    | $\theta$<br>10 <sup>-3</sup><br>10 <sup>-4</sup><br>10 <sup>-5</sup><br>10 <sup>-3</sup><br>10 <sup>-4</sup><br>10 <sup>-5</sup>                                                                                                                                | bon<br><i>m</i><br>-<br>20<br>18<br>13<br>20<br>18<br>13<br>13                                                                           | e010<br>#Ite.<br>4162<br>943<br>967<br>1302<br>935<br>962<br>1293                                                                   | T <sub>t</sub> 801           213           216           280           211           215           278                                                                                  | Idoo <i>m</i> -           20           16           3           20           16           3           3                                                                                                                                             | r<br>#Ite.<br>2160<br>658<br>1073<br>1663<br>655<br>1072<br>1662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T <sub>t</sub> 293           111           174           238           110           173           237                                                                                  | audi<br><i>m̃</i><br>20<br>9<br>4<br>20<br>9<br>4<br>20<br>9<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | kw_1<br>#Ite.<br>2629<br>745<br>1138<br>1521<br>756<br>1084<br>1586                                                                                                                                                                                                       | T <sub>t</sub> 583           185           265           343           188           253           358                                                                                  | Emil<br><i>m</i> - 20 19 5 20 19 5 5 5                                                                                                                                                                                                     | ia_923       #Ite.       462       218       266       373       201       265       374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T <sub>t</sub> 53.6         32.2         38.9         46.5         29.7         38.9         46.8                                                                       | bons           m           -           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20                                                                                                                                                                                                                                                                                                | ssio       #Ite.       8532       2688       2688       2688       2682       2682       2682       2682                                      | T <sub>t</sub> 1275           486           487           488           485           485           486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG                                    | $\theta$<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-5}$<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-5}$                                                                                                                                                                          | bon<br><i>m</i><br>20<br>18<br>13<br>20<br>18<br>13<br>PFld                                                                              | e010<br>#Ite.<br>4162<br>943<br>967<br>1302<br>935<br>962<br>1293<br>pw_742                                                         | T <sub>t</sub> 801           213           216           280           211           215           278                                                                                  | Idoo <i>m</i> -       20       16       3       20       16       3                                                                                                                                                                                 | r<br>#Ite.<br>2160<br>658<br>1073<br>655<br>1072<br>1662<br>1662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T <sub>t</sub> 293           111           174           238           110           173           237                                                                                  | audi<br><i>m̃</i> - 20 9 4 20 9 4 20 9 4 20 9 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kw_1<br>#Ite.<br>2629<br>745<br>1138<br>1521<br>756<br>1084<br>1586<br>xache2                                                                                                                                                                                             | T <sub>t</sub> 583           185           265           343           188           253           358                                                                                  | Emil<br><i>m</i><br>-<br>20<br>19<br>5<br>20<br>19<br>5<br>5<br><u>Fau</u>                                                                                                                                                                 | ia_923 #Ite. 462 218 266 373 201 265 374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T <sub>t</sub> 53.6         32.2         38.9         46.5         29.7         38.9         46.8                                                                       | bons <i>m</i> -           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20                                                                                                                                                                                                                                                                                   | es10<br>#Ite.<br>8532<br>2688<br>2688<br>2688<br>2682<br>2682<br>2682<br>2682<br>2682                                                         | T <sub>t</sub> 1275           486           487           488           485           485           486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG                                    | $\theta$ 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-5</sup> 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-5</sup>                                                                                                                                                  | bon<br><i>m</i><br>-<br>20<br>18<br>13<br>20<br>18<br>13<br>20<br>18<br>13<br>PFlc<br><i>m</i>                                           | e010<br>#Ite.<br>4162<br>943<br>967<br>1302<br>935<br>962<br>1293<br>0w_742<br>#Ite.                                                | T <sub>t</sub> 801         213         216         280         211         215         278                                                                                              | Idoo <i>m</i> -           20           16           3           20           16           3           16           3           ±m <i>m</i>                                                                                                          | r<br>#Ite.<br>2160<br>658<br>1073<br>1663<br>655<br>1072<br>1072<br>1662<br>t_sym<br>#Ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T <sub>t</sub> 293           111           174           238           110           173           237           T <sub>t</sub>                                                         | audi<br><i>m̃</i> - 20 9 4 20 9 4 20 9 4 <i>a a a a a a a a a a</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kw_1<br>#Ite.<br>2629<br>745<br>1138<br>1521<br>756<br>1084<br>1586<br>ache2<br>#Ite.                                                                                                                                                                                     | T <sub>t</sub> 583       185       265       343       188       253       358       T <sub>t</sub>                                                                                     | Emil<br><i>m</i><br>-<br>20<br>19<br>5<br>20<br>19<br>5<br>19<br>5<br><i>Fat</i><br><i>m</i>                                                                                                                                               | iia_923       #Ite.       462       218       266       373       201       265       374       ilt_639       #Ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T <sub>t</sub> 53.6       32.2       38.9       46.5       29.7       38.9       46.8       T <sub>t</sub>                                                              | bons <i>m</i> -           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20  | es10<br>#Ite.<br>8532<br>2688<br>2688<br>2682<br>2682<br>2682<br>2682<br>2682<br>abolic_fi<br>#Ite.                                           | T <sub>t</sub> 1275         486         487         488         485         485         486         em         T <sub>t</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG<br>Solver<br>ICCG                  | $\theta$<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-5}$<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-5}$                                                                                                                                                                          | bon<br><i>m</i><br>-<br>20<br>18<br>13<br>20<br>18<br>13<br>PFlc<br><i>m</i><br>-                                                        | e010<br>#Ite.<br>4162<br>943<br>967<br>1302<br>935<br>962<br>1293<br>0w_742<br>#Ite.<br>33,076                                      | T <sub>t</sub> 801         213         216         280         211         215         278         T <sub>t</sub> 3357                                                                  | 1doo<br>$\tilde{m}$ - 20 16 3 20 16 3 $\frac{16}{\tilde{m}}$                                                                                                                                                                                        | r<br>#Ite.<br>2160<br>658<br>1073<br>1663<br>655<br>1072<br>1662<br>1662<br>t_sym<br>#Ite.<br>1252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T <sub>t</sub> 293           111           174           238           110           173           237           T <sub>t</sub> 35.9                                                    | audi<br><i>m</i> - 20 9 4 20 9 4 20 9 4 <i>m</i> - <i>m</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kw_1<br>#Ite.<br>2629<br>745<br>1138<br>1521<br>756<br>1084<br>1586<br>ache2<br>#Ite.<br>768                                                                                                                                                                              | T <sub>t</sub> 583         185         265         343         188         253         358         T <sub>t</sub> 16.5                                                                  | Emil<br><i>m</i><br>-<br>20<br>19<br>5<br>20<br>19<br>5<br><i>Eat</i><br><i>m</i><br><i>m</i><br>-<br>-<br>-<br>-<br>20<br>19<br>5<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                        | iia_923       #Ite.       462       218       266       373       201       265       374       ilt_639       #Ite.       218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T <sub>t</sub> 53.6         32.2         38.9         46.5         29.7         38.9         46.8         T <sub>t</sub> 177                                            | bons <i>m</i> -           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20  | es10<br>#Ite.<br>8532<br>2688<br>2688<br>2688<br>2682<br>2682<br>2682<br>2682<br>2682<br>4001c_f<br>#Ite.<br>1131                             | T <sub>t</sub> 1275         486         487         488         485         485         486         1275         1275         1275         1275         486         487         488         485         486         1275         1275         1275         1275         1275         18.9                                                                                                                                                                                                                                                                                                                                      |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG<br>Solver<br>ICCG<br>ES-SC-ICCG    | $\theta$ 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-5</sup> $\theta$ 10 <sup>-3</sup>                                                                                                                                         | bon<br><i>m</i><br>-<br>20<br>18<br>13<br>20<br>18<br>13<br><b>PFIC</b><br><i>m</i><br>-<br>20                                           | e010<br>#Ite.<br>4162<br>943<br>967<br>1302<br>935<br>962<br>1293<br>2002<br>#Ite.<br>33,076<br>10,359                              | T <sub>t</sub> 801         213         216         280         211         215         278         T <sub>t</sub> 3357         1299                                                     | Idoo <i>m</i> -           20           16           3           20           16           3 <u>tm</u> <i>m</i> 20                                                                                                                                   | r<br>////////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T <sub>t</sub> 293           111           174           238           110           173           237           T <sub>t</sub> 35.9           27.0                                     | audi<br>m - 20 9 4 20 9 4 20 9 4 - 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kw_1<br>#Ite.<br>2629<br>745<br>1138<br>1521<br>756<br>1084<br>1586<br>4<br>xeche2<br>#Ite.<br>768<br>359                                                                                                                                                                 | T <sub>t</sub> 583         185         265         343         188         253         358         T <sub>t</sub> 16.5         16.0                                                     | Emil<br><i>m</i><br>-<br>20<br>19<br>5<br>5<br>-<br>20<br>19<br>5<br>-<br>20<br>19<br>5<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>-<br>20<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                       | iia_923       iiia_923       iiia_02       218       266       373       201       265       374       iiia_639       iiia_1287       806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T <sub>t</sub> 53.6         32.2         38.9         46.5         29.7         38.9         46.8         T <sub>t</sub> 177         83                                 | bons <i>m</i> -           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20  | es10  #Ite.  8532 2688 2688 2682 2682 2682 2682 2682 4bolic_f #Ite. 1131 671                                                                  | T <sub>t</sub> 1275         486         487         488         485         486         1275         1275         486         980         1275         1275         486         485         486         18.9         22.4                                                                                                                                                                                                                                                                                                                                                                                                      |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG<br>Solver<br>ICCG<br>ES-SC-ICCG    | $\theta$ 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-5</sup> 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-5</sup> $\theta$ 10 <sup>-3</sup> 10 <sup>-3</sup> 10 <sup>-4</sup>                                                                                      | bon<br><i>m</i><br>20<br>18<br>13<br>20<br>18<br>13<br><b>PFld</b><br><i>m</i><br>-<br>20<br>20<br>20                                    | e010<br>#Ite.<br>4162<br>943<br>967<br>1302<br>935<br>962<br>1293<br>0000742<br>#Ite.<br>33,076<br>10,359<br>10,360                 | T <sub>t</sub> 801         213         216         280         211         215         278         T <sub>t</sub> 3357         1299         1299                                        | Ideo <i>m</i> -           20           16           3           20           16           3           20           16           3           20           16           3           20           16           3           20           16           3 | r<br>1160<br>1073<br>1663<br>1663<br>1663<br>1072<br>1072<br>1072<br>1072<br>1072<br>1072<br>1072<br>1072<br>1072<br>1072<br>1072<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1073<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>1075<br>107 | T <sub>t</sub> 293           111           174           238           110           173           237           T <sub>t</sub> 35.9           27.0           29.3                      | audi<br>m - 20 9 4 20 9 4 20 9 4 20 9 4 - 10 10 11 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kw_1<br>#Ite.<br>2629<br>745<br>1138<br>1521<br>756<br>1084<br>1586<br>1586<br><b>ache2</b><br>#Ite.<br>768<br>359<br>429                                                                                                                                                 | T <sub>t</sub> 583         185         265         343         188         253         358         T <sub>t</sub> 16.5         16.0         15.7                                        | Emil<br><i>m</i><br>-<br>20<br>19<br>5<br>20<br>19<br>5<br><i>Faa</i><br><i>m</i><br>-<br>20<br>19<br>5<br>-<br>20<br>19<br>5<br>-<br>20<br>19<br>5<br>-<br>-<br>20<br>19<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | <ul> <li>ia_923</li> <li>iia_923</li> <li>iiia_923</li> <li>462</li> <li>218</li> <li>266</li> <li>373</li> <li>201</li> <li>265</li> <li>374</li> <li>265</li> <li>374</li> <li>alt_639</li> <li>iiia</li> <li>alt_639</li> <li>alt_639</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T <sub>t</sub> 53.6         32.2         38.9         46.5         29.7         38.9         46.8         T <sub>t</sub> 177         83         134                     | bons <i>m</i> 20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20 | es10<br>#Ite.<br>8532<br>2688<br>2688<br>2688<br>2682<br>2682<br>2682<br>2682<br>40001c_f<br>#Ite.<br>1131<br>671<br>862                      | T <sub>t</sub> 1275         486         487         488         485         486         9         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         12         13         14         15         16         17         18         17         18         10         11         12         12         13         14         14         15         16         17         17         17         17 |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG<br>Solver<br>ICCG<br>ES-SC-ICCG    | $\theta$ 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-5</sup> 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-5</sup> $\theta$ 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-5</sup>                                                    | bon<br><i>m</i><br>-<br>20<br>18<br>13<br>20<br>18<br>13<br>20<br>18<br>13<br><b>PFId</b><br><i>m</i><br>-<br>20<br>20<br>20<br>20       | e010<br>#Ite.<br>4162<br>943<br>967<br>1302<br>935<br>962<br>1293<br>1293<br>w_742<br>#Ite.<br>33,076<br>10,359<br>10,360<br>10,359 | T <sub>t</sub> 801         213         216         280         211         215         278         T <sub>t</sub> 3357         1299         1299         1299         1299              | Ideo           m           -           20           16           3           20           16           3           20           16           3           20           15           3                                                                | r<br>////////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T <sub>t</sub> 293           111           174           238           110           173           237           T <sub>t</sub> 35.9           27.0           29.3           34.7       | audi<br>m - 20 9 4 20 9 4 20 9 4 - 10 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | kw_1<br>#Ite.<br>2629<br>745<br>1138<br>1521<br>756<br>1084<br>1586<br>1084<br>8<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>6<br>6<br>3<br>5<br>9<br>4<br>2<br>6<br>6<br>3<br>5<br>1<br>2<br>1<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | T <sub>t</sub> 583         185         265         343         188         253         358         T <sub>t</sub> 16.5         16.0         15.7         17.1                           | Emil<br><i>m</i> - 20 19 5 20 19 5 <i>Fau m i i i i i i i i i i i i i i i i i i </i>                                                                                                                                                       | ia_923 i/i a_923 i/i a_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T <sub>t</sub> 53.6         32.2         38.9         46.5         29.7         38.9         46.8         T <sub>t</sub> 177         83         134         164         | bons <i>m</i> -           20           20           20           20           20           20           20           20           20           20           20           20           20           10           -           118           7           0                                                                                                                                                                                                                                                                                                                                                                                                                       | es10<br>#Ite.<br>8532<br>2688<br>2688<br>2682<br>2682<br>2682<br>2682<br>2682<br>2682<br>1131<br>671<br>862<br>-                              | T <sub>t</sub> 1275         486         487         488         485         486         1275         486         487         488         485         486         22.4         20.7         -                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG<br>ICCG<br>ES-SC-ICCG              | $\theta$ 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-5</sup> 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-5</sup> $\theta$ 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-5</sup> 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-5</sup> 10 <sup>-3</sup>                  | bon<br><i>m</i> - 20 18 13 20 18 13 20 18 13 20 20 20 20 20 20 20 20 20 20 20 20 20                                                      | e010<br>#Ite.<br>943<br>967<br>1302<br>935<br>962<br>1293<br>000_742<br>#Ite.<br>33,076<br>10,359<br>10,360<br>10,359<br>10,269     | T <sub>t</sub> 801         213         214         280         211         215         278         T <sub>t</sub> 3357         1299         1299         1299         1289         1287 | Ideo <i>m</i> -           20           16           3           20           16           3           20           15           3           20           20                                                                                         | r<br>ilite.<br>2160<br>658<br>1073<br>1663<br>1072<br>1072<br>1072<br>1072<br>1072<br>1072<br>1072<br>1072<br>1073<br>1073<br>1013<br>501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T <sub>t</sub> 293         111         174         238         110         173         237         T <sub>t</sub> 35.9         27.0         29.3         34.7         26.5              | audi<br>m 20 9 4 20 9 4 20 9 4 20 9 4 20 9 4 20 9 4 20 9 4 20 9 4 20 9 4 20 12 2 19 12 2 19 12 2 19 12 2 19 12 2 19 12 2 19 12 2 19 12 2 19 12 2 19 12 19 12 19 12 19 12 19 12 19 12 19 12 19 12 19 12 19 12 19 12 19 12 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <td>kw_1<br/>#Ite.<br/>2629<br/>745<br/>1138<br/>1521<br/>756<br/>1084<br/>1586<br/>1586<br/><b>ache2</b><br/>#Ite.<br/>768<br/>359<br/>429<br/>663<br/>360</td> <td>T<sub>t</sub>         583         185         265         343         188         253         358         T<sub>t</sub>         16.5         16.0         15.7         17.1         16.3</td> <td>Emil<br/><i>m</i><br/>-<br/>20<br/>19<br/>5<br/>20<br/>19<br/>5<br/><i>Fat</i><br/><i>m</i><br/>-<br/>20<br/>15<br/>4<br/>20<br/>15<br/>4<br/>20</td> <td><pre>ia_923 if a_923 if a_923</pre></td> <td>T<sub>t</sub>         53.6         32.2         38.9         46.5         29.7         38.9         46.8         T<sub>t</sub>         134         134         164         82</td> <td>bons           <i>m</i>           20           20           20           20           20           20           20           20           20           20           20           20           20           10           -           18           7           0           18</td> <td>es10<br/>#Ite.<br/>8532<br/>2688<br/>2688<br/>2682<br/>2682<br/>2682<br/>2682<br/>2682<br/>4001c_f<br/>#Ite.<br/>1131<br/>671<br/>862<br/>-<br/>670</td> <td>T<sub>t</sub>         1275         486         487         488         485         486         9         1275         9         1275         9         18.9         22.4         20.7         -         22.3</td> | kw_1<br>#Ite.<br>2629<br>745<br>1138<br>1521<br>756<br>1084<br>1586<br>1586<br><b>ache2</b><br>#Ite.<br>768<br>359<br>429<br>663<br>360                                                                                                                                   | T <sub>t</sub> 583         185         265         343         188         253         358         T <sub>t</sub> 16.5         16.0         15.7         17.1         16.3              | Emil<br><i>m</i><br>-<br>20<br>19<br>5<br>20<br>19<br>5<br><i>Fat</i><br><i>m</i><br>-<br>20<br>15<br>4<br>20<br>15<br>4<br>20                                                                                                             | <pre>ia_923 if a_923 if a_923</pre> | T <sub>t</sub> 53.6         32.2         38.9         46.5         29.7         38.9         46.8         T <sub>t</sub> 134         134         164         82         | bons <i>m</i> 20           20           20           20           20           20           20           20           20           20           20           20           20           10           -           18           7           0           18                                                                                                                                                                                                                                                                                                                                                                                                                       | es10<br>#Ite.<br>8532<br>2688<br>2688<br>2682<br>2682<br>2682<br>2682<br>2682<br>4001c_f<br>#Ite.<br>1131<br>671<br>862<br>-<br>670           | T <sub>t</sub> 1275         486         487         488         485         486         9         1275         9         1275         9         18.9         22.4         20.7         -         22.3                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG | $\theta$ 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-5</sup> 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-5</sup> $\theta$ 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-5</sup> 10 <sup>-3</sup> 10 <sup>-4</sup> 10 <sup>-5</sup> 10 <sup>-3</sup> 10 <sup>-4</sup> | bon<br><i>m</i><br>-<br>20<br>18<br>13<br>20<br>18<br>13<br><b>PFld</b><br><i>m</i><br>-<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | e010<br>#Ite.<br>943<br>967<br>1302<br>935<br>962<br>1293<br>000_742<br>000_742<br>10,359<br>10,359<br>10,359<br>10,359<br>10,269   | T <sub>t</sub> 801         213         216         280         211         215         278         T <sub>t</sub> 3357         1299         1299         1299         1287         1287 | Idoo <i>m</i> -           20           16           3           20           16           3           20           16           3           20           15           3           20                                                                | r<br>////////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T <sub>t</sub> 293         111         174         238         110         173         237         T <sub>t</sub> 35.9         27.0         29.3         34.7         26.5         29.1 | audi<br>m - 20 9 4 20 9 4 20 9 4 20 9 1 20 1 20 1 20 20 1 1 20 2 1 1 2 1 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kw_1<br>#Ite.<br>2629<br>745<br>1138<br>1521<br>756<br>1084<br>1586<br>1084<br>1586<br><b>*Ite.</b><br>768<br><b>*Ite.</b><br>359<br>429<br>663<br>360<br>428                                                                                                             | T <sub>t</sub> 583         185         265         343         188         253         358         T <sub>t</sub> 16.5         16.0         15.7         17.1         16.3         15.8 | Emil<br><i>m</i> - 20 19 5 20 19 5 <i>Faa m</i> 20 15 4 20 15 4 20 15 4 20 15                                                                                                                                                              | iia_923 iia_923 iita_923 i462 218 265 374 201 265 374 2187 2187 806 1366 1905 798 1364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T <sub>t</sub> 53.6         32.2         38.9         46.5         29.7         38.9         46.8         177         83         134         164         82         133 | bons <i>m</i> -           20           20           20           20           20           20           20           20           20           20           18           7           0           18           7           0           18           7           0           18           7                                                                                                                                                                                                                                                                                                                                                                                     | es10<br>#Ite.<br>8532<br>2688<br>2688<br>2688<br>2682<br>2682<br>2682<br>2682<br>2682<br>1131<br>671<br>862<br>-<br>670<br>862                | T <sub>t</sub> 1275         486         487         488         485         485         1275         22.4         20.7         -         22.3         20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### TABLE 2 Continued

