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Summary

A symbolic-numeric method is proposed for addressing the Bayesian filtering
problems of a class of discrete-time nonlinear stochastic systems. We first
approximate the posterior probability density function to be Gaussian. The
update law of the mean and variance is formulated as the evaluation of several
integrals depending on certain parameters. Unlike existing methods, such as the
extended Kalman filter (EKF), unscented Kalman filter (UKF), and particle filter
(PF), this formulation considers the nonlinearity of system dynamics exactly. To
evaluate the integrals efficiently, we introduce an integral transform motivated
by the moment generating function (MGF), which we call a quasi MGF. Further-
more, the quasi MGF is compatible with the Fourier transform of differential
operators. We utilize this compatibility to decrease the number of computations
of Gröbner bases in the noncommutative rings of differential operators, which
reduces the offline computational time. A numerical example is presented to
show the efficiency of the proposed method compared to that of other existing
methods such as the EKF, UKF, and PF.
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1 INTRODUCTION

Although the state of a dynamical system is important
for monitoring and controlling using feedback, it is rarely
observed to be the output of the system. The optimal fil-
tering theory was developed to compute optimal estimates
based on the history of observed outputs. The Kalman
filter (KF) [1, 2] provides an explicit form of the optimal
filter under the criterion of the minimum mean square
error for linear systems with Gaussian noise. Following the
success of the KF, the problem settings in optimal filtering
have become diverse to an extent that they include other
optimality criteria, nonlinear systems, and non-Gaussian
noise [3–8].

For cases with non-Gaussian noise, Duong et al. [6]
introduced an additive Laplace-distributed noise to model
the impulsive behavior observed in sonar, radar, and
air turbulent noise[9, 10]. Using an integration formula
for Laplace distributions, they analytically derived the
recursive propagation and update laws of the probability
density function (PDF) of the state conditionally on the
output history. The analytical form of the conditional PDF
can then be used to compute its mean and variance or
perform the maximum a posteriori estimation. Yin et al.
[7] proposed a minimum entropy filter based on a radial
basis function neural network (RBFNN) for nonlinear
systems with non-Gaussian noise. This filter is based on

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. Asian Journal of Control published by John Wiley & Sons Australia, Ltd on behalf of Chinese Automatic Control Society.

Asian J Control. 2023;25:2655–2670. wileyonlinelibrary.com/journal/asjc 2655

https://doi.org/10.1002/asjc.2970
https://orcid.org/0000-0002-5921-8982
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fasjc.2970&domain=pdf&date_stamp=2022-10-27


IORI AND OHTSUKA

the data-driven minimum entropy filter, which minimizes
the Rényi entropy of the output as a measurement of the
randomness of the estimation. The RBFNN was intro-
duced to model the dynamics of the entropy while reduc-
ing the computational cost, so that the filter can be imple-
mented in real time.

Meanwhile, for cases of nonlinear systems, Chen and Hu
[5] proposed a new Kalman-like filter that does not require
any Gaussian assumptions but only the noise bounds. An
upper bound of the estimation error is formulated as a
function of the filter gain based on the noise bounds and
Taylor series approximation of a nonlinear system. The
optimal filter gain is obtained by minimizing the upper
bound, and several numerical examples show that the
Kalman-like filter with the optimal gain outperforms the
other nonlinear KFs under the assumption of unknown
noise variances. Li et al. [8] proposed a filtering algorithm
that exploits the manifold structure underlying nonlin-
ear system dynamics. For the spatial pose estimation via
dual quaternions, they modeled the distributions on the
manifold of unit dual quaternions by particles. The pro-
posal distribution was then updated particle-wise with an
unscented KF-like algorithm that utilizes the notion of
locally augmented tangent space.

In Bayesian filtering, the nonlinearity of the system
dynamics and the non-Gaussian noise can be considered
in principle. However, from the implementation perspec-
tive, it is extremely difficult to consider them because of
the following two main issues: Representing non-Gaussian
distribution owing to the nonlinearity and non-Gaussian
noise, and computing the integrations accompanied by
the marginalization of the PDFs. One of the most popular
approaches to deal with these issues is the nonlinear
extension of the KF, such as the extended KF (EKF)
[11], unscented KF (UKF) [12], cubature KF (CKF) [13],
and Gauss-Hermite KF (GHKF) [14]. In these methods,
the posterior PDF of the state of a dynamical system is
assumed or approximated as a Gaussian PDF, so that it can
be characterized by a finite number of parameters, namely,
the mean and variance. This approximation allows us to
use the Gauss quadrature rules to perform the integra-
tions rapidly. However, the Gauss quadrature rules are
approximations of the integrals; thus, they cannot capture
the nonlinearity of a system exactly. Another popular
approach is the Monte-Carlo scheme, such as the particle
filter (PF) [15–17]. This approach has superior capabilities
for describing the non-Gaussian distributions and consid-
ering the nonlinearity. These advantages can be attained
if the number of particles is large enough. However,
the high computational cost due to the large number of
particles is problematic when the sampling intervals are
tightly constrained.

To extend the boundary of the trade-off between the
reduction of computational cost and the exact considera-
tion of nonlinearity, in our previous work [18], we used
an offline computation before performing the state estima-
tion. This makes the online computation more efficient. In
our previous work [18], we introduced a symbolic-numeric
method called the holonomic gradient method (HGM)
[19] to exactly consider the nonlinearity when updating
the mean and variance of a Gaussian PDF approximating
the posterior PDF. The integrations that are accompanied
by the marginalization are handled offline in terms of
differential operators, and then, the one-step update pro-
cess in Bayesian filtering is reduced to a finite number
of initial value problems (IVPs), which can be efficiently
solved using numerical integration methods such as the
Runge–Kutta method. Moreover, an integral transform
was introduced in the preliminary result [20] to completely
utilize the results of the HGM and reduce the number of
IVPs that are solved online. In this paper, we refer to the
integral transform as the quasi moment generating function
(MGF) because its definition is similar to that of the MGF.

Integral transforms are useful tools for computing PDFs
and have been used for filtering. Idan and Speyer [21]
used an integral transform called the characteristic func-
tion in the state estimation for linear scalar systems with
Cauchy noise. By utilizing the special structure of the
characteristic function, they derived a state estimator by
recursively propagating in time the characteristic func-
tion of the unnormalized conditional PDF of the state.
From the propagated characteristic function, the poste-
rior mean and variance can be derived explicitly. This
characteristic-function approach has been extended to the
case of multivariate linear systems with Cauchy noise
[22]. Zhou et al. [23] used an integral transform called
the cumulant generating function for the state estima-
tion of Markov jump linear systems. By considering the
higher-order moments of the state PDF, a discrete Markov
jump linear system is transformed into a deterministic
system, to which the Kalman filter can be applied.

In this study, we further explore the quasi MGF intro-
duced in the preliminary work [20]. The quasi MGF is
defined as the integral of the posterior PDF multiplied
by a kernel. In the previous method [18], this integra-
tion is performed offline in terms of differential operators
and includes the computations of several Gröbner bases.
They require a high computational cost that is unaccept-
able even though they are performed offline. To avoid the
computation of Gröbner bases, we introduce the Fourier
transform of differential operators [24]. The definition of
the quasi MGF is compatible with the Fourier transform
of differential operators; that is, if a PDF is annihilated
by a differential operator, its inverse Fourier transform
annihilates the quasi MGF of the PDF. By making use
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of this special compatibility, several computations of
Gröbner bases can be replaced with simple substitutions of
equations. As a result, the offline computational cost can
be drastically reduced compared to that of our previous
method [18].

The rest of this paper is organized as follows. First,
Section 2 formulates the problems considered in this study
and defines several integrals that have to be computed
in the one-step estimation process. Next, Section 3 intro-
duces a symbolic-numeric method called the HGM, which
is used in the proposed method to evaluate the integrals
efficiently. In Section 4, we introduce the notion of the
quasi MGF to compute the mean and variance of the
posterior PDF efficiently. The contents in this section are
the results obtained in the preliminary work [20] and are
presented for the completeness of this paper. In Section 5,
we introduce the compatibility between the quasi MGF
and the Fourier transform of differential operators. This
compatibility is used to reduce the offline computational
cost or specifically the number of computations of Gröbner
bases in the rings of differential operators. Section 6
demonstrates the efficiency of the proposed method both
in offline and online computations, and Section 7 con-
cludes this paper. In Appendix A, the notion of holonomic
functions is introduced, which is the basis of all the
arguments in this paper. Finally, for the completeness of
this paper, Appendix B briefly introduces the multipli-
cation and integration in terms of differential operators,
which are used in the proposed method.

