1	Vertical partitioning of freshwater bacterioplankton community in a deep mesotrophic
2	lake with a fully oxygenated hypolimnion (Lake Biwa, Japan)
3	
4	Yusuke Okazaki ^{1#} and Shin-ichi Nakano ¹
5	¹ Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga 520-
6	2113, Japan
7	
8	#Corresponding author: Center for Ecological Research, Kyoto University, 2-509-3
9	Hirano, Otsu, Shiga 520-2113, Japan, E-mail: yoka@ecology.kyoto-u.ac.jp, Phone: +81-
10	77-549-8200, Fax: +81-77-549-8201
11	
12	Running title: Bacterial community in oxygenated hypolimnion
13	

14 Originality-Significance Statement

15	Despite its ecological importance, an oxygenated hypolimnion is a largely understudied
16	system in freshwater microbial ecology compared with the extensively studied
17	epilimnion. This study revealed the previously unreported diversity of prokaryotic
18	communities in deep oxygenated waters of a freshwater lake (Lake Biwa, Japan). We
19	used high-throughput sequencing of the 16S rRNA gene amplicon from samples taken
20	from the entire water column over a period of 15 months. Such a comprehensive
21	investigation in a pelagic freshwater system is unprecedented, thereby enabling us to
22	identify the number of previously understudied bacterioplankton groups that were
23	hypolimnion habitat specialists.

25 SUMMARY

26In freshwater microbial ecology, extensive studies are attempting to characterize the 27vast majority of uncultivated bacterioplankton taxa. However, these studies mainly 28focus on the epilimnion and little is known regarding the bacterioplankton inhabiting 29the hypolimnion of deep holomictic lakes, despite its biogeochemical importance. In 30 this study, we investigated the bacterioplankton community composition in a deep 31freshwater lake with a fully oxygenated hypolimnion (Lake Biwa, Japan) using high-32throughput 16S rRNA gene amplicon sequencing. Sampling at a pelagic site over 15 33 months throughout the water column revealed that the community composition in the 34hypolimnion was significantly different from that in the epilimnion. The bacterial 35community in the hypolimnion was composed of groups dominating in the whole water 36 layer (e.g., bacI-A1 and acI-B1) and groups that were hypolimnion habitat specialists. 37Among the hypolimnion specialists, members of *Chloroflexi* and *Planctomycetes* were 38highly represented (e.g., CL500-11, CL500-15, and CL500-37), followed by members of 39Acidobacteria, Chlorobi, and nitrifiers (e.g., Ca. Nitrosoarchaeum, Nitrosospira, and 40 *Nitrospira*). This study identified the number of previously understudied taxa 41 dominating the deep aerobic freshwater habitat, suggesting that the biogeochemical 42cycling there is driven by the microbial community that are different from that in the

43 epilimnion.

44 INTRODUCTION

45	With the development of cultivation-independent molecular tools, our
46	understanding of the ecology of freshwater bacterioplankton has experienced
47	unprecedented growth. In particular, constructing comprehensive and consensus
48	knowledge of globally distributed phylogenetic groups (Glöckner <i>et al.</i> , 2000; Zwart <i>et</i>
49	al., 2002) has facilitated the identification of the vast majority of uncultured taxa. In
50	the latest taxonomic framework, a fine taxonomic unit named tribe, which contains
51	>97% sequence identity over the full length of the 16S rRNA gene, was proposed
52	(Newton <i>et al.</i> , 2011). Following this nomenclature, studies are attempting to reveal
53	the eco-physiology of individual uncultivated tribes to understand their roles in
54	biogeochemical cycling and microbial food webs (Eckert <i>et al.</i> , 2012; Eiler <i>et al.</i> , 2012;
55	Salcher <i>et al.</i> , 2013; Tada and Grossart, 2014). Such a fine phylogenetic resolution is
56	necessary, because ecophysiological characteristics are often different even among
57	closely related tribes, as was found among members of acI (Garcia <i>et al.</i> , 2012; Ghylin
58	et al., 2014), Polynucleobacter (Hahn et al., 2012; Watanabe et al., 2012), and
59	<i>Limnohabitans</i> (Kasalický <i>et al.</i> , 2013; Šimek <i>et al.</i> , 2014).
60	In lakes with deep, holomictic and oligo- to mesotrophic conditions, the
61	hypolimnion can remain oxygenated throughout the stratified period. In such lakes,

 $\mathbf{5}$

62	the oxygenated hypolimnion constitutes a large portion of the lake volume and serves
63	as an important layer for the microbial remineralization of organic matter derived from
64	the epilimnion (Wetzel, 2001). Despite its importance, available knowledge on
65	freshwater bacterioplankton largely focuses on the epilimnetic community (Newton et
66	al., 2011). While there is growing evidence for bacterioplankton groups that exclusively
67	occur in the oxygenated hypolimnion (Urbach et al., 2001; Pollet et al., 2011; Okazaki
68	et al., 2013; Callieri et al., 2015), only few studies have conducted comprehensive
69	community analysis (i.e., the Sanger sequencing of environmental 16S rRNA gene
70	clones) in the realm (Glöckner <i>et al.</i> , 2000; Urbach <i>et al.</i> , 2001; Bel'kova <i>et al.</i> , 2003;
71	Humbert <i>et al.</i> , 2009). The available knowledge is currently insufficient to reach a firm
72	understanding of bacterioplankton inhabiting the oxygenated hypolimnion.
73	The present study aimed to acquire an overview of the bacterioplankton
74	community composition in an oxygenated hypolimnion using high-throughput
75	sequencing of the 16S rRNA gene amplicon. Samples were spatiotemporally taken in a
76	mesotrophic, holomictic (monomictic) deep lake with a fully oxygenated hypolimnion
77	(Lake Biwa, Japan), and the sequences were analyzed with a fine phylogenetic
78	resolution (i.e., distinguishing <97% identical sequences). This allowed us to
79	demonstrate that the bacterioplankton community in the hypolimnion is significantly

different from that in the epilimnion and to characterize groups showing hypolimnionspecific distribution patterns, which have eluded researchers due to their absence in
the epilimnion.

