2 New
N Phytologist

'.) Check for updates

Researc ‘

Across 33 broad-leaved deciduous woody species, silicon
enhances leaf lamina stiffness but not tensile strength whereas
cellulose enhances both
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Summary

o Silicon (Si) has been hypothesized to be a metabolically cheaper substitute for carbon-based
cell wall components to support leaves. However, how the biomechanical function of Si,
deposited as amorphous silica, differs from cell wall components remains untested. Here, we
tested the hypothesis that species with higher leaf Si concentrations have stiffer but more brit-
tle leaf lamina.

¢ We measured the mechanical properties, including modulus of elasticity (E), tensile strength
(0max), @and maximum strain (emax), tissue density, and the concentrations of Si and cell wall
components for 33 deciduous broad-leaved woody species.

o Multiple regression results showed that tissue density, Si concentration, and cellulose con-
centration contributed positively to £ and negatively to ¢max. By contrast, tissue density and
cellulose concentration, but not Si concentration, contributed to ona«. No significant contribu-
tion of lignin concentration to mechanical properties was detected.

o These results suggest that Si might function as a substitute for cellulose to increase stiffness
but not the strength of a lamina. Greater Si concentration decreased ¢nax Without increasing
Omax, Which made the lamina more brittle. The brittleness associated with Si might explain a
potential cost or disadvantage of using Si, which would elucidate the trade-offs between spe-

cies with different leaf Si concentrations.

Introduction

Leaves are subjected to destructive forces incurred by herbivory
(Coley, 1983), wind, and rainfall (Niklas, 1992). Hence, for
leaves to achieve a longer lifespan, they must have greater strength
and toughness (force and energy to fracture, respectively) (Reich
et al, 1991; Wright & Westoby, 2002; Onoda ez al, 2011;
Westbrook et al., 2011; Kitajima et al., 2012; He et al., 2019).
Previous studies have shown that the strength and toughness of
leaf lamina primarily reflect the dry mass density and mass-basis
concentrations of the cell wall components (Onoda ez 4., 2008;
Kitajima er al., 2016) and that species with longer leaf lifespans
have stronger leaves (Wright & Cannon, 2001; Onoda
et al., 2004; Mediavilla ez al., 2008; Kitajima & Poorter, 2010;
Kitajima et al, 2013). Studies comparing tropical trees have
revealed that, among cell wall components, the concentration of
cellulose, but not hemicellulose and lignin, explains the leaf frac-
ture toughness and leaf lifespan (Westbrook e 4/, 2011; Kitajima
et al., 2016).

In addition to carbon (C)-based components in the plant cell
wall, silicon (Si) deposited in the cell wall as opal (i.e. amorphous
SiO0,-nH,0) can also contribute to the mechanical properties.

© 2025 The Author(s).
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For example, in rice with extremely high leaf Si concentrations
(often > 10% of dry mass, Ma & Takahashi, 2002), Si contri-
butes to the mechanical support of the leaf blade to keep the leaf
at optimal angles to reduce self-shading (Yoshida ez 2/, 1969) by
increasing the stiffness of the cell wall (He ez 2/, 2015) and the
whole leaf (Yamamoto et 4/, 2012). As the metabolic cost to
absorb Si from the soil solution and to deposit it as SiO, is con-
sidered to be a small fraction of the biosynthetic cost of C-based
cell wall components (6.7% and 3.7% of the energetic costs for
polysaccharide and lignin, respectively; Raven, 1983), Si has been
hypothesized to be a cheaper substitute for C (Raven, 1983;
Cooke & Leishman, 2011; but see de Tombeur ez 2/, 2021, who
proposed the metabolic cost may be larger when soil Si availabil-
ity is low). Cooke & Leishman (2011) found a negative correla-
tion between leaf Si concentration and leaf longevity across
species by analyzing leaf Si concentration data assembled by
Hodson er al. (2005) with the leaf longevity data assembled
by Wright er al. (2004) and suggested that Si might be a good
substitute for C for the species with short leaf lifespans. From the
point of view of the specific function of Si, silica in leaf cell walls
(8i0,*nH,0) might act similarly to lignin, because both are
expected to increase compression strength (Raven, 1983).
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Negative correlations reported between the concentrations of Si
and lignin observed within species (Suzuki ef al, 2012; Yama-
moto et al., 2012; Klotzblicher et al., 2018; Schaller ez /., 2019)
and across species (Schoelynck ez al., 2010) might support this
view. Similarly, some studies have reported negative correlations
between Si and cellulose, although such correlations differ among
functional types or plant organs (Schoelynck ez 4/, 2010; Schaller
et al., 2012, Yamamoto et al., 2012; de Tombeur ez 2/, 2020).

