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Abstract: Experiment design for identification is usually based on asymptotic theory, where
an infinite number of samples is assumed. However, such an assumption does not hold in
practical cases, and hence, the nonasymptotic properties of system identification should be
considered. This paper proposes a new method for experiment design for identification based
on the nonasymptotic confidence region of the system parameters calculated using the sign-
perturbed-sums (SPS) method for multivariate autoregressive exogenous input (ARX) systems.
The objective function based on the volume of the confidence region is introduced in the proposed
method. Moreover, the proposed optimization problem is solved using Bayesian optimization
because the proposed objective function is calculated from the data obtained only after the
experiment. The validity of the proposed method was assessed in an experimental case study
of a three-tank system, where the proposed method was compared with the existing D-optimal
method. As a result, the model obtained using the proposed method reduced the mean squared
control error of model predictive control by 22.9% from that of the existing method.
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1. INTRODUCTION

In chemical plants, model predictive control (MPC)
(Morari and H. Lee, 1999) is sometimes used for efficiently
operating the plant. However, it is often difficult to main-
tain the accuracy of the prediction model in the MPC for a
long period because of the gradual change of the dynamics.
The prediction model is usually a linear, time-invariant
model in chemical plants. However, chemical plants gener-
ally exhibit time-varying dynamics, and the change of the
dynamics over time is too slow to be considered during
model construction. Hence, model update is necessary to
maintain the accuracy of the prediction model.

Model building, including model updates, is often per-
formed using an open-loop step test in chemical plants.
The step test can be effectively used to build an initial
model for the MPC, where there is little knowledge about
the dynamics of the plant of interest. The step test im-
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proves the understanding of the plant by visualizing the
plant dynamics.

However, the step test requires a huge amount of time and
effort. In the open-loop step test, step signals are applied to
each input of the targeted plant in turn. The large number
of manipulated variables results in a significant increase
in the number of step inputs. Moreover, after applying a
step signal, it is necessary to wait until the system has
reached the new steady state. Since chemical plants have
slow dynamics whose time constant can be several days,
the settling time tends to be significant. For the above
reasons, the step test is unsuitable for updating models.

Experiment design for identification (Goodwin, 1977) can
avoid such a problem. It determines the experimental con-
dition, such as the amplitudes and frequencies of the input
signals, solely based on maximization of the data-quality
index. Thus, in the experiment design for identification,
the multiple inputs can be varied simultaneously so that
it is unnecessary to wait for the system to reach a new
steady state. Moreover, experiment design for identifica-
tion is an optimization-based procedure that can be easily
automated to reduce the effort for model maintenance.
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proves the understanding of the plant by visualizing the
plant dynamics.

However, the step test requires a huge amount of time and
effort. In the open-loop step test, step signals are applied to
each input of the targeted plant in turn. The large number
of manipulated variables results in a significant increase
in the number of step inputs. Moreover, after applying a
step signal, it is necessary to wait until the system has
reached the new steady state. Since chemical plants have
slow dynamics whose time constant can be several days,
the settling time tends to be significant. For the above
reasons, the step test is unsuitable for updating models.

Experiment design for identification (Goodwin, 1977) can
avoid such a problem. It determines the experimental con-
dition, such as the amplitudes and frequencies of the input
signals, solely based on maximization of the data-quality
index. Thus, in the experiment design for identification,
the multiple inputs can be varied simultaneously so that
it is unnecessary to wait for the system to reach a new
steady state. Moreover, experiment design for identifica-
tion is an optimization-based procedure that can be easily
automated to reduce the effort for model maintenance.
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The data-quality index used in experiment design for iden-
tification is usually scalar measures of the Fisher informa-
tion matrix (FIM), such as the determinant (D-optimal
design) and the trace (A-optimal design) (Goodwin, 1977;
Shardt, 2022). FIM corresponds to the inverse of the co-
variance matrix of the parameters derived from asymptotic
theory, where the number of data samples is assumed to
be infinite (Ljung, 1998). However, the assumption of the
asymptotic theory does not generally hold, and the devia-
tion of the actual situation from the situation assumed in
the asymptotic theory increases as the available number of
data samples decreases. This often occurs in systems where
the experimental costs are high, such as chemical plants.
Therefore, a new data-quality index that exactly quantifies
the quality of the finite-sample data is desirable.