83

RESULTS AND DISCUSSION

84 The high-throughput sequencing produced 133,266 reads of the V4 region of 85the 16S rRNA gene amplicon from the 45 samples taken in 15 months at three different 86 depths (5, 50, and 72 m) at a pelagic site of Lake Biwa (Fig. 1). Our analysis generated 87 859 OTUs that are affiliated with bacteria and four OTUs that are affiliated with 88 archaea. The list of representative sequences of each OTU and the read proportion of 89 each OTU in all 45 samples are available in Supplementary Table S1 and S2, 90 respectively. The details of the sampling, sequencing, and data analysis procedures are 91described in the Supplementary Experimental Procedures. Nucleotide sequence data 92reported in this study are available in the Sequence Read Archive database under accession numbers DRX048052-DRX048095 (BioProject: PRJDB4503). 9394Analysis of the Shannon diversity index in each sample (Fig. 2A) indicated 95that the alpha diversity between the epilimnion and hypolimnion samples during the 96 stratification period (April to December; Fig. 1) was not significantly different (p = 970.156; Wilcoxon test). This means that the phylogenetic richness and the evenness of

98	the bacterioplankton community in both water layers were generally comparable.
99	However, an analysis of the beta diversity between the samples by non-metric
100	multidimensional scaling (NMDS) revealed that the community composition in the
101	epilimnion and hypolimnion were different from each other (Fig. 2B). The samples from
102	50 and 72 m were plotted closely together and showed similar succession patterns, and
103	the highest divergence from the epilimnetic samples occurred from October to
104	December (Fig. 2B). In the epilimnion, samples taken from August to October showed
105	the highest divergence, and the samples from the mixing period (January–March) were
106	positioned between the plots from both layers (Fig. 2B). These results indicated that
107	the thermocline separates the bacterioplankton community. In Lake Biwa, the strongly
108	stratified mid-summer epilimnion is characterized as the nutrient deficient (Kim <i>et al.</i> ,
109	2006) and DOC-rich (Maki <i>et al.</i> , 2010; Thottathil <i>et al.</i> , 2013) clear water phase. Such
110	a severe condition may have selected groups that were acclimatized to this
111	environment and resulted in characteristic communities in the epilimnion from August
112	to October (Fig. 2B). On the other hand, in the hypolimnion, an accumulation of semi-
113	labile (Maki <i>et al.</i> , 2010) or humic-like (Thottathil <i>et al.</i> , 2013) refractory DOM
114	throughout the stratification period has been suggested. The selection of the
115	bacterioplankton that is capable of utilizing this less bioavailable DOM that

accumulates in the hypolimnion may have resulted in the characteristic communities

- 117 that were observed at the end of the stratified period (Fig. 2B).
- 118 At the phylum-level of phylogenetic resolution, *Bacteroidetes* and
- 119 Actinobacteria were predominant in the epilimnion during stratification, accounting for
- 120 37.3%–59.5% and 8.9%–39.3% of the total amplicon reads, respectively (Fig. 3A). The
- 121 Chloroflexi and Planctomycetes became relatively abundant in the hypolimnion during
- 122 stratification, ranging from 1.3% to 31.5% and 3.4% to 23.1% respectively (Fig. 3A). It
- 123 should be noted that these data potentially include some biases and should be
- 124 considered with caution. First of all, the total prokaryotic abundance by season and
- 125 depth varied more than six fold in this study (Fig. 1). Consequently, the proportion of
- 126 amplicon reads should not be directly related to the abundance. Furthermore, the value
- 127 is potentially biased by the processes of DNA extraction and amplification (McCarthy
- 128 et al., 2015; von Wintzingerode et al., 1997) and by uneven copy numbers of the 16S
- 129 rRNA gene among target organisms (Farrelly et al., 1995). For example, according to
- 130 the rrnDB database (Stoddard et al., 2015), the Chitinophagaceae, which includes
- 131 members of bacI, one of the most represented *Bacteroidetes* in the present study, had
- 132 as high as 3–6 copies of the rrn operon per chromosome, which may have resulted in
- 133 the high read proportion of *Bacteroidetes* in our data (Fig. 3). Nevertheless, we still

134	found clear patterns, i.e., the same taxa could be either highly represented (e.g., > 5%
135	of the total reads) or nearly absent (e.g., $<0.5\%$ of the total reads) among different
136	samples. The pattern is particularly clear when we compare data between the
137	epilimnion and hypolimnion during stratification, as shown in the beta diversity
138	analysis (Fig. 2B).
139	To investigate the difference between the epilimnetic and hypolimnetic
140	communities, data from each layer during the stratified period were pooled (Fig. 3B).
141	Then the 30 predominant OTUs in each layer (a total of 49 OTUs because 11 OTUs
142	were shared by both water layers) were identified (the procedures are described in the
143	Supplementary Experimental Procedures). Consequently, 26 OTUs were identified by
144	following the taxonomic framework by Newton <i>et al.</i> (2011), and the other 23 OTUs
145	were named following the name of the BLAST hit sequence that had the highest and
146	>99% identity (Table S2).
147	The dominant members of the epilimnetic community were affiliated with
148	previously known groups: the acI-B1, acI-C2, acI-A7, and Iluma-A1 tribes
149	(Actinobacteria), the bacI-A1 tribe, the bac-II-A clade, and the bacV and bacI lineages
150	(Bacteroidetes) (Newton et al., 2011), and the LimC cluster of Limnohabitans
151	(<i>Betaproteobacteria</i>) (Kasalický <i>et al.</i> , 2013) (Fig. 3B). Other well-studied tribes of

