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We propose a method to numerically determine the location of a critical point in general systems using
the finite-size scaling of Lee-Yang zeros. This method makes use of the fact that the ratios of Lee-Yang
zeros on various spatial volumes intersect at the critical point. While the method is similar to the Binder-
cumulant analysis, it is advantageous in suppressing the finite-volume effects arising from the mixing of
variables in general systems. We show that the method works successfully for numerically locating the
critical point in the three-dimensional three-state Potts model with a nonzero external field.
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Introduction—Critical points (CPs) are interesting
research objects in physics that appear in various systems
from water [1] to nuclear matter [2] that are separated by
about 10 orders of magnitude in temperature. Although the
existence and location of a CP are not constrained by
symmetries of the system, once a CP manifests itself in a
system the thermodynamic properties around it are tightly
restricted by the scaling law and universality class [3,4].
These properties are not only intriguing research subjects in
statistical mechanics but also useful tools for revealing
phase transitions in nontrivial systems. For example, the
scaling properties have been actively utilized in the
numerical and experimental analyses of the chiral phase
transition and conjectured CPs in quantum chromodynam-
ics (QCD) [5–11].
In an investigation of a CP in numerical simulations, it is

crucial to properly deal with the finite-volume effects since
the simulations are always performed on finite volumes. It
is known that thermodynamics in the vicinity of a CP on
finite but sufficiently large volume obey the finite-size
scaling (FSS) [12,13]. The scaling properties of various
susceptibilities, i.e., quantities given by derivatives of the
free energy, obtained from the FSS have been used in the
simulations for determining properties of the CP, such as its
location and critical exponents [12–16].
In the present Letter, we focus on the use of the FSS of

Lee-Yang zeros (LYZs) [17,18], i.e., zeros of the partition
function on the complex-variable space, for numerical

investigations of a CP in general systems. Whereas the
FSS of LYZs has been investigated in the literature [19–23],
to the best of our knowledge its systematic utilization for
this purpose has not been discussed so far. The LYZs have
been investigated in lattice-QCD numerical simulations
[24–28]. In particular, its application for locating the CP in
QCD at nonzero chemical potential has been discussed
recently [29–32] in connection to the Lee-Yang edge
singularity (LYES) [33–40]. However, the finite-volume
effects have not been investigated in detail in these studies.
As we discuss below, systematic utilization of the FSS of
LYZs provides us with a general procedure applicable to a
wide variety of numerical simulations, including lattice
QCD and those in statistical physics.
We show that the ratios of the imaginary parts of LYZs

obtained on different volumes intersect at the CP in the
large-volume limit. We propose the use of this property,
which is similar to the Binder cumulants [14], for locating a
CP in numerical simulations. The LYZs carry information
of the system that is not encoded in finite derivatives of the
free energy. Our method thus serves as a procedure
independent of the ordinary methods that rely on suscep-
tibilities. We test the method for analyzing the CP in the
three-dimensional three-state Potts model and show that the
method can determine its location successfully with almost
the same statistical error compared to the Binder-cumulant
method. As byproducts, we also derive some useful proper-
ties of LYZs, especially their relation to the LYES, which
play essential roles in controlling finite-size effects in
numerical results.
Ising model—To illustrate the method, we start from a

simple case of the conventional three-dimensional Ising
(3D-Ising) model [3] described by the reduced temperature
t and external magnetic field h on the cubic lattice of size
L3, having a CP at ðt; hÞ ¼ ð0; 0Þ and a first-order phase
transition at h ¼ 0 for t < 0. We denote the partition
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function of this model as Zðt; h; L−1Þ, which satisfies
Zðt; h; L−1Þ ¼ Zðt;−h; L−1Þ. The LYZs of this model are
the values of h∈C satisfying Zðt; h; L−1Þ ¼ 0 for a given
t∈R [17,18]. It is known as the Lee-Yang circle theorem that
the LYZs distribute discretely on the pure-imaginary axis for
finite L [18]. In the following, we denote the LYZs with