Recently, the sign-perturbed-sums (SPS) method was de-
veloped by Csáji et al. (2012). The SPS method provides
the exact confidence region of the process parameters from
the finite-sample data. The SPS method does not rely
on the assumption that restricts the distribution of the
noise innovation to a particular type, such as Gaussian
distributions. It only assumes the noise innovation has
a symmetric distribution. Moreover, the applicability of
the SPS method was guaranteed to general linear systems
(Csáji et al., 2012), closed-loop systems (Csáji and Weyer,
2015), and multivariate systems (Szentpéteri and Csáji,
2023). Hence, the data-quality index based on SPS has a
wide range of applicability to practical problems.

Kolumbán and Csáji (2018) proposed the experiment de-
sign for identification based on SPS, where they minimized
the expected volume of the confidence region. However,
the targeted system was restricted to single-input, single-
output finite-impulse-response (FIR) systems, whose re-
gressors are composed of the past sequence of the input.
Hence, it cannot be applied to multi-input, multi-output
systems with regressors composed of the past sequence of
the inputs and outputs.

This paper proposes a new experiment design for identifi-
cation based on the SPS method for multivariate autore-
gressive exogenous input (ARX) systems. In the proposed
method, the performance index of the data quality is based
on the volume of the confidence region of SPS, and the
constraints of the frequencies included in the input signals
are imposed. Moreover, Bayesian optimization (BO) is
used to solve the optimization problem for experiment
design since the performance index is evaluated using the
outcome of the identification experiment. The validity of
the proposed method is examined through an experimental
case study using the three-tank system (TTS).

2. BACKGROUND

2.1 Target system

The target system is an M -input, N -output ARX system.
The outputs, inputs, and noise innovations at time index
t are yt = [y1,t, · · · , yN,t]

⊤, ut = [u1,t, · · · , uM,t]
⊤, and

et = [e1,t, · · · , eN,t]
⊤. The process of interest is described

as
K

k=0

Akyt−k =

L
l=1

Blut−l + et, (1)

where K and L are the maximum time delays of the
outputs and inputs of the process, Ak ∈ RN×N and
Bl ∈ RN×M are the process parameters, and A0 is the
identity matrix.

Let τn,m ∈ {1, · · · , L} and τn,m ∈ {τn,m, · · · , L} be
respectively the minimum and maximum time delays be-
tween yn,t and um,t. Then, the number d of the process
parameters is

d = KN2 +

N
n=1

M
m=1

(τn,m − τn,m + 1), (2)

and Eq. (1) is transformed into

yt =Φ⊤
t θ

∗ + et, (3)

Φt =



ϕ1,t 0

. . .
0 ϕN,t


 , (4)

ϕn,t =[−y1,t−1, · · · ,−y1,t−K , · · · ,
− yN,t−1, · · · ,−yN,t−K ,

u1,t−τ
n,1

, · · · , u1,t−τn,1
, · · · ,

uM,t−τ
n,M

, · · · , uM,t−τn,M
]⊤, (5)

where θ∗ ∈ Rd and Φt ∈ Rd×N are the true parameter
vector and the regressor matrix, respectively.

2.2 Sign-perturbed sums

The SPS method gives the exact confidence region ΘSPS

of θ∗ for a given confidence probability from a data set
with T samples defined as D0 = {yt,ut | t = 1, · · · , T}. In
the SPS method, the following assumptions are made:

A.1 {en,t} are independent, and the probability density
function (PDF) of each en,t is symmetric about 0.

A.2 The other external signals are independent of {en,t}.
A.3 The system has the ARX structure given by Eqs. (3)

to (5).

Note that assumption A.1 holds for various PDFs such
as the Gaussian, the Laplacian, and the uniform distribu-
tions. The detailed procedure of the SPS method is

M.1 Determine R ∈ {2, 3, · · · } and R̃ ∈ {1, 2, · · · , R− 1},
then the confidence probability is p = 1− R̃/R.

M.2 Generate (R−1) time-series of random-sign matrices
{Ξ1,t}Tt=1, · · · , {ΞR−1,t}Tt=1. The random-sign matrix
Ξr,t ∈ RN×N is a diagonal matrix, whose diagonal
components take the values +1 and −1 with a prob-
ability of 0.5 each.