192	LD12 (Salcher <i>et al.</i> , 2011a; Heinrich <i>et al.</i> , 2013), PnecB of the <i>Polynucleobacter</i> (Wu
153	and Hahn, 2006a; Salcher et al., 2011b; Hahn et al., 2012), and LD28 (Salcher et al.,
154	2015) were less abundant but ranked as one of the representative groups of the
155	epilimnetic community (Fig. 3B). In the hypolimnetic community, while bacI-A1, acI-
156	B1, acI-A7, Iluma-A1, and LimC showed high proportion, CL500-11 of the <i>Chloroflexi</i>
157	(Urbach <i>et al.</i> , 2001) was the most represented (Fig. 3B). In addition, CL500-15,
158	CL500-37, CL500-3 (<i>Planctomycetes</i>) (Urbach <i>et al.</i> , 2001), LiUU-3-374 (<i>Acidobacteria</i>),
159	and LiUU-3-330 (<i>Chlorobi</i>) (Eiler and Bertilsson, 2004) were highly represented in the
160	hypolimnetic community (Fig. 3B).
161	We further inspected the vertical preferences of the individual groups based on
161 162	We further inspected the vertical preferences of the individual groups based on their read percentage (Fig. 4) and patterns of appearance in each layer (Fig. 5).
161 162 163	We further inspected the vertical preferences of the individual groups based on their read percentage (Fig. 4) and patterns of appearance in each layer (Fig. 5). Members of the acI lineage were reported to consume the relatively bioavailable DOM,
161 162 163 164	We further inspected the vertical preferences of the individual groups based on their read percentage (Fig. 4) and patterns of appearance in each layer (Fig. 5). Members of the acI lineage were reported to consume the relatively bioavailable DOM, such as amino acids, polyamines, di- and oligopeptides, and carbohydrates (Garcia <i>et</i>
161 162 163 164 165	We further inspected the vertical preferences of the individual groups based on their read percentage (Fig. 4) and patterns of appearance in each layer (Fig. 5). Members of the acI lineage were reported to consume the relatively bioavailable DOM, such as amino acids, polyamines, di- and oligopeptides, and carbohydrates (Garcia <i>et</i> <i>al.</i> , 2012; Salcher <i>et al.</i> , 2013; Ghylin <i>et al.</i> , 2014). Other studies have proposed an
 161 162 163 164 165 166 	We further inspected the vertical preferences of the individual groups based on their read percentage (Fig. 4) and patterns of appearance in each layer (Fig. 5). Members of the acI lineage were reported to consume the relatively bioavailable DOM, such as amino acids, polyamines, di ⁻ and oligopeptides, and carbohydrates (Garcia <i>et</i> <i>al.</i> , 2012; Salcher <i>et al.</i> , 2013; Ghylin <i>et al.</i> , 2014). Other studies have proposed an "opportunistic" nature of <i>Bacteroidetes</i> (Eiler and Bertilsson, 2007; Zeder <i>et al.</i> , 2009;
 161 162 163 164 165 166 167 	We further inspected the vertical preferences of the individual groups based on their read percentage (Fig. 4) and patterns of appearance in each layer (Fig. 5). Members of the acI lineage were reported to consume the relatively bioavailable DOM, such as amino acids, polyamines, di- and oligopeptides, and carbohydrates (Garcia <i>et</i> <i>al.</i> , 2012; Salcher <i>et al.</i> , 2013; Ghylin <i>et al.</i> , 2014). Other studies have proposed an "opportunistic" nature of <i>Bacteroidetes</i> (Eiler and Bertilsson, 2007; Zeder <i>et al.</i> , 2009; Salcher, 2013) and <i>Limnohabitans</i> (Šimek <i>et al.</i> , 2011, 2014; Salcher, 2013), which
 161 162 163 164 165 166 167 168 	We further inspected the vertical preferences of the individual groups based on their read percentage (Fig. 4) and patterns of appearance in each layer (Fig. 5). Members of the acI lineage were reported to consume the relatively bioavailable DOM, such as amino acids, polyamines, di- and oligopeptides, and carbohydrates (Garcia <i>et</i> <i>al.</i> , 2012; Salcher <i>et al.</i> , 2013; Ghylin <i>et al.</i> , 2014). Other studies have proposed an "opportunistic" nature of <i>Bacteroidetes</i> (Eiler and Bertilsson, 2007; Zeder <i>et al.</i> , 2009; Salcher, 2013) and <i>Limnohabitans</i> (Šimek <i>et al.</i> , 2011, 2014; Salcher, 2013), which quickly respond to phytoplankton blooms by rapidly exploiting fresh photosynthetic

170	population, even in the dark stratified hypolimnion (Fig. 4, 5), suggests that they are
171	not absolutely dependent on fresh and labile photosynthetic products. It is possible that
172	they are passively transported from the epilimnion as particle-associated bacteria
173	because high sinking fluxes of blooming phytoplankton (Kagami et al., 2006) and
174	cyanobacteria (Takasu <i>et al.</i> , 2015) have been reported in the lake. Because we only
175	used the V4 region of the 16S rRNA gene for the analysis, we may not be able to detect
176	the difference of the genotype in the same OTU between the epilimnion and
177	hypolimnion. Nonetheless, our data demonstrated that the groups ubiquitous in the
178	surface freshwater habitat could also be predominant in the deeper (> 50 m) aerobic
179	layers.
180	The epilimnion-specific distribution patterns of LD12 and PnecB (Fig. 4, 5)
181	were in agreement with previously reported vertical profiles (Wu and Hahn, 2006b;
182	Salcher <i>et al.</i> , 2011a, 2011b). The present data demonstrated that several other groups
183	(e.g., acI-C2 and bacII-A) also showed preferences to the epilimnion (Fig. 4, 5). They
184	presumably consume substrate that is only available in the euphotic layer (e.g., labile
185	photosynthetic products from phytoplankton) or prefer the higher temperature in the
186	epilimnion (Fig. 1). It is also possible that they possess a light-driven metabolic
187	pathway and prefer the euphotic surface water. The presence of rhodopsin genes among

188 members of acI, Bacteroidetes, LD12, and Polynucleobacter has been suggested

- 189 (Atamna-Ismaeel *et al.*, 2008; Sharma *et al.*, 2009; Martinez-Garcia *et al.*, 2012; Ghylin
 190 *et al.*, 2014).
- 191 The dominance of *Chloroflexi* CL500-11 bacterioplankton in the hypolimnion 192during stratification in the lake (Fig. 3B, 4) has been previously reported using 193fluorescent in situ hybridization (Okazaki et al., 2013). In this study, we further 194identified *Planctomycetes* CL500-15, CL500-37, and CL500-3 as highly represented 195hypolimnion-specific groups (Fig. 3B, 4, 5). All the four groups (with the prefix 196 "CL500-") were originally reported as representative bacterioplankton in the 197oxygenated hypolimnion (500-m deep) of the ultraoligotrophic Crater Lake (USA) 198 during the stratified period (Urbach et al., 2001, 2007). This suggests that these groups 199 are not endemic but are commonly distributed in the oxygenated hypolimnion of 200freshwater lakes. 201CL500-15, a member of an uncultured class OM190, was highly represented in 202the hypolimnion, with as high as 11.1% of the total amplicon reads in August at 72 m 203(Fig. 4). To the best of our knowledge, this is the first study of such a high frequency of 204CL500-15 detection, although small numbers of clone library sequences were found in
- the oxygenated hypolimnion of Crater Lake (Urbach *et al.*, 2001), Lake Annecy, and