Imh > 0 as h ¼ hðnÞLYðt; LÞ, where n ¼ 1; 2;… labels differ-

ent LYZs so that 0 < Imhð1ÞLYðt; LÞ < Imhð2ÞLYðt; LÞ < � � �; the
system has the other LYZs at h ¼ −hðnÞLYðt; LÞ. Since
Zðt; h; L−1Þ at finite L is a regular function of t and h,

hðnÞLYðt; LÞ should also be regular functions of t for finite
L [41].
According to the FSS, the partition function in the

vicinity of the CP for different L is represented by the
scaling function Z̃ðt̃; h̃Þ as

Zðt; h; L−1Þ ¼ Z̃ðLytt; LyhhÞ; ð1Þ

for sufficiently large L. In the 3D-Ising model, the values of
the exponents, yt ≃ 1.588 and yh ≃ 2.482, have been
analyzed with high precision [15,16,42]. Since the LYZs
are given by zeros of Eq. (1), it immediately follows that the
LYZs for different L obey [43]

LyhhðnÞLYðt; LÞ ¼ h̃ðnÞLYðLyt tÞ; ð2Þ

with h̃ðnÞLYðt̃Þ satisfying Z̃ðt̃; h̃ðnÞLYðt̃ÞÞ ¼ 0.
For t < 0 and L → ∞, the LYZs are densely distributed

around h ¼ 0 reflecting the discontinuity of the first-order

phase transition [18], which means that hðnÞLYðt; LÞ → 0 in
this limit for finite n. For t > 0, since limL→∞ Zðt; h; L−1Þ
is a regular function at h ¼ 0, the distribution of LYZs for
L → ∞ terminates at nonzero (pure-imaginary) values of h
away from h ¼ 0, which is called the LYES [44]. Denoting
the LYES as h ¼ �hLYESðtÞ we obtain

hðnÞLYðt; LÞ ¼ L−yh h̃ðnÞLYðLyttÞ⟶
L→∞

hLYESðtÞðt > 0Þ; ð3Þ

for finite n. Since the right-hand side of Eq. (3) does not

depend on L, only a possible asymptotic behavior of h̃ðnÞLYðt̃Þ
for t̃ → ∞ is h̃ðnÞLYðt̃Þ ∝ t̃yh=yt , which yields hLYESðtÞ ∝ tyh=yt
for t > 0 [21].
Now we focus on the ratio of two LYZs at the same L

Rnmðt; LÞ ¼
hðnÞLYðt; LÞ
hðmÞ
LY ðt; LÞ

¼ h̃ðnÞLYðLyttÞ
h̃ðmÞ
LY ðLyttÞ

: ð4Þ

Near t ¼ 0, from the regularity h̃ðnÞLYðt̃Þ is Taylor ex-
panded as

h̃ðnÞLYðt̃Þ ¼ iðXn þ Ynt̃þOðt̃2ÞÞ; ð5Þ

with real numbers Xn and Yn. Substituting Eq. (5) into
Eq. (4) one obtains

Rnmðt; LÞ ¼ rnm þ cnmLyt tþOðt2Þ; ð6Þ

with rnm ¼ Xn=Xm and cnm ¼ rnmðYn=Xn − Ym=XmÞ.
Equation (6) shows that Rnmð0; LÞ ¼ rnm is independent
of L, while the slope at t ¼ 0 scales as Lyt . In other words,
Rnmðt; LÞ for different L intersects at t ¼ 0 as in Fig. 1(a).
This property is similar to the Binder cumulants [14] and
would provide an alternative method to determine the
critical temperature from the intersection point in numerical
simulations.
It is also shown that Eq. (4) for L → ∞ behaves as

RnmðtÞ⟶
L→∞

� 2n−1
2m−1 ðt < 0Þ
1 ðt > 0Þ ðfinite n;mÞ; ð7Þ

[see, Fig. 1(a)]. First, Eq. (7) for t < 0 is obtained from the
fact that the LYZs for sufficiently large L are aligned with

an equal distance as hðnÞLYðt; LÞ ¼ aðtÞð2n − 1Þ=L3 with a
pure-imaginary function aðtÞ [25]. Second, Eq. (7) for
t > 0 follows from Eq. (3).
CPs in general systems—Next, we extend the argument

to CPs in general systems that belong to the same
universality class as the 3D-Ising model. We suppose a
system whose partition functionZðτ; ξ; l−1Þ is described by
two variables τ and ξ with l being a dimensionless
parameter proportional to the spatial size of the system.
We also assume that this system has a first-order phase-
transition line on the τ–ξ plane that terminates at a CP at
ðτ; ξÞ ¼ ðτc; ξcÞ as depicted in Fig. 1(b). In the following,
we refer to zero points of the partition function for ξ∈C
and τ∈R as the LYZs, and denote the LYZs for Im ξ > 0 as

ξ ¼ ξðnÞLYðτ; lÞ, i.e., Zðτ; ξðnÞLYðτ; lÞ; l−1Þ ¼ 0, where the def-
inition of the label n is the same as before.

