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ABSTRACT
In recent years, improvements to the design of earth structures to ensure soil robustness against
accidental disaster load conditions has gained considerable importance. In this paper, we propose
a practical reliability analysis scheme that can enable the development of a robust design based on
dimensionality reduction; this scheme employs input parameters, and it uses numerical analysis
results as multidimensional information while preserving the spatiotemporal information to the
maximum extent. Further, the proposed design scheme has practical design functions similar to
those of conventional reliability analysis methods, such as the first-order second-moment
method and first-order reliability method. Finally, the effectiveness of the proposed design
scheme and its significant contribution to the practical design of earth structures are
demonstrated via a time series seismic deformation analysis of simple embankments on
liquefiable sand ground.
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1. Introduction

Performance- and reliability-based designs have become
standards for global structural design (American
Association of State Highway and Transportation
Officials, 2004; ISO2394, 1998; CEN, EN 1997-1 Euro-
code 7, 2004). Recently, Japan has started introducing
principle design codes such as the Technical Standards
and Commentaries for Port and Harbor Facilities in
Japan (Japan Port and Harbor Association (JPHA),
2007, 2018), Design Standards for Railway Structures
and Commentary (Railway Technical Research Institute
(RTRI), 2013), and Specifications for Highway Bridges
and Commentary (Japan Road Association (JRA),
2017). In recent years, reliability assessment methods
with reliability updates based on additional observation
information and risk-informed design methods have
become more practical (American Association of State
Highway and Transportation Officials, 2003; Jongejan
et al., 2013; Schweckendiek, 2014; Schultz van Haegen,
2016; ISO2394, 2015). Further, the concepts of robust-
ness (ISO2394, 2015), resilience (Bruneau et al., 2003),
and anticatastrophe (Honda et al., 2016) have received
considerable attention as suitable methods for control-
ling accidental loading.

The aim of this study was to develop a practical fra-
mework of soil structures to achieve robustness and
resilience against accidental loading. We propose to
introduce a failure mode guided design, as shown in
the conventional seismic structural design (e.g. the hori-
zontal load-bearing capacity method during earth-
quakes) (Japan Road Association (JRA), 1996), by
limiting plasticisation – an approach commonly prac-
ticed in structural engineering – in soil structures. To
actively control the failure modes in earth structures,
it is necessary to check whether the failure modes
remain acceptable while increasing the magnitude of
the external force. In this case, it is essential to introduce
numerical analysis for direct evaluation of the failure
mode to assess the performance of the structure. More-
over, it is necessary to develop robust control techniques
that incorporate the effects of uncertainty in the external
forces and spatial distribution of soil profiles. In this
paper, as a first step, we propose a framework for
efficient reliability analysis while preserving the spatio-
temporal information contained in the numerical analy-
sis. However, the evaluation of the influence of other
important factors (uncertainty in external forces, spatial
distribution of soil profiles, and model error in
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numerical analysis) is a future endeavour and beyond
the scope of discussion in this paper.

For developing a practical framework, in this study,
we evaluated the seismic settlement process of a simple
embankment on a liquefied ground. We attempted to
develop a practical method for quantifying the uncer-
tainties, in the input parameter setting, and propagating
them into the reliability of the spatiotemporal behaviour
of embankments by combining the effective stress
dynamic finite element method (LIQCA) (Liquefaction
analysis method LIQCA Development group, 2007; Oka
et al., 1994, 1999; Danjo et al., 2018; Hirota et al., 2017)
and the reliability analysis. Such sophisticated numeri-
cal analysis requires physical input parameters that
can be measured, and fitting parameters that are difficult
to set objectively. By collecting numerous examples of
expert input parameter settings for the LIQCA analysis,
we considered modelling the input parameters with a
multidimensional probability distribution (prior distri-
bution) and quantifying the uncertainties in the par-
ameters arising from the conditional probability in
some physical parameters observed at the site (posterior
distribution).

Next, we analysed the uncertainty propagation, while
setting the input parameters, into the numerical results.
Further, the input parameters, time series of the nodal
displacements, and elemental stresses obtained from
the numerical analysis are considered as multidimen-
sional information. Mode decomposition (PCA: Prin-
ciple component analysis (Pearson, 1901; Liang et al.,
2002; Jolliffe, 2002), POD: Proper orthogonal decompo-
sition (Chatterjee, 2000; Sirovich, 1987; Berkooz,
Holmes, and Lumley, 2003)) and dimensionality
reduction are performed for both of them(Otake et al.,
2019a). Reliability analysis (i.e. propagation analysis of
input parameter uncertainty) is performed using the
alternative calculation model (reduced order model;
ROM) constructed via simple linear regression analysis
on the feature space (eigenspace). This study provides a
simplified reliability analysis framework with spatio-
temporal features that can evaluate failure modes and
which follows the concept of traditional simplified
reliability analysis FOSM: first-order second-moment
method (Cornell, 1969) and FORM: first-order
reliability method (Hasofer and Lind, 1974) based on
a linear approximation at the mean values and design
point.

2. Simplified reliability analysis framework
with ROM and issues

Figure 1 shows the proposed simplified reliability analy-
sis framework. Before providing the detailed

formulation, we provide an outline of this framework
and clarify its issues in this section. Further, the
expressions and symbols shown in the figure are
described later. Here, we present only an overview.

The proposed analysis framework is largely divided
into two parts: initial data processing and analysis.

2.0.1. Initial data processing
First, the input parameter set for the constitutive laws
used in numerical analysis are collected. We strive to
gather as many input parameter sets from as diverse a
range of conditions as possible; however, we restrict
the parameter sets to those provided by experts with
reliability. The input parameter set is modelled as a
multivariate normal distribution; the eigenvalue and
mode (i.e. vector) are calculated by the principal com-
ponent analysis (PCA) of the covariance matrix. Con-
sidering reconstruction using only the main
eigenmode, the information can be reduced to lower
dimensional data. Another method involves using
sparse modelling (Tibshirani, 1996) and similar
methods to reduce the number of dimensions objec-
tively; however, we prioritise an engineering-based
interpretation and recommend that the analyst make
decisions while observing and considering the engineer-
ing features of the input parameters that appear in the
eigenmodes in this study.