While some plants, such as rice and maize, absorb Si with an
active transport mechanism from the soil and accumulate Si in
their leaves (Ma et al., 2006, 2007; Mitani et al., 2009), most
land plants show lower Si concentrations in leaves (e.g. Hodson
et al., 2005) than would be explained by a passive entry of Si into
the xylem water stream (Takahashi ez al, 1990). This suggests a
mechanism to prevent Si uptake in many land plants
(Raven, 2003). Indeed, the Si concentration in the xylem sap of
tomatoes is lower than the external solution around the root
(Mitani & Jian, 2005) because Lsi2, a homolog of a Si efflux
transporter in rice, in tomatoes lacks the function to transport Si
(Sun et al., 2020; Mitani-Ueno & Ma, 2021). In addition, a
comparison of leaf Si concentrations among 494 species of land
plants, including moss, ferns, gymnosperms, and angiosperms,
suggests that the ancestral gymnosperms once established a
mechanism to prevent Si absorption (Takahashi er al, 1981;
reviewed by Epstein, 1999; Ma & Takahashi, 2002). Such
macroevolutionary trends suggest that there may be certain dis-
advantages or constraints associated with Si uptake and accumu-
lation in leaves, or the cost of absorbing and using Si can be
much higher than it has been estimated (e.g. de Tombeur
et al., 2021, 2022). However, while many studies have reported
the positive aspects of Si accumulation (Ma, 2004; Cooke &
Leishman, 2016; Coskun ez al., 2019), the disadvantages of Si
accumulation have not been demonstrated quantitatively (Hod-
son & Guppy, 2022; de Tombeur ez al., 2022).

The relationship between leaf mechanical properties and the
concentration of Si, which exists as amorphous SiO; in the plant
body, could be key to understanding the potential disadvantage
of accumulating Si in the leaf, as speculated in several papers (e.g.
Minden et al, 2021). Yamamoto et 2l (2012) found that Si
makes the rice blades stiffer (i.e. more force is required to cause a
unit of deformation) but more brittle (i.e. fractured at smaller
deformation). To withstand destructive forces from wind or
water, plants may employ either of the two contrasting strategies:
The first is to create a stiff body that is deformed less by a unit
force, and the second is to have a flexible body that deforms easily
without breaking (Bouma ez al., 2005). Leaves are generally thin
and, to some extent, stiff for efficient light capture, but they must
also flutter without breaking against strong wind. Thus, most
land plants must produce a leaf that is both flexible and strong
enough to withstand destructive forces. Silicon-derived brittleness
could be disadvantageous, even if Si contributes to the stiffness.
However, few previous studies evaluated the relationship between
leaf mechanical properties, such as stiffness, brittleness, and
strength, and Si concentration across species (Massey ez 4/., 2007;
Simpson et al., 2017). In addition, a recent study by de Tombeur
et al. (2022) found that Si concentration positively correlates
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with leaf dry matter content (LDMC, leaf dry mass divided by
fresh mass), which correlates with tissue density, across 469 non-
woody species. As LDMC is a known leaf trait associated with
leaf strength (Kitajima et al., 2012), it is necessary to evaluate the
relationship of leaf mechanical properties with Si concentration
and other factors, such as tissue density and concentrations of cell
wall components simultaneously.

