
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 108C (2017) 2200–2209

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.263

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,  
Zurich, Switzerland

10.1016/j.procs.2017.05.263 1877-0509

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

 

Software Framework for Parallel BEM Analyses with 
H-matrices Using MPI and OpenMP 

Takeshi Iwashita1, 5, Akihiro Ida2, 5, Takeshi Mifune3, 5, and  
Yasuhito Takahashi4, 5 

 
1Hokkaido University, Sapporo, Japan, 2The University of Tokyo, Tokyo, Japan, 

 3Kyoto University, Kyoto, Japan, 4Doshisha University, Kyotanabe, Japan, 5JST CREST, 
iwashita@iic.hokudai.ac.jp, ida@cc.u-tokyo.ac.jp,  

mifune@fem.kuee.kyoto-u.ac.jp, ytakahashi@mail.doshisha.ac.jp 
 

A software framework has been developed for use in parallel boundary element method (BEM) analyses. 
The framework program was parallelized in a hybrid parallel programming model, and both multiple 
processes and threads were used. Additionally, an H-matrix library for a distributed memory parallel 
computer was also developed to accelerate the analysis. In this paper, we describe the basic design 
concept for the framework and details of its implementation. The framework program, which was 
written with MPI functions and OpenMP directives, is mainly intended to reduce the user’s parallel 
programming costs. We also show the results of a sample analysis performed with approximately 60,000 
unknowns. The numerical results verify the effectiveness of both the parallelization and the H-matrix 
method. In the test analysis, which was performed using a single core, the H-matrix version of the 
framework is 17-fold faster than the dense matrix version. The parallel framework program with the H-
matrix attains an approximately 50-fold acceleration using 128 cores when compared with sequential 
computation. 
 
Keywords: Boundary element analysis, H-matrix, parallel processing, software framework 

1 Introduction 
The boundary element method (BEM) is a partial differential equation (PDE) solver and is used in 
various numerical simulations [1]. One of the advantages of the BEM is that it is only necessary for the 
surfaces of the objects to be discretized in the analyzed model. The number of unknowns and the 
meshing costs are generally less than would be required for other volume discretization methods, such 
as the finite element method. However, because a dense coefficient matrix arises in the BEM, the total 
computational cost and the memory footprint of the method tend to be significantly high. To remedy 
these problems, the Fast Multipole Method (FMM) [2], the hierarchical matrices (H-matrices) [3], and 
their related techniques [4][5] have been widely used as approximation techniques for the dense 
coefficient matrix. Additionally, parallel processing is also used to reduce the overall simulation time. 

 

Software Framework for Parallel BEM Analyses with 
H-matrices Using MPI and OpenMP 

Takeshi Iwashita1, 5, Akihiro Ida2, 5, Takeshi Mifune3, 5, and  
Yasuhito Takahashi4, 5 

 
1Hokkaido University, Sapporo, Japan, 2The University of Tokyo, Tokyo, Japan, 

 3Kyoto University, Kyoto, Japan, 4Doshisha University, Kyotanabe, Japan, 5JST CREST, 
iwashita@iic.hokudai.ac.jp, ida@cc.u-tokyo.ac.jp,  

mifune@fem.kuee.kyoto-u.ac.jp, ytakahashi@mail.doshisha.ac.jp 
 

A software framework has been developed for use in parallel boundary element method (BEM) analyses. 
The framework program was parallelized in a hybrid parallel programming model, and both multiple 
processes and threads were used. Additionally, an H-matrix library for a distributed memory parallel 
computer was also developed to accelerate the analysis. In this paper, we describe the basic design 
concept for the framework and details of its implementation. The framework program, which was 
written with MPI functions and OpenMP directives, is mainly intended to reduce the user’s parallel 
programming costs. We also show the results of a sample analysis performed with approximately 60,000 
unknowns. The numerical results verify the effectiveness of both the parallelization and the H-matrix 
method. In the test analysis, which was performed using a single core, the H-matrix version of the 
framework is 17-fold faster than the dense matrix version. The parallel framework program with the H-
matrix attains an approximately 50-fold acceleration using 128 cores when compared with sequential 
computation. 
 
Keywords: Boundary element analysis, H-matrix, parallel processing, software framework 

1 Introduction 
The boundary element method (BEM) is a partial differential equation (PDE) solver and is used in 
various numerical simulations [1]. One of the advantages of the BEM is that it is only necessary for the 
surfaces of the objects to be discretized in the analyzed model. The number of unknowns and the 
meshing costs are generally less than would be required for other volume discretization methods, such 
as the finite element method. However, because a dense coefficient matrix arises in the BEM, the total 
computational cost and the memory footprint of the method tend to be significantly high. To remedy 
these problems, the Fast Multipole Method (FMM) [2], the hierarchical matrices (H-matrices) [3], and 
their related techniques [4][5] have been widely used as approximation techniques for the dense 
coefficient matrix. Additionally, parallel processing is also used to reduce the overall simulation time. 

 

 

However, it is not easy to develop the parallel simulation code when using these sophisticated numerical 
techniques.  

Based on these considerations, we have developed an open-source software framework for use in 
parallel BEM analysis that is parallelized using the hybrid parallel programming model. In addition, to 
reduce both the simulation time and the memory footprint of the method, we have also developed a 
distributed parallel H-matrix library [6] that can be used together with the framework program. The 
programming costs for the fast parallel BEM codes are expected to be reduced by using the framework.  

In this paper, we describe the design concept for the framework and the detail of its implementation. 
Additionally, numerical results from an analysis using the proposed framework program confirm the 
effectiveness of the software. 

2 Design Concept of BEM Framework 
When we designed the software framework for parallel BEM analysis, which we have named the BEM-
BB framework, we adopted a software model in which the complete simulation code consists of the 
framework program and additional user-defined functions. A BEM analysis program generally involves 
the following steps: 1) input of the model data; 2) definition of the boundary element integral; 3) setting 
of  the boundary conditions; 4) generation of  a coefficient matrix and a right-hand vector; 5) application 
of a linear solver; and 6) output of the analysis results.   

