
Received: 12 July 2022 Revised: 5 April 2023 Accepted: 12 May 2023

DOI: 10.1002/nla.2512

R E S E A R C H A R T I C L E

Convergence acceleration of preconditioned conjugate
gradient solver based on error vector sampling
for a sequence of linear systems

Takeshi Iwashita1 Kota Ikehara2 Takeshi Fukaya1 Takeshi Mifune3

1Information Initiative Center, Hokkaido
University, Sapporo, Japan
2Graduate School of Information Science
and Technology, Hokkaido University,
Sapporo, Japan
3Graduate School of Engineering, Kyoto
University, Kyoto, Japan

Correspondence
Takeshi Iwashita, Information Initiative
Center, Hokkaido University, N 11 W 5,
Sapporo, Japan.
Email: iwashita@iic.hokudai.ac.jp

Funding information
Japan Society for the Promotion of Science,
Grant/Award Numbers: JP19H04122,
JP19H05662, JP20K21782, JP23H00462

Abstract
In this article, we focus on solving a sequence of linear systems that have
identical (or similar) coefficient matrices. For this type of problem, we inves-
tigate subspace correction (SC) and deflation methods, which use an auxiliary
matrix (subspace) to accelerate the convergence of the iterative method. In prac-
tical simulations, these acceleration methods typically work well when the range
of the auxiliary matrix contains eigenspaces corresponding to small eigenvalues
of the coefficient matrix. We develop a new algebraic auxiliary matrix construc-
tion method based on error vector sampling in which eigenvectors with small
eigenvalues are efficiently identified in the solution process. We use the gener-
ated auxiliary matrix for convergence acceleration in the following solution step.
Numerical tests confirm that both SC and deflation methods with the auxiliary
matrix can accelerate the solution process of the iterative solver. Furthermore,
we examine the applicability of our technique to the estimation of the con-
dition number of the coefficient matrix. We also present the algorithm of the
preconditioned conjugate gradient method with condition number estimation.

K E Y W O R D S

condition number estimation, conjugate gradient method, deflation, subspace correction, vector
sampling

1 INTRODUCTION

A preconditioned conjugate gradient (CG) solver is widely used to solve a linear system of equations of a symmetric
positive-definite (s.p.d.) matrix that arises in various applications. The computational time to solution is mostly given
by the product of the number of iterations for convergence and the computational time per iteration. High performance
and parallel computing techniques are effective for reducing the computational time per iteration, and the convergence
acceleration of the solver is also an important topic. The convergence rate of the CG solver is affected by the condition
number or the eigenvalue distribution of the coefficient matrix. In practical simulations, the coefficient matrix often has a
few small isolated eigenvalues, which lead to a significant decline in convergence. For these problems, subspace correction
(SC)1 and deflation2 methods are widely used to improve the convergence rate of the iterative solver.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2023 The Authors. Numerical Linear Algebra with Applications published by John Wiley & Sons Ltd.

Numer Linear Algebra Appl. 2023;30:e2512. wileyonlinelibrary.com/journal/nla 1 of 26
https://doi.org/10.1002/nla.2512

https://orcid.org/0000-0003-1938-1723
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/NLA
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnla.2512&domain=pdf&date_stamp=2023-05-31

2 of 26 IWASHITA et al.

The procedures of SC and deflation involve using an auxiliary matrix to specify a certain subspace, in which errors
are efficiently removed. Therefore, an appropriate setting of the auxiliary matrix (subspace) is key to making these accel-
eration methods work well. For example, when the range of the matrix contains the eigenspaces corresponding to small
isolated eigenvalues, the convergence rate of the solver is expected to be improved by the acceleration methods. How-
ever, it is difficult to identify these eigenspaces. Accordingly, in practical simulations, an effective auxiliary matrix is often
derived from information about the problem. For example, coarse grid correction in the multigrid method,3,4 which is
regarded as one of the most successful SC methods, uses the characteristics of discretized PDE problems. Other exam-
ples of the auxiliary matrix or the subspace that is determined based on physics or models can be seen in the literature.5-9

However, there are many cases in which the eigenvector with a small eigenvalue cannot be easily identified from infor-
mation about the problem. For these problems, an automatic (algebraic) auxiliary matrix construction method that does
not use special knowledge of the problem has been investigated.

In this article, we introduce an algebraic auxiliary matrix construction method for a problem that involves a sequence
of linear systems to be solved. When the coefficient matrices are identical, it is often called a multiple right-hand side
problem. In our method, we construct an auxiliary matrix to specify the subspace using the sampling of error vectors in
the preceding iterative solution process. The idea is based on the expectation that the error that is not efficiently removed
in the solution process contains useful information about the eigenvectors associated with small eigenvalues.10 Although
error vector sampling during the solution process may seem difficult, we can implement it by sampling the approximate
solution vectors for the targeted problem. When the solution process is complete, we can easily calculate the corre-
sponding error vectors. We apply the Rayleigh–Ritz method using the subspace spanned by these error vectors to obtain
(approximate) eigenvectors associated with small eigenvalues. In our technique, sampling plays a key role in saving the
additional memory footprint and computations for SC and deflation, which is essential for many practical applications.

In this paragraph, we describe related works on algebraic auxiliary matrix construction for convergence acceleration
methods. Many related works can be found in the context of recycling the Krylov subspace, deflation, the augmented
Krylov subspace, subspace recycling, and spectral preconditioning. After some early activities on deflation and augmen-
tation in a GMRES solver,11-13 Morgan proposed the GMRES-DR method. In the method, basis vectors generated in the
Arnoldi process in the restart period are used to determine the subspace used for deflation.14 Morgan et al. also introduced
some variants of the GMRES-DR method which includes an application to the flexible GMRES method.15,16 Carpenter
described five major methods to specify the subspace (enrichment vectors) in the context of solvers based on the GMRES
method.17 For CG solvers, Saad et al. introduced the deflated Lanczos algorithm and developed the deflated-CG method.18

In this method, the vectors (subspace) used for deflation are based on A-orthogonal basis vectors and are updated in
multiple linear system solution steps. Abdel-Rehim et al. introduced the deflated restarted Lanczos algorithm.19 The tech-
niques mentioned above were enhanced for nonlinear application problems, for example, in further research.20,21 As a
recently published study, we refer to the paper22 in which Daas et al. introduced a method based on singular value decom-
position. Moreover, we note that a block Krylov method can be used together with convergence acceleration methods,
although it is a popular technique for a multiple right-hand side problem in itself.23 Finally, we refer to a recent survey
paper by Soodhalter et al.24 The paper provides a comprehensive review of subspace recycling techniques and possibly
covers most of works related to our research. For other related works that were not introduced in Reference 24, we refer
to convergence acceleration techniques for AMG solvers.25-29 These techniques intelligently identify (approximate) near
kernel vectors using coarse grids and use for the convergence acceleration.

To the best of our knowledge, the above related papers do not explicitly discuss our approach, which is based on error
vector sampling, especially for a preconditioned CG solver. For example, the methods introduced in References 30 and 31
focus on the GMRES method and are different from our method, though they use approximate error vectors. In this arti-
cle, we describe the auxiliary matrix construction method based on vector sampling for subspace preconditioning and the
deflation method. We also introduce a cost model for convergence acceleration. Finally, we report the numerical results
using test matrices in various application areas that we derived from the SuiteSparse Matrix Collection,32 although, in
our preliminary analyses, we only considered two computational electromagnetic problems.33 The numerical results con-
firmed the effectiveness of our method in terms of convergence (# iterations) and computational time. The numerical
tests also verified our cost model and demonstrated how the small eigenvalues were captured. Furthermore, we demon-
strated that our method can be used for condition number estimation without significant additional computations in the
iterative solution process.

This article is structured as follows: In Section 2, we introduce the target problem in this article. In Section 3, we
introduce SC preconditioning and the deflation method to accelerate the convergence of iterative solvers. In Section 4, we
explain our auxiliary matrix construction method using error vector sampling. We also introduce the cost models for the

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

IWASHITA et al. 3 of 26

convergence acceleration technique and auxiliary matrix construction. In Section 5, we discuss the numerical results. In
Section 6, we provide a summary of this study.

2 PROBLEM DEFINITION

In this article, we consider solving a sequence of n-dimensional linear systems:

Akxk = bk, (k = 1, 2, … , kt), (1)

where the coefficient matrix Ak ∈ Rn×n is a real s.p.d. matrix. We assume that the right-hand side vector bk ∈ Rn depends
on the previous solution vectors. Consequently, we solve the linear systems sequentially. In this article, we discuss the
case in which the coefficient matrices are all identical:

Ak = A, (k = 1, 2, … , kt). (2)

However, we expect that the technique introduced in the following sections will work when the coefficient matrix
changes, but not dramatically. More precisely, when the coefficient matrices have identical eigenvectors associated with
small eigenvalues, the technique is possibly effective. We solve the linear system of equations (1) using a preconditioned
CG solver.

3 CONVERGENCE ACCELERATION FOR ITERATIVE LINEAR SOLVERS

3.1 Convergence acceleration methods

In an iterative linear solver, its convergence rate directly affects the solution time. We focus on convergence acceleration
methods that use a (user-specified) subspace different from the subspace designated by the coefficient matrix, such as
the Krylov subspace. In these methods, the dimension of the subspace used is typically much smaller than n, and the
error component involved in the subspace is efficiently removed using a special procedure. A multigrid method can be
regarded as a typical example of this type of convergence acceleration method. In this article, we discuss SC and deflation
methods, both of which use a user-specified subspace to accelerate convergence.

3.2 Subspace correction method

SC is a generalized version of the coarse grid correction of the multigrid method. We describe its procedure for an
n-dimensional linear system; Ax = b, where x ∈ Rn is the unknown vector, and b ∈ Rn is the right-hand-side vector.

In the SC method, an approximate solution vector x̃ is updated as follows:

1. Step 1: Compute f = W⊤(b − Ax̃).
2. Step 2: Solve (W⊤AW)u = f.
3. Step 3: Update x̃ ← x̃ +Wu.

W is the auxiliary matrix used to designate the user-specified subspace. The number of columns of W is typically
much less than n.

When we use the SC method together with a Krylov subspace method, we construct the preconditioner based on
the correction similar to the multigrid (two-level) preconditioning.3 SC preconditioning1 can be combined with any
other (standard) preconditioning technique in the additive/multiplicative Schwarz preconditioning manner. When the
stand-alone preconditioner is denoted by M−1, the additive Schwarz SC preconditioner M−1

sc is given by

M−1
sc = M−1 +W(W⊤AW)−1W⊤

. (3)

When only subspace preconditioning is used, M is given by the identity matrix I.