M.3 Determine ΘSPS according to the following equation:

ΘSPS =

θ ∈ Rd | Rank(θ) ≤ R− R̃


, (6)

where Rank(θ) is defined as follows:

M.3.1 Calculate {ϵ0,t(θ)}Tt=1 defined as

ϵ0,t(θ) = yt −Φ⊤
t θ ∈ RN . (7)

M.3.2 Calculate {ϵ1,t(θ)}Tt=1, · · · , {ϵR−1,t(θ)}Tt=1 as

ϵr,t(θ) = Ξr,tϵ0,t(θ). (8)
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M.3.3 Aquire the input-output data Dr(θ) from the sim-
ulation of the system with θ using ϵr,t(θ) as a
noise innovation vector, for ∀r ∈ {1, 2, · · · , R − 1}.
Note that the initial condition of the system for the
simulation is the same as when the original data D0

is obtained.
M.3.4 Prepare R regressor matrices {Φρ,t}R−1

ρ=0 , where

Φ0,t = Φt, and Φr,t (r > 0) is composed of the
data Dr(θ) in the same way as Φt.

M.3.5 Calculate {Sρ(θ)}R−1
ρ=0 defined as follows:

Sρ(θ) =

(
1

T

T∑
t=1

Φρ,tΦ
⊤
ρ,t

)− 1
2

·

(
1

T

T∑
t=1

Φρ,tϵρ(t,θ)

)
. (9)

M.3.6 Arrange {∥Sρ(θ)∥}R−1
ρ=0 from smallest to largest,

and let ||Sρi(θ)|| be the i-th smallest.
M.3.7 Define Rank(θ) as

Rank(θ) = i, if ∥S0(θ)∥ = ∥Sρi
(θ)∥. (10)

2.3 How to calculate the volume of the confidence region
using the SPS method

Let the indicator function ISPS : Rd → {0, 1} for SPS be

ISPS(θ) =

{
1, Rank(θ) ≤ R− R̃,

0, Rank(θ) > R− R̃.
(11)

Then, from Eq. (6), the volume VSPS of ΘSPS is

VSPS =

∫

θ∈Rd

ISPS(θ)dθ. (12)

If the system of interest has a regressor uncorrelated with
the noise innovation as in a FIR system, the integral of
Eq. (12) is efficiently calculated using the fact that ΘSPS

is a star-convex set whose star center is the least-squares

estimate θ̂LS (Csáji et al., 2015). Otherwise, it is difficult
to calculate the integral of Eq. (12) since it is not even
guaranteed that ΘSPS is a connected set.

In the case study shown below, the integral is approxi-
mated using the following approach based on the Monte
Carlo integration (MCI) (Gunther and Friedrich, 2014).
Using MCI, Eq. (12) is approximated as

VSPS ≃ VI

I

I∑
i=1

ISPS(θi), (13)

where VI is the volume of the integral domain ΘI ⊂ Rd,
and {θi}Ii=1 are points randomly sampled in ΘI. ΘI is de-

termined so that it includes θ̂LS, which is always included
in ΘSPS (Csáji et al., 2012). In the calculation, enlargement
of ΘI and random sampling of {θi}Ii=1 are repeated until
the increase in the number of points where ISPS returns 1
gets smaller than a sufficiently small tolerance.

3. EXPERIMENT DESIGN FOR IDENTIFICATION

3.1 Existing objective functions

In existing methods for experiment design for identifica-
tion, scalar measures, such as the determinant and trace,

of FIM are maximized (Goodwin, 1977; Shardt, 2022). The
definition of FIM for ARX systems is

FT =
1

T

T∑
t=1

ΦtΦ
⊤
t . (14)

When the determinant of FIM is used as the maximized
objective function, the experiment design is called a D-
optimal design. A typical optimization problem solved in
the D-optimal design is

P1 : min
χ

JDopt = − log(detFT ), (15)

where χ is the vector of the design variables, and log is the
natural logarithm. The optimization problem of Eq. (15)
can be solved before a data-acquisition experiment when
Φt is independent of et. Otherwise, the evaluation of JDopt

requires the outcome of the data-acquisition experiment.

The determinant of FIM is related to the volume VAs of
the confidence region obtained by asymptotic theory since
it is given by

VAs ∝ [det(FT )]
− 1

2 T− d
2 . (16)

Therefore, the D-optimal design of Eq. (15) finds an
optimal experimental condition χ based on asymptotic
theory.