Our software framework mainly supports steps 1, 4, and 5. In other words, the BEM-BB framework 
provides programs for input of the model data, assembly of the coefficient matrix and the right hand 
vector, and solution of the linear system. The programs are parallelized in a hybrid parallel programming 
model using MPI and OpenMP. In our software design, users should prepare a function program in 
which each element of the coefficient matrix is calculated and then returned to the main program. This 
means that users must develop a program to calculate the integrals of boundary elements. They also 
handle the right hand side vector, the boundary conditions, and the output of the results themselves, 
although an application program interface that is similar to that for the coefficient matrix setting step is 
provided for the right hand vector. In the following, we explain the background of the software design.  

While either a fundamental solution or a Green’s function is an important element of the BEM, it is 
dependent on the governing equation of the targeted physical phenomenon. Furthermore, even if the 
same fundamental solution is used, the element shape, the degree of the elements, and the integration 
method used (i.e., analytical or numerical) may vary depending on the model used and the required 
accuracy of the analysis. To deal with these diverse aspects of BEM analyses, we have separated the 
program for integration of the elements, which is written by the user, from the framework. In other 
words, the software framework developed here is mainly focused on support for programming on a 
distributed parallel computer, which is often troublesome, and the framework can be used for various 
BEM analyses.  

While we have developed a basic software model, we understand that some users will want a black-
box-type BEM analysis code. To support these users, we have also prepared template programs for 
typical BEM analyses. Each template program includes a function program for boundary element 
integration in a specific problem domain. Use of the template in combination with the BEM-BB 
framework allows the user to obtain a complete BEM analysis program. Fig. 1 illustrates the basic 
concept of the developed framework.  

 
 
 
 
 
 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.263&domain=pdf


 Takeshi Iwashita et al. / Procedia Computer Science 108C (2017) 2200–2209 2201

 

Software Framework for Parallel BEM Analyses with 
H-matrices Using MPI and OpenMP 

Takeshi Iwashita1, 5, Akihiro Ida2, 5, Takeshi Mifune3, 5, and  
Yasuhito Takahashi4, 5 

 
1Hokkaido University, Sapporo, Japan, 2The University of Tokyo, Tokyo, Japan, 

 3Kyoto University, Kyoto, Japan, 4Doshisha University, Kyotanabe, Japan, 5JST CREST, 
iwashita@iic.hokudai.ac.jp, ida@cc.u-tokyo.ac.jp,  

mifune@fem.kuee.kyoto-u.ac.jp, ytakahashi@mail.doshisha.ac.jp 
 

A software framework has been developed for use in parallel boundary element method (BEM) analyses. 
The framework program was parallelized in a hybrid parallel programming model, and both multiple 
processes and threads were used. Additionally, an H-matrix library for a distributed memory parallel 
computer was also developed to accelerate the analysis. In this paper, we describe the basic design 
concept for the framework and details of its implementation. The framework program, which was 
written with MPI functions and OpenMP directives, is mainly intended to reduce the user’s parallel 
programming costs. We also show the results of a sample analysis performed with approximately 60,000 
unknowns. The numerical results verify the effectiveness of both the parallelization and the H-matrix 
method. In the test analysis, which was performed using a single core, the H-matrix version of the 
framework is 17-fold faster than the dense matrix version. The parallel framework program with the H-
matrix attains an approximately 50-fold acceleration using 128 cores when compared with sequential 
computation. 
 
Keywords: Boundary element analysis, H-matrix, parallel processing, software framework 

1 Introduction 
The boundary element method (BEM) is a partial differential equation (PDE) solver and is used in 
various numerical simulations [1]. One of the advantages of the BEM is that it is only necessary for the 
surfaces of the objects to be discretized in the analyzed model. The number of unknowns and the 
meshing costs are generally less than would be required for other volume discretization methods, such 
as the finite element method. However, because a dense coefficient matrix arises in the BEM, the total 
computational cost and the memory footprint of the method tend to be significantly high. To remedy 
these problems, the Fast Multipole Method (FMM) [2], the hierarchical matrices (H-matrices) [3], and 
their related techniques [4][5] have been widely used as approximation techniques for the dense 
coefficient matrix. Additionally, parallel processing is also used to reduce the overall simulation time. 

 

Software Framework for Parallel BEM Analyses with 
H-matrices Using MPI and OpenMP 

Takeshi Iwashita1, 5, Akihiro Ida2, 5, Takeshi Mifune3, 5, and  
Yasuhito Takahashi4, 5 

 
1Hokkaido University, Sapporo, Japan, 2The University of Tokyo, Tokyo, Japan, 

 3Kyoto University, Kyoto, Japan, 4Doshisha University, Kyotanabe, Japan, 5JST CREST, 
iwashita@iic.hokudai.ac.jp, ida@cc.u-tokyo.ac.jp,  

mifune@fem.kuee.kyoto-u.ac.jp, ytakahashi@mail.doshisha.ac.jp 
 

A software framework has been developed for use in parallel boundary element method (BEM) analyses. 
The framework program was parallelized in a hybrid parallel programming model, and both multiple 
processes and threads were used. Additionally, an H-matrix library for a distributed memory parallel 
computer was also developed to accelerate the analysis. In this paper, we describe the basic design 
concept for the framework and details of its implementation. The framework program, which was 
written with MPI functions and OpenMP directives, is mainly intended to reduce the user’s parallel 
programming costs. We also show the results of a sample analysis performed with approximately 60,000 
unknowns. The numerical results verify the effectiveness of both the parallelization and the H-matrix 
method. In the test analysis, which was performed using a single core, the H-matrix version of the 
framework is 17-fold faster than the dense matrix version. The parallel framework program with the H-
matrix attains an approximately 50-fold acceleration using 128 cores when compared with sequential 
computation. 
 