2.0.2. Analysis part
The multivariate normal distribution, created during
the initial data processing, is used as a prior distribution
for performing Bayesian analysis based on the partial
information and constraint conditions obtained on-
site to produce a posterior distribution (i.e. multivariate
normal distribution) of the input parameters that reflect
the on-site features.

Design experiments (DEs) are performed using this
posterior distribution, and the numerical analysis
time-series data (i.e. collection of snapshots from mul-
tiple cases based on the time point) of various cases
(i.e. numerical experiments) are acquired. The eigen-
values and eigenmodes are calculated by using the
POD of the numerical analysis time series data covari-
ance matrix. Although PCA and POD are consistent
in theory, we intentionally distinguish between them
in this paper; PCA is used for an input parameter set,
and POD is used for the numerical analysis of the
time-series data.

Similar to the engineering features of the input par-
ameters, those that appear in the main modes and com-
ponent coefficients are observed and considered.
Further, we design an ROM that considers the spatio-
temporal information by conducting a simple linear
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regression analysis (i.e. linear combination) of the
reduced number of dimensions of the input parameters
and the those of the spatial distribution of the analysis
result (i.e. response value). The uncertainty propagation
can be analysed using the expected value characteristics
by expressing them using a linear combination.

We can perform a reliability analysis (uncertainty
propagation analysis of the input parameter setting
uncertainty) using the expected value characteristics
by dimensionally reducing the input parameter set
and analysis results, and by utilising their linear combi-
nation. The five primary issues shown in Figure 1 are
listed below.

. ISSUE-1: Mode decomposition (PCA and POD): Cal-
culation methods, based on the mode decomposition
(POD) of the numerical analysis time series data, are
presented as examples. We examine the basic idea of
mode decomposition by using singular value
decomposition (SVD), and by determining an
approach to construct a data matrix (containing the
results of the numerical analysis) for the SVD.

. ISSUE-2: Bayesian inference-based input parameter
estimation: Previous samples of input parameter
sets in various conditions, set up by numerical analy-
sis experts, are collected and a prior distribution of
input parameters is created (as multivariable normal
distribution). Next, we present a process for

obtaining a posterior distribution (uncertainty in
input parameter settings) that is suitable for the tar-
get site from the partial information that can be
observed at that site.

. ISSUE-3: DEs for deriving ROM: The idea is to create
a simple ROM with a linear approximation of the
relationship between the input parameters and
numerical analysis results, near the average value of
the input parameters. A simple DE based on this con-
cept is designed.

. ISSUE-4: ROM construction: We present an efficient
regression analysis method to derive an equation
(ROM) for estimating the time evolution of the com-
ponent coefficient of the POD space modes.

. ISSUE-5: Uncertainty propagation and sensitivity
analyses: Input parameter uncertainty can be analyti-
cally converted into the uncertainty of numerical
analyses using the expected value characteristics.
We demonstrate that a sensitivity analysis (equival-
ent to the sensitivity coefficient in the FORM
method) of the entire computational spatial domain
on FEM can be computed easily.

2.0.3. Basic analysis method
Although the proposed analysis scheme does not specify
the numerical analysis methods, we conducted a con-
crete analysis procedure based on a case study using
an effective stress dynamic analysis (LIQCA)

Figure 1. Proposed alternative model construction framework.
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Table 1. List of collected input parameter sets (initial data).
Physical parameter Fitting parameter

e0 λ κ OCR∗ G0/s
′
m M∗

f M∗
m B∗0 B∗1 gP∗r gE∗r D∗

0 n Reference

DS-1 0.754 0.0091 0.0005 1.0 2023 0.990 0.707 4089 54 0.002 0.012 0.6 5.1 Reference (Liquefaction analysis method LIQCA Development group, 2007), Toyoura sand (Dr=60 %)
DS-2 0.673 0.0250 0.0025 1.0 908 1.511 0.909 1500 20 0.015 0.100 1.0 9.0 Reference (Liquefaction analysis method LIQCA Development group, 2007), No.7 silica sand (Dr=90 %)
DS-3 0.500 0.0100 0.0100 1.0 1894 1.340 0.909 3900 98 0.002 0.005 1.0 8.0 Reference (Liquefaction analysis method LIQCA Development group, 2007), Rokko island fill material
DS-4 0.558 0.0009 0.0005 1.2 1250 1.308 0.800 3000 100 0.020 0.020 0.8 7.0 Reference (Liquefaction analysis method LIQCA Development group, 2007), Albany sand (Dr=70 %)
DS-5 0.752 0.0250 0.0025 1.0 1317 0.960 0.710 6000 60 0.002 0.020 1.0 2.0 Reference (Liquefaction analysis method LIQCA Development group, 2007), Toyoura sand (Dr=60 %)
DS-6 0.856 0.0180 0.0055 1.0 873 1.122 0.909 2200 30 0.005 0.010 5.0 1.5 Reference (Liquefaction analysis method LIQCA Development group, 2007), Embankment
DS-7 0.420 0.0100 0.0010 1.0 1517 1.200 0.910 3500 70 0.002 0.010 1.0 4.0 Reference (Liquefaction analysis method LIQCA Development group, 2007), Landfill sand layer
DS-8 0.856 0.0180 0.0055 1.0 873 1.122 0.909 2200 30 0.005 0.010 5.0 1.5 Reference (Liquefaction analysis method LIQCA Development group, 2007), Edosaki sand (Dr=50 %)
DS-9 0.420 0.0100 0.0100 1.0 730 1.340 0.909 1500 150 0.005 0.005 1.0 4.0 Reference (Liquefaction analysis method LIQCA Development group, 2007), Port island fill material
DS-10 0.800 0.0250 0.0003 1.0 761 1.229 0.909 2000 40 0.005 0.003 1.0 4.0 Reference (Liquefaction analysis method LIQCA Development group, 2007), Landfill soil
DS-11 0.900 0.0087 0.0055 1.0 430 1.254 0.843 3000 10 0.005 0.100 1.0 2.0 Reference (Danjo et al., 2018), Miyakojima upper sand layer
DS-12 1.230 0.0087 0.0055 1.0 178 1.200 0.980 2000 20 0.008 0.100 1.0 2.4 Reference (Danjo et al., 2018), Miyakojima lower sand layer
DS-13 0.830 0.0087 0.0055 1.0 355 1.306 0.907 1000 10 0.010 0.009 1.0 2.0 Reference (Danjo et al., 2018), Nishijima upper sand layer
DS-14 0.940 0.0087 0.0055 1.0 266 1.270 0.852 1500 15 0.005 0.100 1.0 3.0 Reference (Danjo et al., 2018), Nishijima lower sand layer
DS-15 0.880 0.0180 0.0055 1.0 374 1.306 0.755 2000 30 0.005 0.100 1.0 7.0 Reference (Danjo et al., 2018), Kobayashi lower sand layer
DS-16 0.850 0.0277 0.0092 1.0 989 1.015 0.838 2000 100 0.005 0.001 3.0 2.0 Reference (Hirota et al., 2017), No.7 silica sand
DS-17 0.670 0.0033 0.0008 1.1 790 1.157 0.908 6800 72 0.007 0.058 0.7 7.0 Reference (Otake and Honjo, 2012), Upper sand layer
DS-18 0.760 0.0057 0.0014 1.1 630 1.122 0.908 6200 80 0.007 0.030 2.0 5.0 Reference (Otake and Honjo, 2012), Upper sand layer
DS-19 1.000 0.0046 0.0013 1.1 600 1.050 0.908 5400 80 0.006 0.024 2.0 5.0 Reference (Otake and Honjo, 2012), Upper sand layer
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parameter sets. Thus, we exclude the explanation of this
substitution here.