3.2 Proposed objective function

In this paper, a new method based on the SPS method
is proposed. VSPS is used for calculating the objective
function JSPS. The proposed objective function is defined
based on the relationship between JDopt and VAs. From

Eq. (16), det(FT ) is proportional to (VAsT
d/2)−2. Hence,

the D-optimal objective function is expressed using VAs as

JDopt = 2 log(VAsT
d/2) + CDopt, (17)

where CDopt ∈ R is a constant. Based on Eq. (17), the
proposed optimization problem is

P2: min
χ

JSPS = 2 log(VSPST
d/2). (18)

VSPS always depends on a realization of the noise innova-
tion from Eq. (7) in step M.3.1 regardless of the depen-
dency of Φt on et. Hence, the evaluation of the objective
function related to VSPS always requires an outcome of a
data-acquisition experiment.

3.3 Designing identification experiment using BO

The outcome of a data-acquisition experiment is often
required for evaluating the objective function of the design
problems as mentioned above. In fact, it is mandatory in
P2. To overcome this, the use of BO is proposed in this pa-
per. BO is suitable for experiment design problems whose
objective function is expensive to evaluate (Shahriari et al.,
2016; Greenhill et al., 2020).

The BO algorithm does not require the equational re-
lationship between the objective function and optimized
variables before solving the optimization problem. Hence,
the objective function whose value is determined only after
the experiment as in our situation can be used in the BO
algorithm.

Let the objective function of the experiment design for
identification be J , which is either JDopt or JSPS, and χi
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M.3.3 Aquire the input-output data Dr(θ) from the sim-
ulation of the system with θ using ϵr,t(θ) as a
noise innovation vector, for ∀r ∈ {1, 2, · · · , R − 1}.
Note that the initial condition of the system for the
simulation is the same as when the original data D0

is obtained.
M.3.4 Prepare R regressor matrices {Φρ,t}R−1

ρ=0 , where

Φ0,t = Φt, and Φr,t (r > 0) is composed of the
data Dr(θ) in the same way as Φt.

M.3.5 Calculate {Sρ(θ)}R−1
ρ=0 defined as follows:

Sρ(θ) =

(
1

T

T∑
t=1

Φρ,tΦ
⊤
ρ,t

)− 1
2

·

(
1

T

T∑
t=1

Φρ,tϵρ(t,θ)

)
. (9)

M.3.6 Arrange {∥Sρ(θ)∥}R−1
ρ=0 from smallest to largest,

and let ||Sρi(θ)|| be the i-th smallest.
M.3.7 Define Rank(θ) as

Rank(θ) = i, if ∥S0(θ)∥ = ∥Sρi
(θ)∥. (10)

2.3 How to calculate the volume of the confidence region
using the SPS method

Let the indicator function ISPS : Rd → {0, 1} for SPS be

ISPS(θ) =

{
1, Rank(θ) ≤ R− R̃,

0, Rank(θ) > R− R̃.
(11)

Then, from Eq. (6), the volume VSPS of ΘSPS is

VSPS =

∫

θ∈Rd

ISPS(θ)dθ. (12)

If the system of interest has a regressor uncorrelated with
the noise innovation as in a FIR system, the integral of
Eq. (12) is efficiently calculated using the fact that ΘSPS

is a star-convex set whose star center is the least-squares

estimate θ̂LS (Csáji et al., 2015). Otherwise, it is difficult
to calculate the integral of Eq. (12) since it is not even
guaranteed that ΘSPS is a connected set.

In the case study shown below, the integral is approxi-
mated using the following approach based on the Monte
Carlo integration (MCI) (Gunther and Friedrich, 2014).
Using MCI, Eq. (12) is approximated as

VSPS ≃ VI

I

I∑
i=1

ISPS(θi), (13)

where VI is the volume of the integral domain ΘI ⊂ Rd,
and {θi}Ii=1 are points randomly sampled in ΘI. ΘI is de-

termined so that it includes θ̂LS, which is always included
in ΘSPS (Csáji et al., 2012). In the calculation, enlargement
of ΘI and random sampling of {θi}Ii=1 are repeated until
the increase in the number of points where ISPS returns 1
gets smaller than a sufficiently small tolerance.

3. EXPERIMENT DESIGN FOR IDENTIFICATION

3.1 Existing objective functions

In existing methods for experiment design for identifica-
tion, scalar measures, such as the determinant and trace,

of FIM are maximized (Goodwin, 1977; Shardt, 2022). The
definition of FIM for ARX systems is

FT =
1

T

T∑
t=1

ΦtΦ
⊤
t . (14)

When the determinant of FIM is used as the maximized
objective function, the experiment design is called a D-
optimal design. A typical optimization problem solved in
the D-optimal design is

P1 : min
χ

JDopt = − log(detFT ), (15)

where χ is the vector of the design variables, and log is the
natural logarithm. The optimization problem of Eq. (15)
can be solved before a data-acquisition experiment when
Φt is independent of et. Otherwise, the evaluation of JDopt

requires the outcome of the data-acquisition experiment.