Notations
For the field of real numbers R and a vector of indeter-
minates X = [X1 … Xn]⊤, R[X] and R(X) denote the
ring of polynomials and the field of rational functions
in the components of X over R, respectively. 𝜕X ∶=
[𝜕X1 … 𝜕Xn]

⊤ denotes a vector of differential operators,
where 𝜕Xi = 𝜕∕𝜕Xi. We abbreviate 𝜕Xi by 𝜕i if X is clearly
specified in accordance with the context. For a multi-index
vector d = [d1 … dn]⊤ ∈ Zn≥0, Xd denotes a monomial
Xd1

1 Xd2
2 … Xdn

n , that is, the product of n monomials Xdi
i (i =

1, … ,n). Similarly, 𝜕d denotes a differential operator
𝜕

d1
1 𝜕

d2
2 … 𝜕

dn
n , that is, the composition of n differen-

tial operators 𝜕
di
i (i = 1, … ,n). The symbols n ∶=

R[X]⟨𝜕⟩ and n ∶= R(X)⟨𝜕⟩ denote the non-commutative
rings of the differential operators with coefficients in
the polynomials and rational functions, respectively. The
non-commutative ring n is also called the n-dimensional
Weyl algebra. The subscript n of n or n is omitted if
it is clear from the context. We denote the action of an
element l ∈ n(orn) on a sufficiently smooth function
𝛼(X) = 𝛼(X1, … ,Xn) by l•𝛼(X); for instance, 𝜕i•𝛼(X) =
𝜕𝛼∕𝜕Xi(X). The left ideal generated by a finite set of
differential operators {l1, … , ls} ⊂ n(orn) is defined

as a set of differential operators ⟨l1, … , ln⟩ ∶= {a1 · l1 +
… + as · ls|a1, … , as ∈ n (or ∈ n,respectively)}.
We omit the adjective “left” and simply call them ideals
because all the ideals in this study are left ideals. For an
ideal I = ⟨l1, … , ls⟩, the set {l1, … ls} is called a basis of
I. We say that a differential operator l ∈ (or) annihi-
lates a function 𝛼 if l•𝛼 = 0. Similarly, we say that an ideal
I ⊂ (or) annihilates 𝛼 if l•𝛼 = 0 for all l ∈ I. The set
of all positive definite n × n matrices is denoted by PD(n).
The half-vectorization vech(A) of a matrix A = {ai𝑗} ∈
PD(n) is defined as an n(n + 1)∕2-dimensional vector
[a11 … a1n a21 … a2n … ann]⊤. A smooth function 𝛼(X)
is said to be rapidly decreasing if lim||X||→∞Xa𝜕b𝛼(X) → 0
for all a, b ∈ Zn≥0. For a Gaussian random vector X with
mean 𝜇 and variance Σ, its PDF is denoted by  (X|𝜇,Σ).
2 PROBLEM SETTING

In this study, we consider the Bayesian filtering problems
of discrete-time nonlinear systems with stochastic noise,
where the posterior PDF of the state is recursively updated
using the observed output. The update law of the posterior
PDF is described as follows [25, 26]:

p(xk |𝑦[0∶k]) =
p(𝑦k, xk | 𝑦[0∶k−1])

p(𝑦k | 𝑦[0∶k−1])
, (1)

where xk ∈ Rn and 𝑦k ∈ Rr denote the state and output at
time step k and p(𝑦k, xk|𝑦[0∶k−1]) is the joint PDF defined by

p(𝑦k, xk | 𝑦[0∶k−1]) ∶= p(𝑦k | xk)

∫
Rn

p(xk | xk−1)p(xk−1 | 𝑦[0∶k−1])dxk−1,

and p(𝑦k | 𝑦[0∶k−1]) is the output PDF defined by

p(𝑦k | 𝑦[0∶k−1]) ∶= ∫
Rn

p(𝑦k, xk | 𝑦[0∶k−1])dxk.

For simplicity of notation, we focus on the one-step update
of the posterior PDF and omit the past outputs 𝑦[0∶k−1]
and the subscript k. The appearance of (1) can then be
simplified to

p(x | 𝑦) = p(𝑦, x)
p(𝑦)

=
p(𝑦 | x) ∫

Rn
p(x | x−)p(x−)dx−

∫Rn p(𝑦 | x)
[∫Rn p(x | x−)p(x−)dx−

]
dx

,

(2)

where x and 𝑦 denote the current state and output, respec-
tively, and x− denotes the previous state.
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We assume that the system dynamics and observation
process are described by the following state and output
equations:

x = 𝑓 (x−,u) + w, (3)

𝑦 = h(x) + v, (4)

where 𝑓 ∶ Rn × Rm → Rn and h ∶ Rn → Rr are given
nonlinear functions, u ∈ Rm is a given input, and w and
v denote the system and observation noises, respectively.
They are assumed to be independent and identically dis-
tributed with the PDFs pw(w) and pv(v), respectively. To
express the conditional PDFs p(x|x−) and p(𝑦|x) in (2) in
terms of 𝑓, h, pw, and pv, we use the rule of transformation
of PDFs that is summarized as the following lemma[11].

Lemma 1. Let X and Y be random n-dimensional vec-
tors with the PDFs pX (X) and pY (Y ), respectively. Sup-
pose there exists a relation Y = g(X), its inverse g−1

exists, and both g and g−1 are continuously differen-
tiable. Then,

pX (X) = pY (g(X))
|||||det

(
𝜕g
𝜕X

)||||| ,
where | det(𝜕g∕𝜕X)| > 0 is the absolute value of the
Jacobian determinant.

By using the above lemma, the conditional PDFs p(x|x−)
and p(𝑦|x) in (2) can be written as follows:

p(x | x−,u) = pw(x − 𝑓 (x−,u))
||||det

(
𝜕w
𝜕x

)||||
= pw(x − 𝑓 (x−,u)),

(5)

p(𝑦 | x) = pv(𝑦 − h(x))
|||||det

(
𝜕v
𝜕𝑦

)|||||
= pv(𝑦 − h(x)),

(6)

where we use the facts that both derivatives 𝜕w∕𝜕x and
𝜕v∕𝜕𝑦 are identity matrices under the relations (3) and (4).
Moreover, the former PDF is conditional not only on x− but
also on u because of (3). By substituting (5) and (6) into (2),
the update law can be rewritten as

p(x | 𝑦,u) =
pjoint(𝑦, x | u)

∫Rn pjoint(𝑦, x | u)dx
, (7)

where pjoint(𝑦, x | u) is defined using 𝑓, h, pw, and pv as

pjoint(𝑦, x | u) ∶= pv(𝑦 − h(x))∫
Rn

pw(x − 𝑓 (x−,u))p(x−)dx−.

(8)

The update law (7) with (8) can be regarded as a func-
tional that maps the previous posterior PDF p(x−) to the
current p(x|𝑦,u), depending on the parameters 𝑦 and u.
In general, the evaluation of this functional requires high
computational cost and is unacceptable for filtering. To
overcome this issue, the posterior PDFs are usually approx-
imated by the PDFs that can be characterized by a finite
number of parameters. For example, in the nonlinear KFs
such as the EKF and UKF, the posterior PDFs are approx-
imated as Gaussian PDFs [13, 27]. In this paper, we also
approximate the posterior PDFs p(x−) and p(x|𝑦,u) as
Gaussian, but the nonlinearity of the system, namely, 𝑓
and h, are considered exactly in contrast to the nonlin-
ear KFs.

First, suppose that a Gaussian approximation of p(x−),
denoted by (x−|𝜇−,Σ−), is provided by specifying the val-
ues of its mean 𝜇− and variance Σ−. By replacing p(x−)
in (8) with  (x−|𝜇−,Σ−), we can approximate pjoint(𝑦, x|u)
as

pjoint(𝑦, x | u) ≈p̃joint(𝑦, x | u, 𝜇−,Σ−) ∶= pv(𝑦 − h(x))

∫
Rn

pw(x − 𝑓 (x−,u)) (x− | 𝜇−,Σ−)dx−,

(9)
and the current posterior PDF can also be approximated
by substituting (9) into (7), that is,

p(x |𝑦,u) ≈ p̃(x |𝑦,u, 𝜇−,Σ−) ∶=
p̃joint(𝑦, x |u, 𝜇−,Σ−)

∫Rn p̃joint(𝑦, x |u, 𝜇−,Σ−)dx
.