206	Lake Bourget (France) (Pollet <i>et al.</i> , 2011) (referred to as OTU45 in the literature).
207	CL500-37 and CL500-3 are affiliated with the $Phycisphaeraceae$, with an 85% identity
208	in 611 bp of the original 16S rRNA gene partial sequence [note that CL500-37 was
209	regarded as a member of the CL500-3 cluster in the studies in Crater Lake (Urbach et
210	al., 2001, 2007)]. It is remarkable that neither were found in the oxygenated
211	hypolimnion of Lake Annecy or Bourget (Pollet <i>et al.</i> , 2011), while both were present in
212	the winter mixing water of the deep oligotrophic Lake Stechlin (Germany) (Tada and
213	Grossart, 2014) (referred to as OTU22 and OTU10 in the literature, respectively). In
214	addition, four other <i>Planctomycetes</i> belonging to the <i>Planctomycetaceae</i> were also
215	found as hypolimnion-specific groups: P-OTU1, P-OTU76, P-OTU31, and CL500-52
216	(Fig. 3B, 4, 5). In the oxygenated hypolimnion of Lake Annecy and Bourget, P-OTU1
217	and CL500-52 (referred to as OTU2 in the literature) were predominant members of
218	Planctomycetes, while P-OTU76 and P-OTU31 were less represented (Pollet et al.,
219	2011). Altogether, <i>Planctomycetes</i> may be a phylum that is generally distributed in the
220	oxygenated hypolimnion with different predominating members at different habitats.
221	Their high diversity (covering the three classes) across the phylum supports the idea
222	that their unique physiological characteristics shared among the phylum might enable
223	their successful dominance in the hypolimnion; for example, nucleoid

224	compartmentalization and endocytosis-like protein uptake are thought to be common
225	characteristics of the phylum (Fuerst and Sagulenko, 2011). We propose that members
226	of <i>Planctomycetes</i> should receive more attention in future studies given their
227	potentially important roles in deep freshwater ecosystems.
228	The occurrence of <i>Ca.</i> Nitrosoarchaeum of ammonia-oxidizing archaea (AOA)
229	in the oxygenated hypolimnion (Fig. 3B, 4, 5) has also been reported in Crater Lake
230	(Urbach <i>et al.</i> , 2001), Lake Redon (Spain) (Auguet <i>et al.</i> , 2012), Lake Maggiore
231	(Italy/Switzerland) (Coci et al., 2015), and Lake Superior (USA/Canada) (Mukherjee et
232	al., 2016). In the previous studies, niche separation of AOA and ammonia-oxidizing
233	bacteria (AOB) was suggested between lakes (Mukherjee et al., 2016) and depths (Coci
234	et al., 2015) but is unlikely between seasons (Auguet et al., 2012). Our data
235	demonstrated that AOA only occurred at the later phase of the stratified period, while
236	AOB (<i>Nitrosospira</i>) more continuously occurred in the hypolimnion (Fig. 4, 5). Another
237	group of nitrifiers, Nitrospira, were also represented in the hypolimnion during the
238	stratification (Fig. 4, 5), yet only sporadic reports are available on Nitrospira
239	inhabiting the oxygenated water columns of freshwater lakes (Bel'kova <i>et al.</i> , 2003;
240	Tada and Grossart, 2014; Mukherjee <i>et al.</i> , 2016). In Lake Biwa, nitrate accumulation
241	in the hypolimnion throughout the stratified period with a constantly low ammonium

242	concentration (order of nM) was reported (Kim <i>et al.</i> , 2006; Thottathil <i>et al.</i> , 2013).
243	Although direct evidence is lacking, it is likely that the three nitrifiers were involved in
244	nitrification in the water column of the oxygenated hypolimnion of the lake.
245	In our data, two members of uncommon phyla were also identified as
246	hypolimnion-specific groups: LiUU-3-374 (<i>Acidobacteria</i>) and LiUU-9-330 (<i>Chlorobi</i>)
247	(Fig. 4, 5), both of which were originally described in Swedish lakes (Eiler and
248	Bertilsson, 2004). Their closest relatives found in the public sequence database were
249	almost exclusively retrieved from natural freshwater environments (data not shown).
250	This and the fact that our samples were from a pelagic lake site (Fig. 1) together
251	indicate that they are indigenous and were not transported from an allochthonous
252	source. In our data, the LiUU-3-374 highly represented from the winter mixing period
253	to the early stratified period (Fig. 4). Considering that the only isolated strain in the
254	same family (<i>Holophagaceae</i>) is able to degrade methoxylated aromatic compounds
255	(Liesack <i>et al.</i> , 1994), it is plausible that LiUU-3-374 contribute to refractory DOM
256	degradation in the lake ecosystem, as was proposed for members of deep sea
257	Acidobacteria (Quaiser et al., 2008). LiUU-9-330 was affiliated with an uncultured
258	class OPB56, which is a deeply branched lineage in the <i>Chlorobi</i> phylum (Hiras <i>et al.</i> ,
259	2015). Although their ecological characteristics remain unknown, it is likely that they

260	are not strictly hypolimnion-specific because many closely related sequences in the
261	public database were reported from the surface waters of mesotrophic (e.g., FN668200
262	by Van den Wyngaert <i>et al.</i> , 2011) to even hypereutrophic (e.g., JN371709 by Li <i>et al.</i> ,
263	2012) lakes. In our data, LiUU-9-330 were not exclusively detected in the hypolimnion
264	but also occurred in the mid-summer epilimnion (Fig. 4).
265	This study is the first comprehensive investigation of the bacterioplankton
266	community composition in the oxygenated hypolimnion of a freshwater lake covering
267	the whole stratification period. We identified many phylogenetic groups that
268	preferentially occurred in the hypolimnion, which were understudied by previous
269	research that is targeting only the epilimnion. Future studies focusing on the eco-
270	physiology of these individual hypolimnion specialists are crucial to further understand
271	the microbial ecology and biogeochemical cycling in the pelagic freshwater ecosystem.
272	ACKNOWLEDGMENTS
273	We are grateful to T Koitabashi and Y Goda for their assistance in field sampling. We
274	thank RJ Newton for providing the original ARB data used in Newton et al. (2011) and
275	two anonymous reviewers for their constructive comments to improve the manuscript.
276	This work is supported by JSPS KAKENHI Grant Number 15J00971 and by Japan
277	Science and Technology Strategic International Research Cooperative Program project