The determinant of FIM is related to the volume VAs of
the confidence region obtained by asymptotic theory since
it is given by

VAs ∝ [det(FT )]
− 1

2 T− d
2 . (16)

Therefore, the D-optimal design of Eq. (15) finds an
optimal experimental condition χ based on asymptotic
theory.

3.2 Proposed objective function

In this paper, a new method based on the SPS method
is proposed. VSPS is used for calculating the objective
function JSPS. The proposed objective function is defined
based on the relationship between JDopt and VAs. From

Eq. (16), det(FT ) is proportional to (VAsT
d/2)−2. Hence,

the D-optimal objective function is expressed using VAs as

JDopt = 2 log(VAsT
d/2) + CDopt, (17)

where CDopt ∈ R is a constant. Based on Eq. (17), the
proposed optimization problem is

P2: min
χ

JSPS = 2 log(VSPST
d/2). (18)

VSPS always depends on a realization of the noise innova-
tion from Eq. (7) in step M.3.1 regardless of the depen-
dency of Φt on et. Hence, the evaluation of the objective
function related to VSPS always requires an outcome of a
data-acquisition experiment.

3.3 Designing identification experiment using BO

The outcome of a data-acquisition experiment is often
required for evaluating the objective function of the design
problems as mentioned above. In fact, it is mandatory in
P2. To overcome this, the use of BO is proposed in this pa-
per. BO is suitable for experiment design problems whose
objective function is expensive to evaluate (Shahriari et al.,
2016; Greenhill et al., 2020).

The BO algorithm does not require the equational re-
lationship between the objective function and optimized
variables before solving the optimization problem. Hence,
the objective function whose value is determined only after
the experiment as in our situation can be used in the BO
algorithm.

Let the objective function of the experiment design for
identification be J , which is either JDopt or JSPS, and χi

Table 1. Definition of the input signals for checking the dependency of VSPST
d/2 on T . The filter

FBW(q|n, ω, ω) is the n-th order Butterworth filter with upper and lower cut-off frequencies of
ω and ω. In addition, {vt} is white noise, and vt ∼ N (0, 10).

Type of input Symbol Mathematical definition

2nd-order-PE input S1 u(t) = 10 sin(2πt/15)

4th-order-PE input S2 u(t) =
10(u∗(t)−

∑T

t=1
u∗(t)/T )

(max{u∗(t)}−min{u∗(t)})/2
u∗(t) = sin(2πt/20) + sin(2πt/10 + π/2)

High-order-PE input with high-pass filter S3 u(t) = FBW(q|2, 0.05, 1)v(t)
White-noise input S4 u(t) = v(t)

High-order-PE input with bandpass filter S5 u(t) = FBW(q|2, 0.05, 0.1)v(t)
High-order-PE input with low-pass filter S6 u(t) = 1

1−0.95q−1 v(t)

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Fig. 1. The plots of VSPST
d/2 as a function of the number

of samples T .

and Ji be the values of χ and J in the i-th iteration of BO.
Then, the following procedure is repeated NBO times after
the evaluation of Nrand sets of J for the randomly-sampled
χ:

B.1 Modelling the relationship between χ and J is per-
formed using Gaussian process (GP) regression based
on the data of χ and J stored up to the current i-th
iteration.

B.2 The acquisition function, whose maximum indicates
the most promising design variables based on the data
obtained up to the current iteration, is derived from
the GP model.

B.3 Maximizing the acquisition function, the next point
χi of χ is suggested.

B.4 Using the excitation signal defined by χi, a data-
acquisition experiment is performed, and the value Ji
of J is evaluated. Note that the random-sign matrices
{Ξr,t} are regenerated at every iteration in the case
of P2.

B.5 χi and Ji are stored.

Let TBO be the number of samples obtained in step B.4 in
each iteration. Then, (Nrand + NBO)TBO samples of data
are obtained up to the final iteration of BO and used
for system identification. Note that the design variables
determined in B.3 of the i-th iteration of BO depend on
the noise innovations observed in B.4 of the (i − i′)-th
iterations of BO for ∀i′ ∈ {1, 2, · · · , i − 1}. Hence, the
excitation signals defined using χi depend on the noise
innovations observed in the (i − i′)-th iterations, as well.
This dependency may make system identification using
the final data difficult. However, the excitation signals and
noise innovations are still independent in each iteration of
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Fig. 2. The plot of the decrease in VSPST
d/2 against the

increase of T as a function of the power ratio η(Ψu).