Note that in the nonlinear cases, the approximation p̃joint

is not Gaussian because (5) and (6) are non-Gaussian, and
the same is the case with p̃(x|𝑦,u, 𝜇−,Σ−). Therefore, we
define an approximation of the current posterior PDF to
be a Gaussian PDF  (x|𝜇,Σ) with the same mean 𝜇 and
variance Σ as p̃(x|𝑦,u, 𝜇−,Σ−), that is,

𝜇(𝑦,u, 𝜇−,Σ−) ∶=∫
Rn

x · p̃(x | 𝑦,u, 𝜇−,Σ−)dx

=
∫Rn x · p̃joint(𝑦, x | u, 𝜇−,Σ−)dx
∫Rn p̃joint(𝑦, x | u, 𝜇−,Σ−)dx

,

Σ(𝑦,u, 𝜇−,Σ−) ∶=∫
Rn

xx⊤ · p̃(x | 𝑦,u, 𝜇−,Σ−)dx − 𝜇𝜇⊤

=
∫Rn xx⊤ · p̃joint(𝑦, x | u, 𝜇−,Σ−)dx

∫Rn p̃joint(𝑦, x | u, 𝜇−,Σ−)dx
− 𝜇𝜇⊤.

For simplicity of notation, we introduce an integral Φ
that depends on the parameters 𝑦, u, 𝜇−, andΣ− as follows.
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Φ[g(x)](𝑦,u, 𝜇−,Σ−) ∶= ∫
Rn

g(x) · p̃joint(𝑦, x | u, 𝜇−,Σ−)dx,

where g(x) is a scalar-, vector-, and matrix-valued function
of x. Using Φ, 𝜇 and Σ can be simply rewritten as

𝜇(𝑦,u, 𝜇−,Σ−) =Φ[x](𝑦,u, 𝜇−,Σ−)
Φ[1](𝑦,u, 𝜇−,Σ−)

,

Σ(𝑦,u, 𝜇−,Σ−) =Φ[xx⊤](𝑦,u, 𝜇−,Σ−)
Φ[1](𝑦,u, 𝜇−,Σ−)

− 𝜇𝜇T .

(10)

Now, the one-step update of the mean and variance of
the Gaussian approximation  (x|𝜇,Σ) is reduced to the
evaluation of the functions that are defined by (10).

Remark 1. Although the Gaussian approximation of
the posterior PDF appears in the nonlinear KFs
[13, 27], this assumption is no longer applicable when
the noise has a heavy-tailed distribution, such as the
Cauchy noise. However, we would like to mention
that the proposed method can be applicable to a cer-
tain class of problems with such a heavy-tailed dis-
tribution if we approximate the posterior PDF by a
heavy-tailed distribution. More specifically, to achieve
this, we require the heavy-tailed distribution used for
the approximation to be (i) holonomic, (ii) character-
ized by a finite number of parameters, (iii) and such
that the parameters can be explicitly expressed as func-
tions of the previous estimate, observed output, and
known input. Under these conditions, the proposed
method can be performed with a slight modification
even with heavy-tailed noise.

To update the mean and variance using (10), the three
integrals Φ[1], Φ[x], and Φ[xx⊤] must be evaluated. The
nonlinearity of the system dynamics is exactly consid-
ered in these integrals because 𝑓 and h of (3) and (4)
are included in (9) without any approximations. The non-
linearity makes it extremely hard to express the integrals
in terms of elementary functions. Therefore, we have to
rely on the numerical computation in one way or another.
However, the numerical evaluation of the integrals is too
computationally demanding for application in state esti-
mation problems with short sampling intervals. In our
previous work [18], we efficiently evaluated the integrals
using the HGM, which will be introduced in the next
section.

Finally, the following technical assumptions are made.
The notion of holonomic functions and their remarkable
properties are summarized in Appendix A.

Assumption 1. The conditional PDFs (5) and (6) are
holonomic functions.

Assumption 2. We assume that the nonlinear func-
tions 𝑓 and h and the PDFs pw and pv are such that a
function defined by them:

exp(𝜉⊤x)p̃joint(𝑦, x|u, 𝜇−,Σ−)

is rapidly decreasing with respect to x for any 𝑦 ∈
Rr, u ∈ Rm, 𝜇− ∈ Rn, Σ− ∈ PD(n), and 𝜉 ∈ Ξ, where
Ξ is a compact subset of Rn including the origin.

Remark 2. Assumption 2 is made to guarantee the
existence of the quasi MGF, though it is not clear which
kind of problem satisfies the assumption. A simple
example satisfying the assumption is the linear case
with Gaussian noise. In this case, the approximated
PDF p̃joint is given as Gaussian, which is identical to
the true PDF pjoint. It is easy to see that each derivative
of the Gaussian PDF is proportional to exp(−||x||2) up
to a polynomial factor in the components of x. Even if
multiplied by exp(𝜉⊤x), the product is proportional to
exp(||x||−||x||2) up to the polynomial factor, which still
converges to 0 as ||x|| → ∞. As another case that satis-
fies the assumption, we can consider a problem where
pv is proportional to exp(−||v||) up to a polynomial fac-
tor in the components of v and h(x) is a polynomial
of total degree d > 2. In this case, the PDF p(𝑦|x) =
pv(𝑦 − h(x)) in (9) is proportional to exp(−||x||d) up
to a polynomial factor in the components of x, which
makes p̃joint rapidly decreasing.

3 HOLONOMIC GRADIENT
METHOD

The HGM is a symbolic-numeric method that can effi-
ciently evaluate a holonomic function (Definition 3)
by using the differential operators that annihilate the
holonomic function. In particular, the HGM is suitable
for a holonomic function such that i) its explicit expres-
sion is described as an integral of nonlinear functions
that depends on several parameters (such as the integrals
Φ[1], Φ[x], and Φ[xx⊤]), and ii) its evaluation based
on the direct computation of the explicit expression is
time-consuming; hence, it is unavailable.

Consider the evaluation of the holonomic function 𝛼(X)
whose explicit expression is given as an integral that
depends on a parameter X . For a specific point X̂ where we
want to evaluate 𝛼(X), the HGM is performed in the follow-
ing three steps: (i) compute the Pfaffian system (A3) from
the explicit expression of 𝛼(X); (ii) compute the value of Q
in (A3) at an initial point Xinit, which is used as an initial
vector of an IVP solved in the next step; and (iii) integrate
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IORI AND OHTSUKA

the Pfaffian system along an integration path from Xinit to
X̂ . The following briefly explains each step.

(1) Computation of the Pfaffian system
As mentioned in the last paragraph of Appendix A,
the Pfaffian system for 𝛼(X), or more specifically,
the coefficient matrices AXi (i = 1, … ,n) can be
computed from a basis  of a zero-dimensional
ideal (Definition 2) that annihilates 𝛼(X). If the
prescribed expression of 𝛼(X) is complicated,, it is
extremely difficult to find . The multiplication
and integration in terms of differential operators
(Appendix B) are the key tools for finding this basis;
if the expression of 𝛼(X) is given as an integral
of the product of relatively simple holonomic func-
tions, we can compute  from the set of every basis
of a zero-dimensional ideal that annihilates each
holonomic function. This computation requires the
notion of the holonomic ideals in , which are
counterparts of zero-dimensional ideals in , and is
introduced in Section 5.

(2) Computation of the initial vector
In step 1, we can compute a finite set of differential
operators {𝜕d1 , … , 𝜕dq−1} in Lemma 6 from . By let-
ting them act on the prescribed expression of 𝛼(X),
we obtain an explicit expression for a vector-valued
function Q(X) ∶= [𝛼𝜕d1𝛼 · · · 𝜕dq−1𝛼]⊤. Note that if the
prescribed expression of 𝛼(X) is an integral depending
on the parameter X , the expression of every compo-
nent of Q(X) is also described as an integral depending
on the parameter X , which implies that the evaluation
of Q(X) is also time-consuming. However, as long as
it is performed offline, Q(X) can be evaluated numer-
ically at a fixed point Xinit using the obtained explicit
expression, if the computational time is sufficient.

