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ABSTRACT
As semiconductor design rules evolve, the required level of reliability for semiconductor pro-
cessing equipment is increasing. It is impossible to detect anomalies simply by checking a single
factor, the oxygen concentration, which is the most important indicator of the equipment per-
formance. We extracted 16 features from the behaviour of oxygen concentration and pressure
in the load area, and built univariate and multivariate models by using logistic regression with
these features. The proposed method was able to detect anomalous equipment that could not
be detectedbymonitoring only the oxygen concentration, andgreatly shortened the processing
lead time including adjustment.
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Introduction

The latest mobile phones use processors that were pro-
cessed with a fine design rule of 3 nm. The processing
accuracy required for semiconductor processing equip-
ment is becoming higher. To meet this requirement
and stabilize manufacturing processes, various process
control technologies have been adopted [1]. One such
technologies is virtual metrology, which aims to predict
film thickness that are difficult tomeasure. To copewith
changes in characteristics of semiconductor process-
ing equipment and materials over time, just-in-time
modelling approaches have been used. For example,
locally weighted partial least squares regression (LW-
PLS) has been used in many industries including the
semiconductor industry [2–4].

Even with these control technologies, it becomes
more difficult to prevent defects in semiconductor
devices due to the continuous refinement of design
rules. It is necessary to establish a mechanism to min-
imize the failure rate by quickly capturing the equip-
ment behaviour that causes each failure, investigat-
ing the cause, and making improvements at an early
stage [5].

Figure 1 is a schematic diagram of the deposition
equipment, which is the target in this research. Wafers
are taken out from FOUP (Front-Opening Unified
Pod), which is a transport container, by a robot hand
and pulled into the load area. Then, the wafers are
loaded into the boat and put into the diffusion fur-
nace. Oxygen concentration in the load area must be
reduced because wafer quality deteriorates by exposure

to oxygen during processing. Equipment that cannot
lower the oxygen concentration to the desired level
is treated as anomaly and repaired. Thus, the oxygen
concentration is the most important indicator of the
equipment performance.

Semiconductor manufacturing equipment is slightly
different from each other. This small difference affects
the equipment performance. However, since the equip-
ment performance can be maintained by increasing N2
pressure, it is difficult to detect anomalous equipment
by monitoring only the oxygen concentration. To real-
ize anomaly detection, it is desirable to use multiple
signals. In this study, we propose a method to detect
anomalous equipment from both oxygen concentration
and pressure (total pressure) in the load area.

Anomaly detectionmethod

Equipment data and the objective variable

Oxygen is excluded from the load area for quality assur-
ance. While the deposition equipment is operated, oxy-
gen concentration and pressure are monitored. This
period is called the monitoring section. Figure 2 shows
a scatter plot of oxygen concentration and pressure dur-
ing the monitoring section of normal equipment and
anomalous equipment.

Various features were extracted from the behaviour
of oxygen concentration and pressure in themonitoring
section and used as explanatory variables of anomaly
detection models. The goodness of the behaviour of
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Figure 1. Schematic diagram of deposition equipment.

Figure 2. Scatter plots of oxygen concentration andpressure in
the monitoring section: (a) normal equipment and (b) anoma-
lous equipment.

oxygen concentration was visually evaluated by the
person in charge of quality assurance, and it was used
as the objective variable. Quality assurance personnel’s
judgement is more accurate than computer-based judg-
ment at least from our experience. In addition, the
presence or absence of product defect is determined by
the quality assurance personnel and this determination
is treated as true. Figure 2(b) shows that the oxygen
concentration rises once and then falls. This is difficult
to detect automatically because it is necessary to judge
the abnormality from the magnitude and frequency of
the signal. The judgement of the abnormality depends
on the experience of the quality assurance personnel,
but there are no explicit criteria.

The oxygen concentration in the monitoring section
of typical normal equipment is shown in Figure 3. The

Figure 3. Oxygen concentration change during N2 purge.

Table 1. Measurements and preprocessing used for feature
extraction.

OX PR10MA,d OX10MA,d PR100MA,d PC1

F01 ∗ ∗
F02 ∗ ∗
F03 ∗ ∗
F04 ∗ ∗
F05 ∗ ∗
F06 ∗
F07 ∗
F08 ∗
F09 ∗ ∗
F10 ∗ ∗
F11 ∗ ∗
F12 ∗
F13 ∗
F14 ∗
F15 ∗
F16 ∗

four divisions in the monitoring section are quartile
intervals.

Oxygen concentration data may contain spiked out-
liers. Each outlier was replaced with the mean of the
values before and after the outlier.