(a) (b)

FIG. 1. (a) Schematic behavior of Rnmðt; LÞ for different L.
(b) Phase diagram of the three-dimensional three-state Potts
model (17). The black-solid line shows the first-order phase
transition that terminates at a CP denoted by the red circle. The
Ising variables t and h are encoded as blue arrows.
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Since there are only two relevant variables for the CP in
the 3D-Ising universality class, the partition function in the
vicinity of the CP for large l is related to that of the Ising
model as

Zðτ; ξ; l−1Þ ¼ Zðťðτ; ξÞ; ȟðτ; ξÞ; l−1Þ; ð8Þ

where ťðτ; ξÞ and ȟðτ; ξÞ obey the linear relation

�
ť

ȟ

�
¼

�
a11 a12
a21 a22

��
τ − τc

ξ − ξc

�
≡ A

�
δτ

δξ

�
: ð9Þ

Here, the t axis encoded on the τ–ξ plane should be parallel
to the first-order phase-transition line at the CP as in
Fig. 1(b).
The fact that the LYZs are zeros of Eq. (8) yields

lyh ȟðτ; ξðnÞLYðτ; lÞÞ ¼ h̃ðnÞLYðlyt ť½τ; ξðnÞLYðτ; lÞ�Þ: ð10Þ

Equation (10) together with Eqs. (9) and (5) leads to

lyh ½a21δτ þ a22ðξðnÞLYðτ; lÞ − ξcÞ�
¼ ifXn þ Ynlyt ½a11δτ þ a12ðξðnÞLYðτ; lÞ − ξcÞ�g þOðδτ2Þ;

ð11Þ

which gives

ξðnÞLYðτ; lÞ ¼ ξc þ
iXn − ða21lyh − iYna11lytÞδτ

a22lyh − iYna12lyt
; ð12Þ

where the terms of order Oðδτ2Þ are suppressed for
simplicity. Using 0 < yt < yh and expanding Eq. (12) by
l−1 one obtains

Re ξðnÞLYðτ; lÞ ¼ ξc −
a21
a22

δτ þOðl2ȳÞ; ð13Þ

Im ξðnÞLYðτ; lÞ ¼
Xn

a22
l−yh þ Yn detA

a222
lȳδτ þOðl2ȳÞ; ð14Þ

with ȳ ¼ yt − yh < 0.
Equation (13) shows that ½τ;Re ξðnÞLYðτ; lÞ� moves along

the t axis with h ¼ 0 in terms of the Ising variables for

l → ∞. Equations (14) and (3) also lead to Im ξðnÞLYðτ; lÞ ∝
δτyh=yt for l → ∞ and δτ → 0 [33]. The finite-size correc-
tions to these results are obtained by explicitly calculating
the higher-order terms omitted in Eqs. (13) and (14).
To adapt Eq. (4) to the present case, we consider the

ratios between the imaginary parts of ξðnÞLYðτ; lÞ. By expand-
ing them by δτ and l−1 one obtains

Rnmðτ; lÞ ¼
Im ξðnÞLYðτ; lÞ
Im ξðmÞ

LY ðτ; lÞ
¼ ðrnm þ Cnmlytδτ þOðδτ2ÞÞ
× ð1þDnml2ȳ þOðL4ȳÞÞ; ð15Þ

where Cnm¼cnmdetA=a22 and Dnm¼−ðY2
n−Y2

mÞa212=a222.
For l → ∞, Eq. (15) is dominated by the first bracket on the
far-right-hand side. This means that the intersection point
of Eq. (15) converges to the CP as in the Ising model for
l → ∞. Notice that rnm ¼ liml→∞Rnmðτc; lÞ is the same as
Eq. (6), i.e., the value of Rnmðτ; lÞ at the intersection point
is unique in individual universality class. For finite l,
however, the second bracket in Eq. (15) gives rise to a
deviation unless a12 ¼ 0. It is also shown easily that the
l → ∞ limit of Eq. (15) away from δτ ¼ 0 obeys Eq. (7).
Now, let us compare Eq. (15) with the Binder-cumulant