(3) Integration of the Pfaffian system along an
integration path
When the evaluation point X̂ is specified, we can
define an integration path X ∶ [0, 1] ∋ s → X(s) ∈ Rn

such that X(0) = Xinit and X(1) = X̂ . For example, the
line segment X(s) ∶= sX̂ + (1 − s)Xinit is available. The
vector Q(X̂), whose first component is 𝛼(X̂), can then
be computed by solving the following IVP:

dQ
ds

= 𝜕Q
𝜕X

dX
ds

=
n∑

i=1
AXi (X(s))Q(X(s))dXi

ds
,

Q(X(0)) =Q(Xinit).
(11)

This IVP can be solved using numerical integration
methods such as the Runge–Kutta method (RK4)
or the Adams–Bashforth–Moulton predictor-corrector
method (ABM4).

Note that some of the denominators of the components
of AXi (i = 1, … ,n) can be zero at a certain point X(s̃) (s̃ ∈
[0, 1]). The numerical integration may fail if such a num-
ber s̃ exists. The zero set of the least common multiple of all
the denominators in AXi (i = 1, … ,n) is called the singu-
lar locus of the Pfaffian system. The initial point Xinit and
the integration path should be chosen such that the inte-
gration path does not intersect with the singular locus; that
is, s̃ does not exist.

Here, we note that the evaluation point X̂ does not
appear until step 3. Therefore, if the specific value of X̂ is
only available online, we can perform steps 1 and 2 offline
without the value of X̂ . We can use this feature of the HGM
in the application of the state estimation and reduce the
online computational cost [18]. However, the computa-
tional cost of Gröbner bases required in step 1 is extremely
high and is not acceptable even though it is performed
offline.

4 EVALUATION OF MEAN AND
VARIANCE BY QUASI MGF

This section introduces the preliminary results[20] for the
completeness of this paper. Hereafter, z ∈ RN denotes a
vector that consists of the independent components of 𝑦 ∈
Rr, u ∈ Rm, 𝜇− ∈ Rn, and Σ− ∈ PD(n), where N = r+m+
n + n(n + 1)∕2.

In our previous work[18], the HGM was utilized to eval-
uate integrals Φ[1], Φ[xi] (i = 1, … ,n), and Φ[xix𝑗] (i, 𝑗 ∈
{1, … ,n}) to compute the estimates (10). In the HGM, an
IVP needs to be solved to evaluate a scalar-valued func-
tion, which implies that, for example, the number of IVPs
that are solved online for evaluating the matrix Φ[xx⊤]
increases in the order of n2. This may be unacceptable
when n increases. To address this issue, we introduce an
integral transform of the approximation of the joint PDF
p̃joint, which we call the quasi MGF for p̃joint. The definition
of the quasi MGF is similar to that of the MGF; there-
fore, the integrals Φ[xi] and Φ[xix𝑗] can be obtained as
partial derivatives of the quasi MGF. By making use of the
finiteness of partial derivatives (Lemma 6), these partial
derivatives can be evaluated by solving an IVP just once,
which reduces the online computational cost.

The quasi MGF  [
p̃joint

]
is defined as the following

integral transform of p̃joint:

 [
p̃joint

]
(𝜉, z) ∶= Φ

[
exp(𝜉⊤x)

]
(z)

= ∫
Rn

exp(𝜉Tx)p̃joint(𝑦, x|u, 𝜇−,Σ−)dx.

(12)
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IORI AND OHTSUKA

Under Assumption 2, the integrand of (12) is bounded
and smooth for all 𝜉 ∈ Ξ. Although this definition is simi-
lar to that of the MGF, it is different because the integration
is considered only over x, instead of 𝑦 and x. The integrals
that appear in (10) are then derived from the partial
derivatives of the quasi MGF as follows.

 [p̃joint](0, z) = Φ[1](z),

𝜕𝜉i
 [p̃joint](0, z) = ∫

Rn

[
𝜕𝜉i

exp(𝜉⊤x)p̃joint(𝑦, x|u, 𝜇−,Σ−)
]|||𝜉=0

dx = ∫
Rn

xip̃joint(𝑦, x|u, 𝜇−,Σ−)dx = Φ[xi](z),

𝜕𝜉i
𝜕𝜉𝑗 [p̃joint](0, z) = ∫

Rn

[
𝜕𝜉i

𝜕𝜉𝑗 exp(𝜉⊤x)p̃joint(𝑦, x|u, 𝜇−,Σ−)
]||||𝜉=0

dx = ∫
Rn

xix𝑗 p̃joint(𝑦, x|u, 𝜇−,Σ−)dx = Φ[xix𝑗](z).

From the closure property (Lemma 5) and Assumption 1,
p̃joint is a holonomic function. Therefore, by considering
the closure property again,  [p̃joint] is also a holonomic
function because the kernel exp(𝜉⊤x) is also holonomic.
Lemma 6 guarantees the existence of a finite set {𝜕d1 , … ,

𝜕dq−1} such that the q-dimensional vector-valued function

Q(𝜉, z) ∶=
[ [p̃joint] 𝜕d0 [p̃joint] … 𝜕dq−1 [p̃joint]

]⊤
satisfies the Pfaffian system (A3). Using the Pfaffian sys-
tem, we can derive  [p̃joint] and its derivatives as a linear
combination of components of Q(𝜉, z) with coefficients in
R(𝜉, z).

First,  [p̃joint](𝜉, z) is the first component of Q(𝜉, z); thus,
it can be written as

 [p̃joint](𝜉, z) = C(0)Q(𝜉, z) (13)

using a constant coefficient vector C(0) = [10 … 0] ∈
R1×q. Next, for i = 1, … ,n, the first derivative
𝜕𝜉i [p̃joint](𝜉, z) appears in the first component of 𝜕𝜉i Q,
namely, the left-hand side of (A3). Hence, the following
equality holds.

𝜕𝜉i [p̃joint](𝜉, z) = C(1)
i (𝜉, z)Q(𝜉, z) (i = 1, … ,n), (14)

where the coefficient vector C(1)
i (𝜉, z) ∈ R(𝜉, z)1×q is the

first row vector of the rational matrix-valued function
A𝜉i(𝜉, z) ∈ R(𝜉, z)q×q in (A3). Finally, the second deriva-
tives 𝜕𝜉i𝜕𝜉𝑗 [p̃joint](𝜉, z) (i, 𝑗 = 1, … ,n) are obtained by
differentiating both sides of (A3), that is,

𝜕𝜉i •𝜕𝜉𝑗 Q = 𝜕𝜉i •(A𝜉𝑗
Q)

= 𝜕𝜉i A𝜉𝑗
Q + A𝜉𝑗

𝜕𝜉i Q

= (𝜕𝜉i A𝜉𝑗
+ A𝜉𝑗

A𝜉i)Q,

where 𝜕𝜉i A𝜉𝑗
+ A𝜉𝑗

A𝜉i ∈ R(𝜉, z)q×q. Hence, the second
derivatives can be obtained as follows:

𝜕𝜉i𝜕𝜉𝑗 [p̃joint](𝜉, z) = C(2)
i𝑗 (𝜉, z)Q(𝜉, z), (15)

where the coefficient vector C(2)
i𝑗 (𝜉, z) ∈ R(𝜉, z)1×q is the

first row vector of 𝜕𝜉𝑗 A𝜉i + A𝜉i A𝜉𝑗
.

The coefficient matrices A𝜉i (i = 1, … ,n) and the coef-
ficient vectors C(1)

i (𝜉, z) (i = 1, … ,n) and C(2)
i𝑗 (𝜉, z) (i, 𝑗 =

1, … ,n) can be computed symbolically and offline.
Hence, the values of the integrals Φ[1](z), Φ[x](z), and
Φ[xx⊤](z) at z = ẑ can be computed as follows:

Φ[1](ẑ) =  [p̃joint](0, ẑ) = C(0)Q(0, ẑ),

Φ[xi](ẑ) = 𝜕𝜉i [p̃joint](0, ẑ) = C(1)
i (0, ẑ)Q(0, ẑ),

Φ[xix𝑗](ẑ) = 𝜕𝜉i𝜕𝜉𝑗 [p̃joint](0, ẑ) = C(2)
i𝑗 (0, ẑ)Q(0, ẑ).