Features

Various features can be employed for anomaly detec-
tion. In this research, considering practical applications
in real manufacturing settings, features that are compu-
tationally simple and easily interpretable were selected.
As a result, a total of 16 features were identified as can-
didates. Then, we built an anomaly detection model
by combining them. In Table 1, the features are listed
vertically, and the preprocessing is listed horizontally.
Asterisk (∗) is used to show which preprocessing was
performed to calculate each feature.

Amoving average of pressure (p) was calculatedwith
10 samples to eliminate its oscillation, and a difference
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of adjacent moving averages was derived.

PR10MA,d(k) =
∑k−10

i=k−1 pi −
∑k−9

i=k pi
10

, (1)

where pi is the i-th sample of p. In addition, a moving
averagewas calculatedwith 10 samples tomake the sum
of the displacements before and after oxygen concen-
tration (o) and pressure (PR10MA,d) almost equal to the
range of the overall signal.

OX10MA,d(k) =
∑k−10

i=k−1 oi −
∑k−9

i=k oi
10

, (2)

PR100MA,d(k) =
∑k−100

i=k−1 pi −
∑k−99

i=k pi
100

, (3)

where oi and pi are the i-th sample of o and p.
Principal component analysis was performed on

OX10MA,d and PR100MA,d. The score of the first princi-
pal component is PC1. The 16 features calculated from
the above are explained below.

• F01: Simple regression coefficient with PR10MA,d as
an explanatory variable andOX as an objective vari-
able.

• F02: The standard error (SE) of the predicted value of
the regression line, with pressure (PR10MA,d) as x and
oxygen concentration (o) as y, was calculated using
the following equation. Where ȳ and x̄ are the mean
values of y and x, and n is the number of samples.

SE =

√√√√√√√√
1

(n − 2)[∑
(y − ȳ)2 −

{∑
(x − x̄)(y − ȳ)

}2∑
(x − x̄)2

] .

(4)
• F03: Correlation coefficient between PR10MA,d and

OX.
• F04: Percentage of themost frequent combination of

OX and PR10MA,d. Table 2 shows an example of the
frequency of occurrence ofOX and PR10MA,d. In this
equipment, the maximum value of 78 is chosen and
it is divided by the total, i.e. 454.

• F05: Pressure (PR10MA,d) at the most frequent com-
bination in F04. For example, F05 is 50 in Table 2.

• F06: Minimum oxygen concentration in the first
quartile interval.

• F07: Standard deviation of OX10MA,d in the fourth
quartile interval.

• F08: Standard deviation of PR100MA,d in the fourth
quartile interval.

• F09: Number of clusters after k-means analysis of
OX10MA,d and PR100MA,d. The optimal number of
clusters was determined by maximizing ccc (cubic
clustering criteria) [6]. In the k-means cluster analy-
sis, there is a concern that the difference in the initial
value causes a difference in the clustering result.

Table 2. Two-dimensional distribution table of OX and
PR10MA,d.

OX

3 4 5 6 7

PR10MA,d 49 0 0 0 0 0
50 78 68 28 0 0
51 57 59 52 61 51
52 0 0 0 0 0

Figure 4. Image of displacement from the first quartile interval
to the fourth quartile interval.

As countermeasures, k-means++[7], which reduces
computational resources, and KKZ [8], which has
high reproducibility, have been proposed. We used
k-means++, because KKZ is more sensitive to out-
liers than k-means++.

• F10: The maximum ccc in F09.
• F11: Displacement of sample size in four quartile

intervals, which is defined as the slope of the approx-
imation line in Figure 4. In this figure, the vertical
axis (“variable” in the figure) is the standard devia-
tion of the number of samples belonging to 20 clus-
ters in each quartile interval, and the horizontal axis
is the quartile interval. The clusters are constructed
in the space of OX10MA,d and PR100MA,d.

• F12: Standard deviation of PC1 in the first quartile
interval.

• F13: Percent variability of PC1 in the first quartile
interval, which is defined as the PC1 standard devi-
ation in the first quartile interval divided by the PC1
standard deviation in the monitoring section.

• F14: Displacement of PC1 in four quartile intervals,
which is defined as the slope of the approximation
line also in Figure 4. In this figure, the vertical axis
(“variable” in the figure) is the standard deviation of
PC1 in each quartile interval.

• F15: Displacement of percent variability of PC1 in
four quartile intervals, which is defined as the slope
of the approximation line also in Figure 4. In this
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Table 3. Features calculated from data acquired from the equipment.