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

4 of 26 IWASHITA et al.

3.3 Deflation method

In this section, we describe the procedure of the deflated CG method18 for Ax = b. In the deflation method, we use the
projector given by

P = I −W(W⊤AW)−1(AW)⊤. (4)

P decomposes n-dimensional space Rn into two A-orthogonal spaces and⊥. Using the projector, we can split solution
vector x into two components:

x = y + z, y = (I − P)x, z = Px. (5)

In the deflation method, we calculate two vector components y and z individually. Vector y is in lower-dimensional space
range(W) and is given by

y = (I − P)x = W(W⊤AW)−1W⊤b. (6)

Because P⊤A(I − P) = O holds, we compute the second component z by solving the deflated system

P⊤Az = P⊤b. (7)

In this article, we solve the deflated system with a semi-positive definite coefficient matrix (7) using a preconditioned CG
solver. Algorithm 1 shows the algorithm of the deflated CG method. We note that projector P is not explicitly constructed
in practical implementations.

Algorithm 1. Deflated PCG method

Input: A, b, M, W , P, x0, 𝜀
1: r0 = P⊤(b − Ax0)
2: p0 = M−1r0
3: for i = 0, 1, 2,… until ‖ri‖2 ≤ 𝜀‖b‖2 do

4: 𝛼i =
(M−1ri, ri)
(pi,P⊤Api)

5: xi+1 = xi + 𝛼ipi
6: ri+1 = ri − 𝛼iP⊤Api

7: 𝛽i = −
(M−1ri+1, ri+1)
(M−1ri, ri)

8: pi+1 = M−1ri+1 + 𝛽ipi
9: end for

10: x = Pxi +W(W⊤AW)−1W⊤b
Output: x

4 AUXILIARY MATRIX CONSTRUCTION METHOD BASED ON ERROR
VECTOR SAMPLING

4.1 Auxiliary matrix based on eigenvectors

In SC and deflation methods, the key to convergence acceleration is the proper setting of the auxiliary matrix W . Typically,
when the range of W contains eigenspaces corresponding to small eigenvalues of the coefficient matrix, the methods work.
In practical problems, a coefficient matrix often has a few isolated small eigenvalues, which worsens the convergence of
the iterative solver. These eigenvalues typically arise from the physical property of the targeted problem.

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

IWASHITA et al. 5 of 26

For a simple example, we consider the case that W is an n × 1 matrix and W = [us], where us is the eigenvector asso-
ciated with the smallest eigenvalue 𝜆s. We assume that 𝜆s ≪ 1 and is isolated. We also assume that the coefficient matrix
has an eigenvalue close to or larger than 1. In this case, SC preconditioning M−1

sc with M = I only shifts the eigenvalue 𝜆s
to 𝜆s+1; that is, the preconditioned coefficient matrix has an eigenvalue of 𝜆s+1 and n − 1 eigenvalues that are identical
to those of A and larger than 𝜆s. Consequently, the condition number of the preconditioned coefficient matrix is better
than that of A, which results in better convergence for the preconditioned system.

When we use the deflation method with the above setting for W , 𝜆s is removed in the coefficient matrix of (7), P⊤A.
P⊤A has a zero eigenvalue which is associated with us, and other eigenvalues and eigenvectors are the same as A. The
(preconditioned) CG method can be applied to (7) because P⊤b is involved in range(P⊤A), and its convergence rate is
improved from that for the original linear system, Ax = b.

The above discussion is straightforwardly extended to the case that W consists of multiple eigenvectors associated with
small eigenvalues. However, calculation of eigenvalues and eigenvectors typically requires more computational efforts
than solving the linear system itself. Consequently, in practical simulations, the knowledge of the problem is often used
for identifying the eigenvectors associated with small eigenvalues and constructing a proper auxiliary matrix. But, there
are problems in which the origin of the small eigenvalue is unclear from the viewpoint of physics or simulation models.
In this article, we focus on a problem of solving a sequence of linear systems, and intend to develop an automatic auxiliary
matrix construction method for the problem.

4.2 Auxiliary matrix construction method based on error vector sampling

In this section, we describe our auxiliary matrix construction method based on error vector sampling for a sequence of
linear systems (1). During the first iterative solution process for Ax1 = b1, we preserve m approximate solution vectors
x̃(s)1 (s = 1, 2, … ,m). Typically, m is much smaller than n. When the solution process is complete, we obtain the solution
vector x1. Consequently, we can calculate the exact error vectors that correspond to x̃(s)1 using

e(s) = x1 − x̃(s)1 (s = 1, 2, … ,m). (8)

Applying the Gram–Schmidt process to these error vectors, we obtain the mutually orthogonal m(≤ m) normal basis
vectors:

e(1), e(2), … , e(m). (9)

In our technique, we use the Rayleigh–Ritz method based on the space spanned by e(s) to identify approximate
eigenvectors associated with small eigenvalues of A.

The auxiliary matrix construction method is given as follows:
Step 1: Solve the m-dimensional eigenvalue problem 2:

E⊤AEt = 𝜆t, (10)

where

E = [e(1) e(2) · · · e(m)]. (11)

Step 2: When the Ritz value 𝜆 is less than the preset threshold 𝜃, adopt Ritz vector Et as a column vector of W . The
number of Ritz values less than 𝜃 is denoted by m̃, and the Ritz vector that corresponds to each small Ritz value is written
as Eti(i = 1, 2, … , m̃). Finally, the auxiliary matrix W is given by

W = [Et1 Et2 · · · Etm̃]. (12)

The threshold is typically much less than 1; that is, (0 < 𝜃 ≪ 1) when the coefficient matrix is diagonally (or properly)
scaled.

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

6 of 26 IWASHITA et al.

4.3 Selection method for stored approximate solution vectors

In practical analyses, to avoid an excessive additional cost (in memory space and computations), the number of stored
vectors, m, should be substantially small. We use a selection method based on “sampling.” We store approximate solution
vectors with a certain interval in the solution process. Considering the difficulty of predicting the number of iterations
for convergence, we use the following two methods for sampling. In sampling method A, we use the algorithm shown
in Appendix A. When we set m to 4 and the (preconditioned) CG solver attains convergence at the 1000th iteration, the
sampling method preserves the approximate solution vectors at 256, 384, 512, and 768th iterations. The other method
(sampling method B) is based on the relative residual norm. We take a sample of approximate solution vectors when the
relative residual norm first reaches 10−s𝛼∕(m+1)

, (s = 1, 2, … ,m), when the convergence criterion is given by 10−𝛼 . Based
on the preliminary test results, we use sampling method A when we do not explicitly mention the sampling method.

4.4 Computational cost for subspace correction preconditioning and deflation

In this section, we discuss the additional computational cost for two convergence acceleration techniques. We split the
computational time per iteration of preconditioned CG solver T into two parts:

T = Tpre + Tcg, (13)

where Tpre and Tcg are the computational time for the preconditioning and CG solver parts, respectively. Because the
total data amount for matrices and vectors is typically larger than the cache memory in practical simulations, most of the
computational kernels of the solver become memory bound. Consequently, we estimate the computational time using the
amount of transferred data from the main memory. In the analysis, we use double precision floating point numbers for
matrices and vectors. The main part of the CG solver is a sparse matrix vector multiplication (SpMV) kernel. We estimate
the amount of transferred data for SpMV as 20n + 12nnz, where nnz is the number of nonzero elements of A and the
unit is byte. Although the cache hit ratio for elements of the source vector depends on the nonzero pattern of A, we use a
relatively optimistic estimation. We estimate the transferred data for other parts that consist of inner products and vector
updates as 56n. When the effective memory bandwidth is denoted by bm Byte/s, Tcg is estimated as

Tcg = (76n + 12nnz)∕bm. (14)

When we use IC preconditioning, the transferred data for preconditioning is almost the same as that for SpMV. Finally,
the computational time for an incomplete Cholesky CG (ICCG) iteration that is denoted by Ticcg is approximately given by

Ticcg = (100n + 24nnz)∕bm. (15)

When we consider SC preconditioning, the additional cost for W(W⊤AW)−1W⊤ should be taken into account. In the
estimation, we ignore the cost for (W⊤AW)−1 because the dimension m̃ is much smaller than n for the setting of m ≪ n.
The additional transferred data for the SC preconditioning is mainly for the n × m̃ dense matrix W , and we estimate it as
16m̃n + 16n. When we use SC preconditioning together with IC preconditioning, we estimate the computational time for
an SC-ICCG iteration that is denoted by Tsciccg as

Tsciccg = (116n + 16m̃n + 24nnz)∕bm. (16)

From (15) and (16), we can (roughly) estimate the ratio of the computational cost per iteration for two solvers, SC-ICCG
and ICCG, which is denoted by 𝛾sciccg, as follows:

𝛾sciccg = (116 + 16m̃ + 24nnzav)∕(100 + 24nnzav), (17)

where nnzav is the average number of nonzero elements per row. When the number of iterations of SC-ICCG is less than
1∕𝛾sciccg that of ICCG, we expect SC-ICCG to outperform ICCG. More details of the cost models are given in Appendix B.

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

IWASHITA et al. 7 of 26

T A B L E 1 Matrix information for the test problems.

Data set Problem type Dimension # nonzero nnzav

Queen_4147 2D/3D problem 4,147,110 316,548,962 76.3

Bump_2911 2D/3D problem 2,911,419 127,729,899 43.9

G3_circuit Circuit simulation problem 1,585,478 7,660,826 4.8

Flan_1565 Structural problem 1,564,794 114,165,372 73.0

Hook_1498 Structural problem 1,498,023 59,374,451 40.0

StocF-1465 Computational fluid dynamics problem 1,465,137 21,005,389 14.3

Geo_1438 Structural problem 1,437,960 60,236,322 41.9

Serena Structural problem 1,391,349 64,131,971 46.1

thermal2 Thermal problem 1,228,045 8,580,313 7.0

ecology2 2D/3D problem 999,999 4,995,991 5.0

bone010 Model reduction problem 986,703 47,851,783 48.5

ldoor Structural problem 952,203 42,493,817 44.6

audikw_1 Structural problem 943,695 77,651,847 82.3

Emilia_923 Structural PROBLEM 923,136 40,373,538 43.7

boneS10 Model Reduction problem 914,898 40,878,708 44.7

PFlow_742 2D/3D problem 742,793 37,138,461 50.0

tmt_sym Electromagnetics problem 726,713 5,080,961 7.0

apache2 Structural problem 715,176 4,817,870 6.7

Fault_639 Structural problem 638,802 27,245,944 42.7

parabolic_fem Computational fluid dynamics problem 525,825 3,674,625 7.0

bundle_adj Computer vision problem 513,351 20,207,907 39.4

af_shell8 Subsequent structural problem 504,855 17,579,155 34.8

af_shell4 Subsequent structural problem 504,855 17,562,051 34.8

af_shell3 Subsequent structural problem 504,855 17,562,051 34.8

af_shell7 Subsequent structural problem 504,855 17,579,155 34.8

inline_1 Structural problem 503,712 36,816,170 73.1

af_0_k101 Structural problem 503,625 17,550,675 34.8

af_4_k101 Structural problem 503,625 17,550,675 34.8

af_3_k101 Structural problem 503,625 17,550,675 34.8

af_2_k101 Structural problem 503,625 17,550,675 34.8

Next, we consider the deflation method. When we use the deflation method, the additional cost is in calculating P⊤A.
We estimate the data transferred for P⊤A to be almost the same as that for SC preconditioning because both AW and W
are dense matrices of identical size. Consequently, we can use (17) for the ICCG solver with deflation.