Finally, the online computation of the proposed method
can be summarized as Algorithm 1.
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IORI AND OHTSUKA

5 COMPUTATION OF PFAFFIAN
SYSTEM FOR QUASI MGF

In the preliminary work [20], only the online computa-
tional time, which directly affects the efficiency of esti-
mation methods, is investigated and compared with that
of the other existing methods. However, the offline com-
putational cost is also important for the practical applica-
tions. For example, the tuning of the estimator may suffer
from the huge offline computational time. In practical
situations, the PDFs pw and pv in (9) are often unknown
and need to be tuned. During this tuning, we have to
construct many estimators with various candidate PDFs,
which requires the offline part of the proposed method
to be executed many times. If the offline part requires
much computational time, this process cannot be accept-
able even if it can be performed offline. In this section,
we focus on the offline computational cost of the proposed
method.

As a part of the input of Algorithm 1, the Pfaffian system
for the quasi MGF  [p̃joint] is required. It can be computed
from a basis of the zero-dimensional ideal that annihi-
lates  [p̃joint]. Furthermore, such a basis can be computed
from the bases of holonomic ideals I−, It, and Io that
annihilate  (x−|𝜇−,Σ−), p(x|x−,u−), and p(𝑦|x), respec-
tively (see previous studies [20, 29] for details). This
computation is performed algorithmically using the multi-
plication and integration in terms of differential operators
(Lemmas 7 and 8). The multiplication and integration
in terms of differential operators require several compu-
tations of Gröbner bases of ideals in . This incurs a
high computational cost, which may be unacceptable even
when the computations are performed offline.

This section first introduces the Fourier transform of
differential operators to partially avoid computing Gröbner
bases. To this end, we need to focus on holonomic ideals
in  rather than zero-dimensional ideals in . Although
we skip the definition of holonomic ideals owing to space
limitations, it is characterized by the dimension of ide-
als and modules (see previous works [28, 29] for details).
Zero-dimensional ideals in  and holonomic ideals in 
are related to each other by the following lemmas.

Lemma 2. [29] For a zero-dimensional ideal J ⊂ ,
the intersection J ∩ is a holonomic ideal in .

Lemma 3. [29] Let I be a holonomic ideal in  and let
I represent the following set of differential operators.

I ∶= {a1l1 + · · · + asls|a1, … ,

as ∈ ; l1, … , ls ∈ I; s ∈ Z≥0}.

Then, I is a zero-dimensional ideal in .

Lemma 3 implies that if a holonomic ideal I ⊂ 
is generated by a finite number of differential operators
l1, … , ls ∈ , the zero-dimensional ideal I is also
generated by l1, … , ls as elements of . Hence, from the
perspective of symbolic computation, computing a basis of
I readily implies computing a basis of I.

The Fourier transform in terms of differential operators
is defined as follows.

Definition 1. [29] For X = [X1 … Xn]⊤, Y =
[Y1 … Ym]⊤, and Z = [Z1 … Zn]⊤, the Fourier trans-
form of R[X ,Y ]⟨𝜕X , 𝜕Y ⟩ with respect to X is the ring
isomorphism

 ∶ R[X ,Y ]⟨𝜕X , 𝜕Y ⟩ → R[Z,Y ]⟨𝜕Z, 𝜕Y ⟩
defined by

 (Xi) = −𝜕Zi ,  (𝜕Xi) = Zi (i = 1, … ,n). (16)

The Fourier transform  is an automorphism of
n+m with the inverse defined by

−1(Zi) = 𝜕Xi , −1(𝜕Zi) = −Xi (i = 1, … ,n),

because both R[X ,Y ]⟨𝜕X , 𝜕Y ⟩ and R[Z,Y ]⟨𝜕Z, 𝜕Y ⟩ are
isomorphic to n+m.

Using the Fourier transform, we can readily compute
a holonomic ideal for  [p̃joint] from that for p̃joint, with-
out computing any Gröbner bases. The following theorem
describes the compatibility between the quasi MGF and
the Fourier transform of differential operators, which is the
key in the offline part of the proposed method.

Theorem 1. Let  be R[x, z]⟨𝜕x, 𝜕z⟩, ′ be
R[𝜉, z]⟨𝜕𝜉, 𝜕z⟩, and −1 ∶  → ′ be the inverse of the
Fourier transform with respect to x. For a holonomic
ideal I = ⟨l1, … , lb⟩ ⊂  that annihilates p̃joint(x, z), its
inverse Fourier transform is defined as

−1(I) ∶=
⟨−1(l1), … ,−1(lb)

⟩
⊂ ′.

Then, −1(I) is a holonomic ideal that annihilates
 [p̃joint](𝜉, z).

Proof. Whether an ideal I ⊂  is holonomic is deter-
mined by the dimension of the left -module ∕I[29].
In addition, it is known that the dimension of a left
-module is preserved under any automorphism of
[24]. Hence, the dimension of the left -module
∕−1(I) is the same as ∕I, which implies −1(I) is
holonomic if and only if I is holonomic.

It needs to be demonstrated that −1(I) annihilates
 [p̃joint]. To this end, we show that

 [l•p̃joint] = −1(l)• [p̃joint]
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IORI AND OHTSUKA

for any element l ∈ . If this is true, we obtain

−1(l)• [p̃joint] =  [l•p̃joint] =  [0] = 0 (∀l ∈ I),

which implies that −1(I) annihilates  [p̃joint]. Since
z1, … , zN and 𝜕z1 , … , 𝜕zN have no relevance with  , it
is sufficient to show the following equalities.

 [xi•p̃joint] = −1(xi)• [p̃joint], (17)

 [𝜕xi •p̃joint] = −1(𝜕xi)• [p̃joint]. (18)
The former one (17) can be obtained from (12)

and (16) as follows.

 [xi•p̃joint](𝜉, z) = ∫
Rn

exp(𝜉⊤x)
{

xip̃joint(x, z)
}

dx

= ∫
Rn

{
𝜕𝜉i • exp(𝜉⊤x)

}
p̃joint(x, z)dx

= −1(xi)• [p̃joint](𝜉, z).

Meanwhile, for (18), we first show the following equal-
ity that is obtained by integrating by parts:

∞

∫
−∞

exp(𝜉⊤x)
{
𝜕xi •p̃joint(x, z)

}
dxi

=
[
exp(𝜉⊤x)p̃joint(x, z)

]xi=∞
xi=−∞

−

∞

∫
−∞

{
𝜕xi • exp(𝜉⊤x)

}
p̃joint(x, z)dxi

= −𝜉i

∞

∫
−∞

exp(𝜉⊤x)p̃joint(x, z)dxi,

where the second equality follows from Assumption 2.
Using this equality, (18) is proven as follows:

 [𝜕xi •p̃joint](𝜉, z) = ∫
Rn−1

{
∫

∞

−∞
exp(𝜉⊤x)

{
𝜕xi •p̃joint(x, z)

}
dxi

}
dxî

= ∫
Rn−1

{
−𝜉i ∫

∞

−∞
exp(𝜉⊤x)p̃joint(x, z)dxi

}
dxî

= −1(𝜕xi )• [p̃joint](𝜉, z),

where xî = [x1 … xi−1 xi+1 … xn]T . This completes the
proof. □

Theorem 1 shows that a basis of −1(I) can be derived
from a basis of I by performing simple substitutions, xi ←
𝜕𝜉i and 𝜕xi ← −𝜉i for i = 1, … ,n. As shown in the
example illustrated in Section 6, this leads to a signifi-
cant reduction in the offline computational cost. Finally,
using Theorem 1, the Pfaffian system for the quasi MGF
 [p̃joint] is obtained from the holonomic ideals I−, It, and

Io by Algorithm 2. In line 2 of Algorithm 2, the multiplica-
tion and integration in terms of differential operators are
avoided by utilizing the compatibility of the quasi MGF
and the Fourier transform as summarized in Theorem 1.

In the rest of this section, we discuss how to obtain
the input of Algorithm 2, namely, the holonomic ideals
I−, It, and Io, from the PDFs  (x−|𝜇−,Σ−), p(x|x−,u−),
and p(𝑦|x), respectively. If the PDFs are complex nonlin-
ear functions, we can decompose the problem of finding
a proper holonomic ideal to problems of finding more
simple holonomic ideals. For example, by expressing a
complex nonlinear function 𝛼(X) as the sum or product
of several simple nonlinear functions 𝛼1(X), … , 𝛼p(X), we
can construct a holonomic ideal annihilating 𝛼(X) from a
set of holonomic ideals annihilating 𝛼1(X), … , 𝛼p(X) (for
details, see Oaku et al. [30] and Lemma 7 in the appendix
of this paper).