In the present study, we used a tensile test to evaluate how stiff-
ness, strength, and extensibility (i.e. to what extent a material can
be stretched without breaking) of leaves would covary with the
concentrations of Si and cell wall components across 33 deciduous
broad-leaved woody species. We chose broad-leaved woody spe-
cies as a life form that includes species with both high and low leaf
Si concentrations (Raven, 1983; Hodson et a/, 2005). In addi-
tion, as most previous studies on Si utilization have been done in
nonwoody species (but see Korndorfer & Del-Claro, 2006; Klotz
et al, 2023a, 2023b, 2024 for the studies on woody plants),
exploring the function of Si in woody plants might expand our
understanding of how plants utilize Si. As leaf mechanical proper-
ties are well known to covary with leaf lifespan (e.g. Kitajima &
Poorter, 2010; Kitajima e# al, 2012) and comparison among spe-
cies with a wide range of leaf lifespans could make the relationship
between leaf mechanical properties and Si concentration unclear,
we used only deciduous species with relatively short leaf lifespans
(c. 3-7 months) as a first step. Specifically, we tested the following
hypothesis: Leaves with higher Si concentrations are stiff but more
brittle (i.e. breakable with a smaller deformation). We also
explored the difference in the functions of Si and cell wall compo-
nents for the mechanical support of the leaf lamina.

Materials and Methods

Collection of leaves

We used 33 deciduous broad-leaved woody species (31 trees and
2 shrubs; Table 1, Supporting Information Table S1) growing
mainly on natural or seminatural soils around the Yoshida Cam-
pus of Kyoto University (35°03N, 135°78E) between 12 Sep-
tember and 3 October 2019. The mean annual precipitation is
1522.9 mm, and the mean annual temperature is 16.2°C from
1991 to 2020 (Japan Meteorological Agency). Approximately
two-thirds of the species in the study were native or naturalized
species in Japan.

From five individuals of each species (165 individuals in total),
we collected more than five leaves that were fully developed and
showed no damage or signs of senescence. Leaf samples taken
from each individual were separately wrapped in a moistened
paper towel and stored in a sealed plastic bag at 4°C to keep them
turgid until the mechanical test. We used one leaf for mechanical
tests per individual and stored the rest for chemical analysis to
ensure sufficient quantity was available for chemical analysis.

Mechanical test

As the Si concentration of the leaf vein is negligibly low in
broad-leaved trees (Kajino & Kitajima, 2023), we measured the
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leaf blade, excluding primary and secondary veins. A small strip
of leaf lamina (c. 0.5 X 5 cm) was cut with a razor, and the
width and thickness of the strip were measured with a caliper and
a custom-made thickness gage that held a compressive force of
< 0.7 N (547-401-421FAS381; Mitutoyo, Kawasaki, Japan).
Lamina thickness measurement avoided visible veins within the
strip as much as possible.

The mechanical properties of the lamina strips were measured
with a tensile test, as immediately as possible after cutting the
strip, following the method used by Onoda er al (2015).
The two ends of the rectangular strips were clamped and
stretched slowly (10 mm min~ ) until the strips were torn with a
universal tester (EZ-LX; Shimadzu, Kyoto, Japan). We measured
force and displacement every 100 milliseconds. Stress (g, N m ™)
was calculated as force per cross-sectional area (= thickness x
width of the strip), whereas strain (¢, %) was calculated as the
ratio of the length change in the test strip relative to its original
length. To evaluate stiffness, we measured Young’s modulus of
elasticity (£, N m ™) as the initial slope of stress plotted against
strain. The maximum stress when the strip was torn (0,,,) was
defined as the ultimate tensile strength (hereafter ‘strength’). The
maximum strain (&,,,) was interpreted as the measure of lamina
extensibility. After the tensile test, we scanned the leaf strips with
a flatbed scanner (CanoScan LiDE 400; Canon, Tokyo, Japan)
and measured the dry weight after drying in an oven at 65°C for
> 3 d. We measured the area of the strip from the scanned data
and calculated leaf mass per area (LMA; g m~2) and tissue den-
sity (g cm 2) by dividing the dry weight of the strip by the area
and volume (= area x thickness), respectively. We confirmed that
increases in the area of the strips before and after tensile testing
were negligible (0.17% on average). We also calculated silica-free
tissue density (i.e. tissue density without SiO5), as silica deposited
in the leaves could occupy substantial proportions of dry mass
and affect the relationships between tissue density and other
traits.