We set the state vector z(x, t) [ Rn for a finite
element model (FEM) result at a given time t (i.e. a
snapshot). The three partial state vectors of the horizon-
tal displacement zdx (xn, t) and vertical displacement
zdy(xn, t) of each node, and the excess pore water
pressure ratio zepwp(xe, t) of each element are used to
create the vector.

z(x, t) = zTdx (xn, t) zTdy (xn, t) zTepwp(xe, t)
[ ]T

(1)

Here, xn, xe, and x denote the spatial coordinate vector
of the FEM model nodes (i.e. the coordinates of all con-
tact points), the spatial coordinate vector of the FEM
elements (i.e. the coordinates or integration points of
all elements), and the spatial coordinate of the node
and element that correspond to the partial state vector,
respectively.

In these cases, n denotes the total dimension number
of the partial state vector; its value is equal to node num-
ber nn × 2+ element number ne. The analysis results are
from time t1 to tm, and when output at an interval Dt,
the state vector {z(x, t1), z(x, t2), . . . z(x, tm)} for each
time point is entered into data matrix Z [ Rn×m in
the order of the time series as shown below.

Z = z(x, t1) z(x, t2) · · · z(x, tm)
[ ]

(2)

The time-averaged vector �z [ Rn is expressed as:

�z = 1
m

∑m

k=1

z(x, tk) (3)

where �z is subtracted from the state vector of each time
frame, and a matrix of these values is defined as
Z′ [ Rn×m. We efficiently calculated the spatial mode
based on the SVD of Z′ as

Z′ = UDVT ≃ UrDrV
T
r (4)

where U [ Rn×n, V [ Rn×m, and D [ Rm×m denote
the matrices containing the spatial mode vectors uj;
the component coefficient vectors vj, expressed as the
time series of each contributing POD spatial mode vj;
and a singular value matrix containing the values dj cor-
responding to uj, arranged diagonally; respectively.

At this point, modes that can be interpreted from an
engineering perspective are selected in the order of
ascending eigenvalues. When the number of modes
necessary for expressing the original data (primary
mode number) is set as r, these modes are approximated
using the information contraction shown above. Here,
Ur [ Rn×r is a reduced-dimensionality matrix created

by ordering the POD spatial modes numbering r in
total in the ascending order of eigenvalues.

Vr [ Rm×r and Dr [ Rr×r are the matrices corre-
sponding to a reduced-dimensionality matrix Ur. The
contribution Cont(j) of the POD spatial mode j is
defined as:

Cont(j) =
d2j∑n
j=1 d

2
j
= lj∑n

j=1 lj
(5)

where Cont(j) corresponds to the ratio of the eigenvalue
lj to the covariance matrix Z′Z′T .

3.2. ISSUE-2: Bayesian inference-based input
parameter estimation

The input parameter sets, accumulated during the initial
data processing, are consolidated as a data matrix
Zp [ Rnp×ndata , which is similar to those of the numeri-
cal analysis time series data (Equation (2)).

Zp = zp,1 zp,2 · · · zp,ndata
[ ]

(6)

where np, ndata, and zp,i [ Rnp denote the number of
input parameters for the numerical analysis, number
of collected parameter sets, and a given input parameter
set vector. Further, zp(h) denotes the hth row vector (i.e.
hth parameter) of zp; the probability distribution of
zp(h) is defined as F(zp(h)).

We recommend that probability distribution and the
distribution parameter should be set for each parameter;
however, in this study, all parameters are nonnegative,
and the distribution tails become longer as the par-
ameter values increase. Therefore, we utilise a logarith-
mic normal distribution. However, the model for the
probability density of the input parameters is based on
extremely simple assumptions because a sufficient data
set is not available currently.

The distribution parameters were transformed into
standard normal distributions using the transformation
shown below, which is similar to that reported in
Rezaeian and Der Kiureghian (2010), Ching and Phoon
(2019), Ching and Phoon (2020) and Otake, Watanabe,
and Mizutani (2021). The distributions were then simu-
lated as a multivariate standard normal distribution.

znp(h) = F−1
norm F(zp(h))

[ ]
(h = 1, 2, . . . , np) (7)

whereF−1
norm[ · ] refers to the inverse function of the stan-

dard normal distribution. The distribution parameters
for the probability distribution F(zp(h)), h = 1, . . . , np
that correspond to each parameter are listed in Table 2.
As the probability distribution of each parameter is
different here, it is difficult to model simply the corre-
lation structure. Here, the distribution is modelled as a
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multivariate standard normal distribution after individu-
ally transforming the distribution to a standard normal
distribution. In other words, the correlation among the
parameters is maintained and updated to a more man-
ageable index as a covariance matrix, as shown below.
We interpret the correlation coefficient as a meaningful
indicator in the case of linear relationships. The corre-
lation coefficients between arbitrary indicator distri-
butions before transforming to standard normal
distribution are considered as apparent values. We
redefine the covariance matrix after transforming it to
the standard normal distribution for each indicator –
the correlation structure updates – based on some correc-
tions depending on the distribution transformation.