Based on our expectation for the reduction of the iteration count and (17), we can set the number of sample vectors, m.
For example, when we expect a 40% reduction as a result of using the convergence acceleration method for the problem
of nnzav = 30, m̃(≤ m) should be less than 20.

Next, we discuss the setup cost for the auxiliary matrices. The dominant part of the cost is given by the Gram–Schmidt
process, the m̃ times sparse matrix-vector multiplication for AE, the dense matrix-matrix product of E⊤ and (AE), and
the dense matrix-vector product for (12). Because m̃ is typically much smaller than n, the cost to solve the m̃-dimensional
eigenvalue problem is negligible compared with the computational costs for the above four kernels. Because the kernel

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

8 of 26 IWASHITA et al.

T A B L E 2 Numerical results (sequential solver, b = (1, 1, … , 1)⊤).

Queen_4147 Bump_2911 G3_circuit Flan_1565 Hook_1498

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 3128 2763 - 1551 584 - 898 44.8 - 3124 996 - 1617 287

ES-SC-ICCG 10−3 20 995 1039 20 526 249 18 705 70.1 20 1082 398 20 472 108

10−4 19 2041 2121 18 824 382 9 707 54.8 19 1212 449 13 676 144

10−5 7 2816 2667 5 1118 445 1 887 49.6 8 1766 596 5 1080 209

ES-D-ICCG 10−3 20 993 1036 20 459 218 18 702 70.1 20 942 347 20 469 108

10−4 19 2044 2120 18 821 381 9 706 54.1 19 1213 443 13 675 144

10−5 7 2818 2670 5 1117 449 1 887 49.8 8 1762 595 5 1078 209

StocF-1465 Geo_1438 Serena thermal2 ecology2

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 56,109 4741 - 443 79.6 - 301 55.7 - 2281 141 - 1823 49.7

ES-SC-ICCG 10−3 20 14,780 2011 15 248 58.2 7 243 49.6 20 849 89 20 813 50.1

10−4 20 14,775 2001 2 387 72.5 0 - - 17 994 99 15 902 48.5

10−5 20 14,775 1998 0 - - 0 - - 4 1523 111 5 1329 50.3

ES-D-ICCG 10−3 20 14,731 1992 15 248 55.9 7 242 49.5 20 847 89 20 808 49.9

10−4 20 14,717 1988 2 386 72.9 0 - - 17 992 99 15 899 48.3

10−5 20 14,717 2001 0 - - 0 - - 4 1519 111 5 1328 49.7

bone010 ldoor audikw_1 Emilia_923 boneS10

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 4162 801 - 2160 293 - 2629 583 - 462 53.6 - 8532 1275

ES-SC-ICCG 10−3 20 943 213 20 658 111 20 745 185 20 218 32.2 20 2688 486

10−4 18 967 216 16 1073 174 9 1138 265 19 266 38.9 20 2688 487

10−5 13 1302 280 3 1663 238 4 1521 343 5 373 46.5 20 2688 488

ES-D-ICCG 10−3 20 935 211 20 655 110 20 756 188 20 201 29.7 20 2682 485

10−4 18 962 215 16 1072 173 9 1084 253 19 265 38.9 20 2682 485

10−5 13 1293 278 3 1662 237 4 1586 358 5 374 46.8 20 2682 486

PFlow_742 tmt_sym apache2 Fault_639 parabolic_fem

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 33,076 3357 - 1252 35.9 - 768 16.5 - 2187 177 - 1131 18.9

ES-SC-ICCG 10−3 20 10,359 1299 20 507 27.0 19 359 16.0 20 806 83 18 671 22.4

10−4 20 10,360 1299 15 613 29.3 12 429 15.7 15 1366 134 7 862 20.7

10−5 20 10,359 1299 3 1013 34.7 2 663 17.1 4 1905 164 0 - -

ES-D-ICCG 10−3 20 10,269 1287 20 501 26.5 19 360 16.3 20 798 82 18 670 22.3

10−4 20 10,269 1287 15 610 29.1 12 428 15.8 15 1364 133 7 861 20.7

10−5 20 10,269 1285 3 1011 33.9 2 662 16.8 4 1901 164 0 - -

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

IWASHITA et al. 9 of 26

T A B L E 2 Continued

bundle_adj af_shell8 af_shell4 af_shell3 af_shell7

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 42,809 2275 - 1048 52.0 - 1048 52.0 - 1048 52.3 - 1048 53.0

ES-SC-ICCG 10−3 20 11,705 824 18 483 31.4 18 481 31.1 18 481 31.4 18 483 31.5

10−4 18 11,533 793 9 614 35.8 9 615 35.3 9 615 35.7 9 614 35.5

10−5 17 11,460 781 0 - - 0 - - 0 - - 0 - -

ES-D-ICCG 10−3 20 9740 686 18 481 31.4 18 479 31.0 18 479 31.4 18 481 31.5

10−4 18 10,117 698 9 613 35.4 9 615 35.5 9 615 35.7 9 613 35.6

10−5 17 10,532 717 0 - - 0 - - 0 - - 0 - -

inline_1 af_0_k101 af_4_k101 af_3_k101 af_2_k101

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 8487 879 - 12,953 636 - 9993 489 - 8519 423 - 13,092 648

ES-SC-ICCG 10−3 20 2573 311 20 4153 276 20 3093 204 20 2632 176 20 4194 279

10−4 20 2572 310 20 4153 276 20 3094 204 20 2633 176 20 4194 279

10−5 19 2573 309 20 4153 275 20 3094 204 20 2632 176 20 4194 278

ES-D-ICCG 10−3 20 2570 311 20 4150 275 20 3085 203 20 2624 175 20 4189 279

10−4 20 2571 311 20 4150 276 20 3086 203 20 2629 175 20 4189 278

10−5 19 2571 309 20 4150 275 20 3086 204 20 2624 175 20 4189 279

of the Gram–Schmidt process is computationally bounded, its computational time TGS is estimated by

TGS = 2nm2∕f , (18)

where f is the FLOPS of the processing core. The matrix-vector multiplication kernel is typically memory bound.
Accordingly, the computational time for the SpMV is estimated by

TAE = (12n + 12nnz)m̃∕bm. (19)

Moreover, the computational time for (12) is estimated by

TW = (8n + 8m̃n)∕bm. (20)

The matrix-matrix multiplication kernel is computationally bound, and its computational time is estimated by

TE⊤AE = 2nm̃2∕f . (21)

Consequently, the computational time for the auxiliary matrix setup, TAM , is estimated by

TAM = TGS + TAE + TW + TE⊤AE (22)

= 2n(m̃2 +m2)∕f + (8n + 20m̃n + 12m̃ ⋅ nnz)∕bm. (23)

On a recent computer system, the BYTE/FLOPS ratio (= bm∕f) is typically less than 0.1. For example, the ratio for the
system used in the numerical test was 0.087. Consequently, we assume that f = 10bm. Moreover, for simplicity, we assume
that m̃ = m = 20 and nnzav = 30. From (15) and (23), for these settings, the computational cost for the setup is comparable
with that for ten ICCG iterations. Because it is not rare that the number of iterations exceeds several hundred for a practical
engineering problem and kt is typically not small, the setup cost can be amortized in the following solution steps.

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

10 of 26 IWASHITA et al.

T A B L E 3 Numerical results (sequential solver, b: random vector).

Queen_4147 Bump_2911 G3_circuit Flan_1565 Hook_1498

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - - 3140 2776 - 1544 564 - 926 46.1 - 3196 1010 - 1613 282

ES-SC-ICCG 10−3 20 2546 2648 20 906 428 19 865 88.8 20 1013 372 20 554 127

10−4 19 2566 2652 17 921 422 10 891 70.6 19 1048 382 13 672 143

10−5 7 2783 2626 5 1114 441 0 - - 9 1524 518 5 1076 208

ES-D-ICCG 10−3 20 2542 2652 20 900 424 19 863 88.2 20 1011 372 20 553 126

10−4 19 2561 2654 17 917 418 10 890 70.2 19 1048 383 13 671 141

10−5 7 2779 2630 5 1113 439 0 - - 9 1523 517 5 1075 206

StocF-1465 Geo_1438 Serena thermal2 ecology2

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 55,799 4714 - 441 81.3 - 299 58.1 - 2261 141 - 1902 51.7

ES-SC-ICCG 10−3 20 29,693 4001 15 252 54.7 7 242 49.1 20 959 101 20 853 52.5

10−4 20 29,693 4011 2 385 71.9 0 - - 17 1020 101 16 933 51.5

10−5 20 29,693 4007 0 - - 0 - - 4 1526 112 5 1268 47.8

ES-D-ICCG 10−3 20 29,600 3990 15 251 55.1 7 241 49.6 20 957 100 20 850 52.2

10−4 20 29,600 3993 2 384 72.3 0 - - 17 1019 101 16 930 51.2

10−5 20 29,600 4002 0 - - 0 - - 4 1524 111 5 1267 47.4

bone010 ldoor audikw_1 Emilia_923 boneS10

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 4189 804 - 2143 293 - 2420 533 - 459 54 - 8515 1274