Chemical analysis

The rest of the leaves that were not used for the mechanical test
were washed with running water before petiole removal, oven
drying, and grinding into a fine powder with a mill (MM 400;
Retsch, Haan, Germany) separately by individuals. Though these
leaf samples contain midribs and other thicker veins, we assumed
the chemical properties of these samples should be similar to
those in the mechanical tests as the mass proportions of midribs
in deciduous broad-leaved trees are relatively small. For chemical
analysis, we used the leaves of three individuals out of the five of
each species. Silicon concentration (%) was measured by the
molybdate blue colorimetry (Sauer ez al, 2006) after alkaline
extraction with 1% Na,COj; solution at 85°C (Conley &
Schelske, 1993; Nakamura ez 4/, 2020). Absorbance at 650 nm
was measured with a spectrophotometer (UV-1650PC; Shi-
madzu). The concentrations of cell wall components (%) were
measured with a modified method by Van Soest (1963). Briefly,
nonpolar fractions, including fats, oils, carbohydrates, and pro-
teins not bound to the cell wall, were removed by treating in a
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neutral detergent solution (ANKOM Technology, Macedon,
NY, USA) at 90°C for 1 h. The neutral detergent fiber (i.e. the
sum of hemicellulose, cellulose, and lignin) was determined from
the residue as the measure of the bulk cell wall (% of dry mass).
Next, hemicellulose was removed by washing with acid detergent
(ANKOM Technology) at 90°C for 1 h. Finally, 72% H,SO4
was used to remove cellulose at room temperature for 3 h. The
residue after washing with 72% H,SO4 was regarded as lignin.

Statistical analysis

Concentrations (% of leaf dry mass) of Si and cell wall compo-
nents, leaf mechanical properties, and LMA, but not tissue den-
sity, were log-transformed to meet normality assumptions before
statistical analysis. Analysis of variance on traits by species was
tested to calculate the percentages of the trait variance that were
explained by interspecific variation (five individuals for mechani-
cal and morphological traits and three for chemical traits). The
correlations among leaf mechanical properties, chemical proper-
ties, and morphological traits were tested by least squares regres-
sion. To test the relative contributions of Si and cell wall
components to the mechanical properties, we used multiple
regression models, with the leaf mechanical properties as the
dependent variable, and tissue density and concentrations of Si,
cellulose, hemicellulose, and lignin as independent variables. The
model with the Akaike
(Akaike, 1974) was selected as the best model to predict the rela-
tive contribution of Si and cell wall components to the mechani-
cal properties. (PCA)  was
conducted to describe the multivariate relationships among the

lowest information criterion

Principal component analysis

leaf traits (morphological traits, chemical traits, and mechanical
properties). All statistical analyses were conducted by R v.4.2.2
(R Core Developmental Team, 2022).

Results

The percentages of the trait variance that were explained by inter-
specific variation were large in all traits tested (from 63.3% in
hemicellulose concentration to 96.2% in Si concentration;
Table S2). Among the morphological and chemical traits exam-
ined as potential correlates of leaf mechanical properties, tissue
density exhibited the strongest correlation (Fig. 1; Table 2).
Leaves with greater tissue density, that is more dry mass per unit
leaf volume, had greater rigidity (£, 7 = 0.48; Fig. 1a), greater
stress for breaking the leaf lamina (04 # = 0.47; Fig. 1b), and
less stretching before breaking (&, 7 =0.31; Fig. 1c). Tissue
density was not correlated with mass-based concentrations of Si
and cell wall components, which were not correlated with each
other (all P> 0.05; Figs S1, S2; Table 2) except for a negative
correlation between hemicellulose and lignin concentrations
(Fig. S2f). Silica-free tissue densities were almost equal to the dis-
sue densities (94.3—99.7%), and relationships between silica-free
tissue densities and other traits were quite similar to those of tis-
sue densities (data not shown). Leaf mass per area (= tissue den-
sity X leaf thickness) was correlated positively with £ (2 < 0.01)
and negatively with &, (P < 0.05), but not with ¢, and the

© 2025 The Author(s).
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(€max) (c) of the lamina across the 33 species studied.

concentrations of Si and cell wall components (2> 0.05, data
not shown). In the PCA of these traits together (Fig. S3;
Table S3), the first axis principal component 1 (PC1) explained
40.8% of the variation and showed positive loadings with E,
Omax tissue density, Si concentration, cellulose concentration,
and LMA, and negative loading with &, (P < 0.05). Principal
component 2 showed positive loadings with tissue density and
negative loadings with cell wall concentration, lignin concentra-
tion, and cellulose concentration (P < 0.05), explaining 20.6%
of the variance. In multiple regression models for E, the best
model included positive effects of tissue density, Si concentra-
tion, and cellulose concentration, and a negative effect of hemi-
cellulose concentration. The best model for o, included
positive effects of tissue density and cellulose concentration and a
negative effect of hemicellulose concentration. The best model
for €. included the negative effects of tissue density, Si concen-
tration, and cellulose concentration (Table 3). Lignin concentra-
tion was not selected in these models.