Based on the assumption that each parameter is a
random variable, the random variable vector x is
defined as

x = znp(1), z
n
p(2), . . . , z

n
p(np)

( )T
(8)

The arrangement of the average value of each parameter
m is expressed as:

m = �znp(1), �z
n
p(2), . . . , �z

n
p(np)

( )T
(9)

Then, after �znp(h)) is subtracted from each
parameter vector, the arranged matrix is defined as
Zn
p
′ [ Rnp×ndata . The covariance matrix S [ Rnp×np is

defined as

S = Zn
p
′Zn

p
′T (10)

where m and S denote the design uncertainties of the
input parameters when there is no additional on-site
information. Further, they are the distribution par-
ameters of the prior distributions in the Bayesian infer-
ence. In cases where a portion of the parameter random
variable vectors are observed on-site, the following pro-
cedure can be used to obtain Bayesian inference and
posterior distribution.

Here, x is divided into two partial vectors: x1 of the
known random variable observed at the location (i.e.
e0, G0/s

′
m and f′) and x2 of the unknown random

variable.
When the random variables follow a normal distri-

bution, x1 follows a normal distribution even when x2
is given; thus, the posterior distribution parameters
can be calculated analytically (Hoshiya and Yoshida,
1996; Yoshida et al., 2018).

3.3. ISSUE-3: DEs for deriving ROM

To create the ROMmodel, the time series data Z should
be efficiently accumulated by implementing planned
numerical analysis. We propose a DE based on the pro-
jection of Ỹp = UT

zp ,rcZ
n
p
′ (i.e. the principal component

score) into the eigenspace of Zn
p
′ if the dimensionality-

reduced parameter COMP matrix is set as Uzp ,rc .
Ỹp = {ỹ(1)i , ỹ(2)i · · · ỹ(rc)i } is a vector where the principal
component scores are arranged in the ascending order
of eigenvalues.

In the following application example, the case with
rc = 3 is described. We explain the concrete compu-
tation procedure in the context of this example below.
Table 3 lists the input parameter set for five cases
around the mean for the designed experiment. The
three columns on the left side of the table represent
the principal component scores Ỹ

(DE)
p , and the input

parameter set Zn
p
′(DE) corresponding to the principal

component scores are shown on the right side. Here,
five cases are shown, including four cases based on the
(L4(23)) design of the experiment, as well as the case
where all principal component scores are zero (i.e.
mean values case). As the principal components are
not correlated with each other, the design of experiment
can be set to a very simple (L4(23)), when the main
objective is to obtain the gradient of the focus point

Table 2. Distribution parameters of the input parameters
(modelled as logarithmic normal distribution).

Distribution parameters

mlnx slnx

e0 −0.29 0.28
λ −4.66 0.80
κ −6.26 0.97
OCR∗ 0.034 0.06
G0/s

′
m 6.60 0.63

M∗
f 0.18 0.12

M∗
m −0.15 0.09

B∗0 7.96 0.55
B∗1 3.76 0.80
gP∗r 5.13 0.80
gE∗r 3.93 1.20
D∗
0 0.16 0.57

n 1.32 0.56

Table 3. Data processing (portion of implemented DE methods).
ỹ(1)i ỹ(2)i ỹ(3)i e0 λ κ OCR∗ G0/s′

m M∗
f M∗

m B∗0 B∗1 gP∗r gE∗r D∗
0 n

DE-1 0 0 0 0.773 0.0150 0.0030 1.0 882 1.200 0.878 2853 42 0.006 0.019 1.2 3.7
DE-2 +1 +1 +1 0.697 0.0062 0.0007 1.1 1023 1.236 0.845 4094 71 0.009 0.039 0.6 8.3
DE-3 +1 −1 −1 0.577 0.0191 0.0008 1.0 1549 1.099 0.855 4076 102 0.003 0.004 1.4 3.4
DE-4 −1 +1 −1 0.747 0.0204 0.0048 1.0 503 1.409 0.928 1226 21 0.006 0.026 1.3 3.6
DE-5 −1 −1 +1 0.476 0.0150 0.0005 1.0 1311 1.343 0.884 2513 83 0.005 0.009 0.8 7.3
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(i.e. the mean values in this case). In this table, +1 means
the principal component scores +1 σ from the mean,
and -1 implies the principal component scores -1 σ
from the mean values. The input parameter set Zn

p
′(DE)

after transformation to the standard normal distribution
can be calculated by (UT

zp,rc)
−1
Ỹ
(DE)
p , and can be obtained

by transforming to the actual distribution using
Equation (7).

Here, we designed a minimal number of experiments
by assuming a linear approximation of the relationship
between the input parameters and numerical analysis
results, around the mean value of the input parameters.
Ideally, the ROM should be designed in two stages. It
would be desirable to create an ROM around the
mean, identify the design points using the ROM, and
then perform a linear approximation around the design
point. Due to technical considerations, we consider the
average value to be the design point and show the pro-
cess of planning the DEs and constructing the ROM
around it.

3.4. ISSUE-4: ROM construction

We define Zi [ Rn×m as a time series data matrix, cal-
culated according to a given numerical analysis (DE-i
in Table 3). Further, the number of lower-dimension
POD spatial, modes used in the ROM model, is
defined as rm, and the POD spatial mode Ur, obtained
from DE-1 (average value case), is defined as
F̃ [ Rn×rm .