Keywords: Boundary element analysis, H-matrix, parallel processing, software framework 

1 Introduction 
The boundary element method (BEM) is a partial differential equation (PDE) solver and is used in 
various numerical simulations [1]. One of the advantages of the BEM is that it is only necessary for the 
surfaces of the objects to be discretized in the analyzed model. The number of unknowns and the 
meshing costs are generally less than would be required for other volume discretization methods, such 
as the finite element method. However, because a dense coefficient matrix arises in the BEM, the total 
computational cost and the memory footprint of the method tend to be significantly high. To remedy 
these problems, the Fast Multipole Method (FMM) [2], the hierarchical matrices (H-matrices) [3], and 
their related techniques [4][5] have been widely used as approximation techniques for the dense 
coefficient matrix. Additionally, parallel processing is also used to reduce the overall simulation time. 

 

 

However, it is not easy to develop the parallel simulation code when using these sophisticated numerical 
techniques.  

Based on these considerations, we have developed an open-source software framework for use in 
parallel BEM analysis that is parallelized using the hybrid parallel programming model. In addition, to 
reduce both the simulation time and the memory footprint of the method, we have also developed a 
distributed parallel H-matrix library [6] that can be used together with the framework program. The 
programming costs for the fast parallel BEM codes are expected to be reduced by using the framework.  

In this paper, we describe the design concept for the framework and the detail of its implementation. 
Additionally, numerical results from an analysis using the proposed framework program confirm the 
effectiveness of the software. 

2 Design Concept of BEM Framework 
When we designed the software framework for parallel BEM analysis, which we have named the BEM-
BB framework, we adopted a software model in which the complete simulation code consists of the 
framework program and additional user-defined functions. A BEM analysis program generally involves 
the following steps: 1) input of the model data; 2) definition of the boundary element integral; 3) setting 
of  the boundary conditions; 4) generation of  a coefficient matrix and a right-hand vector; 5) application 
of a linear solver; and 6) output of the analysis results.   

Our software framework mainly supports steps 1, 4, and 5. In other words, the BEM-BB framework 
provides programs for input of the model data, assembly of the coefficient matrix and the right hand 
vector, and solution of the linear system. The programs are parallelized in a hybrid parallel programming 
model using MPI and OpenMP. In our software design, users should prepare a function program in 
which each element of the coefficient matrix is calculated and then returned to the main program. This 
means that users must develop a program to calculate the integrals of boundary elements. They also 
handle the right hand side vector, the boundary conditions, and the output of the results themselves, 
although an application program interface that is similar to that for the coefficient matrix setting step is 
provided for the right hand vector. In the following, we explain the background of the software design.  

While either a fundamental solution or a Green’s function is an important element of the BEM, it is 
dependent on the governing equation of the targeted physical phenomenon. Furthermore, even if the 
same fundamental solution is used, the element shape, the degree of the elements, and the integration 
method used (i.e., analytical or numerical) may vary depending on the model used and the required 
accuracy of the analysis. To deal with these diverse aspects of BEM analyses, we have separated the 
program for integration of the elements, which is written by the user, from the framework. In other 
words, the software framework developed here is mainly focused on support for programming on a 
distributed parallel computer, which is often troublesome, and the framework can be used for various 
BEM analyses.  

While we have developed a basic software model, we understand that some users will want a black-
box-type BEM analysis code. To support these users, we have also prepared template programs for 
typical BEM analyses. Each template program includes a function program for boundary element 
integration in a specific problem domain. Use of the template in combination with the BEM-BB 
framework allows the user to obtain a complete BEM analysis program. Fig. 1 illustrates the basic 
concept of the developed framework.  

 
 
 
 
 
 



2202 Takeshi Iwashita et al. / Procedia Computer Science 108C (2017) 2200–2209 

 

 

3 Implementation of Framework for Parallel Boundary Element 
Analyses 

We have developed two versions of the framework for parallel BEM analysis from the basic design 
presented above. The first version is based on dense matrix computations, and supports many varieties 
of BEM analyses. The second version uses the H-matrix technique, and is targeted for high performance 
(i.e., high-speed and low memory) BEM analysis. The framework is used with a distributed parallel H-
matrix library, called HACApK [6], which has been developed by the authors. In this section, we explain 
these two implementations in detail. The main language used in both the BEM-BB framework and the 
HACApK library is Fortran90.  

3.1 Implementation of the Framework using Dense Matrix Computations 
The main parts of the framework are used for the data inputs, coefficient matrix generation, and the 
linear iterative solvers.  

3.1.1. Model data input part 
Within the developed framework, all processes share the input data for the analyzed model, i.e., each 
process has a copy of the data. The master process loads the data from a file system, and these data are 
distributed to the other processes using the MPI_Bcast function. In this case, the model data can be used 
in the user-defined function for element integration without process communications, which makes the 
programming of this function much simpler. The memory space required for the model data is 
substantially smaller than that required for the coefficient matrix in a large-scale analysis. Although the 
dense coefficient matrix requires O(n2) memory footprints, the size of the model data is proportional to 
n, where n is the number of boundary elements. 

Because the developed framework is intended for a three-dimensional analysis, the model data 
include:  
(1) Scalar values 

Figure 1: Design concept for parallel BEM analysis framework 

 

 

(1-1) Number of nodes (integer*4): nond 
(1-2) Number of faces (integer*4): nofc 
(1-3) Number of nodes on each face (integer*4): nond_on_fc 
(1-4) Number of integer parameters set on each face  (integer*4): nint_para_fc 
(1-5) Number of real parameters set on each face (integer*4): ndble_para_fc 

(2)  Arrays 
(2-1) Coordinates of nodes in three dimensions (real*8): np(3,nond) 
(2-2) Node number constructing for each face (integer*4): face2node(nond_on_face, nofc) 
(2-3) Integer parameters set on faces (integer*4): int_para_fc(nint_para_fc, nofc) 
(2-4) Real parameters set on faces (real*8): dble_para_fc(ndble_para_fc, nofc) 

The model data include essential information such as the coordinates of the nodes and the user-defined 
integers or real parameters that can be used in the function program for element integration.  