|                                           |                                                                                                              | bun                                      | dle_adj                                                       |                                                                                        | _af_                                                  | _shell8                                                               |                                                              | _af_                                                            | shell4                                                                      |                                                                            | af_                                     | shell3                                                                      |                                                                            | _af_                                        | shell7                                                                |                                                                |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|
| Solver                                    | θ                                                                                                            | ñ                                        | #Ite.                                                         | $T_t$                                                                                  | ñ                                                     | #Ite.                                                                 | $T_t$                                                        | ñ                                                               | #Ite.                                                                       | $T_t$                                                                      | ñ                                       | #Ite.                                                                       | $T_t$                                                                      | ñ                                           | #Ite.                                                                 | $T_t$                                                          |
| ICCG                                      |                                                                                                              | -                                        | 42,809                                                        | 2275                                                                                   | -                                                     | 1048                                                                  | 52.0                                                         | -                                                               | 1048                                                                        | 52.0                                                                       | -                                       | 1048                                                                        | 52.3                                                                       | -                                           | 1048                                                                  | 53.0                                                           |
| ES-SC-ICCG                                | $10^{-3}$                                                                                                    | 20                                       | 11,705                                                        | 824                                                                                    | 18                                                    | 483                                                                   | 31.4                                                         | 18                                                              | 481                                                                         | 31.1                                                                       | 18                                      | 481                                                                         | 31.4                                                                       | 18                                          | 483                                                                   | 31.5                                                           |
|                                           | $10^{-4}$                                                                                                    | 18                                       | 11,533                                                        | 793                                                                                    | 9                                                     | 614                                                                   | 35.8                                                         | 9                                                               | 615                                                                         | 35.3                                                                       | 9                                       | 615                                                                         | 35.7                                                                       | 9                                           | 614                                                                   | 35.5                                                           |
|                                           | $10^{-5}$                                                                                                    | 17                                       | 11,460                                                        | 781                                                                                    | 0                                                     | -                                                                     | -                                                            | 0                                                               | -                                                                           | -                                                                          | 0                                       | -                                                                           | -                                                                          | 0                                           | -                                                                     | -                                                              |
| ES-D-ICCG                                 | $10^{-3}$                                                                                                    | 20                                       | 9740                                                          | 686                                                                                    | 18                                                    | 481                                                                   | 31.4                                                         | 18                                                              | 479                                                                         | 31.0                                                                       | 18                                      | 479                                                                         | 31.4                                                                       | 18                                          | 481                                                                   | 31.5                                                           |
|                                           | $10^{-4}$                                                                                                    | 18                                       | 10,117                                                        | 698                                                                                    | 9                                                     | 613                                                                   | 35.4                                                         | 9                                                               | 615                                                                         | 35.5                                                                       | 9                                       | 615                                                                         | 35.7                                                                       | 9                                           | 613                                                                   | 35.6                                                           |
|                                           | $10^{-5}$                                                                                                    | 17                                       | 10,532                                                        | 717                                                                                    | 0                                                     | -                                                                     | -                                                            | 0                                                               | -                                                                           | -                                                                          | 0                                       | -                                                                           | -                                                                          | 0                                           | -                                                                     | -                                                              |
|                                           |                                                                                                              |                                          |                                                               |                                                                                        |                                                       |                                                                       |                                                              |                                                                 |                                                                             |                                                                            |                                         |                                                                             |                                                                            |                                             |                                                                       |                                                                |
|                                           |                                                                                                              | inli                                     | ne_1                                                          |                                                                                        | af_0                                                  | _k101                                                                 |                                                              | _af_4                                                           | _k101                                                                       |                                                                            | af_3                                    | _k101                                                                       |                                                                            | af_2                                        | _k101                                                                 |                                                                |
| Solver                                    | θ                                                                                                            | inli<br><i>m</i>                         | ne_1<br>#Ite.                                                 | $T_t$                                                                                  | af_0<br><i>m</i>                                      | _k101<br>#Ite.                                                        | T <sub>t</sub>                                               | af_4<br><i>m</i>                                                | _k101<br>#Ite.                                                              | $T_t$                                                                      | af_3<br><i>m</i>                        | _k101<br>#Ite.                                                              | $T_t$                                                                      | af_2<br><i>m</i>                            | _k101<br>#Ite.                                                        | T <sub>t</sub>                                                 |
| <b>Solver</b><br>ICCG                     | θ                                                                                                            | inli<br><i>m</i>                         | ne_1<br>#Ite.<br>8487                                         | <b>T</b> <sub>t</sub><br>879                                                           | af_0<br><i>m</i>                                      | <b>k101</b><br><b>#Ite.</b><br>12,953                                 | <i>T<sub>t</sub></i> 636                                     | af_4<br><i>m</i>                                                | <b>k101</b><br><b>#Ite.</b><br>9993                                         | <i>T<sub>t</sub></i> 489                                                   | af_3<br><i>m</i>                        | _k101<br>#Ite.<br>8519                                                      | <i>T<sub>t</sub></i> 423                                                   | af_2<br><i>m</i>                            | <b>k101</b><br><b>#Ite.</b><br>13,092                                 | <i>T<sub>t</sub></i> 648                                       |
| Solver<br>ICCG<br>ES-SC-ICCG              | $\theta$ $10^{-3}$                                                                                           | inli<br><i>m̃</i><br>-<br>20             | ne_1<br>#Ite.<br>8487<br>2573                                 | <i>T</i> <sub>t</sub><br>879<br>311                                                    | af_0<br><i>m̃</i><br>-<br>20                          | <b>k101</b><br><b>#Ite.</b><br>12,953<br>4153                         | <i>T</i> <sub>t</sub><br>636<br>276                          | af_4<br><i>m</i><br>-<br>20                                     | <b>k101</b><br><b>#Ite.</b><br>9993<br>3093                                 | <b>T</b> <sub>t</sub><br>489<br>204                                        | af_3<br><i>m̃</i><br>-<br>20            | _k101<br>#Ite.<br>8519<br>2632                                              | <i>T<sub>t</sub></i><br>423<br>176                                         | af_2<br><i>m̃</i><br>-<br>20                | <b></b>                                                               | <i>T<sub>t</sub></i><br>648<br>279                             |
| Solver<br>ICCG<br>ES-SC-ICCG              | heta<br>10 <sup>-3</sup><br>10 <sup>-4</sup>                                                                 | inli<br><i>m</i><br>-<br>20<br>20        | ne_1<br>#Ite.<br>8487<br>2573<br>2572                         | <i>T</i> <sub>t</sub><br>879<br>311<br>310                                             | af_0.<br><i>m̃</i><br>-<br>20<br>20                   | <b>_k101</b><br><b>#Ite.</b><br>12,953<br>4153<br>4153                | <i>T</i> <sub>t</sub><br>636<br>276<br>276                   | af_4<br><i>m</i><br>-<br>20<br>20                               | <b>k101</b><br><b>#Ite.</b><br>9993<br>3093<br>3094                         | <i>T<sub>t</sub></i><br>489<br>204<br>204                                  | af_3<br><i>m̃</i><br>-<br>20<br>20      | <b>k101</b><br><b>#Ite.</b><br>8519<br>2632<br>2633                         | <i>T<sub>t</sub></i><br>423<br>176<br>176                                  | af_2<br><i>m</i><br>-<br>20<br>20           | <b>_k101 #Ite.</b> 13,092 4194 4194                                   | <i>T<sub>t</sub></i><br>648<br>279<br>279                      |
| Solver<br>ICCG<br>ES-SC-ICCG              | $\theta$<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-5}$                                                              | inli<br><i>m̃</i><br>-<br>20<br>20<br>19 | ne_1<br>#Ite.<br>8487<br>2573<br>2572<br>2573                 | <i>T<sub>t</sub></i><br>879<br>311<br>310<br>309                                       | af_0.<br><i>m̃</i><br>-<br>20<br>20<br>20<br>20       | <b>k101</b><br><b>#Ite.</b><br>12,953<br>4153<br>4153<br>4153         | <b>T</b> <sub>t</sub><br>636<br>276<br>276<br>275            | af_4<br><i>m</i><br>-<br>20<br>20<br>20<br>20                   | <b>k101 #Ite.</b> 99993 3093 3094 3094                                      | <i>T</i> <sub>t</sub><br>489<br>204<br>204<br>204                          | af_3<br><i>m</i> - 20 20 20 20          | <b>_k101 #Ite.</b> 8519 2632 2633 2632                                      | <i>T<sub>t</sub></i><br>423<br>176<br>176<br>176                           | af_2.<br><i>m̃</i><br>-<br>20<br>20<br>20   | <b>k101</b><br><b>#Ite.</b><br>13,092<br>4194<br>4194<br>4194         | <b>T</b> <sub>t</sub><br>648<br>279<br>279<br>278              |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG | $\theta$<br>10 <sup>-3</sup><br>10 <sup>-4</sup><br>10 <sup>-5</sup><br>10 <sup>-3</sup>                     | inli<br><i>m</i> - 20 20 19 20           | ne_1<br>#Ite.<br>8487<br>2573<br>2572<br>2573<br>2573<br>2570 | T <sub>t</sub> 879           311           310           309           311             | af_0.<br><i>m̃</i><br>-<br>20<br>20<br>20<br>20<br>20 | <b>k101</b><br><b>#Ite.</b><br>12,953<br>4153<br>4153<br>4153<br>4153 | <b>T</b> <sub>t</sub><br>636<br>276<br>276<br>275<br>275     | af_4<br><i>m</i> -         20         20         20             | k101 #Ite. 9993 3093 3094 3094 3094 3085                                    | T <sub>t</sub> 489           204           204           204           204 | af_3<br>m - 20 20 20 20 20 20           | <b>k101 #Ite.</b> 8519 2632 2633 2632 2632 2624                             | <i>T<sub>t</sub></i><br>423<br>176<br>176<br>176<br>175                    | af_2.<br>m - 20 20 20 20 20 20              | <b>k101</b><br><b>#Ite.</b><br>13,092<br>4194<br>4194<br>4194<br>4189 | <i>T<sub>t</sub></i><br>648<br>279<br>279<br>278<br>279        |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG | $\theta$<br>10 <sup>-3</sup><br>10 <sup>-4</sup><br>10 <sup>-5</sup><br>10 <sup>-3</sup><br>10 <sup>-4</sup> | inli<br><i>m</i> - 20 20 19 20 20 20     | ne_1<br>#Ite.<br>8487<br>2573<br>2572<br>2573<br>2570<br>2570 | Tt           879           311           310           309           311           311 | af_0.<br><i>m̃</i> - 20 20 20 20 20 20 20             | <b>k101 #Ite.</b> 12,953 4153 4153 4153 4153 4150 4150                | T <sub>t</sub> 636           276           275           275 | af_4<br><i>m</i><br>-<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | <b>k101</b><br><b>#Ite.</b><br>9993<br>3093<br>3094<br>3094<br>3085<br>3086 | T <sub>t</sub> 489           204           204           204           203 | af_3<br><i>m</i> - 20 20 20 20 20 20 20 | <b>k101</b><br><b>#Ite.</b><br>8519<br>2632<br>2633<br>2632<br>2624<br>2629 | T <sub>t</sub> 423           176           176           176           175 | af_2,<br><i>m</i> - 20 20 20 20 20 20 20 20 | <b>k101 #Ite.</b> 13,092 4194 4194 4194 4194 4189 4189                | <i>T<sub>t</sub></i><br>648<br>279<br>279<br>278<br>279<br>278 |

of the Gram–Schmidt process is computationally bounded, its computational time  $T_{GS}$  is estimated by

$$T_{GS} = 2nm^2/f,\tag{18}$$

where f is the FLOPS of the processing core. The matrix-vector multiplication kernel is typically memory bound. Accordingly, the computational time for the SpMV is estimated by

$$T_{AE} = (12n + 12nnz)\tilde{m}/b_m. \tag{19}$$

Moreover, the computational time for (12) is estimated by

$$T_W = (8n + 8\tilde{m}n)/b_m. \tag{20}$$

The matrix-matrix multiplication kernel is computationally bound, and its computational time is estimated by

$$T_{E^{\mathsf{T}}AE} = 2n\tilde{m}^2/f.$$
(21)

Consequently, the computational time for the auxiliary matrix setup,  $T_{AM}$ , is estimated by

$$T_{AM} = T_{GS} + T_{AE} + T_W + T_{E^{\mathsf{T}}AE}$$
(22)

$$= 2n(\tilde{m}^2 + m^2)/f + (8n + 20\tilde{m}n + 12\tilde{m} \cdot nnz)/b_m.$$
(23)

On a recent computer system, the BYTE/FLOPS ratio ( $= b_m/f$ ) is typically less than 0.1. For example, the ratio for the system used in the numerical test was 0.087. Consequently, we assume that  $f = 10b_m$ . Moreover, for simplicity, we assume that  $\tilde{m} = m = 20$  and  $nn_{Z_{av}} = 30$ . From (15) and (23), for these settings, the computational cost for the setup is comparable with that for ten ICCG iterations. Because it is not rare that the number of iterations exceeds several hundred for a practical engineering problem and  $k_t$  is typically not small, the setup cost can be amortized in the following solution steps.

WILEY <u>9 of 26</u>

# 10 of 26 | WILEY-

| TABLE 3 N  | Numeric                             | al resu        | ults (seque                | ential so            | lver, <b>b</b> | : random   | vector)      | ).       |            |              |          |              |            |         |            |              |
|------------|-------------------------------------|----------------|----------------------------|----------------------|----------------|------------|--------------|----------|------------|--------------|----------|--------------|------------|---------|------------|--------------|
|            |                                     | Que            | en_4147                    |                      | Bun            | 1p_2911    |              | G3_0     | circuit    |              | Flan     | _1565        |            | Ho      | ok_1498    |              |
| Solver     | θ                                   | ñ              | #Ite.                      | $T_t$                | ñ              | #Ite.      | $T_t$        | ñ        | #Ite.      | $T_t$        | ñ        | #Ite.        | $T_t$      | ñ       | #Ite.      | $T_t$        |
| ICCG       | -                                   | -              | 3140                       | 2776                 | -              | 1544       | 564          | -        | 926        | 46.1         | -        | 3196         | 1010       | -       | 1613       | 282          |
| ES-SC-ICCG | $10^{-3}$                           | 20             | 2546                       | 2648                 | 20             | 906        | 428          | 19       | 865        | 88.8         | 20       | 1013         | 372        | 20      | 554        | 127          |
|            | $10^{-4}$                           | 19             | 2566                       | 2652                 | 17             | 921        | 422          | 10       | 891        | 70.6         | 19       | 1048         | 382        | 13      | 672        | 143          |
|            | $10^{-5}$                           | 7              | 2783                       | 2626                 | 5              | 1114       | 441          | 0        | -          | -            | 9        | 1524         | 518        | 5       | 1076       | 208          |
| ES-D-ICCG  | $10^{-3}$                           | 20             | 2542                       | 2652                 | 20             | 900        | 424          | 19       | 863        | 88.2         | 20       | 1011         | 372        | 20      | 553        | 126          |
|            | $10^{-4}$                           | 19             | 2561                       | 2654                 | 17             | 917        | 418          | 10       | 890        | 70.2         | 19       | 1048         | 383        | 13      | 671        | 141          |
|            | $10^{-5}$                           | 7              | 2779                       | 2630                 | 5              | 1113       | 439          | 0        | -          | -            | 9        | 1523         | 517        | 5       | 1075       | 206          |
|            |                                     | Stoc           | F-1465                     |                      | Ge             | o_1438     |              | Sei      | rena       |              | the      | ermal2       |            | eco     | ology2     |              |
| Solver     | θ                                   | ñ              | #Ite.                      | $T_t$                | ñ              | #Ite.      | $T_t$        | ñ        | #Ite.      | $T_t$        | ñ        | #Ite.        | $T_t$      | ñ       | #Ite.      | $T_t$        |
| ICCG       |                                     | -              | 55,799                     | 4714                 | -              | 441        | 81.3         | -        | 299        | 58.1         | -        | 2261         | 141        | -       | 1902       | 51.7         |
| ES-SC-ICCG | $10^{-3}$                           | 20             | 29,693                     | 4001                 | 15             | 252        | 54.7         | 7        | 242        | 49.1         | 20       | 959          | 101        | 20      | 853        | 52.5         |
|            | $10^{-4}$                           | 20             | 29,693                     | 4011                 | 2              | 385        | 71.9         | 0        | -          | -            | 17       | 1020         | 101        | 16      | 933        | 51.5         |
|            | $10^{-5}$                           | 20             | 29,693                     | 4007                 | 0              | -          | -            | 0        | -          | -            | 4        | 1526         | 112        | 5       | 1268       | 47.8         |
| ES-D-ICCG  | $10^{-3}$                           | 20             | 29,600                     | 3990                 | 15             | 251        | 55.1         | 7        | 241        | 49.6         | 20       | 957          | 100        | 20      | 850        | 52.2         |
|            | $10^{-4}$                           | 20             | 29,600                     | 3993                 | 2              | 384        | 72.3         | 0        | -          | -            | 17       | 1019         | 101        | 16      | 930        | 51.2         |
|            | $10^{-5}$                           | 20             | 29,600                     | 4002                 | 0              | -          | -            | 0        | -          | -            | 4        | 1524         | 111        | 5       | 1267       | 47.4         |
|            |                                     | bon            | ne010                      |                      | ldoo           | r          |              | aud      | ikw_1      |              | Emi      | ilia_923     |            | bone    | eS10       |              |
| Solver     | θ                                   | ñ              | #Ite.                      | $T_t$                | ñ              | #Ite.      | $T_t$        | ñ        | #Ite.      | $T_t$        | ñ        | #Ite.        | $T_t$      | ñ       | #Ite.      | $T_t$        |
| ICCG       |                                     | -              | 4189                       | 804                  | -              | 2143       | 293          | -        | 2420       | 533          | -        | 459          | 54         | -       | 8515       | 1274         |
| ES-SC-ICCG | $10^{-3}$                           | 20             | 996                        | 225                  | 20             | 1230       | 208          | 19       | 858        | 214          | 20       | 266          | 39         | 20      | 2733       | 492          |
|            | $10^{-4}$                           | 17             | 1060                       | 234                  | 16             | 1259       | 204          | 8        | 1220       | 284          | 18       | 276          | 40         | 20      | 2733       | 494          |
|            | $10^{-5}$                           | 13             | 1288                       | 277                  | 3              | 1649       | 236          | 4        | 1604       | 364          | 5        | 371          | 46         | 20      | 2733       | 494          |
| ES-D-ICCG  | $10^{-3}$                           | 20             | 989                        | 221                  | 20             | 1227       | 206          | 19       | 861        | 214          | 20       | 267          | 40         | 20      | 2728       | 490          |
|            | $10^{-4}$                           | 17             | 1053                       | 231                  | 16             | 1256       | 203          | 8        | 1207       | 280          | 18       | 276          | 40         | 20      | 2728       | 490          |
|            | $10^{-5}$                           | 13             | 1281                       | 273                  | 3              | 1648       | 234          | 4        | 1579       | 356          | 5        | 370          | 47         | 20      | 2728       | 490          |
|            |                                     | PFle           | ow_742                     |                      | tm             | t_sym      |              | apa      | ache2      |              | Fau      | ılt_639      |            | par     | abolic_f   | em           |
| Solver     | θ                                   | ñ              | #Ite.                      | $T_t$                | ñ              | #Ite.      | $T_t$        | ñ        | #Ite.      | $T_t$        | ñ        | #Ite.        | $T_t$      | ñ       | #Ite.      | $T_t$        |
| ICCG       |                                     | -              | 32,971                     | 3311                 | -              | 1256       | 35.8         | -        | 770        | 16.8         | -        | 2172         | 176        | -       | 1208       | 20.1         |
| ES-SC-ICCG | $10^{-3}$                           | 20             | 14,148                     | 1774                 | 20             | 562        | 29.8         | 20       | 342        | 15.7         | 20       | 1601         | 162        | 18      | 835        | 27.6         |
|            | $10^{-4}$                           | 20             | 14,148                     | 1772                 | 15             | 617        | 29.5         | 12       | 445        | 16.4         | 16       | 1629         | 159        | 9       | 889        | 22.8         |
|            |                                     |                |                            |                      | 2              | 1002       | 33.0         | 2        | 653        | 16.7         | 4        | 1899         | 162        | 0       | -          | -            |
|            | $10^{-5}$                           | 20             | 14,148                     | 1769                 | 3              | 1002       | 55.7         | -        |            |              |          |              |            |         |            |              |
| ES-D-ICCG  | $10^{-5}$<br>$10^{-3}$              | 20<br>20       | 14,148<br>14,042           | 1769<br>1758         | 3<br>20        | 556        | 29.8         | 20       | 341        | 15.7         | 20       | 1595         | 163        | 18      | 833        | 27.6         |
| ES-D-ICCG  | $10^{-5}$<br>$10^{-3}$<br>$10^{-4}$ | 20<br>20<br>20 | 14,148<br>14,042<br>14,042 | 1769<br>1758<br>1758 | 20<br>15       | 556<br>614 | 29.8<br>29.5 | 20<br>12 | 341<br>444 | 15.7<br>16.4 | 20<br>16 | 1595<br>1623 | 163<br>159 | 18<br>9 | 833<br>888 | 27.6<br>22.6 |