BO, that is, the assumption A.2 of the SPS method holds
in step B.4 for case P2.

3.4 Constraint to reduce the dependency of JSPS on the
number of samples

The objective function J of the experiment design for
identification using BO is preferred to be independent of
TBO. Using J independent of TBO allows us to decrease
TBO and increase (Nrand+NBO) to improve the optimality
of the solution while keeping (Nrand +NBO)TBO constant.
Hence, the dependency of J on TBO should be mitigated.

To achieve this, the dependency of JSPS on T was exam-
ined through a numerical case study explained below. The
system of interest is a SISO ARX system, that is,

yt =
0.5q−1

1− 0.9q−1
ut +

1

1− 0.9q−1
et, et ∼ N (0, 0.1). (19)

The system is operated in open-loop to obtain the
input-output data used for calculating VSPST

d/2, which
is the main component of JSPS. The types of input
signals used as ut are summarised in Table 1. The
number of samples T is changed to a value in T =
{20, 30, · · · , 100, 120, 160, 200}. The parameters R

and R̃ of SPS were set to 800 and 20. The mean values
of VSPST

d/2 for each input are evaluated by the 200-times
calculation of the objective function.

The dependency of mean of VSPST
d/2 on T is shown in

Fig. 1. As T increases, the mean values of VSPST
d/2 tend

to decrease, and the degree of decrease depends on the
type of input. To quantify this, the ratio η of the input
power in the frequency band located below ωc to that in
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the frequency band located above ωc is introduced, that
is,

η(Ψu) =

∫ ωc

0
Ψu(ω)dω∫ 1

ωc
Ψu(ω)dω

, (20)

where Ψu is the power spectrum of u, and ωc = 1/20.
Note that the denominator of ωc is the minimum value
of T. Then, the slope of VSPST

d/2 between T = 20 and
T = 200 is plotted as a function of η as shown in Fig. 2.
The slope of VSPST

d/2 increases as the power ratio tends
to increase. This means that the degree of dependency of
VSPST

d/2 on T is increased by the power in the frequency
band located below ωc and decreased by the power in the
frequency band located above ωc.

From the discussion above, the upper limit on η effectively
reduces the dependency of VSPST

d/2 on T . Hence, the
constraint,

η(Ψum) < ϵ, for m = 1, · · · ,M, (21)

where ωc for calculating η is 1/TBO, are introduced into
the problems P1 and P2 when using BO.

4. EXPERIMENTAL CASE STUDY

4.1 Target system

The targeted system is the TTS as shown in Fig. 3. The
TTS is comprised of three tanks from T1 to T3 and two
pumps, P1 and P2. The output variables are the liquid
levels y1,t, y2,t, and y3,t of T1 to T3, and the input variables
are the pump voltages u1,t and u2,t of P1 and P2. The
system is operated in open-loop during the identification
experiment.

4.2 Methods

In this experimental case study, the proposed method for
experiment design for identification was compared with
the existing D-optimal design. Both methods assumed the
first-order ARX model structure, that is,[

1+a1q
−1 0

1+a2q
−1

0 1+a3q
−1

]
(yt − y)

=

[
b1,1q

−1 b1,2q
−2

b2,1q
−1 b2,2q

−1

b3,1q
−1 b3,2q

−1

]
(ut − u) + et, (22)

where (ut − ū) and (yt − ȳ) are the centered inputs
and outputs, and sampling interval is 20.4 s. Hence, the

T1 T2 T3

P1 P2
Reservoir tank

Fig. 3. (left) Process flow diagram and (right) picture of
the three-tank system.

objective function of the D-optimal design also depends
on the realization of the noise innovation. Thus, the
optimization problems of both methods were solved using
BO. Note that the type of acquisition function used in BO
was the expected-improvement function (Mockus, 1998).

The input signals {u1,t} and {u2,t} for both methods were
given by

u1,t =
0.3

max{ω − ω, 0.1}
FBW(q|5, ω, ω)v1,t + uss,1, (23)

u2,t =
0.3

max{λ− λ, 0.1}
FBW(q|5, ω, ω)v2,t + uss,2, (24)

vm,t ∼ N (0, 1), 0V ≤ um,t ≤ 10V, m = 1, 2 (25)

where FBW(q|5, ω, ω) is the fifth-order Butterworth filter
whose lower and upper cutoff frequencies are respectively
ω and ω, and uss,m is the steady-state value of um,t.