3.1.2. Coefficient matrix generation part 
After the model data are loaded, each process prepares the memory space (array) required for the 
segment of the coefficient matrix that is assigned to that process. Because the developed framework 
supports hybrid parallel processing, the entire program is multithreaded. In multi-thread parallel 
processing, it is preferable that the data that are accessed by a thread are stored in a memory module 
that is located as closely as possible to the computing core that runs the thread. To achieve this, each 
thread performs the first touch operation of a part of the array for the coefficient matrix [7]. Next, each 
thread calls the function to compute the coefficient matrix elements in parallel; this is either developed 
by a user or included in a template. Because the matrix element computations are mutually independent, 
the parallel efficiency of the matrix generation part is expected to be high. 

3.1.3. Linear solver part 
Within the developed framework, iterative solvers are used to solve the linear system of equations that 
is derived from the BEM. At present, BiCGSTAB [8] and GPBiCG [9] methods are available. These 
iterative solvers are categorized within the Krylov subspace methods, for which the computational 
kernels are the inner product and matrix vector multiplication. The multi-thread and multi-process 
parallelization of these kernels is not difficult. We have developed two versions for each solver, one of 
which uses the functions of the Basic Linear Algebra Subprograms (BLAS) library. The other version 
includes a full set of programs for the solver and does not require an external library for its execution.  

3.2 Framework Implementation using H-matrix Computations 
The framework that is based on H-matrix computation uses the parallel H-matrix library HACApK. This 
library supports both H-matrix generation and H-matrix vector multiplication. The library is also 
parallelized in the hybrid parallel programming model. The usage of the H-matrix-based framework is 
almost the same as that of a dense matrix-based framework. However, the two frameworks have some 
differences in terms of the implementation of their matrix generation and linear solver parts.  

In the coefficient matrix generation part, the framework calls the H-matrix generation routine in 
HACApK. In the generation routine, the library program calls the element integration function (user-
defined or in a template) and generates an H-matrix, which is an approximation of the coefficient matrix. 
In the proposed framework, no temporal dense coefficient matrix is generated to keep the benefits of 
the use of the H-matrix in the memory footprint and the reduced computational effort. Because the 
element integration function is separated from the framework program in our software design, it can be 
called directly from the H-matrix generation program. 



 Takeshi Iwashita et al. / Procedia Computer Science 108C (2017) 2200–2209 2203 

 

 

3 Implementation of Framework for Parallel Boundary Element 
Analyses 

We have developed two versions of the framework for parallel BEM analysis from the basic design 
presented above. The first version is based on dense matrix computations, and supports many varieties 
of BEM analyses. The second version uses the H-matrix technique, and is targeted for high performance 
(i.e., high-speed and low memory) BEM analysis. The framework is used with a distributed parallel H-
matrix library, called HACApK [6], which has been developed by the authors. In this section, we explain 
these two implementations in detail. The main language used in both the BEM-BB framework and the 
HACApK library is Fortran90.  

3.1 Implementation of the Framework using Dense Matrix Computations 
The main parts of the framework are used for the data inputs, coefficient matrix generation, and the 
linear iterative solvers.  

3.1.1. Model data input part 
Within the developed framework, all processes share the input data for the analyzed model, i.e., each 
process has a copy of the data. The master process loads the data from a file system, and these data are 
distributed to the other processes using the MPI_Bcast function. In this case, the model data can be used 
in the user-defined function for element integration without process communications, which makes the 
programming of this function much simpler. The memory space required for the model data is 
substantially smaller than that required for the coefficient matrix in a large-scale analysis. Although the 
dense coefficient matrix requires O(n2) memory footprints, the size of the model data is proportional to 
n, where n is the number of boundary elements. 

Because the developed framework is intended for a three-dimensional analysis, the model data 
include:  
(1) Scalar values 

Figure 1: Design concept for parallel BEM analysis framework 

 

 

(1-1) Number of nodes (integer*4): nond 
(1-2) Number of faces (integer*4): nofc 
(1-3) Number of nodes on each face (integer*4): nond_on_fc 
(1-4) Number of integer parameters set on each face  (integer*4): nint_para_fc 
(1-5) Number of real parameters set on each face (integer*4): ndble_para_fc 

(2)  Arrays 
(2-1) Coordinates of nodes in three dimensions (real*8): np(3,nond) 
(2-2) Node number constructing for each face (integer*4): face2node(nond_on_face, nofc) 
(2-3) Integer parameters set on faces (integer*4): int_para_fc(nint_para_fc, nofc) 
(2-4) Real parameters set on faces (real*8): dble_para_fc(ndble_para_fc, nofc) 

The model data include essential information such as the coordinates of the nodes and the user-defined 
integers or real parameters that can be used in the function program for element integration.  

3.1.2. Coefficient matrix generation part 
After the model data are loaded, each process prepares the memory space (array) required for the 
segment of the coefficient matrix that is assigned to that process. Because the developed framework 
supports hybrid parallel processing, the entire program is multithreaded. In multi-thread parallel 
processing, it is preferable that the data that are accessed by a thread are stored in a memory module 
that is located as closely as possible to the computing core that runs the thread. To achieve this, each 
thread performs the first touch operation of a part of the array for the coefficient matrix [7]. Next, each 
thread calls the function to compute the coefficient matrix elements in parallel; this is either developed 
by a user or included in a template. Because the matrix element computations are mutually independent, 
the parallel efficiency of the matrix generation part is expected to be high. 

3.1.3. Linear solver part 
Within the developed framework, iterative solvers are used to solve the linear system of equations that 
is derived from the BEM. At present, BiCGSTAB [8] and GPBiCG [9] methods are available. These 
iterative solvers are categorized within the Krylov subspace methods, for which the computational 
kernels are the inner product and matrix vector multiplication. The multi-thread and multi-process 
parallelization of these kernels is not difficult. We have developed two versions for each solver, one of 
which uses the functions of the Basic Linear Algebra Subprograms (BLAS) library. The other version 
includes a full set of programs for the solver and does not require an external library for its execution.  