|                                           |                                                                                      | bun                                                              | dle_adj                                                       |                                                                                                      | af_                                                   | shell8                                                                        |                                                                                                        | af_s                                          | shell4                                                                      |                                                                                                                                                | af_s                                                              | shell3                                          |                                                                                                                    | af_                                                   | shell7                                                                        |                                                                |
|-------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|
| Solver                                    | θ                                                                                    | ñ                                                                | #Ite.                                                         | T <sub>t</sub>                                                                                       | ñ                                                     | #Ite.                                                                         | T <sub>t</sub>                                                                                         | ñ                                             | #Ite.                                                                       | T <sub>t</sub>                                                                                                                                 | ñ                                                                 | #Ite.                                           | T <sub>t</sub>                                                                                                     | ñ                                                     | #Ite.                                                                         | T <sub>t</sub>                                                 |
| ICCG                                      |                                                                                      | -                                                                | 43,578                                                        | 2325                                                                                                 | -                                                     | 1038                                                                          | 51.2                                                                                                   | -                                             | 1039                                                                        | 51.7                                                                                                                                           | -                                                                 | 1039                                            | 51.1                                                                                                               | -                                                     | 1038                                                                          | 51.6                                                           |
| ES-SC-ICCG                                | $10^{-3}$                                                                            | 20                                                               | 11,997                                                        | 846                                                                                                  | 18                                                    | 510                                                                           | 32.8                                                                                                   | 18                                            | 513                                                                         | 33.5                                                                                                                                           | 18                                                                | 513                                             | 33.2                                                                                                               | 18                                                    | 510                                                                           | 33.2                                                           |
|                                           | $10^{-4}$                                                                            | 19                                                               | 11,394                                                        | 795                                                                                                  | 9                                                     | 606                                                                           | 34.9                                                                                                   | 9                                             | 602                                                                         | 34.9                                                                                                                                           | 9                                                                 | 602                                             | 34.7                                                                                                               | 9                                                     | 606                                                                           | 35.2                                                           |
|                                           | $10^{-5}$                                                                            | 19                                                               | 11,394                                                        | 795                                                                                                  | 0                                                     | -                                                                             | -                                                                                                      | 0                                             | -                                                                           | -                                                                                                                                              | 0                                                                 | -                                               | -                                                                                                                  | 0                                                     | -                                                                             | -                                                              |
| ES-D-ICCG                                 | $10^{-3}$                                                                            | 20                                                               | 10,110                                                        | 711                                                                                                  | 18                                                    | 508                                                                           | 33.0                                                                                                   | 18                                            | 511                                                                         | 33.4                                                                                                                                           | 18                                                                | 511                                             | 33.1                                                                                                               | 18                                                    | 508                                                                           | 33.1                                                           |
|                                           | $10^{-4}$                                                                            | 19                                                               | 10,030                                                        | 700                                                                                                  | 9                                                     | 605                                                                           | 34.9                                                                                                   | 9                                             | 601                                                                         | 34.9                                                                                                                                           | 9                                                                 | 601                                             | 34.7                                                                                                               | 9                                                     | 605                                                                           | 35.1                                                           |
|                                           | $10^{-5}$                                                                            | 19                                                               | 10,030                                                        | 698                                                                                                  | 0                                                     | -                                                                             | -                                                                                                      | 0                                             | -                                                                           | -                                                                                                                                              | 0                                                                 | -                                               | -                                                                                                                  | 0                                                     | -                                                                             | -                                                              |
|                                           |                                                                                      |                                                                  |                                                               |                                                                                                      |                                                       |                                                                               |                                                                                                        |                                               |                                                                             |                                                                                                                                                |                                                                   |                                                 |                                                                                                                    |                                                       |                                                                               |                                                                |
|                                           |                                                                                      | inli                                                             | ne_1                                                          |                                                                                                      | af_0                                                  | _k101                                                                         |                                                                                                        | af_4                                          | _k101                                                                       |                                                                                                                                                | af_3                                                              | _k101                                           |                                                                                                                    | af_2                                                  | _k101                                                                         |                                                                |
| Solver                                    | θ                                                                                    | inli<br>m                                                        | ne_1<br>#Ite.                                                 | $T_t$                                                                                                | af_0<br><i>m</i>                                      | _k101<br>#Ite.                                                                | T <sub>t</sub>                                                                                         | af_4<br><i>m</i>                              | _k101<br>#Ite.                                                              | $T_t$                                                                                                                                          | af_3<br><i>m</i>                                                  | _k101<br>#Ite.                                  | $T_t$                                                                                                              | af_2<br><i>m</i>                                      | _k101<br>#Ite.                                                                | T <sub>t</sub>                                                 |
| <b>Solver</b><br>ICCG                     | θ                                                                                    | inlin<br>m                                                       | ne_1<br>#Ite.<br>8464                                         | <i>T</i> <sub>t</sub><br>870                                                                         | af_0_<br><i>m</i>                                     | _k101<br>#Ite.<br>12,961                                                      | <i>T</i> <sub>t</sub> 641                                                                              | af_4<br><i>m</i>                              | _k101<br>#Ite.<br>9974                                                      | <i>T<sub>t</sub></i> 495                                                                                                                       | af_3.<br><i>m</i>                                                 | _k101<br>#Ite.<br>8501                          | <i>T<sub>t</sub></i> 420                                                                                           | af_2<br><i>m</i>                                      | _k101<br>#Ite.<br>12,970                                                      | <i>T</i> <sub>t</sub> 641                                      |
| Solver<br>ICCG<br>ES-SC-ICCG              | <i>θ</i><br>10 <sup>-3</sup>                                                         | inlin<br><i>m</i><br>-<br>20                                     | ne_1<br>#Ite.<br>8464<br>2686                                 | <i>T<sub>t</sub></i><br>870<br>324                                                                   | af_0<br><i>m̃</i><br>-<br>20                          | _ <b>k101</b><br>#Ite.<br>12,961<br>5657                                      | <i>T<sub>t</sub></i> 641 372                                                                           | af_4<br><i>m</i><br>-<br>20                   | <b>_k101</b><br><b>#Ite.</b><br>9974<br>3582                                | <i>T<sub>t</sub></i> 495 238                                                                                                                   | af_3<br><i>m̃</i><br>-<br>20                                      | <b>_k101</b><br><b>#Ite.</b><br>8501<br>2680    | <i>T<sub>t</sub></i><br>420<br>177                                                                                 | af_2<br><i>m̃</i><br>-<br>20                          | <b>k101</b><br><b>#Ite.</b><br>12,970<br>5413                                 | <i>T</i> <sub>t</sub><br>641<br>361                            |
| Solver<br>ICCG<br>ES-SC-ICCG              | heta<br>$10^{-3}$<br>$10^{-4}$                                                       | inlin<br><i>m</i><br>-<br>20<br>20                               | ne_1<br>#Ite.<br>8464<br>2686<br>2686                         | <i>T</i> <sub>t</sub><br>870<br>324<br>324                                                           | af_0_<br><i>m̃</i><br>-<br>20<br>20                   | <b>k101</b><br><b>#Ite.</b><br>12,961<br>5657<br>5657                         | <i>T<sub>t</sub></i><br>641<br>372<br>372                                                              | af_4<br><i>m</i><br>-<br>20<br>20             | <b>_k101</b><br><b>#Ite.</b><br>9974<br>3582<br>3582                        | <i>T<sub>t</sub></i><br>495<br>238<br>238                                                                                                      | af_3<br><i>m̃</i><br>-<br>20<br>20                                | <b>k101 #Ite.</b> 8501 2680 2680                | <i>T</i> <sub>t</sub><br>420<br>177<br>177                                                                         | af_2<br><i>m̃</i><br>-<br>20<br>20                    | <b>k101</b><br><b>#Ite.</b><br>12,970<br>5413<br>5413                         | <i>T</i> <sub>t</sub><br>641<br>361<br>360                     |
| Solver<br>ICCG<br>ES-SC-ICCG              | $\theta$<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-5}$                                      | inlin<br><i>m</i><br>-<br>20<br>20<br>19                         | <b>#Ite.</b> 8464 2686 2686 2686                              | <i>T<sub>t</sub></i><br>870<br>324<br>324<br>322                                                     | <b>af_0</b><br><b>m̃</b><br>-<br>20<br>20<br>20<br>20 | <b>k101</b><br><b>#Ite.</b><br>12,961<br>5657<br>5657                         | <i>T<sub>t</sub></i><br>641<br>372<br>372<br>372                                                       | af_4<br><i>m</i><br>-<br>20<br>20<br>20<br>20 | <b>k101</b><br><b>#Ite.</b><br>9974<br>3582<br>3582<br>3582                 | <i>T<sub>t</sub></i> 495 238 238 238                                                                                                           | af_3<br><i>m</i> -         20         20         20               | <b>k101 #Ite.</b> 8501 2680 2680 2680           | Tt       420       1777       1777       1777                                                                      | af_2.<br><i>m̃</i><br>-<br>20<br>20<br>20<br>20       | <b>k101</b><br><b>#Ite.</b><br>12,970<br>5413<br>5413<br>5413                 | <i>T<sub>t</sub></i><br>641<br>361<br>360<br>360               |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG | heta<br>10 <sup>-3</sup><br>10 <sup>-4</sup><br>10 <sup>-5</sup><br>10 <sup>-3</sup> | inlin<br><i>m</i><br>-<br>20<br>20<br>19<br>20                   | ne_1<br>#Ite.<br>8464<br>2686<br>2686<br>2686<br>2683         | T <sub>t</sub> 870           324           324           322           324                           | af_0_<br><i>m</i> -         20         20         20  | <b>k101</b><br><b>#Ite.</b><br>12,961<br>5657<br>5657<br>5657<br>5649         | T <sub>t</sub> 641           372           372           372           372           372           372 | af_4<br><i>m</i> - 20 20 20 20 20 20          | <b>k101</b><br><b>#Ite.</b><br>9974<br>3582<br>3582<br>3582<br>3575         | Tt           495           238           238           238           238           238                                                         | af_3.<br><i>m̃</i><br>-<br>20<br>20<br>20<br>20<br>20             | <b>k101 #Ite.</b> 8501 2680 2680 2680 2680 2676 | <b>T</b> <sub>t</sub><br>420<br>177<br>177<br>177<br>177                                                           | af_2.<br><i>m̃</i><br>-<br>20<br>20<br>20<br>20<br>20 | <b>k101</b><br><b>#Ite.</b><br>12,970<br>5413<br>5413<br>5413<br>5413         | <i>T<sub>t</sub></i><br>641<br>361<br>360<br>360<br>356        |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG | $\theta$<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-5}$<br>$10^{-3}$<br>$10^{-4}$            | inlin<br><i>m</i><br>-<br>20<br>20<br>19<br>20<br>20<br>20<br>20 | ne_1<br>#Ite.<br>8464<br>2686<br>2686<br>2686<br>2683<br>2683 | Tt           870           324           324           322           324           322           324 | af_0<br><i>m</i> -         20         20         20   | <b>k101</b><br><b>#Ite.</b><br>12,961<br>5657<br>5657<br>5657<br>5649<br>5649 | Tt           641           372           372           372           372           376           376   | af_4<br><i>m</i> - 20 20 20 20 20 20 20       | <b>k101</b><br><b>#Ite.</b><br>9974<br>3582<br>3582<br>3582<br>3575<br>3575 | Tt           495           238           238           238           238           238           238           238           238           238 | af_3.<br><i>m̃</i><br>-<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | <b>k101 #Ite.</b> 8501 2680 2680 2680 2676 2676 | Tt           420           177           177           177           177           177           177           177 | af_2<br>m - 20 20 20 20 20 20 20 20 20 20 20 20 20    | <b>k101</b><br><b>#Ite.</b><br>12,970<br>5413<br>5413<br>5413<br>5409<br>5409 | <i>T<sub>t</sub></i><br>641<br>361<br>360<br>360<br>356<br>356 |

TABLE 3 Continued





12 of 26 | WILEY



FIGURE 2 Convergence behavior of ES-SC-ICCG (dataset: Flan\_1565).



FIGURE 3 Convergence behavior of ES-D-ICCG (dataset: Flan\_1565).



**FIGURE 4** Convergence behavior of ES-SC-ICCG (dataset: Hook\_1498).

# 5 | NUMERICAL RESULTS

# 5.1 | Test conditions

We conducted numerical tests to examine the effect of convergence acceleration methods (SC and deflation) based on our algebraic auxiliary matrix generation method. For the test matrix, we downloaded 30 relatively large matrices from the SuiteSparse Matrix Collection<sup>32</sup> and applied the diagonal scaling to them. We selected s.p.d. matrices that were mainly



**FIGURE 5** Convergence behavior of ES-D-ICCG (dataset: Hook\_1498).



FIGURE 6 Speedup in the computational time of ES-SC-ICCG and ES-D-ICCG over ICCG (b: random vector).

derived from computational science or engineering problems. Table 1 shows the properties of the test matrices. For each coefficient matrix, we solved a linear system of equations six times. The convergence criterion was that the relative residual 2-norm was less than  $10^{-8}$ . When the first solution process was complete, we generated the auxiliary matrix and used it in the following five solution processes, in which we evaluated the solver performance. For the right-hand side vector, we used two types of vectors: a vector of ones and a random vector. In the former case, the linear systems used for the auxiliary matrix generation and the evaluation were identical. When we used random vectors, we solved linear systems of different right-hand side vectors. In this article, we report the results when we set the number of sampled vectors, *m*, to 20.

We conducted numerical tests on a computational node of Fujitsu CX2550 (M4) at the Information Initiative Center, Hokkaido University. The node is equipped with two Intel Xeon (Gold6148, Skylake) processors, each of which has 20 cores, and 384 GB memory. The program code was written in C and OpenMP directives were used for multi-threading. Intel C compiler version 19.1.3.304 was used with the option of "-O3 -qopenmp -ipo -xCORE-AVX512." In the tests for parallel multithreaded solvers, we used 40 threads.

# 5.2 | Numerical results for the sequential solver

# 5.2.1 | Performance evaluation

Table 2 lists the numerical results for the standard ICCG solver and its variants with the introduced convergence acceleration techniques when we used a vector of ones for the right-hand side. ES-SC-ICCG denotes the CG solver with IC and

WILEY <u>13 of</u> 26





**FIGURE 7** Comparison of the estimated and measured values of ratio of the computational time of an ES-SC-ICCG or ES-D-ICCG iteration to that of an ICCG iteration.

|            | _         | Flan_1565 |       |       | Hook_1498 |       |       |
|------------|-----------|-----------|-------|-------|-----------|-------|-------|
| Solver     | θ         | ñ         | #Ite. | $T_t$ | ñ         | #Ite. | $T_t$ |
| ES-SC-ICCG | $10^{-3}$ | 20        | 1584  | 586   | 15        | 1075  | 233   |
|            | $10^{-4}$ | 15        | 1927  | 690   | 7         | 1157  | 229   |
|            | $10^{-5}$ | 7         | 2094  | 706   | 4         | 1208  | 230   |
| ES-D-ICCG  | $10^{-3}$ | 20        | 1579  | 585   | 15        | 1072  | 232   |
|            | $10^{-4}$ | 15        | 1925  | 687   | 7         | 1156  | 229   |
|            | $10^{-5}$ | 7         | 2093  | 704   | 5         | 1207  | 229   |

**TABLE 4** Solver performance using sampling method B (sequential solver,  $\boldsymbol{b} = (1, 1, ..., 1)^{\mathsf{T}}$ ).

SC preconditioning based on the proposed error vector sampling method. ES-D-ICCG denotes the deflated ICCG solver using our technique. The table shows the average computational time (s) for five solution steps, which is denoted by  $T_t$ . Table 3 shows the results when we used random vectors for the right-hand side. The table shows the average number of iterations and computational time for five solution steps. The numerical results indicate that both solvers based on the proposed method achieved convergence acceleration for all 60 test cases (30 datasets × 2 types of right-hand side vectors). The convergence acceleration was significant for some datasets. In the numerical tests using the vector of ones, the acceleration method attained a more than three-fold speedup in convergence for 16 out of 30 datasets. Even when we used random right-hand side vectors, convergence was more than twice as fast as that of the ICCG solver for 20 out of 30 datasets, as shown in Figure 1.

Figures 2–5 show the convergence behaviors of the ES-SC-ICCG and ES-D-ICCG solvers in the second solution step for the Flan\_1565 and Hook\_1498 datasets when we used a random vector for the right-hand side. The figures also confirm the effectiveness of SC and deflation based on our technique. The numerical results imply that the larger  $\theta$  typically leads to larger  $\tilde{m}$  and better convergence. This characteristic is confirmed by the results listed in Tables 2 and 3. Figures 2–5 show that the convergence behaviors of the two solvers were identical, although each solver shifts small eigenvalues in a different way.<sup>37</sup> We examined the convergence behavior of the residual norm for all test cases and observed that the convergence properties of the two solvers were almost the same for most test cases. This result indicates that the effects of SC preconditioning and deflation are similar when the coefficient matrix is diagonally scaled and identical subspaces that correspond to eigenvectors associated with small eigenvalues are used.

Next, we examine the computational time to solution. Table 2 shows that the solution time reduced in 28 out of 30 cases in the tests using the right-hand side vector of ones. For 16 datasets, the computational time of the solvers using our technique (ES-SC-ICCG and ES-D-ICCG) reduced to less than half of that of the normal ICCG solver. The performance difference between the two solvers ES-SC-ICCG and ES-D-ICCG was marginal. In the numerical test using random vectors, the computational time also reduced in 28 out of 30 cases. Table 3 and Figure 6 show the effectiveness of our technique in the random vector test. In the tests, we did not attain performance improvement on the G3\_circuit and parabolic\_fem



FIGURE 8 Comparison of eigenvalues and Ritz values (dataset: bcsstik06, n=420, m=20).