method [14]. For locating a CP on the τ–ξ plane, one may
define the fourth-order Binder cumulant as B4ðτ; lÞ ¼
minξf½∂4F ðτ; ξ; l−1Þ=∂ξ4�=½∂2F ðτ; ξ; l−1Þ=∂ξ2�2g þ 3 [45–
47] with the free energy F ðτ; ξ; l−1Þ ¼ −T lnZðτ; ξ; l−1Þ
with temperature T. One then obtains [46,48]

B4ðτ; lÞ ¼ ðb4 þ c4lytδτ þOðδτ2ÞÞð1þ d4lȳ þOðl2ȳÞÞ;
ð16Þ

where d4 is proportional to a12. Comparing this result with
Eq. (15), one finds that the second bracket in Eq. (16)
converges slower than that in Eq. (15) for l → ∞. This
implies that the finite-volume effect from a12 ≠ 0 is sup-
pressed more quickly for l → ∞ in Rnmðτ; lÞ than B4ðτ; lÞ,
which would be an advantage of the former.
Numerical analysis in Potts model—To verify the

validity of Eq. (15) in practical numerical analyses, we per-
form the Monte Carlo simulation of the three-dimensional
three-state Potts model with Hamiltonian

Hðτ; ξÞ
T

¼ −τ
X
hi;ji

δσiσj − ξ
X
i

δσi;1; ð17Þ

on the simple cubic lattice of size L3 with periodic
boundary conditions, where σi takes three states σi ¼ 1,
2, 3 with the subscript denoting the lattice site and

P
hi;ji

represents the sum over all pairs of adjacent sites. As
schematically shown in Fig. 1(b), this model is Zð3Þ
symmetric and has a first-order phase transition at vanish-
ing external field ξ ¼ 0, which is eventually terminated at a
CP for ξ > 0 that belongs to the 3D-Ising universality class
[45]. In Ref. [45], this CP has been investigated by the
Binder-cumulant method in relation to the CP in QCD with
heavy-mass quarks [47–49].
We generate configurations of Eq. (17) by the heat-bath

algorithm for L ¼ 24, 30, 40, 50, 60, 70 at three simulation
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parameters ðτsim; ξsimÞ near the CP with ξsim ¼ 0.0007;
0.00075, 0.0008 and the corresponding value of τsim chosen
from Table I in Ref. [45]. For each parameter, we perform
the measurements on 106 configurations separated by ten
even-odd heat-bath updates after thermalization.
To numerically search for the LYZs, we use the

reweighting method [25,50], i.e., we search for the zeros of

Zðτ; ξ; L−1Þ
Zðτ;Re ξ; L−1Þ ¼

he−Hðτ;ξÞþHðτsim;ξsimÞiL
he−Hðτ;Re ξÞþHðτsim;ξsimÞiL

; ð18Þ

with τ∈R and ξ∈C for each simulation parameter, where
h·iL denotes the average over the configurations at
ðτsim; ξsimÞ of size L3. The numerical cost to calculate

Eq. (18) does not depend on L and is negligibly small
compared to that for updates of configurations. Whereas
the analysis of Eq. (18) suffers from the overlapping
problem when ðτ; ξÞ is largely deviated from ðτsim; ξsimÞ,
we found that this problem is well suppressed in our
analysis as demonstrated below.
In Fig. 2, we show the ratios R21ðτ; LÞ, R31ðτ; LÞ, and