3.2 Framework Implementation using H-matrix Computations 
The framework that is based on H-matrix computation uses the parallel H-matrix library HACApK. This 
library supports both H-matrix generation and H-matrix vector multiplication. The library is also 
parallelized in the hybrid parallel programming model. The usage of the H-matrix-based framework is 
almost the same as that of a dense matrix-based framework. However, the two frameworks have some 
differences in terms of the implementation of their matrix generation and linear solver parts.  

In the coefficient matrix generation part, the framework calls the H-matrix generation routine in 
HACApK. In the generation routine, the library program calls the element integration function (user-
defined or in a template) and generates an H-matrix, which is an approximation of the coefficient matrix. 
In the proposed framework, no temporal dense coefficient matrix is generated to keep the benefits of 
the use of the H-matrix in the memory footprint and the reduced computational effort. Because the 
element integration function is separated from the framework program in our software design, it can be 
called directly from the H-matrix generation program. 



2204 Takeshi Iwashita et al. / Procedia Computer Science 108C (2017) 2200–2209

 

 

 
Additionally, the linear solver requires a different treatment to that used in the dense matrix case. 

We have developed BiCGSTAB and GCR [10] solvers. The matrix-vector multiplication that is 
involved in these solvers is replaced here with H-matrix vector multiplication. The multiplication of the 
generated H-matrix and the vectors is performed using the routine from the HACApK library.  

3.3 How to Use the Framework 
This subsection summarizes the usage of the framework from the user’s viewpoint. First, the 
configuration file is edited. In this file, the user fixes the linear solver to be used and certain parameters, 
such as the convergence criterion for the iterative solver. Next, the model data are prepared. When a 
template is used, the user simply compiles the framework program with the template and subsequently 
runs the executable binary file. When the template is not used, the user prepares a function that returns 
the element of the coefficient matrix. Fig. 2 shows the interface of the user-defined function. In the 
function, the matrix element is calculated by using the input model data. Although the function is written 
in the serial programming model, it is concurrently called by multiple threads. After the boundary 
condition and the right-hand side vector are appropriately set, the program is then compiled and executed. 
Note that the MPI library and its runtime are required for the execution, because the program uses the 
MPI functions. The simulation code runs in the multiple processes and threads mode from start to finish, 
though some limited portions of tasks are executed by only the master process or thread. 

4 Numerical Results 

4.1 Test Model and Computers 
In this section, we present a sample BEM analysis result based on use of the proposed framework. In 
the test model, three perfectly conductive spheres are set at distances of 0.25 m, 0.75 m, and 0.25 m 
from the ground (0 V). The radius of each sphere is 0.25 m. These spheres are excited with voltages of 
1 V, -1 V, and 1 V, respectively. Fig. 3 shows the test model that was analyzed. The electric charge 
induced on the surface of the spherical conductor is calculated using BEM.  

The electric image method is used in the analysis. In this method, the images of three spheres are set 
on the opposite side to the ground. The resulting six spheres are discretized using a total of 64,800 
triangular face elements.  

The basic equation for the analysis is given by Laplace’s equation. One unknown is set on each face 
element. The analytical method that was reported in [11] is used for integration of the elements. The 
integration function is open for public use as a template for the surface charge method.  

Figure 2: Interface of user-defined function for the element of the coefficient matrix 

 

 

 
For the numerical test, we used the Appro GreenBlade 8000 system at Kyoto Univ. Each node is 

equipped with two Intel Xeon E5-2670 processors (with eight cores). The memory bandwidth of each 
node is 102 GB/s. The internal network between the nodes is based on the InfiniBand (IB) FDR. The 
Intel Fortran compiler ver. 13.1.3 is used with options of -O3 -xHost -ipo -openmp –mcmodel=medium 
-shared-intel. 

4.2 Numerical Results 
Figure 4 shows the surface charge density that was calculated in the sample analysis. In the analysis, we 
used the BiCGSTAB method with the convergence criterion of a relative residual norm of less than 10-8. 
The surface charge is induced more strongly on surface areas that are close to other spheres.  

Figure 5 shows the parallel speedup of the framework with dense matrix computation. The numerical 
test was performed using the flat-MPI configuration (single thread execution). The number of nodes 
was varied from 1 to 16. The figure shows strong scalability when compared with the results of serial 
computation. While a slight degradation of the parallel performance on 256 cores is observed, an almost 
ideal speed-up is obtained. These results are explained as follows.  

In the BEM analysis, the dominant elements in terms of computation time are the matrix generation 
and linear solver parts. In the matrix generation part, because each process executes its computation 
independently, high parallel efficiency can be expected. In the linear solver part, communication 
between the processes is necessary for the inner products and the matrix vector multiplication. Therefore, 
the parallel efficiency of the iterative solver generally deteriorates as the number of processes increases.  

The influence of the two computational kernels on the total computation time varies based on the 
balance between the number of arithmetic operations required for the integration and the number of 
iterations required to produce convergence. In the test model, the matrix generation part affects the 
simulation time more significantly in serial computation (2307 s for matrix generation and 436 s for the 
iterative solution).  Relatively high parallel efficiency is therefore achieved. However, when 256 cores 
are used, the computation time for matrix generation is reduced, and is then comparable to that for the 
linear solver (9.1 s for matrix generation and 3.4 s for the iterative solution). Consequently, the influence 
of communications in the iterative solver on the parallel efficiency becomes apparent and the speedup 
results in a slightly less than ideal value.  

Table 1 compares the computation times of the two framework implementations using dense or H- 
matrix computations. The flat-MPI configuration was used. For serial computation, the H-matrix 
implementation is approximately 17 times as fast as the dense matrix implementation. 

Figure 3: Analyzed test model 



 Takeshi Iwashita et al. / Procedia Computer Science 108C (2017) 2200–2209 2205

 

 

 
Additionally, the linear solver requires a different treatment to that used in the dense matrix case. 

We have developed BiCGSTAB and GCR [10] solvers. The matrix-vector multiplication that is 
involved in these solvers is replaced here with H-matrix vector multiplication. The multiplication of the 
generated H-matrix and the vectors is performed using the routine from the HACApK library.  