F̃ = f1(x) f2(x) · · · frm(x)
[ ]

(11)

The state vector z′i(x, t), at time t, is given by

z′i(x, t) ≃ ai,1(t)f1(x)+ ai,2(t)f2(x)+ · · ·
+ ai,rm(t)frm(x)

=
∑rm
j=1

ai,j(t)fj(x) (12)

where ai,j(t) denotes the temporal component coeffi-
cient corresponding to the eigenvector fj(x). This tem-
poral component coefficient ai,j(t) is associated with
the primary component score Ỹp = (ỹ(1)i , ỹ(2)i · · · ỹ(rc)i )T.

ai,j(t) = a(1)j (t)ỹ(1)i + a(2)j (t)ỹ(2)i + · · · + a(rc)j (t)ỹ(rc)i

+ a(rc+1)
j (t) (13)

Substituting Equation (13) into Equation (12) yields

z′i(x, t) ≃
∑rm
j=1

{a(1)j (t)ỹ(1)i + a(2)j (t)ỹ(2)i + · · ·

+ a(rc)j (t)ỹ(rc)i + a(rc+1)
j (t)}fj(x) (14)

Here, we create a partial matrix fi,j(x) [ Rn×(rc+1) to
determine the regression coefficient efficiently and con-
structFi [ Rn×(rc+1)×rm}. Moreover, rc is the number of
lower dimension PCA modes corresponding to the
input parameter set.

fi,j(x) = ỹi,1f j(x) ỹi,2f j(x) · · · ỹi,rcf j(x) f j(x)
[ ]

(15)

Fi = fi,1(x) fi,2(x) · · · fi,rm(x)
[ ]

(16)

A regression coefficient time series vector, correspond-
ing to the input parameter COMP l, is defined as
a(l)j [ Rm to create a corresponding matrix of unknown
values (i.e. regression coefficients).

a(l)j = (a(l)j (t1), a
(l)
j (t2), . . . , a

(l)
j (tm))

T (17)

We construct a regression coefficient time series matrix
Amode

j [ R(rc+1)×m that corresponds to a POD spatial
mode j by vertically aligning Equation (17).

Amode
j = a(1)j a(2)j · · · a(rc)j a(rc+1)

j

[ ]T
(18)

Next, we create a matrix where the time series matrices
of all regression coefficients are aligned by vertically
aligning the regression coefficient time series matrix
Amode

j for all POD spatial modes.

A = Amode
1

T
Amode

2
T · · · Amode

rm

T
[ ]T

(19)

The observed equation, corresponding to the
implemented DE-i of the FEM from Equation (15) to
(19), is given as

Z′
i = FiA (20)

Equation (21) can be obtained by vertically aligning
Equation (20) with the number of FEM implemen-
tations.

Z′
De = FDeA (21)

If the total number of FEM implementations based on
DE is set as ncal, then FDe [ R(n×ncal)×{(rc+1)×rm} and
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Z′
De [ R(n×ncal)×m become matrices

Z′
De = Z′T

1 Z′T
2 · · · Z′T

ncal

[ ]T
(22)

FDe = FT
1 FT

2 · · · FT
ncal

[ ]T
(23)

Based on these equations, the times series A of all
regression coefficients can be used to perform an inverse
analysis using a pseudo-inverse matrix.

A = F†
DeZ

′
De (24)

3.5. ISSUE-5: uncertainty propagation and
sensitivity analysis

In this study, a regression equation for a linear combi-
nation is used for the ROM model, as shown in
Equation (14). This equation allows us to determine
the propagation of uncertainty from the expected
value characteristics analytically. The matrix, containing
only the regression coefficients corresponding to the
input parameter COMPl in Equation (19), is defined
as Acomp

l [ Rrm×m.

Acomp
l = a(l)1 a(l)2 · · · a(l)rm

[ ]T
(25)

Using the POD spatial mode F̃ [ Rn×rm , this matrix is
transformed into the node-element-influencing value
al [ Rn×m as

al = F̃Acomp
l (26)

The above equations indicate that matrix Vest [ Rn×m,
comprising the estimated variance of the FEM nodal
displacements and the estimated variance of the elemen-
tal stresses (propagated by the uncertainties in the input
parameter settings), can be calculated from the expected
value characteristics by performing an operation on
each sequence element as shown below.

Vest =
∑rc
l=1

l
zp
l al

◦2 (27)

Here, l
zp
l is the eigenvalue of the Z′

p covariance matrix
corresponding to COMPl.

We now describe how to calculate the spatial distri-
bution of the sensitivity coefficients in the FEM calcu-
lation area. From Equation (24), we define matrix
A0 [ Rrm×m, from which only the constant terms are
extracted.

A0 = a(rc+1)
1 a(rc+1)

2 · · · a(rc+1)
rm

[ ]T
(28)

We construct matrix a0 [ Rn×m using the POD space

mode F̃ [ Rn×rm in Equation (26) to transform each
node or element.

a0 = F̃A0 (29)

Here, the performance functions are described in the
following general terms:

g = R− S (30)

For instance, when we focus on the y-direction displace-
ment (settlement at arbitrary points), R [ Rnn×m is the
design limiting value at arbitrary points, and it is
assumed to determine the relationship with the per-
formance of the target structure in advance. Here, R is
assumed to be a normal distribution with a variance
ofsR

2, and it is assumed to be a constant value through-
out the calculation region. S [ Rnn×m denotes the
numerical analysis results (i.e. the calculated physical
parameter spatial distribution time series). nn denotes
the number of total nodes; however, nn replaces ne
(the number of total elements) in cases wherein the
excess water pressure ratio is investigated.

S = a
dy
0 +

∑rc
l=1

ỹ(l)ady
l (31)

where a
dy
0 [ Rnn×m and a

dy
l [ Rnn×m are the portion

matrix of matrices a0 and al, respectively; they corre-
spond to the target physical quantity (e.g. y-direction
displacement). ỹ(l) is the principal component score cor-
responding to COMPl.