- 278 "Fate of dissolved organic matter in lakes with special reference to loading and
- 279 pollution". The authors declare no conflict of interest.
- 280 **REFERENCES**
- 281 Atamna-Ismaeel, N., Sabehi, G., Sharon, I., Witzel, K.-P., Labrenz, M., Jürgens, K., et
- *al.* (2008) Widespread distribution of proteorhodopsins in freshwater and brackish
- 283 ecosystems. ISME J 2: 656–662.
- 284 Auguet, J.-C., Triadó-Margarit, X., Nomokonova, N., Camarero, L., and Casamayor,
- E.O. (2012) Vertical segregation and phylogenetic characterization of ammonia-
- oxidizing Archaea in a deep oligotrophic lake. ISME J 6: 1786–1797.
- 287 Bel'kova, N.L., Parfenova, V. V, Kostopnova, T.I., Denisova, L.I., and Zaĭchikov, E.F.
- 288 (2003) Microbial biodiversity in the Lake Baikal water. Mikrobiologiia 72: 239–249.
- 289 Callieri, C., Hernández-Avilés, S., Salcher, M.M., Fontaneto, D., and Bertoni, R. (2015)
- 290 Distribution patterns and environmental correlates of Thaumarchaeota abundance
- 291 in six deep subalpine lakes. Aquat Sci doi: 10.1007/s00027-015-0418-3.
- 292 Coci, M., Odermatt, N., Salcher, M.M., Pernthaler, J., and Corno, G. (2015) Ecology
- and Distribution of Thaumarchaea in the Deep Hypolimnion of Lake Maggiore.
- 294 Archaea 2015: 590434.
- 295 Eckert, E.M., Salcher, M.M., Posch, T., Eugster, B., and Pernthaler, J. (2012) Rapid

296	successions affect microbial N-acetyl-glucosamine uptake patterns during a
297	lacustrine spring phytoplankton bloom. Environ Microbiol 14: 794–806.
298	Eiler, A. and Bertilsson, S. (2004) Composition of freshwater bacterial communities
299	associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol 6:
300	1228–1243.
301	Eiler, A. and Bertilsson, S. (2007) Flavobacteria blooms in four eutrophic lakes:
302	Linking population dynamics of freshwater bacterioplankton to resource
303	availability. Appl Environ Microbiol 73: 3511–3518.
304	Eiler, A., Heinrich, F., and Bertilsson, S. (2012) Coherent dynamics and association

networks among lake bacterioplankton taxa. ISME J 6: 330–342.

- 306 Farrelly, V., Rainey, F.A., and Stackebrandt, E. (1995) Effect of genome size and rrn
- 307 gene copy number on PCR amplification of 16S rRNA genes from a mixture of
- 308 bacterial species. Appl Environ Microbiol 61: 2798–2801.
- 309 Fuerst, J. a and Sagulenko, E. (2011) Beyond the bacterium: planctomycetes challenge
- 310 our concepts of microbial structure and function. Nat Rev Microbiol 9: 403–413.
- 311 Garcia, S.L., McMahon, K.D., Martinez-Garcia, M., Srivastava, A., Sczyrba, A.,
- 312 Stepanauskas, R., *et al.* (2012) Metabolic potential of a single cell belonging to one of
- 313 the most abundant lineages in freshwater bacterioplankton. ISME J 7: 137–147.

314	Ghylin, T.W., Garcia, S.L., Moya, F., Oyserman, B.O., Schwientek, P., Forest, K.T., <i>et</i>
315	al. (2014) Comparative single-cell genomics reveals potential ecological niches for
316	the freshwater acl Actinobacteria lineage. ISME J 8: 1–14.
317	Glöckner, F.O., Zaichikov, E., Belkova, N., Denissova, L., Pernthaler, J., Pernthaler, A.,
318	and Amann, R. (2000) Comparative 16S rRNA analysis of lake bacterioplankton
319	reveals globally distributed phylogenetic clusters including an abundant group of
320	actinobacteria. Appl Environ Microbiol 66: 5053–5065.
321	Hahn, M.W., Scheuerl, T., Jezberová, J., Koll, U., Jezbera, J., Šimek, K., <i>et al.</i> (2012)
322	The passive yet successful way of planktonic life: genomic and experimental
323	analysis of the ecology of a free-living polynucleobacter population. PLoS One 7:
324	e32772.
325	Heinrich, F., Eiler, A., and Bertilsson, S. (2013) Seasonality and environmental control
326	of freshwater SAR11 (LD12) in a temperate lake (Lake Erken, Sweden). Aquat
327	Microb Ecol 70: 33–44.
328	Hiras, J., Wu, Y., Eichorst, S.A., Simmons, B.A., and Singer, S.W. (2015) Refining the

- 329 phylum Chlorobi by resolving the phylogeny and metabolic potential of the
- 330 representative of a deeply branching, uncultivated lineage. ISME J doi:
- 331 10.1038/ismej.2015.158.

332	Humbert, J.F., Dorigo, U., Cecchi, P., Le Berre, B., Debroas, D., and Bouvy, M. (2009)
333	Comparison of the structure and composition of bacterial communities from
334	temperate and tropical freshwater ecosystems. Environ Microbiol 11, 2339–2350.
335	Kagami, M., Gurung, T.B., Yoshida, T., and Urabe, J. (2006) To sink or to be lysed?
336	Contrasting fate of two large phytoplankton species in Lake Biwa. Limnol Oceanogr
337	51: 2775–2786.
338	Kasalický, V., Jezbera, J., Hahn, M.W., and Šimek, K. (2013) The diversity of the
339	Limnohabitans genus, an important group of freshwater bacterioplankton, by
340	characterization of 35 isolated strains. PLoS One 8: e58209.
341	Kim, C., Nishimura, Y., and Nagata, T. (2006) Role of dissolved organic matter in
342	hypolimnetic mineralization of carbon and nitrogen in a large, monomictic lake.
343	Limnol Oceanogr 51: 70–78.
344	Li, H., Xing, P., and Wu, Q.L. (2012) The high resilience of the bacterioplankton
345	community in the face of a catastrophic disturbance by a heavy Microcystis bloom.
346	FEMS Microbiol Ecol 82: 192–201.
347	Liesack, W., Bak, F., Kreft, J.U., and Stackebrandt, E. (1994) Holophaga foetida gen.
348	nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic
349	compounds. Arch Microbiol 162: 85–90.