3.3 How to Use the Framework 
This subsection summarizes the usage of the framework from the user’s viewpoint. First, the 
configuration file is edited. In this file, the user fixes the linear solver to be used and certain parameters, 
such as the convergence criterion for the iterative solver. Next, the model data are prepared. When a 
template is used, the user simply compiles the framework program with the template and subsequently 
runs the executable binary file. When the template is not used, the user prepares a function that returns 
the element of the coefficient matrix. Fig. 2 shows the interface of the user-defined function. In the 
function, the matrix element is calculated by using the input model data. Although the function is written 
in the serial programming model, it is concurrently called by multiple threads. After the boundary 
condition and the right-hand side vector are appropriately set, the program is then compiled and executed. 
Note that the MPI library and its runtime are required for the execution, because the program uses the 
MPI functions. The simulation code runs in the multiple processes and threads mode from start to finish, 
though some limited portions of tasks are executed by only the master process or thread. 

4 Numerical Results 

4.1 Test Model and Computers 
In this section, we present a sample BEM analysis result based on use of the proposed framework. In 
the test model, three perfectly conductive spheres are set at distances of 0.25 m, 0.75 m, and 0.25 m 
from the ground (0 V). The radius of each sphere is 0.25 m. These spheres are excited with voltages of 
1 V, -1 V, and 1 V, respectively. Fig. 3 shows the test model that was analyzed. The electric charge 
induced on the surface of the spherical conductor is calculated using BEM.  

The electric image method is used in the analysis. In this method, the images of three spheres are set 
on the opposite side to the ground. The resulting six spheres are discretized using a total of 64,800 
triangular face elements.  

The basic equation for the analysis is given by Laplace’s equation. One unknown is set on each face 
element. The analytical method that was reported in [11] is used for integration of the elements. The 
integration function is open for public use as a template for the surface charge method.  

Figure 2: Interface of user-defined function for the element of the coefficient matrix 

 

 

 
For the numerical test, we used the Appro GreenBlade 8000 system at Kyoto Univ. Each node is 

equipped with two Intel Xeon E5-2670 processors (with eight cores). The memory bandwidth of each 
node is 102 GB/s. The internal network between the nodes is based on the InfiniBand (IB) FDR. The 
Intel Fortran compiler ver. 13.1.3 is used with options of -O3 -xHost -ipo -openmp –mcmodel=medium 
-shared-intel. 

4.2 Numerical Results 
Figure 4 shows the surface charge density that was calculated in the sample analysis. In the analysis, we 
used the BiCGSTAB method with the convergence criterion of a relative residual norm of less than 10-8. 
The surface charge is induced more strongly on surface areas that are close to other spheres.  

Figure 5 shows the parallel speedup of the framework with dense matrix computation. The numerical 
test was performed using the flat-MPI configuration (single thread execution). The number of nodes 
was varied from 1 to 16. The figure shows strong scalability when compared with the results of serial 
computation. While a slight degradation of the parallel performance on 256 cores is observed, an almost 
ideal speed-up is obtained. These results are explained as follows.  

In the BEM analysis, the dominant elements in terms of computation time are the matrix generation 
and linear solver parts. In the matrix generation part, because each process executes its computation 
independently, high parallel efficiency can be expected. In the linear solver part, communication 
between the processes is necessary for the inner products and the matrix vector multiplication. Therefore, 
the parallel efficiency of the iterative solver generally deteriorates as the number of processes increases.  

The influence of the two computational kernels on the total computation time varies based on the 
balance between the number of arithmetic operations required for the integration and the number of 
iterations required to produce convergence. In the test model, the matrix generation part affects the 
simulation time more significantly in serial computation (2307 s for matrix generation and 436 s for the 
iterative solution).  Relatively high parallel efficiency is therefore achieved. However, when 256 cores 
are used, the computation time for matrix generation is reduced, and is then comparable to that for the 
linear solver (9.1 s for matrix generation and 3.4 s for the iterative solution). Consequently, the influence 
of communications in the iterative solver on the parallel efficiency becomes apparent and the speedup 
results in a slightly less than ideal value.  

Table 1 compares the computation times of the two framework implementations using dense or H- 
matrix computations. The flat-MPI configuration was used. For serial computation, the H-matrix 
implementation is approximately 17 times as fast as the dense matrix implementation. 

Figure 3: Analyzed test model 



2206 Takeshi Iwashita et al. / Procedia Computer Science 108C (2017) 2200–2209 

 

 
 

 
 

 
 

Figure 4: Numerical result for surface charge density 

Figure 5: Parallel speedup of analysis when using framework with dense matrix computations 

 

# Cores 1 16 64 128 256 
Dense matrix 2753 174 43.4 21.9 12.6 
H-matrix 156 14.2 7.8 6.0 7.6 

Table 1: Computation time (s) for analysis based on the developed framework 
 (flat-MPI configuration) 

 
 

 

 

 
Figure 6 shows a comparison of the flat-MPI and hybrid (multi-process and multi-thread) parallel 

executions. The number of unknowns (over 60,000) is not small for a conventional BEM analysis using 
dense matrix computations. However, when the H-matrix technique is introduced, the total amount of 
data required for the coefficient matrix is significantly reduced and the computational efforts required 
for element integration are reduced in proportion to the quantity of data. Consequently, the effect of the 
iterative solver on the total computation time is enhanced. In the linear solver, all-gather type collective 
communications are used. The communications are often implemented using the multiple tasks in 
proportion to the number of processes. Therefore, a reduction in the number of processes can be effective 
in reducing the communications overheads. Fig. 6 shows the advantages of the hybrid parallel 
programming model in the framework with the H-matrix. In the analysis, when using the H-matrix 
technique and the parallel processing on 256 cores, we attain an 856-fold speedup when compared with 
sequential BEM analysis using dense matrix computations. 