The following equations denote the vectors repre-
senting the time-series changes in the mean and var-
iance of S [ Rnn×m.

mS = a
dy
0 (32)

s2
S =

∑rc
l=1

l
(zp)
l (ady

l )◦2 (33)

From Equation (33), the spatial distribution time series
of the sensitivity coefficients of COMPl, c2l [ Rnn×m,
can be calculated as:

c2l = {l
(zp)
l (ady

l )◦2}⊘ (s2
R + s2

S) (34)

4. Application to a simple example

4.1. Problem outline

Figure 2(a) shows an FEM model of a sample soil sec-
tion (nn = 464 and nn = 424). This model is used as
the example shown in the LIQCA summaries (Liquefac-
tion analysis method LIQCA Development group,
2007). It was created for dynamic centrifugal model
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tests (50 G) (Matsuo, Okamura, and Tamoto, 2000) at
the Public Works Research Institute, Japan. The dimen-
sions of the figure were converted to the scale of an
actual structure using scaling laws. The topmost soil
layer is an embankment, which is followed by a liquefi-
able sand layer (both of which comprise Edosaki sand
set to approximately Dr = 50

�
% immediately below the

embankment) and an unliquefiable sand layer (consoli-
dated No.7 silica sand (Dr = 90

�
%)). Moreover, both

boundaries of the experiment soil vessel were set as
rigid walls, which do not undergo shear deformation.
To meet the experimental requirements, the sides of
the FEMmodel were set with horizontally fixed and ver-
tically free boundary conditions and with a bottom-
fixed undrained boundary condition. Plane strain
elements were used, and for all elements the cyclic elas-
toplastic model of sand (Oka et al., 1999) was adopted.

The cyclic elastoplastic model is developed, especially
for simulating the liquefaction, based on a generalised
nonassociated flow rule using nonlinear kinematic
hardening rule. In this model, the overconsolidation
boundary surface to control dilatancy, plastic strain
dependency of the shear stiffness, and fading memory
of the initial anisotropy are considered.

Figure 2(b) shows the time series of the input ground
motion. A principal shock of 1.5 G (approximately 5 s)
and three later-phase waves of 1.0 G were used as the
rigid foundation inputs. The embankment and liquefiable
sand layer were provided the same input parameters; the
previously mentioned DE (Table 2) was followed tomod-
ify the input parameters and conduct the analysis. In all
cases, the unliquefiable layer used the deterministic
values of DS-2 (unliquefiable sand layer; No.7 silica
soil; and Dr = 90

�
%) as its input parameters.

The top seven input parameters in Table 2 (the initial
void ratio e0, compression index λ, swelling index κ,
overconsolidation ratio OCR∗, nondimensional initial
shear stiffness G0/s

′
m, stress ratio at failure M∗

f , and
stress ratio at phase transformation M∗

m) can be deter-
mined via experiments, such as consolidation test and

triaxial test. The remaining seven parameters (nonlinear
hardening parameters B∗

0, B
∗
1, g

∗
p, and g∗e ; and dilatancy

parameters D∗
0 and n) are determined by curve fitting in

comparison with the experimental results, such as lique-
faction resistance curve, stress–strain relationship, effec-
tive stress path of the cyclic triaxial test, and the
relationship between shear stiffness and shear strain
obtained from the dynamic deformation test.

The limit state of the calculation was set to verify that
the ‘settlement amount at the top end of the embank-
ment (i.e. y-direction displacement) does not exceed
half of the embankment height H(H/2)’; a series of ana-
lyses were conducted until the reliability evaluation.
Notably, for calculating the spatial distribution of the
sensitivity coefficient, it is necessary to define the limit
state at an arbitrary point on the target structure.
Although it is not practical, the same limitations are
applied at all points in this case.

4.2. Principal component analysis (PCA) of the
input parameters

The biplots of the principal component scores of the
input parameters, COMP1 and COMP2, are shown in
Figures 3(a) and 3(b), respectively; the contributions
of each COMP are shown in Figure 3(c).

Although Figures 3(a) and (b) are same; in (b), the
number DS-I, listed in Table 1, and the descriptions of
the characteristics of each quadrant are provided. The
third and fourth quadrants are dominated by loose lab-
oratory sand. In the first and second quadrants, samples
obtained from the field are distributed, showing mostly
artificial reclaimed soil in the first quadrant and natu-
rally deposited ground in the second quadrant.

The soil features could be classified in these biplots.
The contribution rates from COMP1 to COMP3
exceeded 60� % of the amount of input information.
The black square points in Figure 3(a) denote the 19
parameter sets collected from the data bank, and the
mode value (i.e. principal component factor) of each

Figure 2. Numerical analysis model and input wave ((a) FE-model (b) Input wave).
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parameter is denoted by an arrow. Although the phys-
ical meanings of the principal component space of the
input parameters are not considered in this paper
owing to technical limitations, the interpreted physical
meaning of each principal component is summarised
as follows:

. COMP1: Comprehensive index of rigidity

. COMP2: Comprehensive index of dilatancy

. COMP3: Comprehensive index of persistence after
reaching the phase transformation line

Thus, we conducted analysis with dimension number
rc = 3, where COMP1 and COMP2, which have engin-
eering-based definitions, and COMP3 (total contri-
bution rate of 65

�
%) are used. It is possible to impart

objectivity using statistical modelling (e.g. sparse mod-
elling (Tibshirani, 1996)); however, this study is a pro-
posal for a reliability analysis scheme, and therefore,
we limit ourselves to a simple analysis. The above-men-
tioned decisions were made only for convenience. Nota-
bly, the input parameter set may not be well contracted
(i.e. sparse space has not been found) by applying simple
linear mode decomposition (PCA). In future, we plan to
apply and compare nonlinear mode decomposition
methods (e.g. K-SVD (Aharon, Elad, and Bruckstein,
2006; Otake, Kodama, and Watanabe, 2019b), kernel
PCA (Schölkopf, Smola, and Müller, 1998), robust
PCA (Candès et al., 2011), the introduction of multire-
solution representation, etc.) to investigate more appro-
priate contractions with feature extraction. Further, it is
critical to expand the data, check the prediction per-
formance, and generalise the performance based on
cross-validation methods and information criteria.

4.3. Mode decomposition (POD) for numerical
analysis

The contribution rates of the POD spatial modes are
shown in Figure 4. The contribution of POD spatial
mode 1 is extremely high; 98� % of the amount of infor-
mation is provided by POD spatial mode 3. The POD
spatial modes 1–5 are plotted in the ascending order
of eigenvalues, as shown in Figure 5. The deformation
(i.e. horizontal and vertical displacements) modes are
shown as nodal displacements, with the excess pore
water pressure ratio modes shown with element colour.
Figure 6 shows the relationship between the time series
component coefficient of POD spatial modes 1–3 and
the input waveform.