ES-SC-ICCG 10−3 20 996 225 20 1230 208 19 858 214 20 266 39 20 2733 492

10−4 17 1060 234 16 1259 204 8 1220 284 18 276 40 20 2733 494

10−5 13 1288 277 3 1649 236 4 1604 364 5 371 46 20 2733 494

ES-D-ICCG 10−3 20 989 221 20 1227 206 19 861 214 20 267 40 20 2728 490

10−4 17 1053 231 16 1256 203 8 1207 280 18 276 40 20 2728 490

10−5 13 1281 273 3 1648 234 4 1579 356 5 370 47 20 2728 490

PFlow_742 tmt_sym apache2 Fault_639 parabolic_fem

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 32,971 3311 - 1256 35.8 - 770 16.8 - 2172 176 - 1208 20.1

ES-SC-ICCG 10−3 20 14,148 1774 20 562 29.8 20 342 15.7 20 1601 162 18 835 27.6

10−4 20 14,148 1772 15 617 29.5 12 445 16.4 16 1629 159 9 889 22.8

10−5 20 14,148 1769 3 1002 33.9 2 653 16.7 4 1899 162 0 - -

ES-D-ICCG 10−3 20 14,042 1758 20 556 29.8 20 341 15.7 20 1595 163 18 833 27.6

10−4 20 14,042 1758 15 614 29.5 12 444 16.4 16 1623 159 9 888 22.6

10−5 20 14,042 1754 3 1000 33.8 2 653 16.6 4 1896 162 0 - -

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

IWASHITA et al. 11 of 26

T A B L E 3 Continued

bundle_adj af_shell8 af_shell4 af_shell3 af_shell7

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 43,578 2325 - 1038 51.2 - 1039 51.7 - 1039 51.1 - 1038 51.6

ES-SC-ICCG 10−3 20 11,997 846 18 510 32.8 18 513 33.5 18 513 33.2 18 510 33.2

10−4 19 11,394 795 9 606 34.9 9 602 34.9 9 602 34.7 9 606 35.2

10−5 19 11,394 795 0 - - 0 - - 0 - - 0 - -

ES-D-ICCG 10−3 20 10,110 711 18 508 33.0 18 511 33.4 18 511 33.1 18 508 33.1

10−4 19 10,030 700 9 605 34.9 9 601 34.9 9 601 34.7 9 605 35.1

10−5 19 10,030 698 0 - - 0 - - 0 - - 0 - -

inline_1 af_0_k101 af_4_k101 af_3_k101 af_2_k101

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 8464 870 - 12,961 641 - 9974 495 - 8501 420 - 12,970 641

ES-SC-ICCG 10−3 20 2686 324 20 5657 372 20 3582 238 20 2680 177 20 5413 361

10−4 20 2686 324 20 5657 372 20 3582 238 20 2680 177 20 5413 360

10−5 19 2686 322 20 5657 372 20 3582 238 20 2680 177 20 5413 360

ES-D-ICCG 10−3 20 2683 324 20 5649 376 20 3575 238 20 2676 177 20 5409 356

10−4 20 2683 324 20 5649 376 20 3575 238 20 2676 177 20 5409 356

10−5 19 2684 322 20 5649 376 20 3575 237 20 2676 177 20 5409 355

0

1

2

3

4

5

Queen_4147

Bump_2911

G3_circuit

Flan_1565

Hook_1498

StocF-1465

Geo_1438

Serena

thermal2

ecology2

bone010

ldoor
audikw_1

Emilia_923

boneS10

PFlow_742

tmt_sym

apache2

Fault_639

parabolic_fem

bundle_adj

af_shell8

af_shell4

af_shell3

af_shell7

inline_1

af_0_k101

af_4_k101

af_3_k101

af_2_k101

Sp
ee

du
p

in
 c

on
ve

rg
en

ce

ES-SC-ICCG
ES-D-ICCG

ICCG

F I G U R E 1 Speedup in convergence of ES-SC-ICCG and ES-D-ICCG over ICCG (b: random vector).

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

12 of 26 IWASHITA et al.

10-8

10-6

10-4

10-2

100

 0 400 800 1200 1600 2000 2400 2800 3200
R

el
at

iv
e

re
si

du
al

 n
or

m
Number of iterations

θ=10-3

θ=10-4

θ=10-5

ICCG

F I G U R E 2 Convergence behavior of ES-SC-ICCG (dataset: Flan_1565).

10-8

10-6

10-4

10-2

100

 0 400 800 1200 1600 2000 2400 2800 3200

R
el

at
iv

e
re

si
du

al
 n

or
m

Number of iterations

θ=10-3

θ=10-4

θ=10-5

ICCG

F I G U R E 3 Convergence behavior of ES-D-ICCG (dataset: Flan_1565).

10-8

10-6

10-4

10-2

100

 0 400 800 1200 1600

R
el

at
iv

e
re

si
du

al
 n

or
m

Number of iterations

θ=10-3

θ=10-4

θ=10-5

ICCG

F I G U R E 4 Convergence behavior of ES-SC-ICCG (dataset: Hook_1498).

5 NUMERICAL RESULTS

5.1 Test conditions

We conducted numerical tests to examine the effect of convergence acceleration methods (SC and deflation) based on our
algebraic auxiliary matrix generation method. For the test matrix, we downloaded 30 relatively large matrices from the
SuiteSparse Matrix Collection32 and applied the diagonal scaling to them. We selected s.p.d. matrices that were mainly

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

IWASHITA et al. 13 of 26

10-8

10-6

10-4

10-2

100

 0 400 800 1200 1600

R
el

at
iv

e
re

si
du

al
 n

or
m

Number of iterations

θ=10-3

θ=10-4

θ=10-5

ICCG

F I G U R E 5 Convergence behavior of ES-D-ICCG (dataset: Hook_1498).

0

1

2

3

4

Queen_4147

Bump_2911

G3_circuit

Flan_1565

Hook_1498

StocF-1465

Geo_1438

Serena

thermal2

ecology2

bone010

ldoor
audikw_1

Emilia_923

boneS10

PFlow_742

tmt_sym

apache2

Fault_639

parabolic_fem

bundle_adj

af_shell8

af_shell4

af_shell3

af_shell7

inline_1

af_0_k101

af_4_k101

af_3_k101

af_2_k101

Sp
ee

du
p

in
 s

ol
ut

io
n

tim
e

ES-SC-ICCG
ES-D-ICCG

ICCG

F I G U R E 6 Speedup in the computational time of ES-SC-ICCG and ES-D-ICCG over ICCG (b: random vector).

derived from computational science or engineering problems. Table 1 shows the properties of the test matrices. For each
coefficient matrix, we solved a linear system of equations six times. The convergence criterion was that the relative residual
2-norm was less than 10−8. When the first solution process was complete, we generated the auxiliary matrix and used it
in the following five solution processes, in which we evaluated the solver performance. For the right-hand side vector,
we used two types of vectors: a vector of ones and a random vector. In the former case, the linear systems used for the
auxiliary matrix generation and the evaluation were identical. When we used random vectors, we solved linear systems
of different right-hand side vectors. In this article, we report the results when we set the number of sampled vectors, m,
to 20.

We conducted numerical tests on a computational node of Fujitsu CX2550 (M4) at the Information Initiative Center,
Hokkaido University. The node is equipped with two Intel Xeon (Gold6148, Skylake) processors, each of which has 20
cores, and 384 GB memory. The program code was written in C and OpenMP directives were used for multi-threading.
Intel C compiler version 19.1.3.304 was used with the option of “-O3 -qopenmp -ipo -xCORE-AVX512.” In the tests for
parallel multithreaded solvers, we used 40 threads.

5.2 Numerical results for the sequential solver

5.2.1 Performance evaluation

Table 2 lists the numerical results for the standard ICCG solver and its variants with the introduced convergence acceler-
ation techniques when we used a vector of ones for the right-hand side. ES-SC-ICCG denotes the CG solver with IC and

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

14 of 26 IWASHITA et al.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 1.2 1.4 1.6 1.8 2 2.2 2.4
M

ea
su

re
d

va
lu

e
Estimation

Exact estimation
+5% error
-5% error

F I G U R E 7 Comparison of the estimated and measured values of ratio of the computational time of an ES-SC-ICCG or ES-D-ICCG
iteration to that of an ICCG iteration.

T A B L E 4 Solver performance using sampling method B (sequential solver, b = (1, 1, … , 1)⊤).

Flan_1565 Hook_1498

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt

ES-SC-ICCG 10−3 20 1584 586 15 1075 233

10−4 15 1927 690 7 1157 229

10−5 7 2094 706 4 1208 230

ES-D-ICCG 10−3 20 1579 585 15 1072 232

10−4 15 1925 687 7 1156 229

10−5 7 2093 704 5 1207 229

SC preconditioning based on the proposed error vector sampling method. ES-D-ICCG denotes the deflated ICCG solver
using our technique. The table shows the average computational time (s) for five solution steps, which is denoted by Tt.
Table 3 shows the results when we used random vectors for the right-hand side. The table shows the average number of
iterations and computational time for five solution steps. The numerical results indicate that both solvers based on the
proposed method achieved convergence acceleration for all 60 test cases (30 datasets × 2 types of right-hand side vec-
tors). The convergence acceleration was significant for some datasets. In the numerical tests using the vector of ones, the
acceleration method attained a more than three-fold speedup in convergence for 16 out of 30 datasets. Even when we
used random right-hand side vectors, convergence was more than twice as fast as that of the ICCG solver for 20 out of 30
datasets, as shown in Figure 1.

Figures 2–5 show the convergence behaviors of the ES-SC-ICCG and ES-D-ICCG solvers in the second solution step for
the Flan_1565 and Hook_1498 datasets when we used a random vector for the right-hand side. The figures also confirm
the effectiveness of SC and deflation based on our technique. The numerical results imply that the larger 𝜃 typically leads
to larger m̃ and better convergence. This characteristic is confirmed by the results listed in Tables 2 and 3. Figures 2–5
show that the convergence behaviors of the two solvers were identical, although each solver shifts small eigenvalues in
a different way.37 We examined the convergence behavior of the residual norm for all test cases and observed that the
convergence properties of the two solvers were almost the same for most test cases. This result indicates that the effects
of SC preconditioning and deflation are similar when the coefficient matrix is diagonally scaled and identical subspaces
that correspond to eigenvectors associated with small eigenvalues are used.

Next, we examine the computational time to solution. Table 2 shows that the solution time reduced in 28 out of 30
cases in the tests using the right-hand side vector of ones. For 16 datasets, the computational time of the solvers using our
technique (ES-SC-ICCG and ES-D-ICCG) reduced to less than half of that of the normal ICCG solver. The performance dif-
ference between the two solvers ES-SC-ICCG and ES-D-ICCG was marginal. In the numerical test using random vectors,
the computational time also reduced in 28 out of 30 cases. Table 3 and Figure 6 show the effectiveness of our technique
in the random vector test. In the tests, we did not attain performance improvement on the G3_circuit and parabolic_fem

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

IWASHITA et al. 15 of 26

10-5

10-4

10-3

10-2

10-1

100

101

0 100 200 300 400

Va
lu

es

 Index

Eigenvalues
Ritz values

F I G U R E 8 Comparison of eigenvalues and Ritz values (dataset: bcsstik06, n=420, m=20).