F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 F11 F12 F13 F14 F15 F16

E01 0.16 1.4 0.04 39.2 57 19.3 0.004 0.003 19 −22 7.9 −0.32 −0.31 1.46 1.42 4.2
E02 3.83 0.9 0.89 28.5 53 17.6 0.005 0.001 18 17.1 3.3 −0.16 −0.15 1.00 0.94 6.3
E03 2.36 4.4 0.12 19.8 47 11.2 0.005 0.004 3 −44 6.6 −0.28 −0.28 1.39 1.37 −0.1
E04 9.20 2.0 0.76 26.9 50 8.1 0.005 0.003 3 −28 4.5 −0.23 −0.20 1.46 1.26 −1.7
E05 7.31 4.3 0.44 11.0 50 10.0 0.005 0.002 6 −19 5.0 −0.17 −0.15 0.99 0.84 1.9
E06 9.13 2.2 0.90 13.6 51 11.4 0.005 0.004 15 −26 −2.7 0.01 0.01 0.84 0.81 −2.1
E07 4.84 1.4 0.92 22.5 50 7.1 0.005 0.003 20 −19 2.7 −0.16 −0.16 1.14 1.11 2.6
E08 7.71 2.1 0.84 19.4 53 14.7 0.007 0.001 18 −4.1 4.1 −0.19 −0.18 0.99 0.94 6.1
E09 10.10 3.2 0.83 16.2 56 10.3 0.005 0.004 15 −19 5.3 −0.04 −0.04 0.68 0.60 0.2
E10 8.26 2.9 0.67 35.7 53 7.3 0.005 0.003 20 −23 6.6 −0.25 −0.22 1.37 1.20 2.8
E11 5.59 1.7 0.90 17.4 46 8.9 0.005 0.003 20 −16 5.2 −0.22 −0.21 1.31 1.24 2.0
E12 7.47 2.8 0.66 20.1 52 5.7 0.004 0.006 19 −28 −0.3 −0.09 −0.08 0.96 0.86 −0.1
E13 5.70 2.9 0.78 15.7 46 12.4 0.006 0.004 15 −26 2.8 −0.22 −0.21 1.35 1.32 −1.5
E14 7.04 1.7 0.83 30.1 56 7.3 0.004 0.005 9 −38 6.0 −0.10 −0.09 1.02 0.91 0.4
E15 5.77 2.1 0.79 24.4 51 5.9 0.005 0.003 16 −18 3.9 −0.28 −0.26 1.50 1.37 0.8
E16 9.77 2.3 0.84 16.0 55 10.0 0.006 0.003 19 −35 1.7 −0.14 −0.12 1.05 0.89 1.6

figure, the vertical axis (“variable” in the figure) is
percent variability of PC1 in each interval, which is
defined in F13.

• F16: Displacement of sample size in four quartile
intervals, which is defined as the slope of the approx-
imation line also in Figure 4. In this figure, the ver-
tical axis (“variable” in the figure) is the standard
deviation of the number of samples belonging to 20
clusters in each quartile interval. The clusters are
constructed using only PR100MA,d.

Table 3 shows the calculated features of the 16 equip-
ment (E01 to E16), which were used to build anomaly
detection models.

Building anomaly detectionmodels

Anomaly detection models were built with data from
16 equipment (10 normal equipment and 6 anoma-
lous equipment). Their generalization performancewas
evaluated using data from 39 equipment (31 normal
equipment and 8 anomalous equipment). The data for
modelling and the data for performance evaluation
were totally different. ROC (Receiver Operating Char-
acteristic) curve were drawnwith the logistic regression
results for all explanatory variables. AUC (Area Under
the Curve), which is defined as the area under the ROC
curve, was calculated.

Univariate detectionmodel

Logistic regression was performed using each of 16 fea-
tures as an explanatory variable and normal or anoma-
lous equipment as a binary objective variable.

Table 4 summarizes the results of comparing detec-
tion capabilities. F06 had the highest AUC of 0.93. This
model detects anomalous equipment only from oxygen
concentration.

Multivariate detectionmodel

The two-variable detection models were built by com-
bining another feature with F06 selected in the single

Table 4. Comparison of AUC for
univariate detection models.

feature AUC

F06 0.93
F01 0.67
F09 0.67
F08 0.63
F16 0.61
F02 0.57
F03 0.57
F04 0.57
F14 0.57
F05 0.54
F15 0.53
F07 0.51
F12 0.50
F10 0.47
F13 0.47
F11 0.44

Table 5. Comparison of detection ability of models made with
two features.

feature 1 feature 2 AUC

F06 F16 1.00
F10 0.95
F03 0.93
F07 0.93
F08 0.93
F12 0.93
F13 0.93
F14 0.93
F15 0.93
F01 0.92
F11 0.92
F02 0.90
F04 0.90
F09 0.90
F05 0.90

variable detection model. Table 5 summarizes the AUC
of the two-variable detection models. The combination
of F06 and F16 achieved the highest AUC of 1.00.