Figure 4. Contribution rate of each POD spatial mode calculated
from the numerical analysis results.

Figure 3. Principal component analysis (PCA) results of the input parameters ((a) Comp1-Comp2 biplot, (b) Comp1-Comp2 biplot with
input parameter set information, (c) Contribution of principal component).
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As shown in Figure 5(a), the embankment in POD
spatial mode 1 shows settling tendencies and has high
excess pore water pressure tendencies in all parts, except
in those immediately below the embankment body,
where the confining pressure is high. Figure 6 shows
that the time series component coefficient controls the
embankment behaviour after 12 s, which is when the
first wave ends (i.e. when most of the foundation
ground has liquefied). This can be interpreted as a fun-
damental settlement mode, governing the target struc-
ture, that accompanies the embankment foundation
ground liquefaction, and henceforth, it is referred to
as ‘Settlement-MODE’.

As seen in Figure 5(b), POD spatial mode 2 shows
settling tendencies similar to those of POD spatial
mode 1; however, the excess pore water pressure ratio
behaviour is different. The excess pore water pressure
ratio is particularly high in the local areas at the foot
of the embankment body slope. The time series com-
ponent coefficient in Figure 6 indicates large contri-
butions to the embankment behaviour during the 12 s
from the start of the vibrations to the end of the first
wave (when most of the foundation ground has
liquefied). However, its subsequent contributions
become small. We refer to this as the ‘Undrained
shear-MODE’, where shearing is repeated under
undrained conditions.

As seen in Figures 5(a)–(c), POD spatial mode 3 is
different from POD spatial modes 1 and 2, and this
mode does not contribute to the residual displacement
of the embankment body. The lower foot of the slope
and fixed side boundary areas have high excess pore

water pressure ratios, which is referred to as the
‘Vibration-MODE’.

As shown in Figure 4, the physical meanings of
the POD spatial modes, 4 and 5, are difficult to
interpret in an engineering sense. Therefore, we con-
struct an alternative model using POD spatial modes
1–3, and the number of dimensions (i.e. horizontal
displacement nn dimensions, vertical displacement nn
dimensions, and excess pore water pressure ratio ne
dimensions) was found to decrease significantly from
2nn + ne = 1352 to 3.

4.4. Bayesian inference results (input parameter
update results)

The Bayesian inference results, derived using a portion
of the DS-1 information from the initial data listed in
Table 1, are shown in Figure 7. Three patterns of the
Bayesian inference results are shown in Figure 7(a)
(left: update by e0, middle: update by e0 and G0/s

′
m,

and right: update by e0, G0/s
′
m and M∗

f ). The observed
errors in the Bayesian inference are assumed to be
10
�
%. As mentioned earlier, Bayesian updating is per-

formed analytically in the proposed framework. Here,
we generate random numbers using the to prior and
posterior distributions and overlap them to visualise
the effect of this Bayesian update. In Figure 7(a), par-
ameter sets created from prior distributions (PRIOR:
10,000 generates) are shown in light grey and those cre-
ated from the posterior distributions following Bayesian
inference (POST: 10,000 generates) are shown in dark
grey. Figure 7(b) shows the estimated range of the par-
ameter set of the posterior distribution (POST) corre-
sponding to three update cases (left: update by e0,
middle: update by e0 and G0/s

′
m, and right: update by

e0, G0/s
′
m and M∗

f ). The range from the average value
+1s (i.e. one standard deviation) was standardised
and plotted in grey for relative comparisons.

The parameter set in DS-1, set up by experts, is
shown in red. The left side of the figures indicates that
there were no major differences between the prior and
posterior distributions. This implies that the e0 infor-
mation does not contribute significantly to parameter

Figure 5. POD spatial modes {u1, u2, u3, u4, u5}.

Figure 6. POD spatial mode coefficients time series.
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estimation in DS-1. In contrast, the middle (G0/s
′
m

information added) and right (G0/s
′
m and M∗

f infor-
mation) rows of the figure indicated that there are
large differences between the prior and posterior distri-
butions; further, posterior distributions are closer to the
parameter sets, set up by experts.

A detailed account of this is beyond the technical
scope of this paper. However, we do confirm update
sensitivity based on a few physical parameters that can
be observed in the field. In the future, we plan to expand
the study to collect sets of input parameters and verify
their validity based on objective analysis, such as by
using the cross-validation method.

4.5. Calculated results of ROM

4.5.1. ROM simulation (estimate of the
expectation)
The DEs near the average of the prior distribution, prin-
cipal component scores, and input parameter sets of
COMP1-3 are listed in Table 2. A numerical analysis
was conducted with the five DEs shown here to create
an alternative model (ROM). The FEM analysis results
obtained using the input parameter sets corresponding
to the average values of the prior distribution are
shown in Figure 8(a). The spatial distribution snapshots
of the deformation plots and excess pore water pressure
ratio (displayed by a colour gradient in the element) are
shown at time points 5 s, 7.5 s, 10 s, 20 s, 30 s, and 40 s.
The ROM simulation results under the same conditions
as those shown in Figure 8(a) are depicted in Figure 8
(b). Both the FEM analysis and ROM simulations quali-
tatively correspond with each other at each time point.
The results where a time series correction factor was
applied to each POD spatial mode are shown in Figures
8(c) and (d). Figure 8(b) was obtained from the combi-
nation of these three POD spatial modes.

Figure 9(a) focuses on the deformation of the top end
of the embankment body (red) and the excess pore

water pressure ratio (blue), immediately below the
embankment body, in the average value case of the
prior distribution (i.e. DE-1). The figure compares the
time series behaviour of the FEM analysis and the
ROM simulation. From left to right, Figure 9(a) shows
the positions in the embankment where the structural
displacements and time series are compared, time series
of the foundation input waveform, time series of the
excess pore water pressure ratio immediately below
the embankment, time series of the horizontal displace-
ment (x-displacement) of the top end of the embank-
ment body, and time series of the vertical
displacement (y-displacement) of the top end of the
embankment body.

The FEM analysis results are represented by a solid
line, and the ROM simulation results are shown with
a dotted line. The results confirm that the ROM accu-
rately simulated the FEM analysis results at each time
point. Figure 9(b) shows the same comparisons for
DE-2. Some minor deviations are observed between
the FEM analysis and ROM simulations results in the
time series of the excess pore water pressure ratio. Over-
all, the ROM simulations accurately characterises the
features of the time series behaviour.