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0 100 200 300 400

Ab
so

lu
te

 v
al

ue
s

of
 in

ne
r p

ro
du

ct
s

 Index

F I G U R E 9 Absolute values of inner products, ||(ṽ1, vir)||, (ir = 1, … , 420).

datasets, which have relatively small nnzav values. In (17), 𝛾sciccg enlarged when nnzav decreased. This means that it
becomes difficult to obtain performance improvement in the solution time using SC preconditioning and the deflation
method; that is, for a dataset with a small nnzav value, the convergence rate should be substantially improved by the lim-
ited number of sample vectors to achieve solver performance improvement. In the numerical test, the ES-SC-ICCG and
ES-D-ICCG solvers obtained their best results for 12 out of 30 datasets when m̃ was equal to m (=20). For these datasets,
an increase in the number of sample vectors, m, possibly improves solver performance.

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

16 of 26 IWASHITA et al.

T A B L E 5 Numerical results of deflated CG solver in Reference 18.

Queen_4147 Bump_2911 G3_circuit Flan_1565 Hook_1498

#Ite. Tt #Ite. Tt #Ite. Tt #Ite. Tt #Ite. Tt

3118 2607 1534 532 879 47.7 3112 923 1599 271

StocF-1465 Geo_1438 Serena thermal2 ecology2

#Ite. Tt #Ite. Tt #Ite. Tt #Ite. Tt #Ite. Tt

56,175 4759 2083 150 282 50.2 2263 141 2148 110

bone010 ldoor audikw_1 Emilia_923 boneS10

#Ite. Tt #Ite. Tt #Ite. Tt #Ite. Tt #Ite. Tt

6277 1254 2141 306 2369 486 453 55.9 9993 1574

PFlow_742 tmt_sym apache2 Fault_639 parabolic_fem

#Ite. Tt #Ite. Tt #Ite. Tt #Ite. Tt #Ite. Tt

33,064 3161 1447 64.4 781 20.9 2168 171 1161 24.0

bundle_adj af_shell8 af_shell4 af_shell3 af_shell7

#Ite. Tt #Ite. Tt #Ite. Tt #Ite. Tt #Ite. Tt

48,942 2805 1066 52.2 1064 56.7 1064 67.3 1066 52.0

inline_1 af_0_k101 af_4_k101 af_3_k101 af_2_k101

#Ite. Tt #Ite. Tt #Ite. Tt #Ite. Tt #Ite. Tt

8474 817 13,540 678 9976 472 8498 429 13,077 619

5.2.2 Verification of the model for computational time per iteration

The application of SC or deflation typically leads to an increase in the computational cost per iteration. In this section, we
examine the performance model for the iteration cost introduced in Section 4.4. In Figure 7, we plot the measured and
estimated values for the ratio of the computational time of an ES-SC-ICCG or ES-D-ICCG iteration to that of an ICCG
iteration. The estimated values for the two solvers are given in (17). Figure 7 shows the results for all test cases, although
we plot only one mark for identical m̃. For most test cases, Equation (17) obtained a good estimation of the ratio, and the
error of the estimation was within ±5%. Consequently, (17) can be used for the estimation of the additional cost for SC
or deflation. However, in some test cases, particularly when the measured value was over 2.0, we observed a relatively
large estimation error. These results arose for the G3_circuit, ecology2, and apache2 datasets. The coefficient matrices of
these datasets commonly had a small number of nonzero elements per row (nnzav) and a relatively structured nonzero
element pattern; that is, these matrices were derived from relatively simple problems and (15) tended to overestimate the
ratio for such problems. Moreover, (17) implies that the influence of the additional cost of the convergence acceleration
method on the computational time per iteration tends to enlarge when nnzav is small. Accordingly, we recommend that
the number of sampling vectors m (the upper bound of m̃) should be small for a problem with small nnzav.

5.2.3 Discussions (other factors that affect solver performance)

Sampling method
In preliminary analyses, we compared two sampling methods: A and B. Table 4 shows the results of the solver using
sampling method B on Flan_1565 and Hook_1498. In the comparison of Tables 2 and 4, sampling method A obtained
better convergence acceleration than method B. Because we observed this tendency for other test datasets, we decided to
mainly use sampling method A in our numerical tests. Moreover, the numerical test implied that the additional sampling

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

IWASHITA et al. 17 of 26

T A B L E 6 Numerical results (parallel solver, b = (1, 1, … , 1)⊤).

Queen_4147 Bump_2911 G3_circuit Flan_1565 Hook_1498

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 4663 215 - 3455 73.4 - 1461 5.40 - 4911 86.6 - 2312 23.4

ES-SC-ICCG 10−3 20 1532 89 20 1062 30.8 20 468 3.81 20 1504 31.3 19.0 808 11.6

10−4 20 1532 88 17 1814 51.1 13 1067 7.22 18 1777 37.3 13.0 1036 13.9

10−5 6 4258 218 2 2977 68.1 2 1392 5.67 9 2415 47.2 5.0 1562 18.8

ES-D-ICCG 10−3 20 1530 91 20 1062 31.3 20 468 3.90 20 1502 33.0 19.0 807 12.1

10−4 20 1530 93 17 1811 51.4 13 1066 7.08 18 1776 38.2 13.0 1035 14.3

10−5 6 4252 216 2 2977 68.7 2 1392 5.73 9 2409 46.6 5.0 1561 18.9

StocF-1465 Geo_1438 Serena thermal2 ecology2

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 66,348 329 - 904 9.62 - 628 6.77 - 3583 12.0 - 2131 3.29

ES-SC-ICCG 10−3 20 16,453 157 14 549 7.26 8 546 6.36 20 1128 8.1 20 885 4.40

10−4 20 16,453 154 2 779 8.24 0 - - 17 1555 10.7 15 1039 4.19

10−5 20 16,453 157 0 - - 0 - - 4 2506 10.4 4 1656 3.95

ES-D-ICCG 10−3 20 16,452 148 14 548 7.27 8 545 6.39 20 1126 8.0 20 882 4.38

10−4 20 16,452 147 2 778 8.40 0 - - 17 1554 10.2 15 1037 4.33

10−5 20 16,452 150 0 - - 0 - - 4 2504 10.8 4 1654 4.05

bone010 ldoor audikw_1 Emilia_923 boneS10

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 7838 76.9 - 5227 38.0 - 2635 30.0 - 6542 42.1 - 14,690 119

ES-SC-ICCG 10−3 20 2141 29.6 20 1503 14.8 20 816 11.4 20 1893 17.3 20 5166 55

10−4 18 2207 28.6 18 2199 20.7 7 1549 19.1 19 2991 27.5 20 5164 56

10−5 12 2925 35.7 3 4040 29.6 3 1798 21.2 7 4829 36.0 19 5446 58

ES-D-ICCG 10−3 20 2138 28.9 20 1504 14.8 20 813 11.6 20 1895 17.8 20 5162 57

10−4 18 2203 28.9 18 2196 20.9 7 1545 19.3 19 2989 29.1 20 5161 56

10−5 12 2921 36.3 3 4036 30.8 3 1796 21.9 7 4823 37.1 19 5446 59

PFlow_742 tmt_sym apache2 Fault_639 parabolic_fem

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 37,485 214 - 1576 2.26 - 1056 1.31 - 5083 26.2 - 2125 1.58

ES-SC-ICCG 10−3 20 11,633 95 20 638 2.40 19 408 1.51 20 1496 9.6 19 1419 3.50

10−4 20 11,633 95 14 777 2.33 12 494 1.27 18 3075 19.4 8 1326 1.89

10−5 20 11,633 99 3 1259 2.09 3 816 1.31 2 4735 22.6 0 - -

ES-D-ICCG 10−3 20 11,617 100 20 636 2.44 19 408 1.53 20 1495 9.6 19 1417 4.03

10−4 20 11,617 97 14 776 2.35 12 494 1.39 18 3074 18.8 8 1325 2.27

10−5 20 11,617 102 3 1257 2.30 3 815 1.43 2 4739 22.2 0 - -

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

18 of 26 IWASHITA et al.

T A B L E 6 Continued

bundle_adj af_shell8 af_shell4 af_shell3 af_shell7

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 64,356 797 - 1575 5.13 - 1575 5.31 - 1575 5.07 - 1575 4.91

ES-SC-ICCG 10−3 20 14,407 208 20 537 2.58 20 539 2.59 20 539 2.62 20 537 2.56

10−4 20 14,407 207 11 764 3.08 11 764 3.10 11 764 3.17 11 764 3.07

10−5 19 14,104 200 0 - - 0 - - 0 - - 0 - -

ES-D-ICCG 10−3 20 13,547 196 20 537 2.64 20 537 2.76 20 537 2.65 20 537 2.59

10−4 20 13,547 196 11 764 3.25 11 763 3.33 11 763 3.24 11 764 3.20

10−5 19 13,611 194 0 - - 0 - - 0 - - 0 - -

inline_1 af_0_k101 af_4_k101 af_3_k101 af_2_k101

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 23,064 115 - 16,157 48.6 - 12,458 45.5 - 10,595 34.9 - 16,249 57.6

ES-SC-ICCG 10−3 20 6393 44 20 5026 24.7 20 4230 20.7 20 3567 17.1 20 4924 24.6

10−4 20 6393 43 20 5026 23.9 20 4230 19.7 20 3567 16.9 20 4924 23.7

10−5 18 8969 60 20 5026 24.1 20 4230 19.5 20 3567 16.8 20 4924 22.8

ES-D-ICCG 10−3 20 6390 46 20 5018 24.8 20 4237 21.6 20 3574 18.0 20 4920 24.9

10−4 20 6390 46 20 5018 24.7 20 4237 20.8 20 3574 17.6 20 4920 24.5

10−5 18 8964 62 20 5018 25.2 20 4237 20.4 20 3574 17.5 20 4920 24.4

of the approximation vector when the residual norm increased or stagnated was effective for the improvement of the
convergence acceleration effect. Because it is not straightforward to mathematically interpret the phenomenon, we intend
to investigate the behavior of the error in the solution process in future work based on numerical tests.