Silicon and cellulose, but not lignin and hemicellulose, were
significantly related to mechanical properties in most combina-
tions of mechanical and chemical properties (Table 2). To evalu-
ate the specific contribution of Si and cellulose in addition to the

© 2025 The Author(s).
New Phytologist © 2025 New Phytologist Foundation.
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effect of tissue density, we examined how the residuals of the lin-
ear regressions of mechanical properties against tissue density
were related to the concentration of Si and cellulose. Mass-based
concentrations of Si and cellulose were positively correlated with
the residual of the regression of £ against tissue density (P < 0.01
and < 0.001; Fig. 2a,b). Hence, greater Si concentration and cel-
lulose concentration both enhanced leaf rigidity at a given value
of tissue density. A similar analysis for ¢,,,, showed that cellulose
had positive contributions to 0, (P < 0.01; Fig. 2d). By con-
trast, no significant contribution of Si to 0, was detected
(P> 0.05; Fig. 2¢). In terms of the degree of deformation at
breaking, both Si and cellulose were negatively correlated with
Emax (2 < 0.05 and < 0.001; Fig. 2e,f). Similar analyses for hemi-
cellulose and lignin did not yield significant trends except for a
negative correlation between ¢, and hemicellulose concentra-

tion (Fig. $4).

Discussion

Our prediction that Si should make leaves stiffer and more brittle
was supported, regardless of whether we simultaneously consid-
ered the tissue density effect or not (Fig. 2; Tables 2, 3). We also
explored how Si, cellulose, hemicellulose, and lignin contributed
to the mechanical properties of the leaf lamina. Silicon contribu-
ted to E but not 0,,,,, while cellulose enhanced both £and o,
(Fig. 2; Tables 2, 3). Thus, Si cannot substitute for cellulose as a
material to help a leaf resist breaking forces, even though it helps
lamina stiffen to hold the leaf at an optimal angle. On the other
hand, somewhat surprisingly, we did not detect the effect of lig-
nin on leaf mechanical properties (Fig. S4; Tables 2, 3). We
found neither significant correlations between Si concentration
and cell wall component concentrations that would indicate a
trade-off between Si and cell wall components nor correlations
between tissue density and concentrations of Si and cell wall
components across the species studied (Table 2; Figs S1, S2).
These results were similar to the analysis of 197 tropical tree spe-
cies (Westbrook ez al., 2011, and unpublished data of the same
authors on Si) but differed from previous studies on nonwoody
species (e.g. Klotzbucher et 2/, 2018; de Tombeur ez al., 2022).

The differences in the effects of Si vs cellulose on the mechani-
cal properties may be summarized in a conceptual diagram
(Fig. 3). Silicon increases lamina stiffness but not strength, as Si
reduces lamina extensibility (Fig. 3a). On the other hand, cellu-
lose increases both stiffness and strength even though cellulose
reduces lamina extensibility to a certain extent (Fig. 3b). As
shown in Fig. 3a, the tensile work (i.e. the area under the stress—
strain curve in the figure, mJ mm ™ for a unit length of test strip)
should decrease with Si concentration if Si decreases lamina
extensibility without increasing tensile strength. The support for
this prediction was marginal (negative correlation at P = 0.08),
but this idea may deserve further analysis. The negative correla-
tion between the tensile work to fracture and Si concentration
suggests the overall brittleness of Si-rich leaves. By contrast, cellu-
lose concentration did not correlate with the tensile work to tear
across species studied (2 = 0.15, data not shown), supporting the
hypothetical relationship shown in Fig. 3b.
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Table 2 Pairwise correlations among leaf mechanical properties, tissue density, and chemical traits across 33 study species.