**FIGURE 9** Absolute values of inner products,  $\|(\tilde{v}_1, v_{ir})\|, (ir = 1, ..., 420).$ 

datasets, which have relatively small  $nnz_{av}$  values. In (17),  $\gamma_{sciccg}$  enlarged when  $nnz_{av}$  decreased. This means that it becomes difficult to obtain performance improvement in the solution time using SC preconditioning and the deflation method; that is, for a dataset with a small  $nnz_{av}$  value, the convergence rate should be substantially improved by the limited number of sample vectors to achieve solver performance improvement. In the numerical test, the ES-SC-ICCG and ES-D-ICCG solvers obtained their best results for 12 out of 30 datasets when  $\tilde{m}$  was equal to m (=20). For these datasets, an increase in the number of sample vectors, m, possibly improves solver performance.

| Queen_41                                                                     | 47                                                                                   | Bump_29                                                                                | 11                                      | G3_circu                                                                                                                     | it                                                           | Flan_156                                                                      | 5                                                                                                                                      | Hook_14                                                                                                                                          | 98                                                                                |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| #Ite.                                                                        | $T_t$                                                                                | #Ite.                                                                                  | $T_t$                                   | #Ite.                                                                                                                        | $T_t$                                                        | #Ite.                                                                         | $T_t$                                                                                                                                  | #Ite.                                                                                                                                            | $T_t$                                                                             |
| 3118                                                                         | 2607                                                                                 | 1534                                                                                   | 532                                     | 879                                                                                                                          | 47.7                                                         | 3112                                                                          | 923                                                                                                                                    | 1599                                                                                                                                             | 271                                                                               |
| StocF-146                                                                    | 5                                                                                    | Geo_143                                                                                | 8                                       | Serena                                                                                                                       |                                                              | therma                                                                        | 12                                                                                                                                     | ecology                                                                                                                                          | 2                                                                                 |
| #Ite.                                                                        | $T_t$                                                                                | #Ite.                                                                                  | T <sub>t</sub>                          | #Ite.                                                                                                                        | $T_t$                                                        | #Ite.                                                                         | T <sub>t</sub>                                                                                                                         | #Ite.                                                                                                                                            | $T_t$                                                                             |
| 56,175                                                                       | 4759                                                                                 | 2083                                                                                   | 150                                     | 282                                                                                                                          | 50.2                                                         | 2263                                                                          | 141                                                                                                                                    | 2148                                                                                                                                             | 110                                                                               |
| bone010                                                                      |                                                                                      | ldoor                                                                                  |                                         | audikw_1                                                                                                                     |                                                              | Emilia_92                                                                     | 3                                                                                                                                      | boneS10                                                                                                                                          |                                                                                   |
| #Ite.                                                                        | T <sub>t</sub>                                                                       | #Ite.                                                                                  | $T_t$                                   | #Ite.                                                                                                                        | T <sub>t</sub>                                               | #Ite.                                                                         | T <sub>t</sub>                                                                                                                         | #Ite.                                                                                                                                            | $T_t$                                                                             |
| 6277                                                                         | 1254                                                                                 | 2141                                                                                   | 306                                     | 2369                                                                                                                         | 486                                                          | 453                                                                           | 55.9                                                                                                                                   | 9993                                                                                                                                             | 1574                                                                              |
| DElow 74                                                                     | _                                                                                    |                                                                                        |                                         |                                                                                                                              |                                                              |                                                                               |                                                                                                                                        |                                                                                                                                                  | _                                                                                 |
| PF10W_/4                                                                     | 2                                                                                    | tmt_sym                                                                                | 1                                       | apache2                                                                                                                      |                                                              | Fault_63                                                                      | 9                                                                                                                                      | parabolic                                                                                                                                        | _fem                                                                              |
| #Ite.                                                                        | $\frac{2}{T_t}$                                                                      | tmt_sym<br>#Ite.                                                                       | $T_t$                                   | apache2<br>#Ite.                                                                                                             | T <sub>t</sub>                                               | Fault_63<br>#Ite.                                                             | $\frac{9}{T_t}$                                                                                                                        | parabolic<br>#Ite.                                                                                                                               | _fem $T_t$                                                                        |
| #Ite.<br>33,064                                                              | 2<br><i>T<sub>t</sub></i><br>3161                                                    | <b>tmt_sym</b><br><b>#Ite.</b><br>1447                                                 | T <sub>t</sub><br>64.4                  | <b>apache2</b><br><b>#Ite.</b><br>781                                                                                        | <b>T</b> <sub>t</sub><br>20.9                                | Fault_63 #Ite. 2168                                                           | 9<br><i>T<sub>t</sub></i><br>171                                                                                                       | <b>parabolic</b><br><b>#Ite.</b><br>1161                                                                                                         | _fem<br><i>T<sub>t</sub></i><br>24.0                                              |
| #Ite.<br>33,064<br>bundle_ad                                                 | 2<br><i>T<sub>t</sub></i><br>3161<br>dj                                              |                                                                                        | T <sub>t</sub><br>64.4                  | apache2<br>#Ite.<br>781<br>af_shell4                                                                                         | <i>T<sub>t</sub></i> 20.9                                    | Fault_63<br>#Ite.<br>2168<br>af_shell3                                        | 9<br><i>T<sub>t</sub></i><br>171<br>8                                                                                                  | #Ite.<br>1161<br>af_shell7                                                                                                                       | _fem<br><i>T<sub>t</sub></i><br>24.0                                              |
| #Ite.<br>33,064<br>bundle_ad<br>#Ite.                                        | 2<br>T <sub>t</sub><br>3161<br>dj<br>T <sub>t</sub>                                  |                                                                                        | $ \frac{T_t}{64.4} $ $ \frac{T_t}{T_t}$ | apache2<br>#Ite.<br>781<br>af_shell4<br>#Ite.                                                                                | T <sub>t</sub> 20.9           T <sub>t</sub>                 | Fault_63 #Ite. 2168 af_shell3 #Ite.                                           | $\frac{9}{T_t}$ $\frac{171}{3}$ $T_t$                                                                                                  | parabolic<br>#Ite.<br>1161<br>                                                                                                                   | _fem<br><i>T<sub>t</sub></i><br>24.0<br><i>T<sub>t</sub></i>                      |
| #Ite.<br>33,064<br>bundle_ad<br>#Ite.<br>48,942                              | 2<br><i>T<sub>t</sub></i><br>3161<br>dj<br><i>T<sub>t</sub></i><br>2805              |                                                                                        | $T_t$ 64.4 $T_t$ 52.2                   | apache2<br>#Ite.<br>781<br>af_shell4<br>#Ite.<br>1064                                                                        | T <sub>t</sub> 20.9           T <sub>t</sub> 56.7            | Fault_63<br>#Ite.<br>2168<br>af_shell3<br>#Ite.<br>1064                       | $     \begin{array}{c}         9 \\         T_t \\         171 \\         3 \\         T_t \\         67.3 \\         \hline         $ | parabolic           #Ite.           1161           af_shell7           #Ite.           1066                                                      | _fem<br><i>T<sub>t</sub></i><br>24.0<br><i>T<sub>t</sub></i><br>52.0              |
| #Ite.<br>33,064<br>bundle_ad<br>#Ite.<br>48,942<br>inline_1                  | 2<br>T <sub>t</sub><br>3161<br>dj<br>T <sub>t</sub><br>2805                          | tmt_sym<br>#Ite.<br>1447<br>af_shell8<br>#Ite.<br>1066<br>af_0_k101                    | $T_t$ 64.4 $T_t$ 52.2                   | apache2<br>#Ite.<br>781<br>af_shell4<br>#Ite.<br>1064<br>af_4_k10:                                                           | <i>T<sub>t</sub></i><br>20.9<br><i>T<sub>t</sub></i><br>56.7 | Fault_63<br>#Ite.<br>2168<br>af_shell3<br>#Ite.<br>1064<br>af_3_k103          | $\begin{array}{c} 9 \\ \hline T_t \\ 171 \\ 3 \\ \hline T_t \\ 67.3 \\ 1 \end{array}$                                                  | parabolic           #Ite.           1161           af_shell7           #Ite.           1066           af_2_k101                                  | fem<br>T <sub>t</sub><br>24.0<br>T <sub>t</sub><br>52.0                           |
| #Ite.<br>33,064<br>bundle_ad<br>#Ite.<br>48,942<br>inline_1<br>#Ite.         | $\frac{2}{T_t}$ $\frac{3161}{T_t}$ $\frac{1}{2805}$ $\frac{1}{T_t}$                  | tmt_sym<br>#Ite.<br>1447<br>af_shell8<br>#Ite.<br>1066<br>af_0_k101<br>#Ite.           | $T_t$ 64.4 $T_t$ 52.2 $T_t$             | apache2           #Ite.           781           af_shell4           #Ite.           1064           af_4_k100           #Ite. | $T_t$ 20.9 $T_t$ 56.7 $T_t$                                  | Fault_63<br>#Ite.<br>2168<br>af_shell3<br>#Ite.<br>1064<br>af_3_k101<br>#Ite. | $\begin{array}{c} 9 \\ \hline T_t \\ 171 \\ 3 \\ \hline T_t \\ 67.3 \\ 1 \\ \hline T_t \\ \end{array}$                                 | parabolic           #Ite.           1161           af_shell7           #Ite.           1066           af_2_k101           #Ite.                  | fem<br>T <sub>t</sub><br>24.0<br>T <sub>t</sub><br>52.0<br>T <sub>t</sub>         |
| #Ite.<br>33,064<br>bundle_ad<br>#Ite.<br>48,942<br>inline_1<br>#Ite.<br>8474 | 2<br>T <sub>t</sub><br>3161<br>dj<br>T <sub>t</sub><br>2805<br>T <sub>t</sub><br>817 | tmt_sym<br>#Ite.<br>1447<br>af_shell&<br>#Ite.<br>1066<br>af_0_k101<br>#Ite.<br>13,540 | $T_t$ 64.4 $T_t$ 52.2 $T_t$ 678         | apache2<br>#Ite.<br>781<br>af_shell4<br>#Ite.<br>1064<br>af_4_k10<br>#Ite.<br>9976                                           | $T_t$ 20.9 $T_t$ 56.7 $T_t$ 472                              | Fault_63 #Ite. 2168 af_shell3 #Ite. 1064 af_3_k103 #Ite. 8498                 | $\begin{array}{c} 9 \\ \hline T_t \\ 171 \\ 3 \\ \hline T_t \\ 67.3 \\ 1 \\ \hline T_t \\ 429 \\ \end{array}$                          | parabolic           #Ite.           1161           af_shell7           #Ite.           1066           af_2_k101           #Ite.           13,077 | _fem<br>T <sub>t</sub><br>24.0<br>T <sub>t</sub><br>52.0<br>T <sub>t</sub><br>619 |

TABLE 5 Numerical results of deflated CG solver in Reference 18.

16 of 26

WILEY

# 5.2.2 | Verification of the model for computational time per iteration

The application of SC or deflation typically leads to an increase in the computational cost per iteration. In this section, we examine the performance model for the iteration cost introduced in Section 4.4. In Figure 7, we plot the measured and estimated values for the ratio of the computational time of an ES-SC-ICCG or ES-D-ICCG iteration to that of an ICCG iteration. The estimated values for the two solvers are given in (17). Figure 7 shows the results for all test cases, although we plot only one mark for identical  $\tilde{m}$ . For most test cases, Equation (17) obtained a good estimation of the ratio, and the error of the estimation was within  $\pm 5\%$ . Consequently, (17) can be used for the estimation of the additional cost for SC or deflation. However, in some test cases, particularly when the measured value was over 2.0, we observed a relatively large estimation error. These results arose for the G3\_circuit, ecology2, and apache2 datasets. The coefficient matrices of these datasets commonly had a small number of nonzero elements per row ( $nnz_{av}$ ) and a relatively structured nonzero element pattern; that is, these matrices were derived from relatively simple problems and (15) tended to overestimate the ratio for such problems. Moreover, (17) implies that the influence of the additional cost of the convergence acceleration method on the computational time per iteration tends to enlarge when  $nnz_{av}$  is small. Accordingly, we recommend that the number of sampling vectors *m* (the upper bound of  $\tilde{m}$ ) should be small for a problem with small  $nnz_{av}$ .

# 5.2.3 | Discussions (other factors that affect solver performance)

## Sampling method

In preliminary analyses, we compared two sampling methods: A and B. Table 4 shows the results of the solver using sampling method B on Flan\_1565 and Hook\_1498. In the comparison of Tables 2 and 4, sampling method A obtained better convergence acceleration than method B. Because we observed this tendency for other test datasets, we decided to mainly use sampling method A in our numerical tests. Moreover, the numerical test implied that the additional sampling

|            |           | Que  | en_4147 |                | Bum  | p_2911 |                | G3_0 | rcuit |                | Flan | _1565    |                | Hook | _1498     |                |
|------------|-----------|------|---------|----------------|------|--------|----------------|------|-------|----------------|------|----------|----------------|------|-----------|----------------|
| Solver     | θ         | ñ    | #Ite.   | T <sub>t</sub> | ñ    | #Ite.  | T <sub>t</sub> | ñ    | #Ite. | T <sub>t</sub> | ñ    | #Ite.    | T <sub>t</sub> | ñ    | #Ite.     | T <sub>t</sub> |
| ICCG       |           | -    | 4663    | 215            | -    | 3455   | 73.4           | -    | 1461  | 5.40           | -    | 4911     | 86.6           | -    | 2312      | 23.4           |
| ES-SC-ICCG | $10^{-3}$ | 20   | 1532    | 89             | 20   | 1062   | 30.8           | 20   | 468   | 3.81           | 20   | 1504     | 31.3           | 19.0 | 808       | 11.6           |
|            | $10^{-4}$ | 20   | 1532    | 88             | 17   | 1814   | 51.1           | 13   | 1067  | 7.22           | 18   | 1777     | 37.3           | 13.0 | 1036      | 13.9           |
|            | $10^{-5}$ | 6    | 4258    | 218            | 2    | 2977   | 68.1           | 2    | 1392  | 5.67           | 9    | 2415     | 47.2           | 5.0  | 1562      | 18.8           |
| ES-D-ICCG  | $10^{-3}$ | 20   | 1530    | 91             | 20   | 1062   | 31.3           | 20   | 468   | 3.90           | 20   | 1502     | 33.0           | 19.0 | 807       | 12.1           |
|            | $10^{-4}$ | 20   | 1530    | 93             | 17   | 1811   | 51.4           | 13   | 1066  | 7.08           | 18   | 1776     | 38.2           | 13.0 | 1035      | 14.3           |
|            | $10^{-5}$ | 6    | 4252    | 216            | 2    | 2977   | 68.7           | 2    | 1392  | 5.73           | 9    | 2409     | 46.6           | 5.0  | 1561      | 18.9           |
|            |           | Stoc | F-1465  |                | Ge   | o_1438 |                | Sei  | ena   |                | the  | ermal2   |                | ecol | ogy2      |                |
| Solver     | θ         | ñ    | #Ite.   | $T_t$          | ñ    | #Ite.  | $T_t$          | ñ    | #Ite. | $T_t$          | ñ    | #Ite.    | $T_t$          | ñ    | #Ite.     | $T_t$          |
| ICCG       |           | -    | 66,348  | 329            | -    | 904    | 9.62           | -    | 628   | 6.77           | -    | 3583     | 12.0           | -    | 2131      | 3.29           |
| ES-SC-ICCG | $10^{-3}$ | 20   | 16,453  | 157            | 14   | 549    | 7.26           | 8    | 546   | 6.36           | 20   | 1128     | 8.1            | 20   | 885       | 4.40           |
|            | $10^{-4}$ | 20   | 16,453  | 154            | 2    | 779    | 8.24           | 0    | -     | -              | 17   | 1555     | 10.7           | 15   | 1039      | 4.19           |
|            | $10^{-5}$ | 20   | 16,453  | 157            | 0    | -      | -              | 0    | -     | -              | 4    | 2506     | 10.4           | 4    | 1656      | 3.95           |
| ES-D-ICCG  | $10^{-3}$ | 20   | 16,452  | 148            | 14   | 548    | 7.27           | 8    | 545   | 6.39           | 20   | 1126     | 8.0            | 20   | 882       | 4.38           |
|            | $10^{-4}$ | 20   | 16,452  | 147            | 2    | 778    | 8.40           | 0    | -     | -              | 17   | 1554     | 10.2           | 15   | 1037      | 4.33           |
|            | $10^{-5}$ | 20   | 16,452  | 150            | 0    | -      | -              | 0    | -     | -              | 4    | 2504     | 10.8           | 4    | 1654      | 4.05           |
|            |           | bone | e010    |                | ldoo | or     |                | aud  | ikw_1 |                | Em   | ilia_923 |                | bone | eS10      |                |
| Solver     | θ         | ñ    | #Ite.   | T <sub>t</sub> | ñ    | #Ite.  | $T_t$          | ñ    | #Ite. | $T_t$          | ñ    | #Ite.    | $T_t$          | ñ    | #Ite.     | $T_t$          |
| ICCG       |           | -    | 7838    | 76.9           | -    | 5227   | 38.0           | -    | 2635  | 30.0           | -    | 6542     | 42.1           | -    | 14,690    | 119            |
| ES-SC-ICCG | $10^{-3}$ | 20   | 2141    | 29.6           | 20   | 1503   | 14.8           | 20   | 816   | 11.4           | 20   | 1893     | 17.3           | 20   | 5166      | 55             |
|            | $10^{-4}$ | 18   | 2207    | 28.6           | 18   | 2199   | 20.7           | 7    | 1549  | 19.1           | 19   | 2991     | 27.5           | 20   | 5164      | 56             |
|            | $10^{-5}$ | 12   | 2925    | 35.7           | 3    | 4040   | 29.6           | 3    | 1798  | 21.2           | 7    | 4829     | 36.0           | 19   | 5446      | 58             |
| ES-D-ICCG  | $10^{-3}$ | 20   | 2138    | 28.9           | 20   | 1504   | 14.8           | 20   | 813   | 11.6           | 20   | 1895     | 17.8           | 20   | 5162      | 57             |
|            | $10^{-4}$ | 18   | 2203    | 28.9           | 18   | 2196   | 20.9           | 7    | 1545  | 19.3           | 19   | 2989     | 29.1           | 20   | 5161      | 56             |
|            | $10^{-5}$ | 12   | 2921    | 36.3           | 3    | 4036   | 30.8           | 3    | 1796  | 21.9           | 7    | 4823     | 37.1           | 19   | 5446      | 59             |
|            |           | PFlo | w_742   |                | tm   | t_sym  |                | apa  | ache2 |                | Fa   | ult_639  |                | para | abolic_fe | em             |
| Solver     | θ         | ñ    | #Ite.   | $T_t$          | ñ    | #Ite.  | $T_t$          | ñ    | #Ite. | $T_t$          | ñ    | #Ite.    | $T_t$          | ñ    | #Ite.     | $T_t$          |
| ICCG       |           | -    | 37,485  | 214            | -    | 1576   | 2.26           | -    | 1056  | 1.31           | -    | 5083     | 26.2           | -    | 2125      | 1.58           |
| ES-SC-ICCG | $10^{-3}$ | 20   | 11,633  | 95             | 20   | 638    | 2.40           | 19   | 408   | 1.51           | 20   | 1496     | 9.6            | 19   | 1419      | 3.50           |
|            | $10^{-4}$ | 20   | 11,633  | 95             | 14   | 777    | 2.33           | 12   | 494   | 1.27           | 18   | 3075     | 19.4           | 8    | 1326      | 1.89           |
|            | $10^{-5}$ | 20   | 11,633  | 99             | 3    | 1259   | 2.09           | 3    | 816   | 1.31           | 2    | 4735     | 22.6           | 0    | -         | -              |
| ES-D-ICCG  | $10^{-3}$ | 20   | 11,617  | 100            | 20   | 636    | 2.44           | 19   | 408   | 1.53           | 20   | 1495     | 9.6            | 19   | 1417      | 4.03           |
|            | $10^{-4}$ | 20   | 11,617  | 97             | 14   | 776    | 2.35           | 12   | 494   | 1.39           | 18   | 3074     | 18.8           | 8    | 1325      | 2.27           |
|            | $10^{-5}$ | 20   | 11,617  | 102            | 3    | 1257   | 2.30           | 3    | 815   | 1.43           | 2    | 4739     | 22.2           | 0    | -         | -              |