4.5.2. Uncertainty propagation and sensitivity
analysis
Figure 10(a) shows the results of the ROM simulation
for the average value of the prior distribution (DE-1)
and the uncertainty propagation analysis. The results
of the uncertainty analysis results are shown as the
range of +1s(hatched areas) of the ROM analyses
(grey hatching).

From left to right, Figure 10(a) shows the embank-
ment structure, time series of excess pore water pressure
ratio just below the embankment, time series of hori-
zontal displacement of the top of the embankment (x-
direction), time series of vertical displacement of the
top of the embankment (y-direction), and failure

Figure 7. Parameter update results (DS-1) ((a) Bayesian inference results in the biplot figure, (b) Estimated parameter distribution).
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probability with one-half of the embankment height as
the settlement limit.

At an arbitrary time point, the failure probability was
determined by setting the displacement limit values as ran-
dom variables and analytically calculation using the
expected value characteristics (as employed in FOSM and
FORM). The failure probability between the second and

third later-phase waves increased dramatically and reached
approximately 10−1 at the end of the analysis (50 s).

Similar to Figure 10(a), Figure 10(b) shows the
results of the ROM and uncertainty propagation ana-
lyses corresponding to the posterior distribution based
on a portion of the information in DS-1
(e0, G0/s

′
m, M

∗
f ).

Figure 8. FEM and ROM comparisons for each POD mode (5 s, 7.5 s, 10 s, 20 s, 30 s, and 40 s) ((a) FEM analysis, (b) ROM, (c) POD-
spatial-MODE1, (d) POD-spatial-MODE2, and (e) POD-spatial-MODE3).

Figure 9. Calculated ROM results ((a) DE-1 and (b)DE-2).
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The magnitude and trend of the time series of the
failure probability vary considerably, depending on the
input parameters, leading to different decisions in the
two cases. Figure 11 shows the sensitivity coefficient
time series for COMP1, COMP2, and COMP3 at the
top of the embankment. COMP1 is interpreted as the
‘Comprehensive index of rigidity’, and it makes a sig-
nificant contribution to the overall analysis time.
COMP2 is interpreted as the ‘Comprehensive index of
dilatancy’ after the main shaking, and its contribution
gradually increases after the soil foundation liquefies.
COMP3 is interpreted as the ‘Comprehensive index of
stickiness after reaching the phase transformation
line’, and it tends to exhibit a significant contribution
during the main dynamics and gradually decreases as

Figure 10. Updated ROM results ((a) PRIOR and (b) POSTERIOR).

Figure 11. Sensitivity coefficient time series at the top of the
embankment (c21, c

2
2, andc

2
3), COMP1: Comprehensive index of

rigidity, COMP2: Comprehensive index of dilatancy, COMP3:
Comprehensive index of persistence after reaching the phase
transformation line.

Figure 12. Spatial distributions of the variance and sensitivity coefficients (Vest, c21:COMP1, c
2
2:COMP2, and c23:COMP3).
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the contribution of COMP2 increases. Thus, the time
series of the sensitivity coefficients were found to be
related to the physical meaning of each COMP.

Figure 12 shows the spatial distribution time series for
the variance and sensitivity coefficients (5 s, 7.5 s, 10 s, 20
s, 30 s, and 40 s). From left to right, Figure 12 shows the
spatial distribution of the horizontal displacement (x-dis-
placement), vertical displacement (y-displacement),
excess pore water pressure ratio, and sensitivity coeffi-
cient of c21:COMP1, c22:COMP2, and c23:COMP3. The var-
iance of the calculated engineering indices (i.e.
displacement and stress) and the sensitivity coefficients
corresponding to each COMP are calculated as spatio-
temporal information. Thus, we can observe the spatial
characteristics of each calculated parameter at arbitrary
time, as shown in this figure. Using this information,
the difficulty in predicting the physical behaviour of a
facility from engineering viewpoints can be analysed.
Further, it is considered to provide critical information
for decision making while exploring locations for
additional soil investigations or monitoring.

5. Conclusions

In this paper, we proposed a simplified reliability analy-
sis method that preserves the spatiotemporal character-
istics of earth structures to develop a practical method
for controlling the failure mode under accidental load-
ing. The main conclusions are listed below.

(1) An ROM model was proposed that independently
performs modal decomposition of the input par-
ameters and numerically analyses the time series
data. This model combines these two aspects
using simple linear regression analysis.

(2) The input parameters for numerical analysis could
be effectively determined by Bayesian updating
from the partial parameters observed in the field.

(3) The proposed methods were applied to the analysis
of seismic deformation of embankments on liquefied
ground, and an actual procedure was presented.

(4) The results showed that reliability analysis could be
performed without losing the spatiotemporal infor-
mation (information about the failure modes)
obtained from the numerical analysis.

(5) The proposed method follows the concept of
FORM, which is a traditional reliability analysis
method. The variance and sensitivity coefficients
of the input parameters were analytically computed
over the entire numerical analysis space. This infor-
mation is suggested to be essential for facility man-
agers to take decisions related to the requirement
for additional investigations.

In this study, we focused on the presentation of the fra-
mework and issues related to individual element tech-
niques that need to be investigated. The mode
decomposition (POD and PCA), which plays a central
role in the proposed framework, is an eigenvalue problem
with a linear base. Further, issues related to the application
of this method to nonlinear problems need to be resolved.
We intend to expand this work to include nonlinearmode
decompositions in the future. In addition, we intend to
analyse the effectiveness of the proposed method, by con-
ducting geotechnical observations of the PCA results of
the input parameters, and the validity of the proposed
method using FEM-based Monte-Carlo simulations.

Finally, we compared our results with those of the
direct reliability analysis. The example used in this study
focused on the time series of the deformation of the top
end of the embankment. In future, we intend to incorpor-
ate case studies that estimate the failure modes of target
structures by focusing on the temporal changes over the
entire spatial domain, and on multiple points and par-
ameters to develop control methods for brittle failure
modes (i.e. contributions from robustness and resilience).
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