E Omax Emax Tissue density Si Cellulose Hemicellulose Lignin
E
O max 0.82
Emax -0.88 -0.52
Tissue density 0.69 0.69 —0.56
Si 0.53 0.34 -0.53 0.29
Cellulose 0.52 0.39 —0.52 0.07 0.30
Hemicellulose -0.24 -0.37 0.09 -0.07 -0.15 -0.02
Lignin 0.07 0.14 0.05 -0.11 —0.02 0.17 —0.41

Cellulose, cellulose concentration (%); E, Young's modulus of elasticity (N mm~2); hemicellulose, hemicellulose concentration (%); lignin, lignin
concentration (%); Si, Si concentration (%); tissue density, the dry weight of the lamina per unit volume (g M ™3); Gimax, Maximum stress (N mm™2); &maxr
maximum strain (%). All variables, except tissue density, were logso transformed before the analysis to achieve a normal distribution. The significance of
correlations is indicated by bold italic (P < 0.001), bold nonitalic (P < 0.01), and italic (P < 0.05).

Table 3 Coefficients and P-values of the best model which predict leaf mechanical properties (Young's modulus of elasticity (£, N mm™2), the tensile
strength (6max, N mm™2), and the maximum strain (gmax %)) with tissue density (g cm~3) and the concentrations of Si and cell wall components (%).

Tissue density Si Cellulose Hemicellulose Lignin
Responsive values  Coefficient ~ P-value Coefficient ~ P-value  Coefficient =~ P-value  Coefficient ~ P-value  Coefficient  P-value
E 2.74 < 0.001 0.18 <0.05 0.76 < 0.05 —0.49 ns - ns
Omax 1.29 < 0.001 - ns 0.27 <0.01 —0.53 <0.01 - ns
Emax -1.27 < 0.001 -0.14 <0.05 —0.54 < 0.01 - ns - ns

All variables, except tissue density, were logso transformed before the analysis to achieve a normal distribution.

While Si has been hypothesized to work as a cheaper substitute
for C-based cell wall components for a long time (e.g.
Raven, 1983; Cooke & Leishman, 2011), we found that Si can-
not fully substitute cellulose in terms of mechanical properties. Si
might help lamina resist deformation but does not increase the
resistance against breakage. Because lamina strength and tough-
ness are required to keep a leaf alive for a long time (Wright &
Cannon, 2001; Kitajima ez 4/, 2012), Si might not be a suitable
material for species with long leaf lifespans. In addition, the neg-
ligibly low Si concentrations in leaf veins reported in bananas
(Henriet ¢t al, 2006) and eudicot trees (Kajino & Kita-
jima, 2023) and the sparse deposition of Si in vascular bundles
observed in dwarf bamboos (Motomura ez al., 2004) also suggest
that the function of Si to support leaves is somewhat limited.
Because leaf veins, which primarily support the leaf, should be
strong and elastic, brittleness associated with Si deposition might
be undesirable for optimizing the function of leaf veins.

A trade-off between cheap-and-brittle vs. costly-but-durable
could be key to understanding the selective pressures for and
against Si accumulation. Using Si enables plants to increase
lamina stiffness at a given cellulose concentration (Table 3), sug-
gesting that plants can support their leaves with lower energy
costs by using Si. On the other hand, the brittleness associated
with Si-rich leaves itself could be disadvantageous when a long
leaf lifespan is required. The longer the leaf remains, the greater
the chance that it experiences gusts and storms with destructive
forces. In such events, leaves need to flutter without breaking, so
species with a long leaf lifespan might require not only lamina

New Phytologist (2025) 246: 2075-2083
www.newphytologist.com

strength but also some lamina elasticity (lower brittleness). In
addition, as we mentioned above, the reduction in elasticity for a
given strength (Fig. 3a) must decrease the work to tear. Whereas
many studies have examined the relationships of leaf lifespan with
mechanical strength or toughness (e.g. Onoda et al., 2011; Kita-
jima ez al., 2012; He et al., 2019), few have considered lamina
brittleness. This trade-off between stiffness and brittleness asso-
ciated with Si is a new kind of trade-off that has not been quanti-
fied in published studies. Still, we should be careful when we
consider how these trade-offs relate to the frequency and intensity
of destructive forces, as leaf Si concentration correlates positively
with wind speed across Chinese herbaceous communities (Song
et al., 2020), suggesting that Si accumulation can be adaptive
under strong winds.