**TABLE 6** Numerical results (parallel solver,  $\boldsymbol{b} = (1, 1, ..., 1)^{\mathsf{T}}$ ).

| Т | A | B | L | Ε | 6 | Continue | d |
|---|---|---|---|---|---|----------|---|
|   |   |   |   |   |   |          |   |

|            |           | bui  | ndle_adj |       | _af_ | _shell8 |       | _af_ | shell4 |       | _af_ | shell3 |       | af_   | shell7 |       |
|------------|-----------|------|----------|-------|------|---------|-------|------|--------|-------|------|--------|-------|-------|--------|-------|
| Solver     | θ         | ñ    | #Ite.    | $T_t$ | ñ    | #Ite.   | $T_t$ | ñ    | #Ite.  | $T_t$ | ñ    | #Ite.  | $T_t$ | ñ     | #Ite.  | $T_t$ |
| ICCG       |           | -    | 64,356   | 797   | -    | 1575    | 5.13  | -    | 1575   | 5.31  | -    | 1575   | 5.07  | -     | 1575   | 4.91  |
| ES-SC-ICCG | $10^{-3}$ | 20   | 14,407   | 208   | 20   | 537     | 2.58  | 20   | 539    | 2.59  | 20   | 539    | 2.62  | 20    | 537    | 2.56  |
|            | $10^{-4}$ | 20   | 14,407   | 207   | 11   | 764     | 3.08  | 11   | 764    | 3.10  | 11   | 764    | 3.17  | 11    | 764    | 3.07  |
|            | $10^{-5}$ | 19   | 14,104   | 200   | 0    | -       | -     | 0    | -      | -     | 0    | -      | -     | 0     | -      | -     |
| ES-D-ICCG  | $10^{-3}$ | 20   | 13,547   | 196   | 20   | 537     | 2.64  | 20   | 537    | 2.76  | 20   | 537    | 2.65  | 20    | 537    | 2.59  |
|            | $10^{-4}$ | 20   | 13,547   | 196   | 11   | 764     | 3.25  | 11   | 763    | 3.33  | 11   | 763    | 3.24  | 11    | 764    | 3.20  |
|            | $10^{-5}$ | 19   | 13,611   | 194   | 0    | -       | -     | 0    | -      | -     | 0    | -      | -     | 0     | -      | -     |
|            |           | inli | ne_1     |       | af_0 | _k101   |       | af_4 | _k101  |       | af_3 | _k101  |       | _af_2 | 2_k101 |       |
| Solver     | θ         | ñ    | #Ite.    | $T_t$ | ñ    | #Ite.   | $T_t$ | ñ    | #Ite.  | $T_t$ | ñ    | #Ite.  | $T_t$ | ñ     | #Ite.  | $T_t$ |
| ICCG       |           | -    | 23,064   | 115   | -    | 16,157  | 48.6  | -    | 12,458 | 45.5  | -    | 10,595 | 34.9  | -     | 16,249 | 57.6  |
| ES-SC-ICCG | $10^{-3}$ | 20   | 6393     | 44    | 20   | 5026    | 24.7  | 20   | 4230   | 20.7  | 20   | 3567   | 17.1  | 20    | 4924   | 24.6  |
|            | $10^{-4}$ | 20   | 6393     | 43    | 20   | 5026    | 23.9  | 20   | 4230   | 19.7  | 20   | 3567   | 16.9  | 20    | 4924   | 23.7  |
|            | $10^{-5}$ | 18   | 8969     | 60    | 20   | 5026    | 24.1  | 20   | 4230   | 19.5  | 20   | 3567   | 16.8  | 20    | 4924   | 22.8  |
| ES-D-ICCG  | $10^{-3}$ | 20   | 6390     | 46    | 20   | 5018    | 24.8  | 20   | 4237   | 21.6  | 20   | 3574   | 18.0  | 20    | 4920   | 24.9  |
|            | $10^{-4}$ | 20   | 6390     | 46    | 20   | 5018    | 24.7  | 20   | 4237   | 20.8  | 20   | 3574   | 17.6  | 20    | 4920   | 24.5  |
|            | $10^{-5}$ | 18   | 8964     | 62    | 20   | 5018    | 25.2  | 20   | 4237   | 20.4  | 20   | 3574   | 17.5  | 20    | 4920   | 24.4  |

of the approximation vector when the residual norm increased or stagnated was effective for the improvement of the convergence acceleration effect. Because it is not straightforward to mathematically interpret the phenomenon, we intend to investigate the behavior of the error in the solution process in future work based on numerical tests.

## Sampling of residual vectors

In this article, we consider the sampling of a relatively small number of vectors because it is practically important to save additional memory space and computational cost. Considering other related techniques, the sampling of residual vectors might be of interest. We have an intuitive perspective on the comparison of the sampling of error vectors and residual vectors. Because  $Ae_s = r_s$  holds, the components along eigenvectors corresponding small eigenvalues involved in  $e_s$  are numerically reduced in  $r_s$  by the multiplication of A, where  $e_s$  and  $r_s$  are the sampled error and residual vectors, respectively. Consequently, we expect that error vector sampling will be superior to residual vector sampling to capture (approximate) eigenvectors that correspond to small eigenvalues, which will lead to a better preconditioning effect for convergence. To verify our perspective, we conducted additional numerical tests of the solver using residual vector sampling. In the numerical test on Flan\_1565 and Hook\_1498, the results demonstrated that we could not obtain a small Ritz value less than  $10^{-1}$  and the convergence acceleration of SC and deflation did not work well. The numerical results imply that error vector sampling outperforms residual vector sampling to construct an effective mapping operator for subspaces used in the convergence acceleration techniques.

### Verification of the Ritz vector

In this section, we attempt to examine the property of the Ritz vector calculated by our technique using a small dataset (bccstk06: a 420 × 420 matrix). Figure 8 shows the eigenvalue distribution of the coefficient matrix and the Ritz values obtained by our method applied to a non-preconditioned CG solver. We confirmed that some small eigenvalues, including the smallest eigenvalue, were well approximated by the obtained Ritz values. Moreover, we checked the orthogonality of the normalized Ritz vector that corresponds to the smallest Ritz value,  $\tilde{\nu}_1$ , to the normalized eigenvectors of *A* denoted by  $\nu_{ir}$ , (*ir* = 1, ..., 420), where *ir* represents the index of eigenvalues in ascending order. Figure 9 shows the absolute value of the inner product ( $\nu_r$ ,  $\nu_{ir}$ ). The magnitude of  $|(\tilde{\nu}_1, \nu_1)|$  is close to 1 and substantially larger than those of other inner products, most of which are less than  $10^{-3}$ .