350	Maki, K., Kim, C., Yoshimizu, C., Tayasu, I., Miyajima, T., and Nagata, T. (2010)
351	Autochthonous origin of semi-labile dissolved organic carbon in a large monomictic
352	lake (Lake Biwa): carbon stable isotopic evidence. Limnology 11: 143–153.
353	Martinez-Garcia, M., Swan, B.K., Poulton, N.J., Gomez, M.L., Masland, D., Sieracki,
354	M.E., and Stepanauskas, R. (2012) High-throughput single-cell sequencing
355	identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton.
356	ISME J 6: 113–123.
357	McCarthy, A., Chiang, E., Schmidt, M.L., and Denef, V.J. (2015) RNA Preservation
358	Agents and Nucleic Acid Extraction Method Bias Perceived Bacterial Community
359	Composition. PLoS One 10: e0121659.
360	Mukherjee, M., Ray, A., Post, A.F., McKay, R.M., and Bullerjahn, G.S. (2016)
361	Identification, enumeration and diversity of nitrifying planktonic archaea and
362	bacteria in trophic end members of the Laurentian Great Lakes. J Great Lakes Res
363	42: 39–49.
364	Newton, R.J., Jones, S.E., Eiler, A., McMahon, K.D., and Bertilsson, S. (2011) A guide
365	to the natural history of freshwater lake bacteria. Microbiol. Mol Biol Rev 75: 14–49.
366	Okazaki, Y., Hodoki, Y., and Nakano, S. (2013) Seasonal dominance of CL500-11
367	bacterioplankton (phylum Chloroflexi) in the oxygenated hypolimnion of Lake Biwa,

- 368 Japan. FEMS Microbiol Ecol 83: 82–92.
- 369 Pollet, T., Tadonléké, R.D., and Humbert, J.F. (2011) Spatiotemporal changes in the
- 370 structure and composition of a less-abundant bacterial phylum (Planctomycetes) in
- two perialpine lakes. Appl Environ Microbiol 77: 4811–4821.
- 372 Quaiser, A., López-García, P., Zivanovic, Y., Henn, M.R., Rodriguez-Valera, F., and
- 373 Moreira, D. (2008) Comparative analysis of genome fragments of Acidobacteria from
- deep Mediterranean plankton. Environ Microbiol 10: 2704–2717.
- 375 Salcher, M.M. (2013) Same same but different: ecological niche partitioning of
- 376 planktonic freshwater prokaryotes. J Limnol 73: 74–87.
- 377 Salcher, M.M., Neuenschwander, S.M., Posch, T., and Pernthaler, J. (2015) The ecology
- of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and
- isolation campaign. ISME J 9: 2442–2453.
- 380 Salcher, M.M., Pernthaler, J., and Posch, T. (2011a) Seasonal bloom dynamics and
- 381 ecophysiology of the freshwater sister clade of SAR11 bacteria "that rule the waves"
- 382 (LD12). ISME J 5: 1242–1252.
- 383 Salcher, M.M., Pernthaler, J., Frater, N., and Posch, T. (2011b) Vertical and
- 384 longitudinal distribution patterns of different bacterioplankton populations in a
- 385 canyon-shaped, deep prealpine lake. Limnol Oceanogr 56: 2027–2039.

386	Salcher, M.M., Posch, T., and Pernthaler, J. (2013) In situ substrate preferences of
387	abundant bacterioplankton populations in a prealpine freshwater lake. ISME J 7:
388	896–907.
389	Sharma, A.K., Sommerfeld, K., Bullerjahn, G.S., Matteson, A.R., Wilhelm, S.W.,
390	Jezbera, J., et al. (2009) Actinorhodopsin genes discovered in diverse freshwater
391	habitats and among cultivated freshwater Actinobacteria. ISME J 3: 726–737.
392	Šimek, K., Kasalický, V., Zapomělová, E., and Hornák, K. (2011) Alga-derived
393	substrates select for distinct Betaproteobacterial lineages and contribute to niche
394	separation in Limnohabitans strains. Appl Environ Microbiol 77: 7307–7315.
395	Šimek, K., Nedoma, J., Znachor, P., Kasalický, V., Jezbera, J., Hornák, K., and Sed'a, J.
396	(2014) A finely tuned symphony of factors modulates the microbial food web of a
397	freshwater reservoir in spring. Limnol Oceanogr 59: 1477–1492.
398	Stoddard, S.F., Smith, B.J., Hein, R., Roller, B.R.K., and Schmidt, T.M. (2015) rrnDB:
399	improved tools for interpreting rRNA gene abundance in bacteria and archaea and a
400	new foundation for future development. Nucleic Acids Res 43: 593–598.
401	Tada, Y. and Grossart, HP. (2014) Community shifts of actively growing lake bacteria
402	after N-acetyl-glucosamine addition: improving the BrdU-FACS method. ISME J 8:
403	441 - 454.