Since the highest AUChas already been achieved, no
further evaluation is generally required. However, since
the evaluation was based on limited data, we also eval-
uated three – and four-variable models. Three-variable
detectionmodels were built by combining F06 and F10,
the combination of which achieved the second-highest
AUC, with another feature. Table 6 shows the AUC.
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Table 6. Comparison of detection ability of models made with
three features.

feature 1 feature 2 feature 3 AUC

F06 F10 F11 0.967
F01 0.950
F03 0.950
F07 0.950
F08 0.950
F12 0.950
F13 0.950
F14 0.950
F15 0.950
F05 0.933
F02 0.933
F09 0.933
F04 0.917

Table 7. Comparison of detection ability of models made with
four features.

feature 1 feature 2 feature 3 feature 4 AUC

F06 F10 F11 F03 0.967
F07 0.967
F08 0.967
F12 0.967
F13 0.967
F14 0.967
F15 0.967

Table 8. Anomaly detection result by a single variable model
(using F06).

Detection result OK
Detection
result NG accuracy

Quality judgment OK 29 2 82%
Quality judgment NG 5 3

Table 9. Anomaly detection result by two variables model
(using F06, F16).

Detection result OK
Detection
result NG accuracy

Quality judgment OK 29 2 82%
Quality judgment NG 5 3

Among the three-variable detectionmodels, the highest
AUC was 0.967 for F06, F10, and F11.

Table 7 shows the AUCwhen a four-variable models
were built by combining F06, F10, and F11with another
feature. Among the four-variable detection models, the
highest AUC was 0.967, the same as the model with
three variables.

Since no improvement in AUC was observed in the
four-variable model, the two-variable model of F06 and
F16 and the three-variable model of F06, F10, and F11
were used as multivariable detection models.

The detection model needs to detect anomalies with
high accuracy even for unknown data and future data.
Tables 8–10 are confusion matrices derived by apply-
ing the three models described above to the data of
39 equipment (31 normal equipment and 8 anomalous
equipment).

Table 10. Anomaly detection result by three variables model
(using F06, F10, F11).

Detection result OK
Detection
result NG accuracy

Quality judgment OK 29 2 87%
Quality judgment NG 3 5

Discussion

We defined 16 features that represent equipment
behaviour and built three models to detect anoma-
lous equipment. At the model building stage, AUC was
greater than 0.9 for all models.

As shown in Figure 2(a), both oxygen concentration
and pressure tend to decrease with time under nor-
mal conditions. The equipment that was regarded as
an anomaly showed a linear upward trend of oxygen
concentration alone or both oxygen concentration and
pressure as shown in Figure 2(b). Since such behaviour
cannot be detected only by observing the oxygen con-
centration at the end of monitoring section, it is effec-
tive to detect it from the behaviour of the two factors,
oxygen concentration and pressure, using a multivari-
able model.

We evaluated the ability of the detection models on
the model evaluation data of 39 equipment, and the
AUC was 1.000 for the combination of F06 and F16
and 0.967 for the combination of F06, F10, and F11. In
addition, the detection accuracy was 82% for both the
single variable model and the two-variable model while
it was 87% for the three-variable model. Here, AUC is
higher if the false positive rate (FPL) is lower. There-
fore, predictive accuracy does not necessarily equate to
AUC.

There were no significant differences between the
single variable and multivariable methods in the
present evaluation data. If the behaviour of the equip-
ment changes, and this is a change in the relationship
between the variables, a multivariable-model method
will be beneficial. Therefore, the results demon-
strate that detecting anomalous equipment from the
behaviour of two factors, oxygen concentration and
pressure, contributes to performance improvement.

By jointly using three models, the person in charge
of quality assurance can determine whether further
inspection is needed or not.

To further improve the detection performance,more
data needs to be accumulated.

Conclusion

In this study, we developed anomaly detection models
for semiconductor processing equipment.We extracted
16 types of features from the behaviour of oxygen con-
centration and pressure in the load area, and built
univariate and multivariate models combining these
features to improve the ability to detect anomalous
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equipment. These models were able to detect anoma-
lous equipment that could not be detected by monitor-
ing only the oxygen concentration.

This study focused on the loading area, and anoma-
lous equipment can be detected before the full assembly.
If equipment is judged to be anomaly (NG) after the
full assembly without the developed detection model,
the equipment needs to be disassembled to adjust the
equipment. As a result, it becomes possible to greatly
shorten the adjustment time, which contributes to
shortening the processing lead time.

In the future, it is expected that the performance
required for equipment will further increase as the
design rules for semiconductor devices evolve. We
will be required to rearrange features and build high-
performance anomaly detection models repeatedly.
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