|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                 | Que                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | en_4147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                       | Bum                                                                                                                                                                                                                                                            | p_2911                                                                                                                                                        |                                                                                                                                                                                   | G3_c                                                                             | rcuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                        | Flan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _1565                                                                                                                                                                                       |                                                                                                                                                                    | Hook                                                                                                                                                                                                                                                                                                | <b>1498</b>                                                                                                                                      |                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solver                                                                                                                                                                                          | θ                                                                                                                                                                                                                                                                               | ñ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #Ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_t$                                                                                                                                                                                 | ñ                                                                                                                                                                                                                                                              | #Ite.                                                                                                                                                         | $T_t$                                                                                                                                                                             | ñ                                                                                | #Ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_t$                                                                                                                                                                                                                                  | ñ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #Ite.                                                                                                                                                                                       | $T_t$                                                                                                                                                              | ñ                                                                                                                                                                                                                                                                                                   | #Ite.                                                                                                                                            | $T_t$                                                                                                                                                             |
| ICCG                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 215                                                                                                                                                                                   | -                                                                                                                                                                                                                                                              | 3437                                                                                                                                                          | 73.9                                                                                                                                                                              | -                                                                                | 1455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.27                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4906                                                                                                                                                                                        | 83.6                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                   | 2309                                                                                                                                             | 24.3                                                                                                                                                              |
| ES-SC-ICCG                                                                                                                                                                                      | $10^{-3}$                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 217                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                             | 1844                                                                                                                                                          | 53.9                                                                                                                                                                              | 20                                                                               | 1157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.54                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1684                                                                                                                                                                                        | 36.8                                                                                                                                                               | 19.0                                                                                                                                                                                                                                                                                                | 858                                                                                                                                              | 12.7                                                                                                                                                              |
|                                                                                                                                                                                                 | $10^{-4}$                                                                                                                                                                                                                                                                       | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 217                                                                                                                                                                                   | 17                                                                                                                                                                                                                                                             | 1929                                                                                                                                                          | 54.6                                                                                                                                                                              | 13                                                                               | 1203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.15                                                                                                                                                                                                                                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1768                                                                                                                                                                                        | 37.8                                                                                                                                                               | 13.0                                                                                                                                                                                                                                                                                                | 1027                                                                                                                                             | 13.6                                                                                                                                                              |
|                                                                                                                                                                                                 | $10^{-5}$                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 212                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                              | 2967                                                                                                                                                          | 67.8                                                                                                                                                                              | 2                                                                                | 1388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.74                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2411                                                                                                                                                                                        | 47.3                                                                                                                                                               | 5.0                                                                                                                                                                                                                                                                                                 | 1557                                                                                                                                             | 18.3                                                                                                                                                              |
| ES-D-ICCG                                                                                                                                                                                       | $10^{-3}$                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 220                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                             | 1842                                                                                                                                                          | 53.5                                                                                                                                                                              | 20                                                                               | 1159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.71                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1684                                                                                                                                                                                        | 37.7                                                                                                                                                               | 19                                                                                                                                                                                                                                                                                                  | 857                                                                                                                                              | 12.4                                                                                                                                                              |
|                                                                                                                                                                                                 | $10^{-4}$                                                                                                                                                                                                                                                                       | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 218                                                                                                                                                                                   | 17                                                                                                                                                                                                                                                             | 1927                                                                                                                                                          | 53.8                                                                                                                                                                              | 13                                                                               | 1202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.24                                                                                                                                                                                                                                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1766                                                                                                                                                                                        | 38.5                                                                                                                                                               | 13                                                                                                                                                                                                                                                                                                  | 1026                                                                                                                                             | 13.9                                                                                                                                                              |
|                                                                                                                                                                                                 | $10^{-5}$                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 212                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                              | 2964                                                                                                                                                          | 67.0                                                                                                                                                                              | 2                                                                                | 1388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.94                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2410                                                                                                                                                                                        | 48.2                                                                                                                                                               | 5.0                                                                                                                                                                                                                                                                                                 | 1556                                                                                                                                             | 18.6                                                                                                                                                              |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                 | Stoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F-1465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                       | Geo                                                                                                                                                                                                                                                            | 0_1438                                                                                                                                                        |                                                                                                                                                                                   | Ser                                                                              | ena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                        | the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rmal2                                                                                                                                                                                       |                                                                                                                                                                    | ecol                                                                                                                                                                                                                                                                                                | logy2                                                                                                                                            |                                                                                                                                                                   |
| Solver                                                                                                                                                                                          | θ                                                                                                                                                                                                                                                                               | ñ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #Ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_t$                                                                                                                                                                                 | ñ                                                                                                                                                                                                                                                              | #Ite.                                                                                                                                                         | $T_t$                                                                                                                                                                             | ñ                                                                                | #Ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_t$                                                                                                                                                                                                                                  | ñ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #Ite.                                                                                                                                                                                       | $T_t$                                                                                                                                                              | ñ                                                                                                                                                                                                                                                                                                   | #Ite.                                                                                                                                            | T <sub>t</sub>                                                                                                                                                    |
| ICCG                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51,167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 258                                                                                                                                                                                   | -                                                                                                                                                                                                                                                              | 901                                                                                                                                                           | 9.37                                                                                                                                                                              | 20                                                                               | 625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.49                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3569                                                                                                                                                                                        | 12.5                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                   | 2225                                                                                                                                             | 3.48                                                                                                                                                              |
| ES-SC-ICCG                                                                                                                                                                                      | $10^{-3}$                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37,038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 341                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                             | 548                                                                                                                                                           | 7.26                                                                                                                                                                              | 8                                                                                | 546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.53                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1343                                                                                                                                                                                        | 9.4                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                  | 937                                                                                                                                              | 4.67                                                                                                                                                              |
|                                                                                                                                                                                                 | $10^{-4}$                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37,038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 341                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                              | 774                                                                                                                                                           | 8.49                                                                                                                                                                              | 0                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                      | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1597                                                                                                                                                                                        | 10.4                                                                                                                                                               | 17                                                                                                                                                                                                                                                                                                  | 1045                                                                                                                                             | 4.74                                                                                                                                                              |
|                                                                                                                                                                                                 | $10^{-5}$                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37,038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 342                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                              | -                                                                                                                                                             | -                                                                                                                                                                                 | 0                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2466                                                                                                                                                                                        | 10.6                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                   | 1471                                                                                                                                             | 3.69                                                                                                                                                              |
| ES-D-ICCG                                                                                                                                                                                       | $10^{-3}$                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37,036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 342                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                             | 547                                                                                                                                                           | 7.22                                                                                                                                                                              | 8                                                                                | 545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.69                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1342                                                                                                                                                                                        | 9.1                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                  | 935                                                                                                                                              | 4.55                                                                                                                                                              |
|                                                                                                                                                                                                 | $10^{-4}$                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37,036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 340                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                              | 773                                                                                                                                                           | 8.57                                                                                                                                                                              | 0                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                      | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1596                                                                                                                                                                                        | 10.2                                                                                                                                                               | 17                                                                                                                                                                                                                                                                                                  | 1044                                                                                                                                             | 4.64                                                                                                                                                              |
|                                                                                                                                                                                                 | $10^{-5}$                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37,036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 337                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                              | -                                                                                                                                                             | -                                                                                                                                                                                 | 0                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2465                                                                                                                                                                                        | 10.8                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                   | 1469                                                                                                                                             | 3.99                                                                                                                                                              |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                                                                                                   |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                  |                                                                                                                                                                   |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                 | bone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                       | ldoo                                                                                                                                                                                                                                                           | r                                                                                                                                                             |                                                                                                                                                                                   | audi                                                                             | ikw_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                        | Emi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lia_923                                                                                                                                                                                     |                                                                                                                                                                    | bone                                                                                                                                                                                                                                                                                                | s10                                                                                                                                              |                                                                                                                                                                   |
| Solver                                                                                                                                                                                          | θ                                                                                                                                                                                                                                                                               | bone<br><i>m</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e010<br>#Ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T <sub>t</sub>                                                                                                                                                                        | ldoo<br><i>m</i>                                                                                                                                                                                                                                               | or<br>#Ite.                                                                                                                                                   | T <sub>t</sub>                                                                                                                                                                    | audi<br><i>m</i>                                                                 | ikw_1<br>#Ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T <sub>t</sub>                                                                                                                                                                                                                         | Emi<br>ñ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ilia_923<br>#Ite.                                                                                                                                                                           | T <sub>t</sub>                                                                                                                                                     | bone<br><i>m̃</i>                                                                                                                                                                                                                                                                                   | eS10<br>#Ite.                                                                                                                                    | T <sub>t</sub>                                                                                                                                                    |
| <b>Solver</b><br>ICCG                                                                                                                                                                           | θ                                                                                                                                                                                                                                                                               | bone<br>ñ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>#Ite.</b><br>8190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>T<sub>t</sub></i> 84.1                                                                                                                                                             | ldoo<br><i>m̃</i>                                                                                                                                                                                                                                              | <b>#Ite.</b><br>5198                                                                                                                                          | <i>T<sub>t</sub></i> 36.2                                                                                                                                                         | audi<br><i>m</i>                                                                 | <b>ikw_1</b><br><b>#Ite.</b><br>2633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>T<sub>t</sub></i> 30.2                                                                                                                                                                                                              | Emi<br><i>m̃</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>ilia_923</b><br><b>#Ite.</b><br>6507                                                                                                                                                     | <i>T<sub>t</sub></i> 43.0                                                                                                                                          | bone<br><i>m</i>                                                                                                                                                                                                                                                                                    | <b>#Ite.</b><br>14,637                                                                                                                           | <i>T<sub>t</sub></i> 119                                                                                                                                          |
| Solver<br>ICCG<br>ES-SC-ICCG                                                                                                                                                                    | $	heta$ $10^{-3}$                                                                                                                                                                                                                                                               | <b>bond</b><br><i>m</i> 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>#Ite.</b><br>8190<br>2077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>T<sub>t</sub></i><br>84.1<br>28.3                                                                                                                                                  | 1doo<br><i>m</i><br>-<br>20                                                                                                                                                                                                                                    | <b>#Ite.</b><br>5198<br>2222                                                                                                                                  | <i>T<sub>t</sub></i><br>36.2<br>22.0                                                                                                                                              | audi<br><i>m</i><br>-<br>20                                                      | <b>ikw_1</b><br><b>#Ite.</b><br>2633<br>1031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>T<sub>t</sub></i><br>30.2<br>14.5                                                                                                                                                                                                   | Emi<br><i>m</i><br>-<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>#Ite.</b><br>6507<br>3989                                                                                                                                                                | <i>T<sub>t</sub></i> 43.0 35.4                                                                                                                                     | <b>bone</b><br><i>m</i><br>-<br>20                                                                                                                                                                                                                                                                  | <b>*S10</b><br><b>#Ite.</b><br>14,637<br>5422                                                                                                    | <i>T<sub>t</sub></i><br>119<br>60                                                                                                                                 |
| Solver<br>ICCG<br>ES-SC-ICCG                                                                                                                                                                    | heta<br>$10^{-3}$<br>$10^{-4}$                                                                                                                                                                                                                                                  | <b>bond</b><br><i>m</i><br>20<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>*11e.</b><br>8190<br>2077<br>2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>T<sub>t</sub></i><br>84.1<br>28.3<br>28.0                                                                                                                                          | 1doo<br><i>m</i><br>-<br>20<br>18                                                                                                                                                                                                                              | <b>#Ite.</b> 5198 2222 2320                                                                                                                                   | <i>T<sub>t</sub></i><br>36.2<br>22.0<br>21.9                                                                                                                                      | audi<br><i>m</i><br>-<br>20<br>7                                                 | <b>ikw_1</b><br><b>#Ite.</b><br>2633<br>1031<br>1541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>T<sub>t</sub></i><br>30.2<br>14.5<br>19.4                                                                                                                                                                                           | Emi<br><i>m</i><br>-<br>20<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>ilia_923</b><br><b>#Ite.</b><br>6507<br>3989<br>4027                                                                                                                                     | <i>T<sub>t</sub></i><br>43.0<br>35.4<br>36.7                                                                                                                       | bone<br><u>m</u><br>-<br>20<br>20                                                                                                                                                                                                                                                                   | <b>*************************************</b>                                                                                                     | <i>T<sub>t</sub></i><br>119<br>60<br>59                                                                                                                           |
| Solver<br>ICCG<br>ES-SC-ICCG                                                                                                                                                                    | $\theta$<br>10 <sup>-3</sup><br>10 <sup>-4</sup><br>10 <sup>-5</sup>                                                                                                                                                                                                            | <b>bond</b><br><i>m</i><br>20<br>19<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e010<br>#Ite.<br>8190<br>2077<br>2100<br>2883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>T<sub>t</sub></i><br>84.1<br>28.3<br>28.0<br>35.6                                                                                                                                  | 1doo<br><i>m</i><br>-<br>20<br>18<br>3                                                                                                                                                                                                                         | #Ite.       5198       2222       2320       4019                                                                                                             | <i>T<sub>t</sub></i><br>36.2<br>22.0<br>21.9<br>30.1                                                                                                                              | <b>audi</b><br><i>m</i><br>-<br>20<br>7<br>3                                     | ikw_1<br>#Ite.<br>2633<br>1031<br>1541<br>1791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>T<sub>t</sub></i><br>30.2<br>14.5<br>19.4<br>21.7                                                                                                                                                                                   | Emi<br><i>m</i><br>-<br>20<br>19<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hia_923<br>#Ite.<br>6507<br>3989<br>4027<br>4798                                                                                                                                            | <i>T<sub>t</sub></i><br>43.0<br>35.4<br>36.7<br>36.8                                                                                                               | bone <i>m</i> -           20           20           19                                                                                                                                                                                                                                              | <b>*************************************</b>                                                                                                     | <i>T</i> <sub>t</sub><br>119<br>60<br>59<br>59                                                                                                                    |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG                                                                                                                                                       | $\theta$<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-5}$<br>$10^{-3}$                                                                                                                                                                                                                    | <b>bond</b><br><b>m̃</b> 20 19 12 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>*************************************</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T <sub>t</sub> 84.1         28.3         28.0         35.6         27.9                                                                                                               | Idoo <i>m</i> -           20           18           3           20                                                                                                                                                                                             | #Ite.       5198       2222       2320       4019       2220                                                                                                  | T <sub>t</sub> 36.2           22.0           21.9           30.1           22.6                                                                                                   | <b>aud</b><br><i>m</i><br>-<br>20<br>7<br>3<br>20                                | <b>ikw_1 #Ite.</b> 2633 1031 1541 1791 1028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T <sub>t</sub> 30.2           14.5           19.4           21.7           14.9                                                                                                                                                        | Emi<br><i>m</i><br>-<br>20<br>19<br>7<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Hia_923 #Ite.</b> 6507 3989 4027 4798 3986                                                                                                                                               | T <sub>t</sub> 43.0           35.4           36.7           36.8           37.7                                                                                    | bone <i>m</i> -           20           20           19           20                                                                                                                                                                                                                                 | <b>***** ****** ******* ******** ********</b>                                                                                                    | T <sub>t</sub> 119           60           59           59           61                                                                                            |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG                                                                                                                                                       | heta<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-3}$<br>$10^{-4}$                                                                                                                                                                                                                        | <b>bond</b><br><i>m</i><br>20<br>19<br>12<br>20<br>19<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e010           #Ite.           8190           2077           2100           2883           2074           2096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T <sub>t</sub> 84.1         28.3         28.0         35.6         27.9         28.4                                                                                                  | Idoo           m           -           20           18           3           20           18                                                                                                                                                                   | #Ite.           5198           2222           2320           4019           2220           2319                                                               | T <sub>t</sub> 36.2           22.0           21.9           30.1           22.6           22.1                                                                                    | audi<br><i>m</i> - 20 7 3 20 7                                                   | ikw_1<br>#Ite.<br>2633<br>1031<br>1541<br>1791<br>1028<br>1536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T <sub>t</sub> 30.2           14.5           19.4           21.7           14.9           19.9                                                                                                                                         | Emi<br><i>m</i><br>-<br>20<br>19<br>7<br>20<br>19<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ilia_923           #Ite.           6507           3989           4027           4798           3986           4026                                                                          | T <sub>t</sub> 43.0           35.4           36.7           36.8           37.7           37.9                                                                     | bone           m̃           -           20           20           19           20           20                                                                                                                                                                                                      | <b>***** **** ****** ****** ******* ********</b>                                                                                                 | T <sub>t</sub> 119           60           59           61           62                                                                                            |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG                                                                                                                                                       | heta<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-5}$                                                                                                                                                                                                           | <b>bond</b><br><b>m̃</b> 20 19 12 20 19 12 20 19 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #Ite.       8190       2077       2100       2883       2074       2096       2870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T <sub>t</sub> 84.1         28.3         28.0         35.6         27.9         28.4         37.1                                                                                     | Idoo <i>m</i> -           20           18           3           20           18           3           20           18           3                                                                                                                              | r<br>#Ite.<br>5198<br>2222<br>2320<br>4019<br>2220<br>2319<br>4016                                                                                            | T <sub>t</sub> 36.2         22.0         21.9         30.1         22.6         22.1         31.2                                                                                 | audi<br><i>m</i> - 20 7 3 20 7 3 20 7 3                                          | ikw_1<br>#Ite.<br>2633<br>1031<br>1541<br>1791<br>1028<br>1536<br>1789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T <sub>t</sub> 30.2           14.5           19.4           21.7           14.9           19.9                                                                                                                                         | Emi<br><i>m</i><br>-<br>20<br>19<br>7<br>20<br>19<br>7<br>20<br>19<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ilia_923           #Ite.           6507           3989           4027           4798           3986           4026           4797                                                           | T <sub>t</sub> 43.0           35.4           36.7           36.8           37.7           37.9           36.9                                                      | bone <i>m</i> -           20           20           20           20           20           19           20           20           19           20           19           20           19                                                                                                            | <b>***** ***** ****** ****** ******* ********</b>                                                                                                | T <sub>t</sub> 119           60           59           61           62           60                                                                               |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG                                                                                                                                                       | heta<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-5}$                                                                                                                                                                                                           | <b>bons m</b> 20 19 12 20 19 12 PFlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e010<br>#Ite.<br>8190<br>2077<br>2100<br>2883<br>2074<br>2096<br>2870<br>w742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>T</i> <sub>t</sub><br>84.1<br>28.3<br>28.0<br>35.6<br>27.9<br>28.4<br>37.1                                                                                                         | Idoo <i>m</i> -           20           18           3           20           18           3           20           18           3                                                                                                                              | #Ite.       5198       2222       2320       4019       2220       2319       4016       t_sym                                                                | T <sub>t</sub> 36.2         22.0         21.9         30.1         22.6         22.1         31.2                                                                                 | audi<br><i>m</i> - 20 7 3 20 7 3 20 7 3 20 7 3                                   | ikw_1<br>#Ite.<br>2633<br>1031<br>1541<br>1791<br>1028<br>1536<br>1789<br>cche2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>T<sub>t</sub></i><br>30.2<br>14.5<br>19.4<br>21.7<br>14.9<br>19.9<br>21.8                                                                                                                                                           | Emi<br><i>m</i><br>-<br>20<br>19<br>7<br>20<br>19<br>7<br>7<br>Fat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ilia_923       #Ite.       6507       3989       4027       4798       3986       4026       4797       altaes                                                                              | <i>T<sub>t</sub></i> 43.0 35.4 36.7 36.8 37.7 37.9 36.9                                                                                                            | bone <i>m</i> -           20           20           19           20           19           20           19           20           19           20           19           20           19                                                                                                            | <b>*\$10</b><br><b>#Ite.</b><br>14,637<br>5422<br>5422<br>5432<br>5419<br>5419<br>5419<br>5428<br><b>*bolic_fe</b>                               | T <sub>t</sub> 119       60       59       61       62       60       em                                                                                          |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG<br>Solver                                                                                                                                             | $\theta$<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-5}$<br>$\theta$                                                                                                                                                                                           | bone<br><i>m</i> 20 19 12 20 19 12 20 19 12 <i>PFlo m</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | #Ite.       \$190       2077       2100       2883       2074       2096       2870       wy_742       #Ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T <sub>t</sub> 84.1         28.3         28.0         35.6         27.9         28.4         37.1                                                                                     | Idoo <i>m</i> -           20           18           3           20           18           3           20           18           3           20           18 <i>m</i>                                                                                           | #Ite.       5198       2222       2320       4019       2220       2319       4016       t_sym       #Ite.                                                    | T <sub>t</sub> 36.2         22.0         21.9         30.1         22.6         22.1         31.2                                                                                 | audi<br><i>m</i> - 20 7 3 20 7 3 20 7 3 <i>apa m</i>                             | ikw_1<br>#Ite.<br>2633<br>1031<br>1541<br>1791<br>1028<br>1536<br>1789<br>cche2<br>#Ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T <sub>t</sub> 30.2         14.5         19.4         21.7         14.9         19.9         21.8                                                                                                                                      | Emi<br><i>m</i><br>-<br>20<br>19<br>7<br>20<br>19<br>7<br>Fat<br><i>m</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hia_923       #Ite.       6507       3989       4027       4798       3986       4026       4797       Hit_639       #Ite.                                                                  | T <sub>t</sub> 43.0         35.4         36.7         36.8         37.7         37.9         36.9                                                                  | bone <i>m</i> -           20           20           19           20           19           20           19           20 <i>m</i>                                                                                                                                                                    | eS10<br>#Ite.<br>14,637<br>5422<br>5422<br>5432<br>5432<br>5419<br>5419<br>5419<br>5428<br>tbolic_fe<br>#Ite.                                    | $     \begin{array}{c}       T_t \\       119 \\       60 \\       59 \\       59 \\       61 \\       62 \\       60 \\       \hline       T_t     \end{array} $ |
| Solver<br>ICCG<br>ES-SC-ICCG<br>SS-D-ICCG<br>Solver<br>ICCG                                                                                                                                     | $\theta$<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-3}$<br>$10^{-4}$<br>$10^{-5}$<br>$\theta$                                                                                                                                                                                           | bons <i>m</i> 20           19           12           20           19           12 <i>p</i> 12 <i>m m m</i>                                                                                                                                                                                                                                                                                                                                                                                                                                  | e010<br>#Ite.<br>8190<br>2077<br>2100<br>2883<br>2074<br>2096<br>2870<br>2870<br>ww_742<br>#Ite.<br>37,486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T <sub>t</sub> 84.1         28.3         28.0         35.6         27.9         28.4         37.1         T <sub>t</sub> 221                                                          | Idoo <i>m</i> -           20           18           3           20           18           3           tmt <i>m</i> -                                                                                                                                           | #Ite.       5198       2222       2320       4019       2220       2319       4016       t_sym       #Ite.       1569                                         | T <sub>t</sub> 36.2         22.0         30.1         22.6         22.1         31.2                                                                                              | audi<br><i>m</i> - 20 7 3 20 7 3 20 7 3 <i>m</i> - <i>m</i>                      | ikw_1<br>#Ite.<br>2633<br>1031<br>1541<br>1791<br>1028<br>1536<br>1789<br>cche2<br>#Ite.<br>1055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T <sub>t</sub> 30.2         14.5         19.4         21.7         14.9         21.8         T <sub>t</sub> 1.34                                                                                                                       | Emi<br><i>m</i><br>-<br>20<br>19<br>7<br>20<br>19<br>7<br>20<br>19<br>7<br><i>E</i> at<br><i>m</i><br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ilia_923       #Ite.       6507       3989       4027       4798       3986       4026       4797       ili_639       #Ite.       5047                                                      | T <sub>t</sub> 43.0         35.4         36.7         36.8         37.7         36.9         T <sub>t</sub> 22.7                                                   | bone <i>m</i> -           20           20           20           19           20           19           20           19           20 <i>m m</i>                                                                                                                                                     | eS10<br>#Ite.<br>14,637<br>5422<br>5422<br>5432<br>5419<br>5419<br>5419<br>5428<br>bolic_fe<br>#Ite.<br>2583                                     | T <sub>t</sub> 119         60         59         61         62         60         em         T <sub>t</sub> 1.89                                                  |
| Solver 1<br>ICCG 1<br>ES-SC-ICCG 1<br>ES-D-ICCG 1<br>ICCG 1<br>ES-SC-ICCG 1                                                                                                                     | $ $                                                                                                                                                                                                                                                                             | bons <i>m</i> 20           19           12           20           19           12 <i>p</i> 12 <i>m m p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p</i>                                                                                                                                                                                                                                                                                                                                                      | e010<br>#Ite.<br>8190<br>2077<br>2100<br>2883<br>2074<br>2096<br>2870<br>2870<br>400<br>2870<br>2074<br>2096<br>2870<br>2074<br>2096<br>2074<br>2074<br>2075<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2076<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077<br>2077 | T <sub>t</sub> 84.1         28.3         28.0         35.6         27.9         28.4         37.1         T <sub>t</sub> 221         127                                              | Idoo <i>m</i> -           20           18           3           20           18           3 <b>tmt</b> <i>m</i> -           20           18           3           20           18           3           -           20           20                            | #Ite.       5198       2222       2320       4019       2220       2319       4016 <b>±</b> sym       #Ite.       1569       673                              | T <sub>t</sub> 36.2         22.0         30.1         22.6         21.9         30.1         22.6         22.1         31.2         T <sub>t</sub> 2.13         2.53              | audi<br><i>m</i> - 20 7 3 20 7 3 20 7 3 <i>apa m</i> - 19                        | ikw_1<br>#Ite.<br>2633<br>1031<br>1541<br>1791<br>1028<br>1536<br>1789<br>tche2<br>#Ite.<br>1055<br>454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T <sub>t</sub> 30.2         14.5         19.4         21.7         14.9         19.9         21.8         T <sub>t</sub> 1.34         1.68                                                                                             | Emi<br><i>m</i><br>-<br>20<br>19<br>7<br>20<br>19<br>7<br>7<br><b>Fau</b><br><i>m</i><br>-<br>20<br>19<br>7<br>20<br>19<br>7<br>20<br>20<br>19<br>7<br>20<br>7<br>20<br>7<br>7<br>20<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hia_923       #Ite.       6507       3989       4027       4798       3986       4026       4797       Hie_639       #Ite.       5047       3828                                            | T <sub>t</sub> 43.0         35.4         36.7         36.8         37.7         36.9         T <sub>t</sub> 22.7         24.9                                      | bone <i>m</i> -           20           20           19           20           19           20           19           20           19           20           19           20           19           20           19           -           19                                                         | eS10<br>#Ite.<br>14,637<br>5422<br>5422<br>5432<br>5419<br>5419<br>5419<br>5419<br>5428<br><b>abolic_fe</b><br>#Ite.<br>2583<br>1798             | T <sub>t</sub> 119         60         59         61         62         60         Em         1.89         4.33                                                    |
| Solver 1<br>ICCG 1<br>ES-SC-ICCG 1<br>ES-D-ICCG 1<br>ICCG 1<br>ES-SC-ICCG 1                                                                                                                     | $ $                                                                                                                                                                                                                                                                             | bons<br><i>m</i> 20 19 12 20 19 12 <i>D D D D D D D D D D</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e010<br>#Ite.<br>8190<br>2077<br>2100<br>2883<br>2074<br>2096<br>2870<br>400<br>2870<br>2096<br>37,486<br>15,380<br>15,380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T <sub>t</sub> 84.1         28.3         28.0         35.6         27.9         28.4         37.1         T <sub>t</sub> 221         127         127         127                      | Idoo <i>m</i> -           20           18           3           20           18           3           -           20           18           3           -           20           18           3           -           20           14                          | #Ite.       5198       2222       2320       4019       2220       2319       4016 <b>±_sym</b> 1569       673       784                                      | T <sub>t</sub> 36.2         22.0         30.1         22.6         22.1         31.2         T <sub>t</sub> 2.13         2.51                                                     | audi<br><i>m̃</i> - 20 7 3 20 7 3 20 7 3 - 19 12                                 | ikw_1<br>#Ite.<br>2633<br>1031<br>1541<br>1791<br>1028<br>1536<br>1536<br>1536<br>1536<br>1536<br>454<br>499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T <sub>t</sub> 30.2         14.5         19.4         21.7         14.9         19.9         21.8         T <sub>t</sub> 1.34         1.68         1.37                                                                                | Emi<br><i>m</i><br>-<br>20<br>19<br>7<br>20<br>19<br>7<br>20<br>19<br>7<br>20<br>19<br>7<br>20<br>19<br>7<br>20<br>19<br>7<br>20<br>19<br>7<br>20<br>19<br>7<br>20<br>19<br>7<br>20<br>19<br>7<br>20<br>19<br>7<br>20<br>7<br>20<br>7<br>20<br>7<br>20<br>7<br>7<br>20<br>7<br>7<br>20<br>7<br>7<br>20<br>7<br>7<br>20<br>7<br>7<br>20<br>7<br>20<br>7<br>7<br>20<br>7<br>20<br>7<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>18<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | Hia_923       #Ite.       6507       3989       4027       3986       4026       4026       4027       11_639       3828       3872                                                         | T <sub>t</sub> 43.0         35.4         36.7         36.8         37.7         36.9         T <sub>t</sub> 22.7         24.9         24.3                         | bone <i>m</i> -           20           19           20           19           20           19           20           19           20           19           20           19           9                                                                                                             | es10<br>#Ite.<br>14,637<br>5422<br>5422<br>5432<br>5419<br>5419<br>5428<br>abolic_fe<br>#Ite.<br>2583<br>1798<br>1885                            | T <sub>t</sub> 119         60         59         61         62         60 <b>Em</b> T <sub>t</sub> 1.89         4.33         2.80                                 |
| Solver ICCG ES-SC-ICCG Solver ICCG ES-SC-ICCG                                                                                                                                                   | <ul> <li>θ</li> <li>10<sup>-3</sup></li> <li>10<sup>-3</sup></li> <li>10<sup>-4</sup></li> <li>10<sup>-5</sup></li> </ul>                                                                                                                                                       | bons <i>m</i> 20           19           12           20           19           12           20           19           12           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20                                                                                            | e010<br>#Ite.<br>8190<br>2077<br>2100<br>2883<br>2074<br>2096<br>2870<br>2096<br>37,486<br>15,380<br>15,380<br>15,380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T <sub>t</sub> 84.1         28.3         28.0         35.6         27.9         28.4         37.1         Z         T <sub>t</sub> 221         127         1237         130           | Idoo <i>m</i> -           20           18           3           20           18           3 <b>tmt</b> <i>m</i> -           20           18           3 <b>tmt</b> <i>m</i> -           20           14           3                                            | r<br>#Ite.<br>5198<br>2222<br>2320<br>4019<br>2220<br>2319<br>4016<br>t_sym<br>#Ite.<br>1569<br>673<br>784<br>1256                                            | T <sub>t</sub> 36.2         22.0         30.1         22.6         22.1         31.2         T <sub>t</sub> 2.13         2.53         2.51         2.12                           | audi<br><i>m</i> - 20 7 3 20 7 3 20 7 3 20 7 1 1 1 1 1 1 2 3                     | <pre>ikw_1 ////////////////////////////////////</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T <sub>t</sub> 30.2         14.5         19.4         21.7         14.9         29.9         21.8         T <sub>t</sub> 1.34         1.68         1.37         1.21                                                                   | Emi<br><i>m</i><br>-<br>20<br>19<br>7<br>20<br>19<br>7<br><i>Eau</i><br><i>m</i><br>-<br>20<br>18<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ilia_923       #Ite.       6507       3989       4027       4798       3986       4026       4797       11_639       #Ite.       3828       3872       4710                                 | T <sub>t</sub> 43.0         35.4         36.7         36.8         37.7         36.9         T <sub>t</sub> 22.7         24.9         22.4         22.4            | bone <i>m</i> -           20           19           20           19           20           19           20           19           20           19           20           19           9           0                                                                                                 | eS10<br>#Ite.<br>14,637<br>5422<br>5422<br>5432<br>5419<br>5419<br>5419<br>5428<br>abolic_fe<br>#Ite.<br>2583<br>1798<br>1885<br>-               | T <sub>t</sub> 119         60         59         61         62         60         Tt         1.89         4.33         2.80         -                             |
| Solver  <br>ICCG  <br>ES-SC-ICCG  <br>ES-D-ICCG  <br>ICCG  <br>ICCG  <br>ES-SC-ICCG  <br>ES-D-ICCG                                                                                              | <ul> <li>θ</li> <li>10<sup>-3</sup></li> <li>10<sup>-5</sup></li> <li>10<sup>-3</sup></li> <li>10<sup>-4</sup></li> <li>10<sup>-5</sup></li> <li>10<sup>-3</sup></li> <li>10<sup>-4</sup></li> <li>10<sup>-5</sup></li> <li>10<sup>-5</sup></li> </ul>                          | bons<br><i>m</i> 20 19 12 20 19 12 <i>PFlo m</i> - 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e010<br>#Ite.<br>8190<br>2077<br>2100<br>2883<br>2074<br>2096<br>2870<br>2870<br>4<br>2096<br>15,380<br>15,380<br>15,354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T <sub>t</sub> 84.1         28.3         28.0         35.6         27.9         28.4         37.1         T <sub>t</sub> 221         127         123         130         131          | Idoo <i>m</i> -           20           18           3           20           18           3           -           20           18           3           -           20           18           3           -           20           14           3           20 | #Ite.       5198       2222       2320       4019       2220       2319       4016 <b>±_sym</b> #Ite.       1569       673       784       1256       671     | T <sub>t</sub> 36.2         22.0         21.9         30.1         22.6         22.1         31.2         T <sub>t</sub> 2.13         2.53         2.51         2.12         2.55 | audi<br><i>m</i> - 20 7 3 20 7 3 20 7 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1      | ikw_1<br>#Ite.<br>2633<br>1031<br>1541<br>1791<br>1028<br>1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>1541<br>1541<br>1541<br>1541<br>1541<br>1541<br>1555<br>454<br>499<br>810<br>454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T <sub>t</sub> 30.2         14.5         19.4         21.7         14.9         19.9         21.8         T <sub>t</sub> 1.34         1.68         1.37         1.21         1.64                                                      | Emi<br><i>m</i><br>-<br>20<br>19<br>7<br>20<br>19<br>7<br>7<br>20<br>19<br>7<br>7<br>20<br>19<br>7<br>7<br>20<br>19<br>7<br>7<br>20<br>19<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hia_923       #Ite.       6507       3989       4027       4798       3986       4026       4797       1026       4797       3828       3872       4710       3830                          | T <sub>t</sub> 43.0         35.4         36.7         36.8         37.7         36.9         T <sub>t</sub> 22.7         24.9         22.4         22.4            | bone <i>m</i> -           20           20           19           20           19           20           19           20           19           20           19           9           0           19                                                                                                 | es10<br>#Ite.<br>14,637<br>5422<br>5422<br>5432<br>5419<br>5419<br>5419<br>5428<br><b>bolic_fe</b><br>#Ite.<br>2583<br>1798<br>1885<br>-<br>1797 | T <sub>t</sub> 119         60         59         61         62         60 <b>em</b> T <sub>t</sub> 1.89         4.33         2.80         -         4.84          |
| Solver       1         ICCG       1         ES-SC-ICCG       1         ES-D-ICCG       1         Solver       1         ES-SC-ICCG       1         ES-SC-ICCG       1         ES-D-ICCG       1 | <ul> <li>θ</li> <li>10<sup>-3</sup></li> <li>10<sup>-3</sup></li> <li>10<sup>-4</sup></li> <li>10<sup>-5</sup></li> <li>10<sup>-3</sup></li> <li>10<sup>-4</sup></li> <li>10<sup>-5</sup></li> <li>10<sup>-3</sup></li> <li>10<sup>-3</sup></li> <li>10<sup>-4</sup></li> </ul> | bons <i>m</i> 20           19           12           20           19           12           20           19           12           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20 | e010<br>#Ite.<br>8190<br>2077<br>2100<br>2883<br>2074<br>2096<br>2074<br>2096<br>37748<br>15,380<br>15,380<br>15,380<br>15,354<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T <sub>t</sub> 84.1         28.3         28.0         35.6         27.9         28.4         37.1         221         127         123         124         130         131         130 | Idoo <i>m</i> -           20           18           3           20           18           3 <b>tmt</b> <i>m</i> -           20           14           3           20           14           3           20           14                                        | #Ite.       5198       2222       2320       4019       2220       2319       4016 <b>t_sym t_sym</b> 1569       673       784       1256       671       782 | T <sub>t</sub> 36.2         22.0         30.1         22.6         21.9         30.1         22.6         21.13         2.53         2.55         2.53                            | audi<br><i>m</i> - 20 7 3 20 7 3 20 7 3 20 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ikw_1 ikw_1 ikw_1 ilon | T <sub>t</sub> 30.2         14.5         19.4         21.7         14.9         21.8         T <sub>t</sub> 1.34         1.34         1.34         1.34         1.4.9         1.34         1.68         1.31         1.64         1.51 | Emii<br><i>m</i> - 20 19 7 20 19 7 20 19 7 20 18 20 18 2 20 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ilia_923       #Ite.       6507       3989       4027       4798       3986       4026       4797       14026       4797       15047       3828       3872       4710       3830       3869 | T <sub>t</sub> 43.0         35.4         36.7         36.8         37.7         36.9         27.7         22.7         24.9         22.4         24.9         24.6 | bons <i>m</i> -           20           19           20           19           20           19           20           19           9           0           19           9           0           19           9           0           19           9           0           19           9           0 | es10<br>#Ite.<br>14,637<br>5422<br>5422<br>5432<br>5419<br>5419<br>5428<br>abolic_fe<br>#Ite.<br>2583<br>1798<br>1885<br>-<br>1797<br>1885       | T <sub>t</sub> 119         60         59         61         62         60         Tt         1.89         4.33         2.80         -         4.84         3.42   |