χ = [ω, ω, λ, λ]⊤ was determined by solving the proposed
and existing experiment design problems. Moreover, the
frequency constraint of Eq. (21) was applied to both
experiment design methods, where ϵ was set to 0.05.

Only the objective function was changed to JSPS|T=TBO

and JDopt|T=TBO
to switch the experiment design method.

Regarding JSPS, the parameters R and R̃ of SPS were 200
and 10, respectively.

NBO, Nrand, and TBO were 8, 2, and 40, respectively. Thus,
the input-output data with 400 samples as shown in Fig. 4
were obtained. Based on the data, the prediction model
with the first-order BJ structure was identified using the
prediction-error method (Ljung, 1998).

The identified models from the two different experiment
design methods were compared using the control perfor-
mance of MPC. The optimization problem of MPC was

min
ut0 ,ut0+1

t0+20∑
t=t0+1

(
∥ŷt − rt∥2Wy

+ ∥ut−1 − ut−2∥2
)

(26)

subject to

5V < um,t < 10V, m = 1, 2, (27)

rt = (1− 0.8t−t0)st + 0.8t−t0yt0 , (28)

ut = ut0+1, t ≥ t0 + 2, (29)

where ŷt, rt, and st are respectively the predicted outputs,
the reference trajectories, and the setpoints, and Wy =
diag(1, 0, 1).

4.3 Results and Discussion

The time-series plot of the MPC operation for comparing
the models obtained from both experiment design meth-
ods is shown in Fig. 5, where the setpoints of y1,t and
y3,t were changed stepwise from 12 to 14 cm. The MPC
response using the model of the existing method has a
larger overshoot and longer settling time than that of the
proposed method.

The mean squared control error (MSE), rise time, settling
time, and overshoot in Fig. 5 are summarised in Table 2.
The mean JSPS|T=TBO

and JDopt|T=TBO
over the 10 itera-

tions of BO are shown in Table 2 as well. From Table 2, it is
shown that the proposed method gives the lower values of
JSPS and MSE than the existing method. This suggests
that the proposed method provides a better prediction
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the frequency band located above ωc is introduced, that
is,

η(Ψu) =

∫ ωc

0
Ψu(ω)dω∫ 1

ωc
Ψu(ω)dω

, (20)

where Ψu is the power spectrum of u, and ωc = 1/20.
Note that the denominator of ωc is the minimum value
of T. Then, the slope of VSPST

d/2 between T = 20 and
T = 200 is plotted as a function of η as shown in Fig. 2.
The slope of VSPST

d/2 increases as the power ratio tends
to increase. This means that the degree of dependency of
VSPST

d/2 on T is increased by the power in the frequency
band located below ωc and decreased by the power in the
frequency band located above ωc.

From the discussion above, the upper limit on η effectively
reduces the dependency of VSPST

d/2 on T . Hence, the
constraint,

η(Ψum) < ϵ, for m = 1, · · · ,M, (21)

where ωc for calculating η is 1/TBO, are introduced into
the problems P1 and P2 when using BO.

4. EXPERIMENTAL CASE STUDY

4.1 Target system

The targeted system is the TTS as shown in Fig. 3. The
TTS is comprised of three tanks from T1 to T3 and two
pumps, P1 and P2. The output variables are the liquid
levels y1,t, y2,t, and y3,t of T1 to T3, and the input variables
are the pump voltages u1,t and u2,t of P1 and P2. The
system is operated in open-loop during the identification
experiment.

4.2 Methods

In this experimental case study, the proposed method for
experiment design for identification was compared with
the existing D-optimal design. Both methods assumed the
first-order ARX model structure, that is,[

1+a1q
−1 0

1+a2q
−1

0 1+a3q
−1

]
(yt − y)

=

[
b1,1q

−1 b1,2q
−2

b2,1q
−1 b2,2q

−1

b3,1q
−1 b3,2q

−1

]
(ut − u) + et, (22)

where (ut − ū) and (yt − ȳ) are the centered inputs
and outputs, and sampling interval is 20.4 s. Hence, the

T1 T2 T3

P1 P2
Reservoir tank

Fig. 3. (left) Process flow diagram and (right) picture of
the three-tank system.

objective function of the D-optimal design also depends
on the realization of the noise innovation. Thus, the
optimization problems of both methods were solved using
BO. Note that the type of acquisition function used in BO
was the expected-improvement function (Mockus, 1998).