404	Takasu, H., Ushio, M., LeClair, J., and Nakano, S. (2015) High contribution of
405	Synechococcus to phytoplankton biomass in the aphotic hypolimnion in a deep
406	freshwater lake (Lake Biwa, Japan). Aquat Microb Ecol 75: 69–79.
407	Thottathil, S.D., Hayakawa, K., Hodoki, Y., Yoshimizu, C., Kobayashi, Y., and Nakano,
408	S. (2013) Biogeochemical control on fluorescent dissolved organic matter dynamics
409	in a large freshwater lake (Lake Biwa, Japan). Limnol Oceanogr 58: 2262–2278.
410	Urbach, E., Vergin, K.L., Larson, G.L., and Giovannoni, S.J. (2007) Bacterioplankton
411	communities of Crater Lake, OR: dynamic changes with euphotic zone food web
412	structure and stable deep water populations. Hydrobiologia 574: 161–177.
413	Urbach, E., Vergin, K.L., Young, L., Morse, A., Larson, G.L., and Giovannoni, S.J.
414	(2001) Unusual bacterioplankton community structure in ultra-oligotrophic Crater
415	Lake. Limnol Oceanogr 46: 557–572.
416	Van den Wyngaert, S., Salcher, M.M., Pernthaler, J., Zeder, M., and Posch, T. (2011)
417	Quantitative dominance of seasonally persistent filamentous cyanobacteria
418	(Planktothrix rubescens) in the microbial assemblages of a temperate lake. Limnol
419	Oceanogr 56: 97–109.
420	Watanabe, K., Komatsu, N., Kitamura, T., Ishii, Y., Park, HD., Miyata, R., et al.
421	(2012) Ecological niche separation in the Polynucleobacter subclusters linked to

- 422 quality of dissolved organic matter: a demonstration using a high sensitivity
- 423 cultivation-based approach. Environ Microbiol 14: 2511–2525.
- 424 Wetzel, R.G. (2001) Limnology: Lake and River Ecosystems, 3rd edn. San Diego, USA:
- 425 Academic Press.
- 426 von Wintzingerode, F., Göbel, U.B., and Stackebrandt, E. (1997) Determination of
- 427 microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis.
- 428 FEMS Microbiol Rev 21: 213–229.
- 429 Wu, Q.L. and Hahn, M.W. (2006a) Differences in structure and dynamics of
- 430 Polynucleobacter communities in a temperate and a subtropical lake, revealed at
- 431 three phylogenetic levels. FEMS Microbiol Ecol 57: 67–79.
- 432 Wu, Q.L. and Hahn, M.W. (2006b) High predictability of the seasonal dynamics of a
- 433 species-like Polynucleobacter population in a freshwater lake. Environ Microbiol 8:
- 434 1660–1666.
- 435 Zeder, M., Peter, S., Shabarova, T., and Pernthaler, J. (2009) A small population of
- 436 planktonic Flavobacteria with disproportionally high growth during the spring
- 437 phytoplankton bloom in a prealpine lake. Environ Microbiol 11: 2676–2686.
- 438 Zwart, G., Crump, B., Kamst-van Agterveld, M., Hagen, F., and Han, S. (2002) Typical
- 439 freshwater bacteria: an analysis of available 16S rRNA gene sequences from

440 plankton of lakes and rivers. Aquat Microb Ecol 28: 141–155.

442 TABLE AND FIGURE LEGENDS

443 **Fig. 1**

444	Basic information	on the stud	y site. (A)	Location	of the sam	pling site	(Lake Biwa,
-----	-------------------	-------------	-------------	----------	------------	------------	-------------

- 445 Japan). (B) A spatiotemporal profile of water temperature determined by a CTD
- 446 profiler. (C) A spatiotemporal profile of total prokaryotic abundance determined by
- 447 enumeration of DAPI-positive cells. Dots indicate the depths and months from which
- 448 the samples for the community analysis were taken.
- 449 **Fig. 2**
- 450 (A) Alpha (Shannon) diversity of 45 individual samples. Samples from the mixing
- 451 period (Mix), the hypolimnion (Hypo.), and the epilimnion (Epi.) during stratification,
- 452 were separately plotted. The differences between them were tested by the Wilcoxon
- 453 rank sum test. The p values are shown on the right of the panel. (B) Beta diversity of
- 454 45 individual samples analyzed by non-metric multidimensional scaling (NMDS).
- 455 Arrows indicate transitions of sequentially taken samples at each depth that
- 456 characterizes the epilimnetic and hypolimnetic communities. Plot symbols and colors
- 457 illustrate sampling depths and seasons.

458 **Fig. 3**

460	percentage to the total amplicon reads. Numbers on the horizontal axis indicate the
461	sampling month. (B) The composition of the epilimnetic (left) and hypolimnetic (right)
462	communities, composed of pooled data of each layer during stratification (highlighted
463	by dashed rectangles in the panel A). A bar graph on the top shows phyla assignment in
464	each community. Bars shown below indicate the proportion of the 30 predominant
465	OTUs in each community. Bar colors indicate phyla to which individual groups were
466	assigned. Asterisks in the group name distinguish the different OTUs assigned to the
467	same group.
468	Fig. 4
469	Spatiotemporal distribution patterns of the predominant phylogenetic groups, shown in
470	the proportion (%) to the total amplicon read in each sample. In each panel,
471	abundances of three depths \times 15 months were indicated by colors shown in the three
472	rows $ imes$ 15 columns matrix. Colors in all heat maps are comparable (i.e., drawn to the
473	same scale) while the color range in individual panels is shown on the right side of the
474	matrix with the maximum value recorded in the group. Panels are arranged by
474 475	matrix with the maximum value recorded in the group. Panels are arranged by phylum, separated by dashed lines. Asterisks in the group name distinguish the
474 475 476	matrix with the maximum value recorded in the group. Panels are arranged by phylum, separated by dashed lines. Asterisks in the group name distinguish the different OTUs assigned to the same group. Gray lines in the matrix illustrate the

478	Fig.	5
-----	------	---

479	Proportion of appearance in each water layer of the 49 predominant groups. The
480	horizontal and vertical axes indicate percentages from 12 epilimnion and 24
481	hypolimnion samples during stratification, respectively. Data points at the top left side
482	suggest a preference for the hypolimnion and data points at the bottom right side
483	suggest a preference for the epilimnion. Colors of the data points illustrate the phyla to
484	which individual groups were assigned. Asterisks in the group name distinguish the
485	different OTUs assigned to the same group.
486	Table S1
487	Fasta-formatted representative sequences of each OTUs, created by the UPARSE
488	pipeline. The number of OTU corresponds to that shown in Table S2.
489	Table S2
490	Relative proportion for 863 OTUs in all 45 samples (i.e., raw data for Figures 2–5),
491	with the taxonomic assignment determined by the SILVA classification. For the
492	predominant 49 OTUs, the identified names and accession numbers of reference
493	sequences with which the identification was carried out are also shown.
494	Table S3
495	PCR primers and conditions used in this study.