**TABLE 7** Numerical results (parallel solver, **b**: random vector).

#### TABLE 7 Continued

|                                           |                                                                                                              | bui                                                        | ndle_adj                                                |                                                                                     | af                                                               | _shell8                                                               |                                                                                 | _af_                                                      | shell4                                                                        |                                                                                                | _af_                                                | shell3                                                                                                                          |                                                                                                | _af_                                                | shell7                                                            |                                                                                                |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Solver                                    | θ                                                                                                            | ñ                                                          | #Ite.                                                   | $T_t$                                                                               | ñ                                                                | #Ite.                                                                 | $T_t$                                                                           | ñ                                                         | #Ite.                                                                         | $T_t$                                                                                          | ñ                                                   | #Ite.                                                                                                                           | $T_t$                                                                                          | ñ                                                   | #Ite.                                                             | $T_t$                                                                                          |
| ICCG                                      |                                                                                                              | -                                                          | 55,336                                                  | 701                                                                                 | -                                                                | 1572                                                                  | 5.07                                                                            | -                                                         | 1572                                                                          | 5.06                                                                                           | -                                                   | 1572                                                                                                                            | 4.95                                                                                           | -                                                   | 1572                                                              | 5.04                                                                                           |
| ES-SC-ICCG                                | $10^{-3}$                                                                                                    | 20                                                         | 13,873                                                  | 199                                                                                 | 20                                                               | 557                                                                   | 2.69                                                                            | 20                                                        | 556                                                                           | 2.71                                                                                           | 20                                                  | 556                                                                                                                             | 2.68                                                                                           | 20                                                  | 557                                                               | 2.75                                                                                           |
|                                           | $10^{-4}$                                                                                                    | 20                                                         | 13,873                                                  | 200                                                                                 | 11                                                               | 760                                                                   | 3.05                                                                            | 11                                                        | 760                                                                           | 3.04                                                                                           | 11                                                  | 760                                                                                                                             | 3.04                                                                                           | 11                                                  | 760                                                               | 3.03                                                                                           |
|                                           | $10^{-5}$                                                                                                    | 19                                                         | 13,947                                                  | 200                                                                                 | 0                                                                | -                                                                     | -                                                                               | 0                                                         | -                                                                             | -                                                                                              | 0                                                   | -                                                                                                                               | -                                                                                              | 0                                                   | -                                                                 | -                                                                                              |
| ES-D-ICCG                                 | $10^{-3}$                                                                                                    | 20                                                         | 13,287                                                  | 192                                                                                 | 20                                                               | 555                                                                   | 2.76                                                                            | 20                                                        | 555                                                                           | 2.78                                                                                           | 20                                                  | 555                                                                                                                             | 2.77                                                                                           | 20                                                  | 555                                                               | 2.75                                                                                           |
|                                           | $10^{-4}$                                                                                                    | 20                                                         | 13,287                                                  | 193                                                                                 | 11                                                               | 759                                                                   | 3.23                                                                            | 11                                                        | 759                                                                           | 3.21                                                                                           | 11                                                  | 759                                                                                                                             | 3.19                                                                                           | 11                                                  | 759                                                               | 3.22                                                                                           |
|                                           | $10^{-5}$                                                                                                    | 19                                                         | 13,796                                                  | 199                                                                                 | 0                                                                | -                                                                     | -                                                                               | 0                                                         | -                                                                             | -                                                                                              | 0                                                   | -                                                                                                                               | -                                                                                              | 0                                                   | -                                                                 | -                                                                                              |
|                                           |                                                                                                              |                                                            |                                                         |                                                                                     |                                                                  |                                                                       |                                                                                 |                                                           |                                                                               |                                                                                                |                                                     |                                                                                                                                 |                                                                                                |                                                     |                                                                   |                                                                                                |
|                                           |                                                                                                              | inli                                                       | ne_1                                                    |                                                                                     | _af_0                                                            | _k101                                                                 |                                                                                 | af_4                                                      | _k101                                                                         |                                                                                                | af_3                                                | _k101                                                                                                                           |                                                                                                | _af_2                                               | 2_k101                                                            |                                                                                                |
| Solver                                    | θ                                                                                                            | $\frac{\text{inlin}}{\tilde{m}}$                           | ne_1<br>#Ite.                                           | $T_t$                                                                               | af_0<br><i>m</i>                                                 | _k101<br>#Ite.                                                        | T <sub>t</sub>                                                                  | af_4<br><i>m</i>                                          | _k101<br>#Ite.                                                                | T <sub>t</sub>                                                                                 | af_3<br><i>m</i>                                    | 8_k101<br>#Ite.                                                                                                                 | T <sub>t</sub>                                                                                 | af_2<br><i>m</i>                                    | 2_k101<br>#Ite.                                                   | T <sub>t</sub>                                                                                 |
| Solver<br>ICCG                            | θ                                                                                                            | inlin<br>m                                                 | ne_1<br>#Ite.<br>23,054                                 | <i>T<sub>t</sub></i> 124                                                            | af_0<br><i>m̃</i>                                                | <b>_k101</b><br># <b>Ite.</b><br>16,121                               | <i>T<sub>t</sub></i> 51.5                                                       | af_4<br><i>m</i>                                          | _k101<br>#Ite.<br>12,425                                                      | <i>T<sub>t</sub></i> 39.9                                                                      | af_3<br><i>m</i>                                    | <b>4101</b><br>#Ite.<br>10,584                                                                                                  | <i>T<sub>t</sub></i> 33.7                                                                      | af_2<br><i>m</i>                                    | 2_k101<br>#Ite.<br>16,237                                         | <i>T<sub>t</sub></i> 50.9                                                                      |
| Solver<br>ICCG<br>ES-SC-ICCG              | $	heta$ $10^{-3}$                                                                                            | <u>inlin</u><br><u>m</u><br>-<br>20                        | ne_1<br>#Ite.<br>23,054<br>8738                         | <i>T<sub>t</sub></i><br>124<br>60                                                   | af_0<br><i>m̃</i><br>-<br>20                                     | <b>k101</b><br><b>#Ite.</b><br>16,121<br>6977                         | <i>T<sub>t</sub></i> 51.5 33.1                                                  | af_4<br><i>m</i><br>-<br>20                               | _k101<br>#Ite.<br>12,425<br>4327                                              | <i>T<sub>t</sub></i> 39.9 20.8                                                                 | af_3<br><i>m</i><br>-<br>20                         | <b>*Ite.</b><br>10,584<br>3877                                                                                                  | <i>T<sub>t</sub></i><br>33.7<br>19.6                                                           | af_2<br><i>m</i><br>-<br>20                         | 2_k101<br>#Ite.<br>16,237<br>6526                                 | <i>T<sub>t</sub></i> 50.9 31.0                                                                 |
| Solver<br>ICCG<br>ES-SC-ICCG              | heta<br>$10^{-3}$<br>$10^{-4}$                                                                               | inlin<br><i>m</i><br>-<br>20<br>20                         | ne_1<br>#Ite.<br>23,054<br>8738<br>8738                 | <i>T</i> <sub>t</sub><br>124<br>60<br>61                                            | af_0<br><i>m</i><br>-<br>20<br>20                                | <b>k101</b><br><b>#Ite.</b><br>16,121<br>6977<br>6977                 | <i>T<sub>t</sub></i><br>51.5<br>33.1<br>33.1                                    | af_4<br><i>m</i><br>-<br>20<br>20                         | <b>k101 #Ite.</b> 12,425 4327 4327                                            | <i>T<sub>t</sub></i><br>39.9<br>20.8<br>20.9                                                   | af_3<br><i>m</i><br>-<br>20<br>20                   | <pre>3_k101 #Ite. 10,584 3877 3877</pre>                                                                                        | <i>T<sub>t</sub></i><br>33.7<br>19.6<br>18.8                                                   | af_2<br><i>m</i><br>-<br>20<br>20                   | 2_k101<br>#Ite.<br>16,237<br>6526<br>6526                         | <i>T<sub>t</sub></i><br>50.9<br>31.0<br>31.1                                                   |
| Solver<br>ICCG<br>ES-SC-ICCG              | $\theta$<br>10 <sup>-3</sup><br>10 <sup>-4</sup><br>10 <sup>-5</sup>                                         | inlin<br><i>m</i><br>-<br>20<br>20<br>18                   | ne_1<br>#Ite.<br>23,054<br>8738<br>8738<br>9090         | <i>T</i> <sub>t</sub><br>124<br>60<br>61<br>62                                      | af_0<br><i>m̃</i><br>-<br>20<br>20<br>20<br>20                   | <b>k101</b><br><b>#Ite.</b><br>16,121<br>6977<br>6977<br>6977         | <i>T<sub>t</sub></i><br>51.5<br>33.1<br>33.1<br>33.5                            | af_4<br><i>m</i><br>-<br>20<br>20<br>20                   | <b>k101</b><br><b>#Ite.</b><br>12,425<br>4327<br>4327<br>4327                 | <i>T<sub>t</sub></i><br>39.9<br>20.8<br>20.9<br>20.5                                           | af_3<br><i>m</i><br>-<br>20<br>20<br>20<br>20       | <b>*Ite.</b><br>10,584<br>3877<br>3877<br>3877                                                                                  | <i>T</i> <sub>t</sub><br>33.7<br>19.6<br>18.8<br>18.5                                          | af_2<br>m - 20 20 20 20                             | 2_k101<br>#Ite.<br>16,237<br>6526<br>6526<br>6526                 | <i>T<sub>t</sub></i><br>50.9<br>31.0<br>31.1<br>31.3                                           |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG | $\theta$<br>10 <sup>-3</sup><br>10 <sup>-4</sup><br>10 <sup>-5</sup><br>10 <sup>-3</sup>                     | inlin<br><i>m</i><br>-<br>20<br>20<br>18<br>20             | ne_1<br>#Ite.<br>23,054<br>8738<br>8738<br>9090<br>8732 | T <sub>t</sub> 124         60         61         62         61                      | af_0<br><i>m̃</i><br>-<br>20<br>20<br>20<br>20                   | <b>k101</b><br><b>#Ite.</b><br>16,121<br>6977<br>6977<br>6977<br>6966 | T <sub>t</sub> 51.5           33.1           33.1           33.5           34.0 | af_4<br><i>m</i><br>-<br>20<br>20<br>20<br>20<br>20       | <b>k101</b><br><b>#Ite.</b><br>12,425<br>4327<br>4327<br>4327<br>4322         | T <sub>t</sub> 39.9           20.8           20.9           20.5           21.2                | af_3<br><i>m</i><br>-<br>20<br>20<br>20<br>20<br>20 | k101           #Ite.           10,584           3877           3877           3877           3877           3877           3873 | T <sub>t</sub> 33.7           19.6           18.8           18.5           19.2                | af_2<br><i>m</i><br>-<br>20<br>20<br>20<br>20<br>20 | 2_k101<br>#Ite.<br>16,237<br>6526<br>6526<br>6526<br>6523         | T <sub>t</sub> 50.9           31.0           31.1           31.3           32.1                |
| Solver<br>ICCG<br>ES-SC-ICCG<br>ES-D-ICCG | $\theta$<br>10 <sup>-3</sup><br>10 <sup>-4</sup><br>10 <sup>-5</sup><br>10 <sup>-3</sup><br>10 <sup>-4</sup> | inlin<br><i>m</i><br>-<br>20<br>20<br>18<br>20<br>20<br>20 | ne_1 #Ite. 23,054 8738 8738 9090 8732 8732              | T <sub>t</sub> 124           60           61           62           61           62 | af_0<br><i>m̃</i><br>-<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | <b>k101 #Ite.</b> 16,121 6977 6977 6977 6966 6966                     | T <sub>t</sub> 51.5           33.1           33.5           34.0           34.6 | af_4<br><i>m</i><br>-<br>20<br>20<br>20<br>20<br>20<br>20 | <b>k101</b><br><b>#Ite.</b><br>12,425<br>4327<br>4327<br>4327<br>4322<br>4322 | T <sub>t</sub> 39.9           20.8           20.9           20.5           21.2           21.2 | af_3<br><i>m</i> - 20 20 20 20 20 20 20 20          | k101           #Ite.           10,584           3877           3877           3877           3873                               | T <sub>t</sub> 33.7           19.6           18.8           18.5           19.2           19.3 | af_2<br>m - 20 20 20 20 20 20 20                    | 2_k101<br>#Ite.<br>16,237<br>6526<br>6526<br>6526<br>6523<br>6523 | T <sub>t</sub> 50.9           31.0           31.1           31.3           32.1           31.7 |

### Comparison with other solvers

For a further examination of our technique, we implemented the well-known deflated CG solver proposed in Reference 18 and performed a numerical test. In the numerical test, we solved the deflated system using the ICCG method and set the maximum number of deflated vectors to 20. We used a vector of ones for the right-hand side. The solver is denoted by D-CG in this article. Table 5 shows the number of iterations and the solution time of the D-CG solver for 30 datasets. Our solver based on error vector sampling outperformed the D-CG solver for 29 out of 30 datasets. Moreover, the solution time of our solver was less than half that of D-CG for 22 datasets. Although the numerical result implies that our technique is effective, we consider that further investigation is required. As shown in Reference 24, many methods exist to (algebraically) determine the subspace or deflation vectors. However, because solver performance significantly depends on properties of the target problem, it may be difficult to develop the best method for a wide variety of problems. Therefore, in our future work, we will compare our method with other related techniques in a specific problem domain.

## 5.3 | Numerical results for the parallel solver

In this section, we report the results for the parallel (multithreaded) solver. The parallelization of the CG solver is relatively straightforward. However, the IC preconditioning step that consists of forward and backward substitutions is not naturally parallelized. Various parallel processing methods exist. We used a simple but popular method, that is, block Jacobi IC preconditioning.<sup>38</sup> The parallelization of SC preconditioning and the deflation method is relatively easy. The computationally dominant part of these methods is dense matrix vector multiplication, which can be straightforwardly parallelized. Because  $\tilde{m}$  is typically tiny, we sequentially solve the linear system having an  $\tilde{m} \times \tilde{m}$  coefficient matrix  $W^{T}AW$ that is involved in the methods.

Tables 6 and 7 list the numerical results of the parallel ICCG solver and its variants using the proposed techniques when a vector of ones and random vectors were used for the right-hand side vectors, respectively. From the viewpoint of convergence, the results for the parallel solver were similar to those of the sequential solver. For all 60 test cases (30 datasets  $\times$  2 types of right-hand side vectors), the proposed method attained convergence acceleration. When we used a vector of ones, convergence was more than twice as fast as that of the parallel ICCG solver for 27 out of 30 datasets.



FIGURE 10 Speedup in convergence of ES-SC-ICCG and ES-D-ICCG over ICCG (parallel multithreaded solver, b: random vector).



**FIGURE 11** Speedup in computational time of ES-SC-ICCG and ES-D-ICCG over pICCG (parallel multithreaded solver, *b*: random vector).

Figure 10 shows the speedup in convergence of the parallel solver based on the proposed technique against the parallel ICCG solver when random vectors are used for the right-hand side vectors. In the test using random vectors, the proposed method attained more than two-fold speedup in convergence compared with the parallel ICCG solver for 21 out of 30 datasets.