The input signals {u1,t} and {u2,t} for both methods were
given by

u1,t =
0.3

max{ω − ω, 0.1}
FBW(q|5, ω, ω)v1,t + uss,1, (23)

u2,t =
0.3

max{λ− λ, 0.1}
FBW(q|5, ω, ω)v2,t + uss,2, (24)

vm,t ∼ N (0, 1), 0V ≤ um,t ≤ 10V, m = 1, 2 (25)

where FBW(q|5, ω, ω) is the fifth-order Butterworth filter
whose lower and upper cutoff frequencies are respectively
ω and ω, and uss,m is the steady-state value of um,t.

χ = [ω, ω, λ, λ]⊤ was determined by solving the proposed
and existing experiment design problems. Moreover, the
frequency constraint of Eq. (21) was applied to both
experiment design methods, where ϵ was set to 0.05.

Only the objective function was changed to JSPS|T=TBO

and JDopt|T=TBO
to switch the experiment design method.

Regarding JSPS, the parameters R and R̃ of SPS were 200
and 10, respectively.

NBO, Nrand, and TBO were 8, 2, and 40, respectively. Thus,
the input-output data with 400 samples as shown in Fig. 4
were obtained. Based on the data, the prediction model
with the first-order BJ structure was identified using the
prediction-error method (Ljung, 1998).

The identified models from the two different experiment
design methods were compared using the control perfor-
mance of MPC. The optimization problem of MPC was

min
ut0 ,ut0+1

t0+20∑
t=t0+1

(
∥ŷt − rt∥2Wy

+ ∥ut−1 − ut−2∥2
)

(26)

subject to

5V < um,t < 10V, m = 1, 2, (27)

rt = (1− 0.8t−t0)st + 0.8t−t0yt0 , (28)

ut = ut0+1, t ≥ t0 + 2, (29)

where ŷt, rt, and st are respectively the predicted outputs,
the reference trajectories, and the setpoints, and Wy =
diag(1, 0, 1).

4.3 Results and Discussion

The time-series plot of the MPC operation for comparing
the models obtained from both experiment design meth-
ods is shown in Fig. 5, where the setpoints of y1,t and
y3,t were changed stepwise from 12 to 14 cm. The MPC
response using the model of the existing method has a
larger overshoot and longer settling time than that of the
proposed method.

The mean squared control error (MSE), rise time, settling
time, and overshoot in Fig. 5 are summarised in Table 2.
The mean JSPS|T=TBO

and JDopt|T=TBO
over the 10 itera-

tions of BO are shown in Table 2 as well. From Table 2, it is
shown that the proposed method gives the lower values of
JSPS and MSE than the existing method. This suggests
that the proposed method provides a better prediction

Table 2. The performance indices of the existing and proposed experiment design methods.

Data-quality indices Control performance of MPC
Experiment design Mean Mean MSE [cm2] Rise time [s] Settling time [s] Overshoot [%]

method JSPS|T=T̃ JDopt|T=T̃ y1 y3 Total y1 y3 y1 y3 y1 y3

Existing method 7.58 7.28 0.152 0.140 0.292 183.6 183.6 938.4 938.4 35.7 28.8
Proposed method 1.10 11.96 0.115 0.111 0.225 204.0 183.6 387.6 448.8 12.1 19.9
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Fig. 4. Time-series plots of the data obtained in the
identification experiments using both the proposed
and the existing design methods.
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Fig. 5. Comparison of the experiment design methods in
the MPC operation.

model. On the other hand, the mean JDopt is smaller in
the existing method than in the proposed method. This
implies that the objective function of the D-optimal design
is misleading when the number of samples is small.

5. CONCLUSION

In this paper, a new method for experiment design for
identification based on a nonasymptotic confidence region
of the system identification model was proposed. Based
on the volume of the confidence region calculated using
sign-perturbed sums, the objective function for the exper-
iment design for identification was derived. Moreover, the
frequency constraints for input signals were introduced to
reduce the dependency of the objective function on the
number of samples. To solve the proposed design problem,
Bayesian optimization was used since the objective func-

tion requires the outcome of a data-acquisition experiment
for evaluation.

The proposed method was compared with the conven-
tional D-optimal design method in the experiment using
the three-tank system. It was shown that the prediction
model obtained from the proposed method provides better
control performance for the liquid level when using model
predictive control than the conventional method.
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