Sampling of residual vectors
In this article, we consider the sampling of a relatively small number of vectors because it is practically important to
save additional memory space and computational cost. Considering other related techniques, the sampling of residual
vectors might be of interest. We have an intuitive perspective on the comparison of the sampling of error vectors and
residual vectors. Because Aes = rs holds, the components along eigenvectors corresponding small eigenvalues involved
in es are numerically reduced in rs by the multiplication of A, where es and rs are the sampled error and residual vectors,
respectively. Consequently, we expect that error vector sampling will be superior to residual vector sampling to capture
(approximate) eigenvectors that correspond to small eigenvalues, which will lead to a better preconditioning effect for
convergence. To verify our perspective, we conducted additional numerical tests of the solver using residual vector sam-
pling. In the numerical test on Flan_1565 and Hook_1498, the results demonstrated that we could not obtain a small Ritz
value less than 10−1 and the convergence acceleration of SC and deflation did not work well. The numerical results imply
that error vector sampling outperforms residual vector sampling to construct an effective mapping operator for subspaces
used in the convergence acceleration techniques.

Verification of the Ritz vector
In this section, we attempt to examine the property of the Ritz vector calculated by our technique using a small dataset
(bccstk06: a 420 × 420 matrix). Figure 8 shows the eigenvalue distribution of the coefficient matrix and the Ritz values
obtained by our method applied to a non-preconditioned CG solver. We confirmed that some small eigenvalues, including
the smallest eigenvalue, were well approximated by the obtained Ritz values. Moreover, we checked the orthogonality of
the normalized Ritz vector that corresponds to the smallest Ritz value, ṽ1, to the normalized eigenvectors of A denoted by
vir, (ir = 1, … , 420), where ir represents the index of eigenvalues in ascending order. Figure 9 shows the absolute value
of the inner product (vr, vir). The magnitude of |(ṽ1, v1)| is close to 1 and substantially larger than those of other inner
products, most of which are less than 10−3.

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

IWASHITA et al. 19 of 26

T A B L E 7 Numerical results (parallel solver, b: random vector).

Queen_4147 Bump_2911 G3_circuit Flan_1565 Hook_1498

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 4684 215 - 3437 73.9 - 1455 5.27 - 4906 83.6 - 2309 24.3

ES-SC-ICCG 10−3 20 3762 217 20 1844 53.9 20 1157 9.54 20 1684 36.8 19.0 858 12.7

10−4 19 3760 217 17 1929 54.6 13 1203 8.15 18 1768 37.8 13.0 1027 13.6

10−5 6 4166 212 2 2967 67.8 2 1388 5.74 9 2411 47.3 5.0 1557 18.3

ES-D-ICCG 10−3 20 3761 220 20 1842 53.5 20 1159 9.71 20 1684 37.7 19 857 12.4

10−4 19 3758 218 17 1927 53.8 13 1202 8.24 18 1766 38.5 13 1026 13.9

10−5 6 4164 212 2 2964 67.0 2 1388 5.94 9 2410 48.2 5.0 1556 18.6

StocF-1465 Geo_1438 Serena thermal2 ecology2

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 51,167 258 - 901 9.37 20 625 6.49 - 3569 12.5 - 2225 3.48

ES-SC-ICCG 10−3 20 37,038 341 14 548 7.26 8 546 6.53 20 1343 9.4 20 937 4.67

10−4 20 37,038 341 2 774 8.49 0 - - 17 1597 10.4 17 1045 4.74

10−5 20 37,038 342 0 - - 0 - - 4 2466 10.6 5 1471 3.69

ES-D-ICCG 10−3 20 37,036 342 14 547 7.22 8 545 6.69 20 1342 9.1 20 935 4.55

10−4 20 37,036 340 2 773 8.57 0 - - 17 1596 10.2 17 1044 4.64

10−5 20 37,036 337 0 - - 0 - - 4 2465 10.8 5 1469 3.99

bone010 ldoor audikw_1 Emilia_923 boneS10

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG 8190 84.1 - 5198 36.2 - 2633 30.2 - 6507 43.0 - 14,637 119

ES-SC-ICCG 10−3 20 2077 28.3 20 2222 22.0 20 1031 14.5 20 3989 35.4 20 5422 60

10−4 19 2100 28.0 18 2320 21.9 7 1541 19.4 19 4027 36.7 20 5422 59

10−5 12 2883 35.6 3 4019 30.1 3 1791 21.7 7 4798 36.8 19 5432 59

ES-D-ICCG 10−3 20 2074 27.9 20 2220 22.6 20 1028 14.9 20 3986 37.7 20 5419 61

10−4 19 2096 28.4 18 2319 22.1 7 1536 19.9 19 4026 37.9 20 5419 62

10−5 12 2870 37.1 3 4016 31.2 3 1789 21.8 7 4797 36.9 19 5428 60

PFlow_742 tmt_sym apache2 Fault_639 parabolic_fem

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 37,486 221 - 1569 2.13 - 1055 1.34 - 5047 22.7 - 2583 1.89

ES-SC-ICCG 10−3 20 15,380 127 20 673 2.53 19 454 1.68 20 3828 24.9 19 1798 4.33

10−4 20 15,380 127 14 784 2.51 12 499 1.37 18 3872 24.3 9 1885 2.80

10−5 20 15,380 130 3 1256 2.12 3 810 1.21 2 4710 22.4 0 - -

ES-D-ICCG 10−3 20 15,354 131 20 671 2.55 19 454 1.64 20 3830 24.9 19 1797 4.84

10−4 20 15,354 130 14 782 2.53 12 498 1.51 18 3869 24.6 9 1885 3.42

10−5 20 15,354 133 3 1255 2.30 3 809 1.38 2 4708 23.0 0 - -

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

20 of 26 IWASHITA et al.

T A B L E 7 Continued

bundle_adj af_shell8 af_shell4 af_shell3 af_shell7

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 55,336 701 - 1572 5.07 - 1572 5.06 - 1572 4.95 - 1572 5.04

ES-SC-ICCG 10−3 20 13,873 199 20 557 2.69 20 556 2.71 20 556 2.68 20 557 2.75

10−4 20 13,873 200 11 760 3.05 11 760 3.04 11 760 3.04 11 760 3.03

10−5 19 13,947 200 0 - - 0 - - 0 - - 0 - -

ES-D-ICCG 10−3 20 13,287 192 20 555 2.76 20 555 2.78 20 555 2.77 20 555 2.75

10−4 20 13,287 193 11 759 3.23 11 759 3.21 11 759 3.19 11 759 3.22

10−5 19 13,796 199 0 - - 0 - - 0 - - 0 - -

inline_1 af_0_k101 af_4_k101 af_3_k101 af_2_k101

Solver 𝜽 m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt m̃ #Ite. Tt

ICCG - 23,054 124 - 16,121 51.5 - 12,425 39.9 - 10,584 33.7 - 16,237 50.9

ES-SC-ICCG 10−3 20 8738 60 20 6977 33.1 20 4327 20.8 20 3877 19.6 20 6526 31.0

10−4 20 8738 61 20 6977 33.1 20 4327 20.9 20 3877 18.8 20 6526 31.1

10−5 18 9090 62 20 6977 33.5 20 4327 20.5 20 3877 18.5 20 6526 31.3

ES-D-ICCG 10−3 20 8732 61 20 6966 34.0 20 4322 21.2 20 3873 19.2 20 6523 32.1

10−4 20 8732 62 20 6966 34.6 20 4322 21.2 20 3873 19.3 20 6523 31.7

10−5 18 9086 65 20 6966 34.5 20 4322 21.3 20 3873 19.3 20 6523 32.2

Comparison with other solvers
For a further examination of our technique, we implemented the well-known deflated CG solver proposed in Reference 18
and performed a numerical test. In the numerical test, we solved the deflated system using the ICCG method and set the
maximum number of deflated vectors to 20. We used a vector of ones for the right-hand side. The solver is denoted by
D-CG in this article. Table 5 shows the number of iterations and the solution time of the D-CG solver for 30 datasets. Our
solver based on error vector sampling outperformed the D-CG solver for 29 out of 30 datasets. Moreover, the solution time
of our solver was less than half that of D-CG for 22 datasets. Although the numerical result implies that our technique
is effective, we consider that further investigation is required. As shown in Reference 24, many methods exist to (alge-
braically) determine the subspace or deflation vectors. However, because solver performance significantly depends on
properties of the target problem, it may be difficult to develop the best method for a wide variety of problems. Therefore,
in our future work, we will compare our method with other related techniques in a specific problem domain.

5.3 Numerical results for the parallel solver

In this section, we report the results for the parallel (multithreaded) solver. The parallelization of the CG solver is rela-
tively straightforward. However, the IC preconditioning step that consists of forward and backward substitutions is not
naturally parallelized. Various parallel processing methods exist. We used a simple but popular method, that is, block
Jacobi IC preconditioning.38 The parallelization of SC preconditioning and the deflation method is relatively easy. The
computationally dominant part of these methods is dense matrix vector multiplication, which can be straightforwardly
parallelized. Because m̃ is typically tiny, we sequentially solve the linear system having an m̃ × m̃ coefficient matrix W⊤AW
that is involved in the methods.

Tables 6 and 7 list the numerical results of the parallel ICCG solver and its variants using the proposed techniques
when a vector of ones and random vectors were used for the right-hand side vectors, respectively. From the viewpoint
of convergence, the results for the parallel solver were similar to those of the sequential solver. For all 60 test cases (30
datasets × 2 types of right-hand side vectors), the proposed method attained convergence acceleration. When we used
a vector of ones, convergence was more than twice as fast as that of the parallel ICCG solver for 27 out of 30 datasets.

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

IWASHITA et al. 21 of 26

0

1

2

3

4

5

Queen_4147

Bump_2911

G3_circuit

Flan_1565

Hook_1498

StocF-1465

Geo_1438

Serena

thermal2

ecology2

bone010

ldoor
audikw_1

Emilia_923

boneS10

PFlow_742

tmt_sym

apache2

Fault_639

parabolic_fem

bundle_adj

af_shell8

af_shell4

af_shell3

af_shell7

inline_1

af_0_k101

af_4_k101

af_3_k101

af_2_k101

Sp
ee

du
p

in
 c

on
ve

rg
en

ce

ES-SC-ICCG
ES-D-ICCG

ICCG

F I G U R E 10 Speedup in convergence of ES-SC-ICCG and ES-D-ICCG over ICCG (parallel multithreaded solver, b: random vector).