R41ðτ; LÞ as functions of τ for various L, where the shaded
bands represent statistical errors estimated by the jackknife
method with 20 bins on all configurations. The figure
shows that the results for various L intersect at almost a
common point in all ratios as anticipated from Eq. (15),
except for the results for L ¼ 24, 30 having clear deviations
that would be attributed to the finite-volume effect.
To obtain the critical value τ ¼ τc at the CP, we

performed the four-parameter chi-square fits to the data
of Rnmðτ; LÞ for L ≥ 40 (12 data points in total) with an
ansatz Rnmðτ; LÞ ¼ rþ cðτ − τcÞLyt with r, c, τc, and yt
being the fitting parameters. Effects of the second bracket
in Eq. (15) are neglected since no deviation of the
intersection point is visible for L ≥ 40 in Fig. 2. The fit
results are shown by the diamonds in Fig. 2 for m ¼ 1 and
summarized in Table I. The table shows that these results
are consistent with each other, while smaller m tends to
give better statistics with fixed n.
To fully make use of the information for n ¼ 2, 3, 4 to

determine τc, we also performed the eight-parameter
correlated fit to R21ðτ; LÞ, R31ðτ; LÞ, R41ðτ; LÞ with the
common τc and yt. The results are shown in Fig. 2 by the
circles and in Table I (the row labeled R21;31;41). One finds
that this analysis gives a better statistics than the above
ones. All the fits give reasonable χ2=d:o:f: as in the far-right
columns in Table I.
To compare these results with the Binder-cumulant

analysis, in Fig. 3 we show the behavior of B4ðτ; LÞ
obtained on the same configurations. The fit result with
the same procedure as above is shown by the diamond in
the figure and in Table I, which is consistent with the result
in Ref. [45]. The resulting values of τc and yt are consistent
with those obtained from the LYZ ratio, while the statistical
errors are almost the same in both methods.

FIG. 2. Rn1ðτ; LÞ for n ¼ 2, 3, 4 and various L. The diamond
and circle markers are the fit results for single and all ratios,
respectively.

TABLE I. Fit results of the CP parameters and χ2=d:o:f.

Fit data τc yt rnm or b4 χ2=d:o:f:

R21 0.549 375(18) 1.53(19) 2.408(12) 0.38
R31 0.549 373(17) 1.66(19) 3.669(24) 0.38
R41 0.549 372(22) 1.71(21) 4.861(36) 0.55
R32 0.549 381(48) 2.04(58) 1.5257(62) 0.40
R42 0.549 395(43) 2.32(60) 2.0249(90) 0.62
R43 0.549 418(103) 2.36(150) 1.3258(55) 0.91
R21;31;41 0.549 379(14) 1.70(16) � � � 0.56
B4 0.549 382(11) 1.63(13) 1.614(8) 0.69
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Summary and outlook—In this Letter, we discussed the
FSS of LYZs and showed that the intersection point of their
ratios, Eq. (4) or Eq. (16), for various spatial volumes
indicates a CP in general systems. This property can be
used for numerical searches of CPs as an independent
method from the conventional ones based on susceptibil-
ities. Compared to the Binder-cumulant method [14], this
method is advantageous in suppressing the finite-volume
effects arising from a12 ≠ 0. We applied the method to the
numerical analysis of the CP in the three-state Potts model.
Whereas we assumed the CP in the 3D-Ising universality
class throughout the Letter for a simple presentation, this
method, of course, can be extended to CPs in other
universality classes.
In our numerical study, we limited our analysis to the

LYZs with n ≤ 4. However, one can use the LYZs for yet
larger n, which will act to improve the statistics. The LYZs
can also be used to determine ξc and the matrix A, where
better control of the finite-volume effects and statistics will
be realized by combined uses of Eqs. (13) and (14) for
various n. The precise measurements of rnm in individual
universality classes and the violation of the FSS (1) in
specific models [15,16], as well as the application of the
method to CPs in various systems, such as the QCD critical
point in lattice simulations, are other important future
studies.
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Padé approximants, Phys. Rev. D 109, 074505 (2024).

[40] F. Karsch, C. Schmidt, and S. Singh, Lee-Yang and Langer
edge singularities from analytic continuation of scaling
functions, Phys. Rev. D 109, 014508 (2024).

[41] The regularity of hðnÞLYðt; LÞ is violated when Zðt; h; L−1Þ ¼ 0
has a multiple solution at some t even for a regular Z. We,
however, have numerically checked that such cases do not
occur in the parameter range explored in this study.

[42] F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi,
Precision Islands in the Ising and OðNÞ models, J. High
Energy Phys. 08 (2016) 036.

[43] C. Itzykson, R. Pearson, and J. Zuber, Distribution of zeros
in Ising and gauge models, Nucl. Phys. B220, 415 (1983).