Others have also proposed potential disadvantages associated
with Si accumulation in leaves. De Tombeur et 2/. (2021, 2022)
proposed that the metabolic cost to absorb Si could be higher
under low Si availability than often assumed. Si accumulation
may interfere with certain physiological processes, such as photo-
synthesis (e.g. Motomura ez al., 2008) or water transportation
(Cooke & Carey, 2023), but there have been no conclusive tests
of these possibilities. Another potential disadvantage is that
Si-rich tissues can be heavier and more difficult to support as the
density of SiO, is higher than that of organic matter
(Raven, 1983). Indeed, de Tombeur ez a/. (2022) found that spe-
cies with Si-rich leaves tended to show high tissue density. How-
ever, to what extent such an increase in tissue density makes the
leaves more difficult to support has not been tested. Hence, our

© 2025 The Author(s).
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Fig. 2 Relationship of silicon and cellulose concentrations with the
residuals of the regressions of Young's modulus of elasticity (E) (a, b), the
tensile strength of the lamina (amay) (¢, d), and the maximum strain (emax)
(e, f) with tissue density of the lamina across the 33 study species.

(a) (b)
4 4 More cellulose
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v
v
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Fig. 3 Conceptual diagrams of the contributions of silicon (Si) (a) and
cellulose (b) to the stress—strain curve of leaf lamina, summarizing the
results of this study. More Si in leaves increases the modulus of elasticity
(E, the initial slope of the stress—strain curve), with no change in the
maximum stress (omax) but reduced maximum strain (¢may), resulting in
less area under the curve (the work to fracture). By contrast, more
cellulose in leaves increases both E and omax, With a similar area under the
curve.

study focusing on biomechanical properties is the first to demon-
strate a potential disadvantage associated with accumulating Si in
leaves. One caveat is that we used deciduous woody species with
a narrow range of leaf lifespans to focus on the relationship

© 2025 The Author(s).
New Phytologist © 2025 New Phytologist Foundation.

between leaf mechanical properties and Si concentration. Studies
that compare leaf mechanical properties and Si concentration
across species with a wider range of leaf lifespans (e.g. evergreen
and deciduous woody species) should be conducted in the future
to understand how leaf Si concentration relates to leaf lifespan via
leaf mechanical properties.

Unlike cellulose or Si, lignin concentration did not correlate
with the mechanical properties across the 33 species tested
(Fig. S4; Tables 2, 3). This may be surprising because ‘lignifica-
tion’ gives an impression of stiff and strong materials. On the
other hand, our results were consistent with findings from a
cross-species comparison of leaves by Kitajima ez a/. (2012, 2016)
who found that cellulose, but not lignin, contributes to leaf frac-
ture toughness. Similarly, Kurokawa & Nakashizuka (2008)
found that leaf lignin concentration does not correlate with the
force to punch the lamina across species. In addition, a study in
horsetail (Yamanaka er al, 2012) suggests that lignin does not
contribute to biomechanical support while Si does, using a biome-
chanical simulation. As lignin is a compression-resistant material,
other mechanical tests, such as a compression test or a bending
test, might be able to detect the contribution of lignin to mechani-
cal supports. Indeed, seedling stems of the species with greater
stem lignin concentrations had a higher modulus of elasticity mea-
sured by a bending test (Alvarez-Clare & Kitajima, 2007).

In the current study, we analyzed chemical traits as bulk con-
centrations. However, leaf mechanical properties should also be
affected by how cell walls of different chemical properties are
arranged within the leaf (e.g. Onoda er al, 2015). Similarly,
Hodson & Guppy (2022) argued the importance of considering
the specificity of Si deposits in plant tissues and cells to under-
stand the function of Si. A recent study by de Tombeur
et al. (2025) reports that Si deposits mainly in the cells where
phenolics do not accumulate within the epidermis tissues of sedge
plants. However, the ecological significance of Si distribution in
plant tissue is still unclear. Hence, future studies should address
how the three-dimensional distribution of Si and cell wall com-
ponents within the leaf affect mechanical properties and ecologi-
cal differences.

Conclusion

This study demonstrated for the first time that leaf Si increases
lamina stiffness but not strength across broad-leaved tree species.
Overall, Si and cellulose contribute to lamina stiffness in an addi-
tive manner to tissue density. Unlike cellulose, which increases
both stiffness and strength, Si might not be suitable to construct
leaves with a long lifespan because Si reduces the lamina extensi-
bility without increasing the lamina strength. These results would
help us to understand the selective pressures for and against Si
accumulation in broad-leaved tree leaves with short and long leaf
lifespans.
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