0

1

2

3

4

Queen_4147

Bump_2911

G3_circuit

Flan_1565

Hook_1498

StocF-1465

Geo_1438

Serena

thermal2

ecology2

bone010

ldoor
audikw_1

Emilia_923

boneS10

PFlow_742

tmt_sym

apache2

Fault_639

parabolic_fem

bundle_adj

af_shell8

af_shell4

af_shell3

af_shell7

inline_1

af_0_k101

af_4_k101

af_3_k101

af_2_k101

Sp
ee

du
p

in
 s

ol
ut

io
n

tim
e

ES-SC-ICCG
ES-D-ICCG

ICCG

F I G U R E 11 Speedup in computational time of ES-SC-ICCG and ES-D-ICCG over pICCG (parallel multithreaded solver, b: random
vector).

Figure 10 shows the speedup in convergence of the parallel solver based on the proposed technique against the parallel
ICCG solver when random vectors are used for the right-hand side vectors. In the test using random vectors, the proposed
method attained more than two-fold speedup in convergence compared with the parallel ICCG solver for 21 out of 30
datasets.

Next, we examine the computational time. In the test using a vector of ones, the proposed method reduced the solution
time for 28 out of 30 datasets. For the bundle_adj dataset, the parallel deflated ICCG solver based on our technique attained
a more than four-fold speedup compared with the parallel ICCG solver. The test using random vectors also indicated that
our technique was effective for reducing the computational time for most test datasets (25 out of 30). In block Jacobi IC

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

22 of 26 IWASHITA et al.

T A B L E 8 Condition number estimation based on error vector sampling.

Estimation LAPACK

Dataset 𝝀max 𝝀min 𝜿 𝝀max 𝝀min 𝜿

bcsstk07 2.89 9.67×10−5 2.99×104 2.90 9.11×10−5 3.18×104

msc01440 3.62 3.08×10−4 1.18×104 3.62 2.86×10−4 1.27×104

494_bus 2.00 2.59×10−5 7.71×104 2.00 2.53×10−5 7.90×104

bcsstk06 2.89 9.67×10−5 2.99×104 2.90 9.11×10−5 3.18×104

preconditioning, the computational cost for a PCG iteration reduces as the number of threads increases. Consequently,
the impact of the additional cost for convergence acceleration (SC preconditioning or deflation) on the preconditioned
solver is substantially enlarged in the parallel execution by many threads. In other words, the ratio of the iteration costs
is enlarged from (17). Because we used a number of threads (= 40) in our numerical tests, it became difficult to reduce
the solution time compared with the sequential solver. However, Figure 11 indicates that our convergence acceleration
technique accelerated the solution process for most test problems.

5.4 Condition number estimation

Figure 8 implies that our technique based on error vector sampling is a useful tool for the estimation of the smallest
eigenvalue. Because the estimation of the largest eigenvalue is relatively easy, the technique can be used for the estima-
tion of the condition number of the coefficient matrix. Algorithm 2 shows the proposed procedure of the PCG method
with condition number estimation. The largest eigenvalue is estimated by the power method, which is combined with the
procedure of CG method. We estimate the smallest eigenvalue using our technique. We conducted numerical tests using
four relatively small matrices downloaded from the SuiteSparse matrix collection to examine our technique. Diagonal
scaling was applied to the matrices before the tests. Table 8 shows the estimation for the largest eigenvalue 𝜆max, small-
est eigenvalue 𝜆min, and condition number 𝜅 compared with the results calculated using the LAPACK library. Table 8
implies that the technique based on error sampling is effective for the estimation of the condition number. It is noted
that when ES-SC and ES-D methods are used, the condition number (the smallest eigenvalue) cannot be estimated. This
is because these techniques efficiently remove the error component involved in the eigenspace that corresponds to the
smallest eigenvalue and the sampled error vectors might be orthogonal to the eigenvector corresponding to the smallest
eigenvalue.

Because the number of sample vectors is much smaller than n (m ≪ n), the additional computational cost for the
calculation of the smallest eigenvalue (Ritz value) is typically much smaller than the iterative solution cost. Although the
power method requires an additional SpMV operation, it is combined with SpMV for the CG method. In this case, the
matrix data transferred from main memory are efficiently used for two vectors. The additional cost (time) for the power
method, Tl, is estimated as

Tl = (16nNite + 20n + 12nnz)∕bm. (24)

The cost for calculating the smallest eigenvalue, Ts, is equal to the auxiliary matrix setup cost except for the cost for (12)
and is estimated as follows:

Ts = 2n(m̃2 +m2)∕f + (12m̃n + 12m̃ ⋅ nnz)∕bm. (25)

Finally, the additional cost for calculating the condition number estimation, Tcon, is given by

Tcon = Tl + Ts (26)

= 2n(m̃2 +m2)∕f + {16nNite + 20n + 12m̃n + 12(m̃ + 1)nnz}∕bm. (27)

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

IWASHITA et al. 23 of 26

Algorithm 2. PCG method with condition number estimation

Input: A, b, M, x0, 𝜀, m
1: r0 = b − Ax0
2: v0 ← Initialization (by a nonzero vector e.g., a random vector)
3: for i = 1, 2,… do
4: zi−1 = M−1ri−1
5: 𝜌i−1 = (ri−1, zi−1)
6: if i=1 then
7: p1 = z0
8: else
9: 𝛽i−1 = 𝜌i−1∕𝜌i−2

10: pi = zi−1 + 𝛽i−1pi−1
11: end if
12: (qi vi) = A(pi vi−1) // (SpMV)
13: vi = vi∕‖vi‖2
14: 𝛼i = 𝜌i−1∕(pi, qi)
15: xi = xi−1 + 𝛼ipi
16: ri = ri−1 − 𝛼iqi
17: if ‖ri‖2 ≤ 𝜀‖b‖2 then
18: break
19: end if
20: if Sampling condition is satisfied then
21: x̃(s) = xi, s ∈ {1, 2,… ,m}
22: end if
23: end for
24: ̃E = (xi − x̃(1) xi − x̃(2) … xi − x̃(m))
25: Apply the Gram–Schmidt method to ̃E and obtain E
26: Solve an eigenvalue problem: E⊤AEt = 𝜆t and obtain the smallest Ritz value 𝜆min
27: 𝜆max = (vi,Avi)
28: 𝜅 = 𝜆max∕𝜆min

Output: xi, 𝜅

For a typical setting, m̃ = m = 20, nnzav = 30, f = 10bm, and Nite = 500, the additional cost for estimating the condition
number is equivalent to 6% of one ICCG solution step cost.

Most iterative solvers, such as the CG solver, typically use a convergence criterion based on a (relative) residual norm.
If the estimation of the condition number of the coefficient matrix is given with the solution vector by the iterative solver,
it can be a useful tool to evaluate the accuracy of the solution vector. The proposed solver provides this function without
a large amount of additional computations. However, our technique is only useful for the case that the linear system
equation must be solved. When we only calculate the condition number estimation, other methods, for example, Lanczos
method may be a better choice.

6 CONCLUSION

In this article, we introduced an algebraic auxiliary matrix construction method that can be used for the SC precondition-
ing and the deflation method. We focused on the problem in which a sequence of linear systems with identical coefficient
matrices is solved. In our method, we sample the approximate solution vectors in the first iterative solution step, and cal-
culate the error vectors corresponding to the sample vectors after the solution step is completed. Then, we perform the
Rayleigh-Ritz method using a subspace spanned by these error vectors to identify (approximate) eigenvectors associated
with small eigenvalues. Finally, we construct the auxiliary matrix using the Ritz vectors associated with small Ritz val-
ues. We also presented a cost model of SC preconditioning and the deflation method. Numerical tests using 30 coefficient

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

24 of 26 IWASHITA et al.

matrices were conducted to verify our technique. The test results confirmed that the proposed convergence acceleration
technique efficiently reduced both the number of iterations for convergence and the solution time of the serial and par-
allel preconditioned CG solvers. Moreover, additional numerical tests indicated that the proposed technique can be used
for condition number estimation.

Currently, we are examining the effectiveness of the technique for a linear system that has an unsymmetric coefficient
matrix. Because the preliminary results demonstrate its effectiveness, we will report it in the future. We are also investigat-
ing the application of the technique to other problems. Particularly, we are examining its effectiveness in parallel-in-time
simulations, which often involve the solution process of multiple linear systems of coefficient matrices with a common
property. We are also interested in the combination of our technique with the AMG method or preconditioning tech-
niques suitable for GPU computing. In the future, we will examine our technique in various scenarios of computational
science or engineering problems.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their helpful comments. This work was supported by JSPS KAKENHI
Grant Numbers JP19H04122, JP19H05662, JP20K21782, and JP23H00462.

CONFLICT OF INTEREST STATEMENT
This study does not have any conflicts to disclose.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ENDNOTES
1In this article, we use the term “SC preconditioning,” which appears in references.34,35 Preconditioning based on the same concept is often
called two-level preconditioning, or spectral preconditioning,36 particularly when the subspace is associated with eigenspaces.

2In this article, we describe the method to identify eigenvectors with relatively small eigenvalues of the coefficient matrix. However, it is
possible to consider identifying eigenvectors with relatively small eigenvalues of the preconditioned matrix. In this case, we should use the
preconditioned matrix instead of A in (10).

ORCID
Takeshi Iwashita https://orcid.org/0000-0003-1938-1723

REFERENCES
1. Xu J. Iterative methods by space decomposition and subspace correction. SIAM Rev. 1992;34:581–613.
2. Nicolaides RA. Deflation of conjugate gradients with applications to boundary value problems. SIAM J Numer Anal. 1987;24(2):355–65.
3. Trottenberg U, Oosterlee CW, Schüller A. Multigrid. San Diego, CA: Elsevier; 2001.
4. Wesseling P. Multigrid algorithms. An introduction to multigrid methods. Hoboken, NJ: John Wiley & Sons Ltd; 1992 Corrected Reprint.,

R. T. Edwards, Inc., 2004.
5. Vuik C, Segal A, Meijerink JA. An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts

in the coefficients. J Comput Phys. 1999;152:385–403.
6. Vuik C, Frank J. Deflated ICCG method applied to problems with extreme contrasts in the coefficients. Proceedings of the 16th IMACS

World Congress; 2000.
7. De Gersem H, Hameyer K. A deflated iterative solver for magnetostatic finite element models with large differences in permeability. Eur

Phys J Appl Phys. 2001;13:45–9.
8. Mifune T, Moriguchi S, Iwashita T, Shimasaki M. Convergence acceleration of iterative solvers for the finite element analysis using the

implicit and explicit error correction methods. IEEE Trans Magn. 2009;45(3):1438–41.
9. Igarashi H, Watanabe K. Deflation techniques for computational electromagnetism: theoretical considerations. IEEE Trans Magn.