[44] P. J. Kortman and R. B. Griffiths, Density of zeros on the
Lee-Yang circle for two Ising ferromagnets, Phys. Rev. Lett.
27, 1439 (1971).

[45] F. Karsch and S. Stickan, The three-dimensional, three state
Potts model in an external field, Phys. Lett. B 488, 319
(2000).

[46] X.-Y. Jin, Y. Kuramashi, Y. Nakamura, S. Takeda, and A.
Ukawa, Critical point phase transition for finite temperature
3-flavor QCD with non-perturbatively OðaÞ improved
Wilson fermions at Nt ¼ 10, Phys. Rev. D 96, 034523
(2017).

[47] A. Kiyohara, M. Kitazawa, S. Ejiri, and K. Kanaya, Finite-
size scaling around the critical point in the heavy quark
region of QCD, Phys. Rev. D 104, 114509 (2021).

[48] F. Cuteri, O. Philipsen, A. Schön, and A. Sciarra, Decon-
finement critical point of lattice QCD with Nf ¼ 2 Wilson
fermions, Phys. Rev. D 103, 014513 (2021).

[49] R. Ashikawa, M. Kitazawa, S. Ejiri, and K. Kanaya, High-
precision analysis of the critical point in heavy-quark QCD
at Nt ¼ 6, Phys. Rev. D 110, 074508 (2024).

[50] A. M. Ferrenberg and R. H. Swendsen, New Monte Carlo
technique for studying phase transitions, Phys. Rev. Lett.
61, 2635 (1988).

PHYSICAL REVIEW LETTERS 134, 162302 (2025)

162302-6

https://doi.org/10.1103/PhysRevE.56.2418
https://doi.org/10.1142/S0217979205032759
https://doi.org/10.1103/PhysRevResearch.2.033009
https://doi.org/10.1103/PhysRevResearch.2.033009
https://arXiv.org/abs/2308.00575
https://doi.org/10.1088/1126-6708/2004/04/050
https://doi.org/10.1088/1126-6708/2004/04/050
https://doi.org/10.1103/PhysRevD.73.054502
https://doi.org/10.1103/PhysRevD.91.094507
https://doi.org/10.1103/PhysRevD.91.094507
https://doi.org/10.1103/PhysRevD.99.114510
https://doi.org/10.1103/PhysRevD.99.114510
https://doi.org/10.1103/PhysRevD.101.074511
https://doi.org/10.1103/PhysRevD.101.074511
https://doi.org/10.1103/PhysRevD.105.034513
https://doi.org/10.1103/PhysRevC.110.015203
https://doi.org/10.1103/PhysRevC.110.015203
https://doi.org/10.22323/1.430.0164
https://arXiv.org/abs/2301.03952
https://arXiv.org/abs/2405.10196
https://doi.org/10.1103/PhysRevD.73.094508
https://doi.org/10.1093/ptep/ptu108
https://doi.org/10.1093/ptep/ptu108
https://doi.org/10.1088/1742-5468/aaac4a
https://doi.org/10.1088/1742-5468/aaac4a
https://doi.org/10.1103/PhysRevD.105.105002
https://doi.org/10.1016/j.aop.2022.169010
https://doi.org/10.1103/PhysRevD.107.116013
https://doi.org/10.1103/PhysRevD.109.074505
https://doi.org/10.1103/PhysRevD.109.014508
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1016/0550-3213(83)90499-6
https://doi.org/10.1103/PhysRevLett.27.1439
https://doi.org/10.1103/PhysRevLett.27.1439
https://doi.org/10.1016/S0370-2693(00)00902-3
https://doi.org/10.1016/S0370-2693(00)00902-3
https://doi.org/10.1103/PhysRevD.96.034523
https://doi.org/10.1103/PhysRevD.96.034523
https://doi.org/10.1103/PhysRevD.104.114509
https://doi.org/10.1103/PhysRevD.103.014513
https://doi.org/10.1103/PhysRevD.110.074508
https://doi.org/10.1103/PhysRevLett.61.2635
https://doi.org/10.1103/PhysRevLett.61.2635

	Locating Critical Points Using Ratios of Lee-Yang Zeros
	Introduction
	Ising model
	CPs in general systems
	Numerical analysis in Potts model
	Summary and outlook
	Acknowledgments
	References