However, even for a simple nonlinear function 𝛼i(X), it is
sometimes difficult to find a holonomic ideal I ⊂ R[X]⟨𝜕⟩
annihilating 𝛼i(X). In such cases, instead of I, we can find
a zero-dimensional ideal J ⊂ R(X)⟨𝜕⟩ annihilating 𝛼i(X),
which is easier to compute. Once a basis of J is obtained, by
clearing the denominators of the basis, we can often obtain
a basis of I. If not, we can algorithmically compute a basis
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IORI AND OHTSUKA

of I = J ∩ R[X]⟨𝜕⟩ defined in Lemma 2 (see Tsai [31] for
details of the algorithm).

There are many classes of simple nonlinear functions
such that, for any function in the class, we can manually
compute a zero-dimensional ideal annihilating it. Some
of these classes are introduced in the following examples.
Consequently, we can algorithmically compute a proper
zero-dimensional ideal as well as holonomic ideal for any
nonlinear function that can be expressed as the sum and
product of the simple nonlinear functions.

Example 1. For any rational function g ∈ R(X)
of X = [X1 X2 … Xn]⊤, we can easily compute a
zero-dimensional ideal annihilating it. Indeed, as the
derivatives 𝜕Xi g(X) are rational functions, g(X) is
annihilated by differential operators 𝜕Xi −
(𝜕Xi g(X))∕g(X) (i = 1, … ,n), which constitute a basis
of such a zero-dimensional ideal from Lemma 4.

Example 2. The second class is the exponential of
rational functions exp(g(X)). It is easy to verify that
the differential operators 𝜕Xi − (𝜕Xi g(X)) (i = 1, … ,n)
annihilate exp(g(X)) and again constitute a basis of the
annihilating zero-dimensional ideal from Lemma 4.

Example 3. Finally, the composition of trigonometric
functions and rational functions such as cos(g(X)) also
belongs to the class of simple nonlinear functions for
which we can compute a proper holonomic ideal. The
first and second derivatives of cos(g(X)) with respect to
Xi are easily computed as

𝜕i• cos(g(X)) = −𝜕ig(X) sin(g(X))

𝜕2
i • cos(g(X)) = −𝜕2

i g(X) sin(g(X)) − (𝜕ig(X))2 cos(g(X)).

By eliminating sin(g(X)) from these equations, we
obtain the differential operator 𝜕2

i −{𝜕
2
i g(X)∕𝜕ig(X)}𝜕i+

(𝜕ig(X))2 for each i = 1, … ,n. These n dif-
ferential operators again constitute a basis of a
zero-dimensional ideal annihilating cos(g(X)).

6 NUMERICAL EXAMPLE

This section provides a numerical example to demon-
strate the efficiency of the proposed method. We use
Risa/Asir [32] for the symbolic computation, Maple
for the offline numerical computation, andPython for the
online numerical computation on a PC (Intel(R) Core(TM)
i7-1065G7 CPU @ 1.30 GHz; RAM: 16 GB).

Consider the following nonlinear stochastic system:

x = 4x−

1 + (x−)2 + u + w, (19)

𝑦 = x + v, (20)
where the PDFs of w and v are given as  (w|0, 1)
and  (v|0, 9), respectively, and u is given as a function
cos(0.6k) of the time step k. To apply Algorithm 1 to this
nonlinear stochastic system, several symbolic objects have
to be computed beforehand using Algorithm 2.

The inputs of Algorithm 2, namely, the bases of holo-
nomic ideals I−, It, and Io are obtained as follows. First, the
one-dimensional Gaussian

 (x−|𝜇−,Σ−) = 1√
2𝜋Σ−

exp
{
−(x− − 𝜇−)2

2Σ−

}
is annihilated by three differential operators:

𝜕x− + 𝜕𝜇− , 𝜕Σ− − 1
2
𝜕2

x− , andΣ−𝜕x− + x− − 𝜇−. (21)

It can be verified that these differential operators gener-
ate a holonomic ideal that annihilates p̃joint(𝜉, z) (see[29]
for an algorithm to perform this verification). Hence, (21)
can be regarded as a basis of I− in Algorithm 2. From (5),
p(x|x−,u) is obtained by substituting (19) into the PDF of
 (0, 1) as

p(x|x−,u) = 1√
2𝜋

exp

[
−1

2

{
x − 4x−

1 + (x−)2 − u
}2

]
.

This PDF is annihilated by the following three differential
operators:

𝜕x+x, 𝜕u−u, and
{
(x−)2 + 1

}2

4(x−)2 − 4
𝜕x−+x− 4x−

1 + (x−)2 −u. (22)

After canceling the denominators, the set of differen-
tial operators becomes a basis of a holonomic ideal for
p(x|x−,u). Hence, it can be regarded as a basis of It. Finally,
p(𝑦|x) is also obtained from (6) by substituting (20) into the
PDF of  (0, 9):

p(𝑦|x) = 1
3
√

2𝜋
exp

{
− 1

18
(𝑦 − x)2

}
.

This PDF is annihilated by

𝜕𝑦 + 𝑦 and 𝜕x − x, (23)

which constitute a basis of Io, that is, a holonomic ideal
that annihilates p(𝑦|x).

Hereafter, z = [z1 … z4]⊤ denotes the vector
[𝑦u𝜇−Σ−]⊤. From the bases (21)–(23), a basis of a holo-
nomic ideal that annihilates p̃joint(x, z) can be obtained by
performing the multiplication and integration in terms
of differential operators. In this example, the obtained
basis of the holonomic ideal consists of eleven differential
operators:
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IORI AND OHTSUKA

𝜕z1 + 𝜕x + 𝜕z2 ,−9𝜕z1 + x − z1, … (24)

where the remaining elements of the basis are omitted due
to space limitations. By using the Fourier transform with
respect to x, we obtained a basis of a holonomic ideal that
annihilates  [p̃joint](𝜉, z), which is denoted by  hereafter.
For example, the differential operators that appears in (24)
are mapped to the following differential operators by the
Fourier transform.

𝜕z1 − 𝜉 + 𝜕z2 ,−9𝜕z1 + 𝜕𝜉 − z1 ∈ . (25)

From , we compute the Pfaffian system (A3) for
 [p̃joint]. Lemma 3 implies that the computed basis  ⊂

 = R[𝜉, z]⟨𝜕𝜉, 𝜕z⟩ can be regarded as a basis of the
zero-dimensional ideal in  = R(𝜉, z)⟨𝜕𝜉, 𝜕z⟩ that annihi-
lates  [p̃joint]. Therefore, we can compute the finite set of
differential operators in Lemma 6 from . In this example,
the finite set was obtained as

{
𝜕z1 , 𝜕z3 , 𝜕z4 , 𝜕

2
z1
, 𝜕z4𝜕z1 , 𝜕

2
z4

}
.

Hence, Q becomes a seven-dimensional vector-valued
function that consists of the quasi MGF and its derivatives,
that is,

Q =
[
1 𝜕z1 𝜕z3 𝜕z4 𝜕2

z1
𝜕z4 𝜕z1 𝜕2

z4

]⊤• [p̃joint], (26)

where • represents the actions of all the components on
 [p̃joint]. Note that (26) consists of integrals over x and
x− because of the definitions (12) and (9), and hence, its
evaluation is time-consuming.

Meanwhile, all the entries of the coefficient matrices
A𝜆 ∈ R(𝜉, z)7×7 (𝜆 ∈ {𝜉, z1, z2, z3, z4}) were explicitly
computed. Due to space limitations, we only present an
overview of the coefficient matrix A𝜉 as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z2 + 4
5

z3 0 16
25

z4 + 1 0 0 0 0
0 z2 + 4

5
z3 0 0 0 16

25
z4 + 1 0

1 0 z2 + 4
5

z3 2z4 + 25
8

0 0 0
∗ ∗ ∗ ∗ 0 − 9z4

z3
0

∗ ∗ ∗ ∗ ∗ 3z2
4

25z2
3

3z3
4

25z3

∗ ∗ ∗ ∗ ∗ ∗ 3
5

z4

∗ ∗ ∗ ∗ − 6
z3z3

4
∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the entries ∗ are complicated rational functions of 𝜉
and z, and their details are omitted. The coefficient vectors
in (14) and (15) were computed from A𝜉 as follows:

C(1)(𝜉, z) = [z1 9 0 0 0 0 0], (27)

C(2)(𝜉, z) = [z2
1 + 9 18z1 0 0 81 0 0]. (28)

In this example, the symbolic computation that has been
described above took just a few seconds. In contrast, our
previous method [18] was unable to finish its offline part

within 24 h for the same example. This indicates that
the quasi MGF with the Fourier transform of differential
operators contributes to overcoming the difficulty of our
previous method in the offline computational cost, which
allows the proposed method to be applied to a larger class
of problems than the previous method.