(B) Comparison of the epilimnetic and hypolimnetic community

Proportion of appearance (>0.5% of the total amplicon read)

SUPPLEMENTARY EXPERIMENTAL PROCEDURES

Sampling procedure

Monthly sampling was conducted from March 2010 to June 2011 (except for February 2011) at a pelagic site of Lake Biwa (35°12′58″N 135°59′55″E; depth ca. 73 m). In each month, the samples were collected from 5 m, 50 m, and 72 m (i.e., 1 m above the bottom), using a 5 L Niskin-X bottle (General Oceanics, FL). Water samples were refrigerated until further processing. The water temperature and total prokaryotic abundance were determined as described previously (Okazaki *et al.*, 2013).

DNA extraction, amplification, and pyrosequencing

For DNA extraction, prokaryotic cells in a 25 mL water sample were collected on a 0.2 μ m polycarbonate filter. Samples were maintained at -20°C until DNA was extracted by the PowerSoil DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA), following the manufacturer's instructions. For amplicon sequencing, the V4 and V5 regions of the 16S rRNA gene were amplified with modified 530F and 907R primers, which can target a broad range of bacteria and archaea (Nunoura *et al.*, 2012). A two-step PCR was employed to efficiently obtain amplicons, including an eight-base-pair DNA tag (for post-sequencing sample identification), and the 454 adaptors conjugated on both sides at the end. The primer sequences and PCR conditions used are provided in Table S3. Each PCR step was performed in a 25 μ L volume with the buffer system of Blend Taq Plus (TOYOBO, Osaka, Japan), followed by purification with the UltraClean PCR Clean-Up Kit (MoBio Laboratories, Carlsbad, CA, USA).

The final product from each sample was equimolarly pooled according to quantification by a Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Sequencing was performed in the 1/8 regions of a sequencing reaction of a GS-FLX sequencer (Roche 454 Titanium) (Macrogen Japan Corp. Kyoto, Japan).

Operational Taxonomic Unit (OTU) creation and basic analysis

Sequence data were analyzed using the UPARSE pipeline (Edgar, 2013) by subsequently applying commands and scripts following the author's guideline (http://www.drive5.com/usearch/manual/uparse_cmds.html). We used a fastq_maxee value of 1.0, a truncated length of 200 bp, and an OTU creation identity threshold of 97%. Thereafter, taxonomic assignment of individual OTU was performed by SINA 1.2.11 (Pruesse *et al.*, 2012) referring SILVA 123 classification (Quast *et al.*, 2013). Subsequently, non-prokaryotic OTUs (i.e., chloroplast, eukaryote, and unclassified domain) were removed.

We only used the V4 region (i.e., the truncated length of 200 bp) of the 16S rRNA gene

in our analysis. If the V5 region was included (i.e., a truncated length of 350 bp), the number of total reads was considerably lower (< 40% of a 200 bp dataset), since longer reads are more prone to removal by the quality filtering step in the pipeline.

The alpha and beta diversity analysis were carried out by the phyloseq (McMurdie and Holmes, 2013) and the vegan (Oksanen *et al.*, 2015) packages of the R software (http://www.R- project.org/), respectively.

Identification of the predominant OTUs

Predominant OTUs were further identified following the freshwater bacterioplankton taxonomic framework (Newton *et al.*, 2011). Using NCBI BLAST+ tools 2.2.31 (Camacho et al., 2009), each OTU was mapped against a reference fasta-formatted database (containing 11,587 partial and full 16S rRNA sequences) that was created by the ARB software (Ludwig, 2004) from the original data provided by Newton *et al.* (2011). If an OTU showed a >99% similarity to a reference sequence, the OTU was identified by following the phylogeny of the reference sequence in the original ARB data. We followed the finest naming structure available in the reference sequence, such as "tribe" (>97% identity over the full-length 16S rRNA sequence), "clade" (>95%), or "lineage" (85%–90%), as proposed in the literature (Newton *et al.*, 2011). OTUs that failed to be named by this procedure were identified using the NCBI BLAST online search against the public sequence database (http://www.ncbi.nlm.nih.gov/). Each OTU was named following the name of the hit sequence that had the highest and >99% identity. If there were multiple candidates, the OTU was preferentially named after published sequences with the prefixes CL- (Urbach et al., 2001), LiUU- (Eiler and Bertilsson, 2004), and P-OTU-(Pollet *et al.*, 2011). For members of the genus *Limnohabitans*, we followed the nomenclature proposed by Kasalický et al. (2013). For nitrifying bacteria, the more widely accepted nomenclature of genera was used. For Cyanobacteria, identification was not carried out, since the 200 bp information is insufficient for taxonomic assignment.

REFERENCES

- Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L. (2009) BLAST+: architecture and applications. BMC Bioinformatics 10: 421.
- Edgar, R.C. (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10: 996–998.
- Eiler, A. and Bertilsson, S. (2004) Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol 6:

1228-1243.

- Kasalický, V., Jezbera, J., Hahn, M.W., and Šimek, K. (2013) The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS One 8: e58209.
- Ludwig, W. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371.
- McMurdie, P.J., Holmes, S. (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217.
- Newton, R.J., Jones, S.E., Eiler, A., McMahon, K.D., and Bertilsson, S. (2011) A guide to the natural history of freshwater lake bacteria. Microbiol. Mol Biol Rev 75: 14–49.
- Nunoura, T., Takaki, Y., Kazama, H., Hirai, M., Ashi, J., Imachi, H., and Takai, K. (2012) Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing. Microbes Environ 27: 382–90.Okazaki, Y., Hodoki, Y., and Nakano, S. (2013) Seasonal dominance of CL500-11 bacterioplankton (phylum Chloroflexi) in the oxygenated hypolimnion of Lake Biwa, Japan. FEMS Microbiol Ecol 83: 82–92.
- Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R. B., et al. (2015). vegan: Community Ecology Package. R package version 2.3-2.
- Pollet, T., Tadonléké, R.D., and Humbert, J.F. (2011) Spatiotemporal changes in the structure and composition of a less-abundant bacterial phylum (Planctomycetes) in two perialpine lakes. Appl Environ Microbiol 77: 4811–4821.
- Pruesse, E., Peplies, J., and Glöckner, F.O. (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823– 1829.
- Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and webbased tools. Nucleic Acids Res 41: D590–596.
- Urbach, E., Vergin, K.L., Young, L., Morse, A., Larson, G.L., and Giovannoni, S.J.
 (2001) Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnol Oceanogr 46: 557–572.