2011;47(5):1438–41.
10. Iwashita T, Kawaguchi S, Mifune T, Matsuo T. Automatic mapping operator construction for subspace correction method to solve a series

of linear systems. JSIAM Lett. 2017;9:25–8.
11. Kharchenko SA, Yeremin AY. Eigenvalue translation based preconditioners for the GMRES (k) method. Numer Linear Algebra Appl.

1995;2(1):51–77.
12. Morgan RB. A restarted GMRES method augmented with eigenvectors. SIAM J Matrix Anal Appl. 1995;16(4):1154–71.
13. Erhel J, Burrage K, Pohl B. Restarted GMRES preconditioned by deflation. J Comput Appl Math. 1996;69(2):303–18.
14. Morgan RB. GMRES with deflated restarting. SIAM J Sci Comput. 2002;24(1):20–37.

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-1938-1723
https://orcid.org/0000-0003-1938-1723

IWASHITA et al. 25 of 26

15. Morgan RB, Wilcox W. Deflated iterative methods for linear equations with multiple right-hand sides. arXiv preprint
arXiv:math-ph/0405053. 2004.

16. Giraud L, Gratton S, Pinel X, Vasseur X. Flexible GMRES with deflated restarting. SIAM J Sci Comput. 2010;32(4):1858–78.
17. Carpenter MH, Vuik C, Lucas P, van Gijzen M, Bijl H. A general algorithm for reusing Krylov subspace information. I. Unsteady

Navier-Stokes. Hampton, VA: Langley Research Center; 2010.
18. Saad Y, Yeung M, Erhel J, Guyomarc’h F. A deflated version of the conjugate gradient algorithm. SIAM J Sci Comput. 2000;21(5):

1909–26.
19. Abdel-Rehim AM, Morgan RB, Nicely DA, Wilcox W. Deflated and restarted symmetric Lanczos methods for eigenvalues and linear

equations with multiple right-hand sides. SIAM J Sci Comput. 2010;32(1):129–49.
20. Kilmer ME, De Sturler E. Recycling subspace information for diffuse optical tomography. SIAM J Sci Comput. 2006;27(6):

2140–66.
21. Gosselet P, Rey C, Pebrel J. Total and selective reuse of Krylov subspaces for the resolution of sequences of nonlinear structural problems.

Int J Numer Methods Eng. 2013;94:60–83.
22. Daas HA, Grigori L, Hénon P, Ricoux P. Recycling Krylov subspaces and truncating deflation subspaces for solving sequence of linear

systems. ACM Trans Math Softw. 2021;47(2):1–30.
23. Morgan RB. Restarted block-GMRES with deflation of eigenvalues. Appl Numer Math. 2005;54(2):222–36.
24. Soodhalter KM, de Sturler E, Kilmer ME. A survey of subspace recycling iterative methods. GAMM Mitt. 2020;43(4):e202000016.
25. Brezina M, Falgout R, MacLachlan S, Manteuffel T, McCormick S, Ruge J. Adaptive algebraic multigrid. SIAM J Sci Comput.

2006;27(4):1261–86.
26. Brandt A, Brannick J, Kahl K, Livshits I. Bootstrap AMG. SIAM J Sci Comput. 2011;33(2):612–32.
27. Nomura N, Fujii A, Tanaka T, Nakajima K, Marques O. Performance analysis of SA-AMG method by setting extracted near-kernel vectors.

In: Dutra I, Camacho R, Barbosa J, Marques O, editors. Proceedings of the International Conference on Vector and Parallel Processing.
Cham: Springer; 2017. p. 52–63.

28. D’ambra P, Filippone S, Vassilevski PS. BootCMatch: a software package for bootstrap AMG based on graph weighted matching. ACM
Trans Math Softw. 2018;44:1–25.

29. D’Ambra P, Vassilevski PS. Improving solve time of aggregation-based adaptive AMG. Numer Linear Algebra Appl. 2019;26(6):
e2269.

30. Baker AH, Jessup ER, Manteuffel T. A technique for accelerating the convergence of restarted GMRES. SIAM J Matrix Anal Appl.
2005;26(4):962–84.

31. Imakura A, Li RC, Zhang SL. Locally optimal and heavy ball GMRES methods. Jpn J Ind Appl Math. 2016;33:471–99.
32. Davis TA, Hu Y. The university of Florida sparse matrix collection. ACM Trans Math Softw. 2011;38:1–25.
33. Iwashita T, Kawaguchi S, Mifune T, Matsuo T. Acceleration of transient non-linear electromagnetic field analyses using an automated

subspace correction method. IEEE Trans Magn. 2019;55(6):1–4.
34. Mihajlovic MD, Mijalkovic S. A component decomposition preconditioning for 3D stress analysis problems. Numer Linear Algebra Appl.

2002;9:567–83.
35. Ovtchinnikov EE, Xanthis LS. The discrete Korn’s type inequality in subspaces and iterative methods for thin elastic structures. Comput

Methods Appl Mech Eng. 1998;160:23–37.
36. Carpentieri B, Giraud L, Gratton S. Additive and multiplicative two-level spectral preconditioning for general linear systems. SIAM J Sci

Comput. 2007;29(4):1593–612.
37. Zhao T. A spectral analysis of subspace enhanced preconditioners. J Sci Comput. 2016;66(1):435–57.
38. Saad Y. Iterative methods for sparse linear systems. 2nd ed. Philadelphia, PA: SIAM; 2003.

How to cite this article: Iwashita T, Ikehara K, Fukaya T, Mifune T. Convergence acceleration of
preconditioned conjugate gradient solver based on error vector sampling for a sequence of linear systems. Numer
Linear Algebra Appl. 2023;30(6):e2512. https://doi.org/10.1002/nla.2512

APPENDIX A. SELECTION METHOD FOR APPROXIMATION VECTORS

Algorithm 3 shows sampling method A for the approximate solution vector.33 In the algorithm, i is the iteration count
and m is the number of sample vectors. We set parameter lmax to satisfy mlmax

> Nmax, where Nmax is the preset maximum
iteration count of the solver.

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/nla.2512
https://doi.org/10.1002/nla.2512
https://doi.org/10.1002/nla.2512

26 of 26 IWASHITA et al.

Algorithm 3. Selection of approximate solution vectors

h = 1
for i = 1, 2,… do

Solver part
Convergence check
if (mod(i, h) == 0) then

it =
∑lmax

l=0 (−1)l⌊(i − 1)∕ml⌋

s = mod(it,m) + 1
x̃(s) = x̃i
if (i == h ∗ m) then

h = h ∗ 2
end if

end if
end for

APPENDIX B. CONSTANTS IN THE COST MODEL OF THE ICCG AND SC-ICCG SOLVERS

In this appendix, we describe some details of the cost models of the ICCG and SC-ICCG solvers, which are based on
the amount of data transferred from main memory. In the solvers, we use 32-bit integers and double precision (64-bit)
floating-point arithmetic and data.

B.1 CG method
The main kernel of the CG solver is a SpMV kernel. In this study, we implement the SpMV kernel using the standard
compressed sparse row format. In this implementation, the data transferred for the coefficient matrix consist of an integer
array of size n for the row pointers, an integer array of size nnz for the column indices, and a floating-point array of size
nnz for the matrix element values. Consequently, 4n + 12nnz Bytes of data are transferred from memory for the coefficient
matrix. Regarding the amount of data transferred for the source vector, we use an optimistic estimation. Namely, we
assume full utilization of the cache memory for the vector. Accordingly, each element of the source vector is loaded from
main memory only once. Moreover, each element of the resultant vector is stored in main memory. Consequently, the
amount of data transferred for the source and resultant vectors is estimated to be 16n Bytes. In total, the amount of data
transferred for the SpMV is estimated to be 20n + 12nnz.

We estimate the amount of data transferred for other parts of the CG solver that consist of inner products and vector
updates as 56n, though it depends on the implementation. Accordingly, the cost for one CG iteration is given by 76n +
12nnz Bytes.

B.2 IC preconditioning
The additional cost for IC preconditioning in each iteration is given by the forward and backward substitutions. When
we use IC(0) preconditioning, the number of nonzero elements is the same as that of the coefficient matrix. Accordingly,
the amount of data transferred for the preconditioning matrix in the substitutions is almost the same as that for SpMV.
However, the kernel of the substitutions needs one more row-pointer array, because the lower and upper triangular matri-
ces are separately processed. Considering this factor (4n Bytes), the cost of an IC preconditioning step is estimated to be
24n + 12nnz. Consequently, the cost for one ICCG iteration is given by 100n + 24nnz Bytes.

B.3 SC preconditioning
The dominant part of the computational cost of an SC preconditioning step is given by two dense matrix vector products
using W and W⊤. Because the size of W is n × m̃, the amount of data transferred for these matrices is given by 16m̃n Bytes.
Considering the data needed for the source and resultant vectors, the cost for an SC preconditioning step is estimated to
be 16n + 16m̃n. Consequently, the cost of an SC-ICCG iteration is given by 116n + 16m̃n + 24nnz Bytes.

 10991506, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2512 by C

ochrane Japan, W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

	Convergence acceleration of preconditioned conjugate gradient solver based on error vector sampling for a sequence of linear systems
	1 INTRODUCTION
	2 PROBLEM DEFINITION
	3 CONVERGENCE ACCELERATION FOR ITERATIVE LINEAR SOLVERS
	3.1 Convergence acceleration methods
	3.2 Subspace correction method
	3.3 Deflation method

	4 AUXILIARY MATRIX CONSTRUCTION METHOD BASED ON ERROR VECTOR SAMPLING
	4.1 Auxiliary matrix based on eigenvectors
	4.2 Auxiliary matrix construction method based on error vector sampling
	4.3 Selection method for stored approximate solution vectors
	4.4 Computational cost for subspace correction preconditioning and deflation

	5 NUMERICAL RESULTS
	5.1 Test conditions
	5.2 Numerical results for the sequential solver
	5.2.1 Performance evaluation
	5.2.2 Verification of the model for computational time per iteration
	5.2.3 Discussions (other factors that affect solver performance)
	Sampling method
	Sampling of residual vectors
	Verification of the Ritz vector
	Comparison with other solvers

	5.3 Numerical results for the parallel solver
	5.4 Condition number estimation

	6 CONCLUSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	APPENDIX A. SELECTION METHOD FOR APPROXIMATION VECTORS
	APPENDIX B. CONSTANTS IN THE COST MODEL OF THE ICCG AND SC-ICCG SOLVERS
	B.1 CG method
	B.2 IC preconditioning
	B.3 SC preconditioning