At the end of the offline part, we have to choose the
initial points zinit and compute the corresponding initial
vectors Q(0, zinit). The choice of the initial points depends
on the singular locus of the Pfaffian system because
the integration path must not intersect; otherwise,
Algorithm 1 fails (line 3). In this example, the least com-
mon multiple of all the denominators in the coefficient
matrices is z3z4; thus, the singular locus of the Pfaffian
system is obtained as

 ∶=
{
(𝜉, z) ∈ R5|z3z4 = 0

}
. (29)

Since z4 = Σ− is always positive, only the equality z3 = 0
should be considered. More specifically, it is necessary to
choose at least two initial points, one satisfying z3 > 0 and
the other z3 < 0. If we have only one, there is no integration
path to the other side to which the initial point does not
belong. For this example, we chose the following 16 initial
points:{
[z1 z2 z3 z4]⊤|z1 = ±4, z2 = ±0.1, z3 = ±2, z4 ∈ {2, 4}

}
.

(30)

The corresponding initial vectors can be computed
numerically from the definition (26). We used Maple to
compute the initial vectors with sufficient accuracy.

In the online computation, the data z that consists
of u, 𝑦, 𝜇−, and Σ− is given at each sampling time. To
avoid the failure of the integration in Algorithm 1, an ini-
tial point and integration path should be appropriately
selected from the prescribed set (30). For this example, we
fixed the integration path to a line segment from an initial
point zinit to a given data ẑ, that is, the integration path z(s)
is defined by

z(s) ∶= sẑ + (1 − s)zinit. (31)

The initial point was selected for the data in such a
way that the line segment did not intersect the singu-
lar locus (29) and was the shortest among the prescribed
set (30). The numerical integration along the integration
path is performed using ABM4 wherein the first three steps
are initialized using RK4.

The proposed method was performed under the afore-
mentioned settings. Figure1 shows a realization of the
state and output trajectories of system (19)–(20) and the
estimated trajectory by Algorithm 1. In Figure 1a, the
dashed line (trajectory of estimated states) approximately
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IORI AND OHTSUKA

resembles the solid line (trajectory of true states) regard-
less of the existence of relatively large noise observed from
the output trajectory in Figure 1b. When the estimated
state deviates from the true state, for example, around the
time step k = 40 and k = 55, it is also observed that the
filled area is wide. Specifically, even when the estimated
posterior mean is accurate, it may largely deviate from the
true state because of the large true posterior variance. In
this case, the estimated variance, which is depicted as the
range of the filled area, should also be large. The validity of
the estimated variance will also be tested in the evaluation
of negative log-likelihood (NLL) later.

For comparison, we implemented the EKF, UKF, and
PF. The number of particles in the PF was set to (i) 20
for its computational time to be comparable to that of the

proposed method and (ii) 80 for its accuracy to be almost
the same as that of the proposed method. All the methods,
including the proposed method, were performed for 300
realizations.

We used the root-mean-square-error (RMSE) and
averaged NLL [33] as the performance indices. The NLL is
a performance index that can evaluate not only the mean
but also the variance. Figure 2 shows the RMSE of each
method for all realizations at each time step. The proposed
method and the PF with 80 particles show similar RMSEs,
which is the reason for the number of particles being
set to 80. These two methods yield smaller RMSEs than
the other methods, and this trend becomes clearer when
the performance index is the averaged NLL as shown in
Figure 3. This indicates that the proposed method can

FIGURE 1 Certain realization and corresponding estimate of (19) and (20)

FIGURE 2 Comparison of RMSE for
proposed method (solid), PFs of 80 and 20
particles (dashed and dash-dotted, respectively),
UKF (dotted, thick), and EKF (dotted, thin,
greater than 2.0 after the time step k = 4)

FIGURE 3 Comparison of NLL for proposed
method (solid), PFs of 80 and 20 particles
(dashed and dash-dotted, respectively), UKF
(dotted, thick), and EKF (dotted, thin, greater
than 1.5 after the time step k = 4)
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IORI AND OHTSUKA

FIGURE 4 Boxplots of computational time
for one-step estimations of all methods

provide a Gaussian approximation of the posterior PDF as
accurately as the PF with 80 particles.

Furthermore, the computational time for the one-step
estimations of all the methods are summarized as box-
plots in Figure 4. It can be observed that the proposed
method is faster than the PF with 80 particles. The com-
putational time of the PF with 20 particles is, as arranged,
similar to that of the proposed method, while the nonlinear
Kalman filters are faster than the proposed method. How-
ever, as shown in Figure 3, these methods failed to estimate
the posterior PDF as accurately as the proposed method.
Consequently, the proposed method outperforms the other
methods from the viewpoint of the tradeoff between com-
putational time and accuracy. The efficiency of the pro-
posed method results from the fact that most complicated
parts of the nonlinear Bayesian filtering are performed
offline, which allows us to obtain accurate estimates with
relatively small online computational burdens.

7 CONCLUSION

In this study, a symbolic-numeric Bayesian filtering
algorithm for a class of nonlinear systems with stochastic
noise is proposed. The mean and variance of the Gaus-
sian approximation of the posterior PDF are updated while
exactly considering the nonlinearity by using the holo-
nomic gradient method. We introduced the notion of the
quasi MGF to reduce the number of offline computations
of Gröbner bases and the number of initial value prob-
lems solved online in the proposed estimation algorithm.
In the numerical example, we demonstrated that the pro-
posed method could reduce the offline computational time
compared to our previous method. In addition, it is demon-
strated that the proposed method is more efficient than
other existing methods in terms of the trade-off between
accuracy and computational cost.

The main contribution of the paper lies in the efficient
evaluation of marginal mean and variance such as (10).

Hence, the theoretical results of the paper may also be
applied to, for example, stochastic model predictive control
of uncertain discrete-time nonlinear systems, where eval-
uating the expectation of a cost function and predicting the
state distribution of an uncertain nonlinear system are key
challenges [34, 35].

It is known that ODE (11) may be stiff and difficult
to solve numerically [36]. Therefore, for future work, the
choice of the initial point and the integration path in the
third step of the HGM can be investigated to obtain a stable
ODE. This would be achieved particularly by making use
of the problem-specific structure such as the quasi MGF.
In another direction, we plan to use more general types
of PDFs for the approximation of the posterior PDF rather
than Gaussian PDFs to achieve higher accuracy.

ACKNOWLEDGEMENTS
This work was partly supported by JSPS KAKENHI Grant
Numbers JP21K21285, JP18J22093, and JP15H02257.

AUTHOR CONTRIBUTIONS
Tomoyuki Iori: Conceptualization, formal analysis,
methodology. Toshiyuki Ohtsuka: Conceptualization,
methodology, supervision.

CONFLICTS OF INTEREST
The authors declare no potential conflict of interests.

ORCID
Tomoyuki Iori https://orcid.org/0000-0002-5921-8982

REFERENCES
1. R. E. Kalman, A new approach to linear filtering and prediction

problems, ASME J. Basic Eng. 82 (1960), 35–45.
2. R. E. Kalman and R. S. Bucy, New results in linear filtering and

prediction theory, ASME J. Basic Eng. 83 (1961), no. 1, 95–108.
3. I. Rusnak, Maximum likelihood optimal estimator of

non-autonomous nonlinear dynamic systems, Proceedings of
European Control Conference, 2015, pp. 909–914.

2667

 19346093, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asjc.2970 by C

ochrane Japan, W
iley O

nline L
ibrary on [20/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com
https://orcid.org/0000-0002-5921-8982
https://orcid.org/0000-0002-5921-8982


IORI AND OHTSUKA

4. X. Luo, Y. Jiao, W. L. Chiou, and S. S. T. Yau, A novel suboptimal
method for solving polynomial filtering problems, Automatica 62
(2015), 26–31.

5. B. Chen and G. Hu, Nonlinear state estimation under bounded
noises, Automatica 98 (2018), 159–168.

6. N. Duong et al., Laplace estimator for linear scalar systems,
Proceedings of the IEEE Conference on Decision and Control,
2018, pp. 2283–2290.