Next, we examine the computational time. In the test using a vector of ones, the proposed method reduced the solution time for 28 out of 30 datasets. For the bundle\_adj dataset, the parallel deflated ICCG solver based on our technique attained a more than four-fold speedup compared with the parallel ICCG solver. The test using random vectors also indicated that our technique was effective for reducing the computational time for most test datasets (25 out of 30). In block Jacobi IC

 22 of 26
 WILEY

 TABLE 8
 Condition number estimation based on error vector sampling.

|          | Estimation      |                       |                      | LAPACK          |                       |                      |
|----------|-----------------|-----------------------|----------------------|-----------------|-----------------------|----------------------|
| Dataset  | $\lambda_{max}$ | $\lambda_{\min}$      | κ                    | $\lambda_{max}$ | $\lambda_{\min}$      | κ                    |
| bcsstk07 | 2.89            | 9.67×10 <sup>-5</sup> | 2.99×10 <sup>4</sup> | 2.90            | 9.11×10 <sup>-5</sup> | 3.18×10 <sup>4</sup> |
| msc01440 | 3.62            | $3.08 \times 10^{-4}$ | $1.18 \times 10^{4}$ | 3.62            | $2.86 \times 10^{-4}$ | $1.27 \times 10^{4}$ |
| 494_bus  | 2.00            | $2.59 \times 10^{-5}$ | $7.71 \times 10^4$   | 2.00            | 2.53×10 <sup>-5</sup> | $7.90 \times 10^{4}$ |
| bcsstk06 | 2.89            | 9.67×10 <sup>-5</sup> | 2.99×10 <sup>4</sup> | 2.90            | 9.11×10 <sup>-5</sup> | 3.18×10 <sup>4</sup> |

preconditioning, the computational cost for a PCG iteration reduces as the number of threads increases. Consequently, the impact of the additional cost for convergence acceleration (SC preconditioning or deflation) on the preconditioned solver is substantially enlarged in the parallel execution by many threads. In other words, the ratio of the iteration costs is enlarged from (17). Because we used a number of threads (= 40) in our numerical tests, it became difficult to reduce the solution time compared with the sequential solver. However, Figure 11 indicates that our convergence acceleration technique accelerated the solution process for most test problems.

# 5.4 | Condition number estimation

Figure 8 implies that our technique based on error vector sampling is a useful tool for the estimation of the smallest eigenvalue. Because the estimation of the largest eigenvalue is relatively easy, the technique can be used for the estimation of the condition number of the coefficient matrix. Algorithm 2 shows the proposed procedure of the PCG method with condition number estimation. The largest eigenvalue is estimated by the power method, which is combined with the procedure of CG method. We estimate the smallest eigenvalue using our technique. We conducted numerical tests using four relatively small matrices downloaded from the SuiteSparse matrix collection to examine our technique. Diagonal scaling was applied to the matrices before the tests. Table 8 shows the estimation of the condition number. It is noted that when ES-SC and ES-D methods are used, the condition number (the smallest eigenvalue) cannot be estimated. This is because these techniques efficiently remove the error component involved in the eigenspace that corresponds to the smallest eigenvalue and the sampled error vectors might be orthogonal to the eigenvalue) to the smallest eigenvalue.

Because the number of sample vectors is much smaller than  $n \ (m \ll n)$ , the additional computational cost for the calculation of the smallest eigenvalue (Ritz value) is typically much smaller than the iterative solution cost. Although the power method requires an additional SpMV operation, it is combined with SpMV for the CG method. In this case, the matrix data transferred from main memory are efficiently used for two vectors. The additional cost (time) for the power method,  $T_i$ , is estimated as

$$T_l = (16nN_{ite} + 20n + 12nnz)/b_m.$$
(24)

The cost for calculating the smallest eigenvalue,  $T_s$ , is equal to the auxiliary matrix setup cost except for the cost for (12) and is estimated as follows:

$$T_s = 2n(\tilde{m}^2 + m^2)/f + (12\tilde{m}n + 12\tilde{m} \cdot nnz)/b_m.$$
(25)

Finally, the additional cost for calculating the condition number estimation,  $T_{con}$ , is given by

$$T_{\rm con} = T_l + T_s \tag{26}$$

$$= 2n(\tilde{m}^2 + m^2)/f + \{16nN_{ite} + 20n + 12\tilde{m}n + 12(\tilde{m} + 1)nnz\}/b_m.$$
(27)

#### Algorithm 2. PCG method with condition number estimation

```
Input: A, b, M, x_0, \varepsilon, m
  1: r_0 = b - Ax_0
  2: v_0 \leftarrow Initialization (by a nonzero vector e.g., a random vector)
  3: for i = 1, 2, ... do
              z_{i-1} = M^{-1}r_{i-1}
  4:
               \rho_{i-1} = (\mathbf{r}_{i-1}, \mathbf{z}_{i-1})
  5:
               if i=1 then
  6:
                      p_1 = z_0
  7:
               else
  8:
                      \beta_{i-1} = \rho_{i-1} / \rho_{i-2}
  9:
                      \boldsymbol{p}_i = \boldsymbol{z}_{i-1} + \beta_{i-1} \boldsymbol{p}_{i-1}
 10:
 11:
               end if
               (\boldsymbol{q}_i \, \boldsymbol{v}_i) = A(\boldsymbol{p}_i \, \boldsymbol{v}_{i-1}) //(\text{SpMV})
 12:
               \mathbf{v}_i = \mathbf{v}_i / \|\mathbf{v}_i\|_2
 13:
               \alpha_i = \rho_{i-1} / (\boldsymbol{p}_i, \boldsymbol{q}_i)
 14:
              \boldsymbol{x}_i = \boldsymbol{x}_{i-1} + \alpha_i \boldsymbol{p}_i
 15:
 16:
               \boldsymbol{r}_i = \boldsymbol{r}_{i-1} - \alpha_i \boldsymbol{q}_i
               if \|\boldsymbol{r}_i\|_2 \leq \varepsilon \|\boldsymbol{b}\|_2 then
 17:
 18:
                      break
               end if
 19:
               if Sampling condition is satisfied then
 20:
                      \tilde{\mathbf{x}}^{(s)} = \mathbf{x}_i, s \in \{1, 2, \dots, m\}
 21:
               end if
 22:
 23: end for
 24: \tilde{E} = (\boldsymbol{x}_i - \tilde{\boldsymbol{x}}^{(1)} \boldsymbol{x}_i - \tilde{\boldsymbol{x}}^{(2)} \dots \boldsymbol{x}_i - \tilde{\boldsymbol{x}}^{(m)})
 25: Apply the Gram–Schmidt method to \tilde{E} and obtain E
 26: Solve an eigenvalue problem: E^{\top}AEt = \lambda t and obtain the smallest Ritz value \lambda_{\min}
 27: \lambda_{\max} = (\mathbf{v}_i, A\mathbf{v}_i)
 28: \kappa = \lambda_{\rm max} / \lambda_{\rm min}
Output: x_i, \kappa
```

For a typical setting,  $\tilde{m} = m = 20$ ,  $nnz_{av} = 30$ ,  $f = 10b_m$ , and  $N_{ite} = 500$ , the additional cost for estimating the condition number is equivalent to 6% of one ICCG solution step cost.

Most iterative solvers, such as the CG solver, typically use a convergence criterion based on a (relative) residual norm. If the estimation of the condition number of the coefficient matrix is given with the solution vector by the iterative solver, it can be a useful tool to evaluate the accuracy of the solution vector. The proposed solver provides this function without a large amount of additional computations. However, our technique is only useful for the case that the linear system equation must be solved. When we only calculate the condition number estimation, other methods, for example, Lanczos method may be a better choice.

# 6 | CONCLUSION

In this article, we introduced an algebraic auxiliary matrix construction method that can be used for the SC preconditioning and the deflation method. We focused on the problem in which a sequence of linear systems with identical coefficient matrices is solved. In our method, we sample the approximate solution vectors in the first iterative solution step, and calculate the error vectors corresponding to the sample vectors after the solution step is completed. Then, we perform the Rayleigh-Ritz method using a subspace spanned by these error vectors to identify (approximate) eigenvectors associated with small eigenvalues. Finally, we construct the auxiliary matrix using the Ritz vectors associated with small Ritz values. We also presented a cost model of SC preconditioning and the deflation method. Numerical tests using 30 coefficient

# 24 of 26 WILEY

IWASHITA ET AL

matrices were conducted to verify our technique. The test results confirmed that the proposed convergence acceleration technique efficiently reduced both the number of iterations for convergence and the solution time of the serial and parallel preconditioned CG solvers. Moreover, additional numerical tests indicated that the proposed technique can be used for condition number estimation.

Currently, we are examining the effectiveness of the technique for a linear system that has an unsymmetric coefficient matrix. Because the preliminary results demonstrate its effectiveness, we will report it in the future. We are also investigating the application of the technique to other problems. Particularly, we are examining its effectiveness in parallel-in-time simulations, which often involve the solution process of multiple linear systems of coefficient matrices with a common property. We are also interested in the combination of our technique with the AMG method or preconditioning techniques suitable for GPU computing. In the future, we will examine our technique in various scenarios of computational science or engineering problems.

# ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their helpful comments. This work was supported by JSPS KAKENHI Grant Numbers JP19H04122, JP19H05662, JP20K21782, and JP23H00462.

# CONFLICT OF INTEREST STATEMENT

This study does not have any conflicts to disclose.

# DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

# ENDNOTES

<sup>1</sup>In this article, we use the term "SC preconditioning," which appears in references.<sup>34,35</sup> Preconditioning based on the same concept is often called two-level preconditioning, or spectral preconditioning,<sup>36</sup> particularly when the subspace is associated with eigenspaces.

 $^{2}$ In this article, we describe the method to identify eigenvectors with relatively small eigenvalues of the coefficient matrix. However, it is possible to consider identifying eigenvectors with relatively small eigenvalues of the preconditioned matrix. In this case, we should use the preconditioned matrix instead of *A* in (10).

# ORCID

Takeshi Iwashita D https://orcid.org/0000-0003-1938-1723

## REFERENCES

- 1. Xu J. Iterative methods by space decomposition and subspace correction. SIAM Rev. 1992;34:581-613.
- 2. Nicolaides RA. Deflation of conjugate gradients with applications to boundary value problems. SIAM J Numer Anal. 1987;24(2):355-65.
- 3. Trottenberg U, Oosterlee CW, Schüller A. Multigrid. San Diego, CA: Elsevier; 2001.
- 4. Wesseling P. Multigrid algorithms. An introduction to multigrid methods. Hoboken, NJ: John Wiley & Sons Ltd; 1992 Corrected Reprint., R. T. Edwards, Inc., 2004.
- 5. Vuik C, Segal A, Meijerink JA. An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients. J Comput Phys. 1999;152:385–403.
- 6. Vuik C, Frank J. Deflated ICCG method applied to problems with extreme contrasts in the coefficients. Proceedings of the 16th IMACS World Congress; 2000.
- 7. De Gersem H, Hameyer K. A deflated iterative solver for magnetostatic finite element models with large differences in permeability. Eur Phys J Appl Phys. 2001;13:45–9.
- 8. Mifune T, Moriguchi S, Iwashita T, Shimasaki M. Convergence acceleration of iterative solvers for the finite element analysis using the implicit and explicit error correction methods. IEEE Trans Magn. 2009;45(3):1438–41.
- 9. Igarashi H, Watanabe K. Deflation techniques for computational electromagnetism: theoretical considerations. IEEE Trans Magn. 2011;47(5):1438-41.
- Iwashita T, Kawaguchi S, Mifune T, Matsuo T. Automatic mapping operator construction for subspace correction method to solve a series of linear systems. JSIAM Lett. 2017;9:25–8.
- 11. Kharchenko SA, Yeremin AY. Eigenvalue translation based preconditioners for the GMRES (k) method. Numer Linear Algebra Appl. 1995;2(1):51–77.
- 12. Morgan RB. A restarted GMRES method augmented with eigenvectors. SIAM J Matrix Anal Appl. 1995;16(4):1154-71.
- 13. Erhel J, Burrage K, Pohl B. Restarted GMRES preconditioned by deflation. J Comput Appl Math. 1996;69(2):303–18.
- 14. Morgan RB. GMRES with deflated restarting. SIAM J Sci Comput. 2002;24(1):20-37.

- 15. Morgan RB, Wilcox W. Deflated iterative methods for linear equations with multiple right-hand sides. arXiv preprint arXiv:math-ph/0405053. 2004.
- 16. Giraud L, Gratton S, Pinel X, Vasseur X. Flexible GMRES with deflated restarting. SIAM J Sci Comput. 2010;32(4):1858-78.
- 17. Carpenter MH, Vuik C, Lucas P, van Gijzen M, Bijl H. A general algorithm for reusing Krylov subspace information. I. Unsteady Navier-Stokes. Hampton, VA: Langley Research Center; 2010.
- Saad Y, Yeung M, Erhel J, Guyomarc'h F. A deflated version of the conjugate gradient algorithm. SIAM J Sci Comput. 2000;21(5): 1909–26.
- 19. Abdel-Rehim AM, Morgan RB, Nicely DA, Wilcox W. Deflated and restarted symmetric Lanczos methods for eigenvalues and linear equations with multiple right-hand sides. SIAM J Sci Comput. 2010;32(1):129–49.
- 20. Kilmer ME, De Sturler E. Recycling subspace information for diffuse optical tomography. SIAM J Sci Comput. 2006;27(6): 2140-66.
- 21. Gosselet P, Rey C, Pebrel J. Total and selective reuse of Krylov subspaces for the resolution of sequences of nonlinear structural problems. Int J Numer Methods Eng. 2013;94:60–83.
- 22. Daas HA, Grigori L, Hénon P, Ricoux P. Recycling Krylov subspaces and truncating deflation subspaces for solving sequence of linear systems. ACM Trans Math Softw. 2021;47(2):1–30.
- 23. Morgan RB. Restarted block-GMRES with deflation of eigenvalues. Appl Numer Math. 2005;54(2):222-36.
- 24. Soodhalter KM, de Sturler E, Kilmer ME. A survey of subspace recycling iterative methods. GAMM Mitt. 2020;43(4):e202000016.
- 25. Brezina M, Falgout R, MacLachlan S, Manteuffel T, McCormick S, Ruge J. Adaptive algebraic multigrid. SIAM J Sci Comput. 2006;27(4):1261-86.
- 26. Brandt A, Brannick J, Kahl K, Livshits I. Bootstrap AMG. SIAM J Sci Comput. 2011;33(2):612–32.
- Nomura N, Fujii A, Tanaka T, Nakajima K, Marques O. Performance analysis of SA-AMG method by setting extracted near-kernel vectors. In: Dutra I, Camacho R, Barbosa J, Marques O, editors. Proceedings of the International Conference on Vector and Parallel Processing. Cham: Springer; 2017. p. 52–63.
- 28. D'ambra P, Filippone S, Vassilevski PS. BootCMatch: a software package for bootstrap AMG based on graph weighted matching. ACM Trans Math Softw. 2018;44:1–25.
- 29. D'Ambra P, Vassilevski PS. Improving solve time of aggregation-based adaptive AMG. Numer Linear Algebra Appl. 2019;26(6): e2269.
- 30. Baker AH, Jessup ER, Manteuffel T. A technique for accelerating the convergence of restarted GMRES. SIAM J Matrix Anal Appl. 2005;26(4):962–84.
- 31. Imakura A, Li RC, Zhang SL. Locally optimal and heavy ball GMRES methods. Jpn J Ind Appl Math. 2016;33:471-99.
- 32. Davis TA, Hu Y. The university of Florida sparse matrix collection. ACM Trans Math Softw. 2011;38:1–25.
- Iwashita T, Kawaguchi S, Mifune T, Matsuo T. Acceleration of transient non-linear electromagnetic field analyses using an automated subspace correction method. IEEE Trans Magn. 2019;55(6):1–4.
- Mihajlovic MD, Mijalkovic S. A component decomposition preconditioning for 3D stress analysis problems. Numer Linear Algebra Appl. 2002;9:567–83.
- 35. Ovtchinnikov EE, Xanthis LS. The discrete Korn's type inequality in subspaces and iterative methods for thin elastic structures. Comput Methods Appl Mech Eng. 1998;160:23–37.
- Carpentieri B, Giraud L, Gratton S. Additive and multiplicative two-level spectral preconditioning for general linear systems. SIAM J Sci Comput. 2007;29(4):1593–612.
- 37. Zhao T. A spectral analysis of subspace enhanced preconditioners. J Sci Comput. 2016;66(1):435-57.
- 38. Saad Y. Iterative methods for sparse linear systems. 2nd ed. Philadelphia, PA: SIAM; 2003.

**How to cite this article:** Iwashita T, Ikehara K, Fukaya T, Mifune T. Convergence acceleration of preconditioned conjugate gradient solver based on error vector sampling for a sequence of linear systems. Numer Linear Algebra Appl. 2023;30(6):e2512. <u>https://doi.org/10.1002/nla.2512</u>

# APPENDIX A. SELECTION METHOD FOR APPROXIMATION VECTORS

Algorithm 3 shows sampling method A for the approximate solution vector.<sup>33</sup> In the algorithm, *i* is the iteration count and *m* is the number of sample vectors. We set parameter  $l_{\text{max}}$  to satisfy  $m^{l_{\text{max}}} > N_{\text{max}}$ , where  $N_{\text{max}}$  is the preset maximum iteration count of the solver.

## Algorithm 3. Selection of approximate solution vectors

```
h = 1
for i = 1, 2, ... do
Solver part
Convergence check
if (mod(i, h) == 0) then
i_t = \sum_{l=0}^{l_{max}} (-1)^l \lfloor (i-1)/m^l \rfloor
s = mod(i_t, m) + 1
\tilde{\mathbf{x}}^{(s)} = \tilde{\mathbf{x}}_i
if (i == h * m) then
h = h * 2
end if
end if
end for
```

WILEY

# APPENDIX B. CONSTANTS IN THE COST MODEL OF THE ICCG AND SC-ICCG SOLVERS

In this appendix, we describe some details of the cost models of the ICCG and SC-ICCG solvers, which are based on the amount of data transferred from main memory. In the solvers, we use 32-bit integers and double precision (64-bit) floating-point arithmetic and data.

# B.1 CG method

26 of 26

The main kernel of the CG solver is a SpMV kernel. In this study, we implement the SpMV kernel using the standard compressed sparse row format. In this implementation, the data transferred for the coefficient matrix consist of an integer array of size *n* for the row pointers, an integer array of size *nnz* for the column indices, and a floating-point array of size *nnz* for the matrix element values. Consequently, 4n + 12nnz Bytes of data are transferred from memory for the coefficient matrix. Regarding the amount of data transferred for the source vector, we use an optimistic estimation. Namely, we assume full utilization of the cache memory for the vector. Accordingly, each element of the source vector is loaded from main memory only once. Moreover, each element of the resultant vector is stored in main memory. Consequently, the amount of data transferred for the source and resultant vectors is estimated to be 16*n* Bytes. In total, the amount of data transferred for the SpMV is estimated to be 20n + 12nnz.

We estimate the amount of data transferred for other parts of the CG solver that consist of inner products and vector updates as 56n, though it depends on the implementation. Accordingly, the cost for one CG iteration is given by 76n + 12nnz Bytes.

# **B.2 IC preconditioning**

The additional cost for IC preconditioning in each iteration is given by the forward and backward substitutions. When we use IC(0) preconditioning, the number of nonzero elements is the same as that of the coefficient matrix. Accordingly, the amount of data transferred for the preconditioning matrix in the substitutions is almost the same as that for SpMV. However, the kernel of the substitutions needs one more row-pointer array, because the lower and upper triangular matrices are separately processed. Considering this factor (4*n* Bytes), the cost of an IC preconditioning step is estimated to be 24n + 12nnz. Consequently, the cost for one ICCG iteration is given by 100n + 24nnz Bytes.

# **B.3 SC preconditioning**

The dominant part of the computational cost of an SC preconditioning step is given by two dense matrix vector products using  $\boldsymbol{W}$  and  $\boldsymbol{W}^{T}$ . Because the size of  $\boldsymbol{W}$  is  $n \times \tilde{m}$ , the amount of data transferred for these matrices is given by 16 $\tilde{m}n$  Bytes. Considering the data needed for the source and resultant vectors, the cost for an SC preconditioning step is estimated to be 16n + 16 $\tilde{m}n$ . Consequently, the cost of an SC-ICCG iteration is given by 116n + 16 $\tilde{m}n$  + 24nnz Bytes.