5 Related works 
In the area of software frameworks for (parallel) PDE solvers, many studies have used the finite element 
method (FEM), such as the well-known GeoFEM [12], HPC-MW [13], and Free FEM++ [14] 
frameworks. Although there are fewer frameworks for parallel BEM analysis than for FEM analysis, 
several software applications and libraries support BEM analysis and related acceleration methods such 
as FMM and H-matrices. For example, ExaFMM [15] and FMMTL [16] support the implementation of 
FMM. In [17], an intensive review of recent FMM software development is provided. HLIBpro [18], a 
popular H-matrix software library, supports many aspects of simulations using H-matrices, and employs 
various boundary element integration functions from which users can develop a parallel BEM code. 
BEM++ [19] is a recent software framework for BEM analyses, and is equipped with an interface to an 
external H-matrix library. The difference between our open-source framework and other software 
products is that we focus on the hybrid MPI and OpenMP parallelization of a whole BEM analysis code. 

Figure 6: Parallel speedup of analysis when using framework with H-matrix computations (showing 
comparison of parallel programming models) 



 Takeshi Iwashita et al. / Procedia Computer Science 108C (2017) 2200–2209 2207 

 

 
 

 
 

 
 

Figure 4: Numerical result for surface charge density 

Figure 5: Parallel speedup of analysis when using framework with dense matrix computations 

 

# Cores 1 16 64 128 256 
Dense matrix 2753 174 43.4 21.9 12.6 
H-matrix 156 14.2 7.8 6.0 7.6 

Table 1: Computation time (s) for analysis based on the developed framework 
 (flat-MPI configuration) 

 
 

 

 

 
Figure 6 shows a comparison of the flat-MPI and hybrid (multi-process and multi-thread) parallel 

executions. The number of unknowns (over 60,000) is not small for a conventional BEM analysis using 
dense matrix computations. However, when the H-matrix technique is introduced, the total amount of 
data required for the coefficient matrix is significantly reduced and the computational efforts required 
for element integration are reduced in proportion to the quantity of data. Consequently, the effect of the 
iterative solver on the total computation time is enhanced. In the linear solver, all-gather type collective 
communications are used. The communications are often implemented using the multiple tasks in 
proportion to the number of processes. Therefore, a reduction in the number of processes can be effective 
in reducing the communications overheads. Fig. 6 shows the advantages of the hybrid parallel 
programming model in the framework with the H-matrix. In the analysis, when using the H-matrix 
technique and the parallel processing on 256 cores, we attain an 856-fold speedup when compared with 
sequential BEM analysis using dense matrix computations. 

5 Related works 
In the area of software frameworks for (parallel) PDE solvers, many studies have used the finite element 
method (FEM), such as the well-known GeoFEM [12], HPC-MW [13], and Free FEM++ [14] 
frameworks. Although there are fewer frameworks for parallel BEM analysis than for FEM analysis, 
several software applications and libraries support BEM analysis and related acceleration methods such 
as FMM and H-matrices. For example, ExaFMM [15] and FMMTL [16] support the implementation of 
FMM. In [17], an intensive review of recent FMM software development is provided. HLIBpro [18], a 
popular H-matrix software library, supports many aspects of simulations using H-matrices, and employs 
various boundary element integration functions from which users can develop a parallel BEM code. 
BEM++ [19] is a recent software framework for BEM analyses, and is equipped with an interface to an 
external H-matrix library. The difference between our open-source framework and other software 
products is that we focus on the hybrid MPI and OpenMP parallelization of a whole BEM analysis code. 

Figure 6: Parallel speedup of analysis when using framework with H-matrix computations (showing 
comparison of parallel programming models) 



2208 Takeshi Iwashita et al. / Procedia Computer Science 108C (2017) 2200–2209 

 

6 Conclusions 
We have developed a software framework to reduce programming costs for parallel BEM analyses. The 
framework is parallelized in a hybrid multi-process and multi-thread parallel programming model. We 
have also developed a distributed parallel H-matrix library that is used in the framework. The software 
package is called ppOpen-APPL/BEM and is available from the website [20]. We verified that the 
software could run on the Appro GB8000, Cray XC30, and Fujitsu FX10 systems. A sample analysis 
using 64,800 unknowns confirmed the effectiveness of the H-matrix and hybrid parallel processing 
method. In future, we will examine the framework in a more practical and larger model and enhance its 
functionality (e.g. support for nonlinear analysis).  

Acknowledgements 
A part of this work was supported by JSPS KAKENHI Grant Number JP26289075.  

References 
1. C. A. Brebbia, J. C. F. Telles and L. C. Wrobel, Boundary Element Techniques, Theory and 
Application in Engineering, Springer-Verlag, 1984. 
2. H. Cheng, L. Greengard and V. Rokhlin, “A Fast Adaptive Multipole Algorithm in Three 
Dimensions”, J. Comput. Phys., Vol. 155, 1999, pp. 468-498.  
3. L. Grasedyck and W. Hackbusch, “Construction and arithmetics of H-matrices”, Computing, Vol. 70, 
2003, pp. 295-334.  
4. S. Chandrasekaran, M Gu and W Lyons, “A fast adaptive solver for hierarchically semiseparable 
representations”, CALCOLO, Vol. 42, No. 3. 2005, pp 171-185. 
5. W. Hackbusch and Steffen Börm, “H2-matrix approximation of integral operators by interpolation”, 
Appl. Numer. Math., Vol. 43, No. 1–2, 2002, pp. 129-143. 
6. A. Ida, T. Iwashita, T. Mifune and Y. Takahashi, “Parallel Hierarchical Matrices with Adaptive Cross 
Approximation on Symmetric Multiprocessing Clusters”, JIP, Vol. 22, 2014, pp. 642-650. 
7. W. J. Bolosky, M. L. Scott, R. P. Fitzgerald, R. J. Fowler and A. L. Cox, “NUMA policies and their 
relation to memory architecture”, ASPLOS-IV, 1991, pp. 212-221.  
8. Henk A. van der Vorst, “Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the 
solution of nonsymmetric linear systems”, SIAM J. Sci. Stat. Comp., Vol. 13, No. 2, 1992, pp.631–644. 
9. S. L. Zhang, “GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving 
Nonsymmetric Linear Systems”, SIAM J. Sci. Comput., Vol. 18, No. 2, 1997, pp. 537-551.  
10. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM 2003. 
11. T. Kuwabara and T. Takeda, “Boundary Element Method Using Analytical Integration for Three-
Dimensional Laplace Problem”, Electrical Engineering in Japan, Vol. 106, No. 6, 1986, pp. 25-31. 
12. H. Okuda, K. Nakajima, M. Iizuka, L. Chen, H. Nakamura, “Parallel Finite Element Analysis 
Platform for the Earth Simulator: GeoFEM”, ICCS 2003, LNCS, Vol. 2659, 2003, pp. 773-780.  
13. http://hpcmw.tokyo.rist.or.jp/index_en.html 
14. http://www.freefem.org/ 
15. http://www.bu.edu/exafmm/ 
16. C. Cecka and S. Layton, “FMMTL: FMM Template Library A Generalized Framework for Kernel 
Matrices”, ENUMATH 2013, LNCSE, Vol. 103, 2015, pp. 611-620. 
17. R. Yokota, “An FMM Based on Dual Tree Traversal for Many-Core Architectures”, J. Algorithms 
Comput. Technol., Vol. 7, 2013, pp. 301-324. 