7. X. Yin, Q. Zhang, H. Wang, and Z. Ding, RBFNN-based minimum
entropy filtering for a class of stochastic nonlinear systems, IEEE
Trans. Autom. Control 65 (2020), no. 1, 376–381.

8. K. Li, F. Pfaff, and U. D. Hanebeck, Unscented dual quaternion
particle filter for SE(3) estimation, IEEE Control Syst. Lett. 5
(2021), no. 2, 647–652.
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APPENDIX A: HOLONOMIC FUNCTIONS

A holonomic function can be defined by a set of differ-
ential operators referred to as a zero-dimensional ideal
in .

Definition 2. [29] Let I be an ideal in  = R(X)⟨𝜕⟩.
The ideal I is zero-dimensional if the quotient ring∕I
is a finite-dimensional vector space over R(X).

Definition 3. [29] An analytic function is called a
holonomic function if there exists a zero-dimensional
ideal that annihilates the function.

Remark 3. Most types of nonlinear functions that
appear in the problems of systems theory are holo-
nomic functions. For example, polynomials, ratio-
nal functions, exponentials, logarithms, trigonometric
functions, and their sums, products, and compositions
under the mild assumptions[37] are holonomic.

The following lemma is useful to verify if a given func-
tion is holonomic.

Lemma 4. [29] An ideal I ⊂ n = R(X)⟨𝜕⟩ is
zero-dimensional if and only if I ∩ R(X)⟨𝜕i⟩ ≠ {0}(i =
1, … ,n).

Example 4. Consider the following nonlinear func-
tion.

𝛽(X) = exp(𝛼(X)),
where X = [X1 … Xn]⊤ and 𝛼(X) ∈ R(X). It is easy to
verify that 𝛽(X) satisfies the following PDEs.

𝜕i•𝛽(X) − 𝜕i𝛼(X)𝛽(X) = (𝜕i − 𝜕i𝛼(X)) •𝛽(X)

= 0 (i = 1 … ,n).
(A1)

Since every 𝜕i𝛼(X) is a rational function, every dif-
ferential operator 𝜕i − 𝜕i𝛼(X) is an element of
R(X)⟨𝜕i⟩. Hence, Lemma 4 ensures that an ideal⟨𝜕1 − 𝜕1𝛼(X), … , 𝜕n − 𝜕n𝛼(X)⟩ is zero-dimensional;
thus, the function 𝛽(X), which is annihilated by this
zero-dimensional ideal, is a holonomic function.

Holonomic functions have two remarkable properties:
the closure property and finiteness of the partial deriva-
tives.

Lemma 5. [30] For holonomic functions𝛼(X)and 𝛽(X)
in X = [X1 … Xn]⊤, the following hold:

1. The product 𝛼 · 𝛽 is also a holonomic function.
2. Assume that 𝛼 = 𝛼(X1, … ,Xn) is infinitely differen-

tiable on Rn and rapidly decreasing with respect to
Xn for any [X1 … Xn−1]⊤ ∈ Rn−1. Then, the integral

∞

∫
−∞

𝛼(X)dXn (A2)

is also a holonomic function of [X1 … Xn−1]⊤.

By virtue of the closure property, even when a given
function is described as a product of two nonlinear func-
tions, we can determine if the product is holonomic by
checking whether each of the two nonlinear functions is
holonomic; the same is true for an integral of a nonlin-
ear function. Moreover, this property is applicable recur-
sively. The integral of the product, the product of the inte-
grals, and more complicated expressions can be defined
by integrations and multiplications. These can be veri-
fied to be holonomic by checking whether all the non-
linear functions that are used for their construction are
holonomic. It should be noted that if we have bases of
zero-dimensional ideals for all the nonlinear functions,
a basis of a zero-dimensional ideal for the complicated
expression can be computed symbolically by using the
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integrations and multiplications in terms of differential
operators (see Appendix B for a brief introduction and[30]
for details).

Example 5. The function

𝛼(X1) = ∫
R

exp(−X2
1 − X2

2 ) cos(X2)dX2

is holonomic because it is defined as an integral of
product of the holonomic functions exp(−X2

1 −X2
2 ) and

cos(X2), and the integrand is rapidly decreasing with
respect to X2.

Meanwhile, the finiteness of the partial derivatives is
stated by the following lemma.

Lemma 6. [29] For a holonomic function 𝛼(X) of
n variables X = [X1 … Xn]⊤, there exist a finite
number of its partial derivatives 𝜕d1𝛼(X), … , 𝜕dq−1𝛼(X)
such that the q-dimensional vector-valued function
Q(X) ∶= [𝛼(X)𝜕d1𝛼(X) … 𝜕dq−1𝛼(X)]⊤ satisfies the fol-
lowing PDEs:

𝜕Xi Q(X) = AXi (X)Q(X) (i = 1, … ,n), (A3)

where each AXi(X) ∈ R(X)q×q is a matrix-valued func-
tion in which all the components are rational functions
of X.

The set of PDEs (A3) is called the Pfaffian system for
the holonomic function 𝛼(X). Lemma 6 shows that every
first-order partial derivative of Q(X) can be expressed as
a vector that comprises linear combinations of the com-
ponents of Q(X) with coefficients in R(X). Moreover, by
differentiating both sides of (A3), it can be readily shown
that all the higher order partial derivatives of Q(X) can
also be expressed by such linear combinations. Every par-
tial derivative of 𝛼(X) can be expressed as such a linear
combination because 𝛼(X) is the first component of Q(X).
In other words, all the partial derivatives of 𝛼(X) are ele-
ments of a finite-dimensional vector space spanned by the
components of Q(X) over R(X).

Let I be a zero-dimensional ideal annihilating a holo-
nomic function 𝛼(X). If we have a basis of I, we can find the
differential operators 𝜕d1 , … , 𝜕dq−1 in Lemma 6 and sym-
bolically compute the Pfaffian system, that is, the matrices
AXi (X) (i = 1, … ,n) in (A3)[29]. The dimension of Q(X),
namely, the number q, is called the holonomic rank of I and
does not depend on the basis used to compute the Pfaffian
system.

APPENDIX B: MULTIPLICATIONS AND
INTEGRATIONS IN TERMS OF DIFFEREN-
TIAL OPERATORS

As mentioned in Appendix A, the notion of holonomic
functions is closely related to differential operators. By
making use of this relationship, many manipulations of
holonomic functions can be interpreted as manipulations
of holonomic ideals[30]. For the completeness of this
paper, we summarize the algorithms of holonomic ide-
als corresponding to the multiplication and integration of
holonomic functions, which we call the multiplication and
integration in terms of differential operators with a slight
abuse of terminology.

Lemma 7. (Multiplication) Let 𝛼(X) and 𝛽(X) be holo-
nomic functions, which are solutions of holonomic ideals
I𝛼 and I𝛽 , respectively. By replacing the indeterminates of
𝛽 and I𝛽 with Y, we can define an ideal

I𝛼⊗𝛽 ∶= {a1l𝛼 + a2l𝛽|l𝛼 ∈ I𝛼; l𝛽 ∈ I𝛽 ; a1, a2 ∈ 2n}

⊂ 2n = R[X ,Y ]⟨𝜕X , 𝜕Y ⟩.
This ideal can be regarded as an ideal of R[X ,Z]⟨𝜕X , 𝜕Z⟩
by applying a coordinate transformation Z = X − Y.
Then, the product 𝛼(X)𝛽(X) is a solution of the restric-
tion of I𝛼⊗𝛽 with respect to Z.

Lemma 8. (Integration) Let 𝛼(X) be a holonomic func-
tion of variables X = [X1 … Xn]⊤, which is a solution
of a holonomic ideal I ⊂ n = R[X]⟨𝜕X⟩. More-
over, assume that 𝛼 is infinitely differentiable on Rn

and rapidly decreasing with respect to Xn. Let n−1 be
R[X1, … ,Xn−1]⟨𝜕1, … , 𝜕n−1⟩. Then, integral (A2) is a
solution of the holonomic ideal (I + 𝜕nn) ∩n−1.

The computations of holonomic ideals that correspond
to the multiplication and integration are reduced to the
computation of a restriction of the holonomic ideals[28].
In addition, their computation algorithms are given
in[30]. Therefore, for any function that is defined by the
integrations and multiplications such as (9), a basis of a
holonomic ideal that annihilates the function can always
be computed algorithmically by applying Lemmas 7 and 8
recursively.
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