 

 

18. http://www.hlibpro.com/ 
19. W. Śmigaj, S. Arridge, T. Betcke, J. Phillips and M. Schweiger, “Solving Boundary Integral 
Problems with BEM++”, ACM Trans. Math. Software, Vol. 41, 2015, pp. 6:1–6:40. 
20. http://ppopenhpc.cc.u-tokyo.ac.jp/ppopenhpc/ 



 Takeshi Iwashita et al. / Procedia Computer Science 108C (2017) 2200–2209 2209 

 

6 Conclusions 
We have developed a software framework to reduce programming costs for parallel BEM analyses. The 
framework is parallelized in a hybrid multi-process and multi-thread parallel programming model. We 
have also developed a distributed parallel H-matrix library that is used in the framework. The software 
package is called ppOpen-APPL/BEM and is available from the website [20]. We verified that the 
software could run on the Appro GB8000, Cray XC30, and Fujitsu FX10 systems. A sample analysis 
using 64,800 unknowns confirmed the effectiveness of the H-matrix and hybrid parallel processing 
method. In future, we will examine the framework in a more practical and larger model and enhance its 
functionality (e.g. support for nonlinear analysis).  

Acknowledgements 
A part of this work was supported by JSPS KAKENHI Grant Number JP26289075.  

References 
1. C. A. Brebbia, J. C. F. Telles and L. C. Wrobel, Boundary Element Techniques, Theory and 
Application in Engineering, Springer-Verlag, 1984. 
2. H. Cheng, L. Greengard and V. Rokhlin, “A Fast Adaptive Multipole Algorithm in Three 
Dimensions”, J. Comput. Phys., Vol. 155, 1999, pp. 468-498.  
3. L. Grasedyck and W. Hackbusch, “Construction and arithmetics of H-matrices”, Computing, Vol. 70, 
2003, pp. 295-334.  
4. S. Chandrasekaran, M Gu and W Lyons, “A fast adaptive solver for hierarchically semiseparable 
representations”, CALCOLO, Vol. 42, No. 3. 2005, pp 171-185. 
5. W. Hackbusch and Steffen Börm, “H2-matrix approximation of integral operators by interpolation”, 
Appl. Numer. Math., Vol. 43, No. 1–2, 2002, pp. 129-143. 
6. A. Ida, T. Iwashita, T. Mifune and Y. Takahashi, “Parallel Hierarchical Matrices with Adaptive Cross 
Approximation on Symmetric Multiprocessing Clusters”, JIP, Vol. 22, 2014, pp. 642-650. 
7. W. J. Bolosky, M. L. Scott, R. P. Fitzgerald, R. J. Fowler and A. L. Cox, “NUMA policies and their 
relation to memory architecture”, ASPLOS-IV, 1991, pp. 212-221.  
8. Henk A. van der Vorst, “Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the 
solution of nonsymmetric linear systems”, SIAM J. Sci. Stat. Comp., Vol. 13, No. 2, 1992, pp.631–644. 
9. S. L. Zhang, “GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving 
Nonsymmetric Linear Systems”, SIAM J. Sci. Comput., Vol. 18, No. 2, 1997, pp. 537-551.  
10. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM 2003. 
11. T. Kuwabara and T. Takeda, “Boundary Element Method Using Analytical Integration for Three-
Dimensional Laplace Problem”, Electrical Engineering in Japan, Vol. 106, No. 6, 1986, pp. 25-31. 
12. H. Okuda, K. Nakajima, M. Iizuka, L. Chen, H. Nakamura, “Parallel Finite Element Analysis 
Platform for the Earth Simulator: GeoFEM”, ICCS 2003, LNCS, Vol. 2659, 2003, pp. 773-780.  
13. http://hpcmw.tokyo.rist.or.jp/index_en.html 
14. http://www.freefem.org/ 
15. http://www.bu.edu/exafmm/ 
16. C. Cecka and S. Layton, “FMMTL: FMM Template Library A Generalized Framework for Kernel 
Matrices”, ENUMATH 2013, LNCSE, Vol. 103, 2015, pp. 611-620. 
17. R. Yokota, “An FMM Based on Dual Tree Traversal for Many-Core Architectures”, J. Algorithms 
Comput. Technol., Vol. 7, 2013, pp. 301-324. 

 

 

18. http://www.hlibpro.com/ 
19. W. Śmigaj, S. Arridge, T. Betcke, J. Phillips and M. Schweiger, “Solving Boundary Integral 
Problems with BEM++”, ACM Trans. Math. Software, Vol. 41, 2015, pp. 6:1–6:40. 
20. http://ppopenhpc.cc.u-tokyo.ac.jp/ppopenhpc/ 


