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Abstract We provide an improved definition of new con-
served quantities derived from the energy–momentum tensor
in curved spacetime by introducing an additional scalar func-
tion. We find that the conserved current and the associated
conserved charge become geometric under a certain initial
condition of the scalar function, and show that such a con-
served geometric current generally exists in curved space-
time. Furthermore, we demonstrate that the geometric con-
served current agrees with the entropy current in an effective
theory of a perfect fluid, thus the conserved charge is the
total entropy of the system. While the geometric charge can
be regarded as the entropy for a nondissipative fluid, its phys-
ical meaning should be investigated for more general cases.

1 Introduction

In curved spacetime, while the energy–momentum tensor
(EMT) is covariantly conserved, defining conserved energy
from it remains challenging. If the background metric is time-
dependent, the energy of matter is generally not conserved.
To satisfy the total energy conservation in general relativity,
one might need to abandon the covariant definition of the
energy or the local definition of the energy density [1–9].
See Ref. [10] for a discussion on the relation between this
issue and Noether’s second theorem [11].

Recently, an alternative conserved current has been con-
structed from the EMT as Jμ := ζTμ

νv
ν , where Tμ

ν is
the EMT, ζ is a scalar function, and vμ is a given time-like
unit vector field. The associated conserved charge in some
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examples can be regarded as an entropy [12]. In addition,
Noether’s first theorem for the global symmetry of matter in
a given curved spacetime guarantees this conservation [13].
In Ref. [12], however, it is not clear how to choose the vector
field vμ without referring to a specific coordinate system.

In this paper, we refine the proposal in Ref. [12], and per-
form further analysis to elucidate the nature of this new con-
served charge. We apply the proposal in Ref. [14] for the
perfect fluid to more general cases and choose a time-like
eigenvector uμ of the EMT for vμ. From the conservation
condition of Jμ, we determine the scalar function ζ explic-
itly, leading to the geometric expressions of the conserved
current (16) and charge (17). While we implicitly use the
covariant conservation of the EMT to specify properties of
uμ, Jμ is shown to be conserved without using equations of
motion. Note also that our analysis can be applied not only
to a background metric but also to dynamical one related to
the EMT through Einstein equation. We show that this geo-
metric conserved current is generic, and becomes the entropy
current in the case of the perfect fluid. Some implications of
our findings are also discussed.

2 Conserved current and conserved charge

2.1 Decomposition of energy–momentum tensor

We start with the EMT in a d-dimensional curve spacetime
given by

Tμ
ν = εuμuν + Pμ

ν , (1)

where ε is the energy density whose eigenvector is uniquely
given by a future-directed time-like unit vector uμ, and the
pressure tensor Pμ

ν satisfies uμP
μ
ν = Pμ

ν uν = 0, so that
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it is decomposed as Pμν = P〈μν〉 + hμν P with P :=
hαβ Pαβ/(d − 1) and P〈μν〉 := hμαhνβ(Pαβ + Pβα)/2 −
hμν P . We here define hμν := gμν + uμuν , where gμν is the
spacetime metric with the signature (−,+,+, · · · ,+), and
we do not have to specify a coordinate system for gμν as long
as Eq. (1) is satisfied. This type of EMT is a generic one at
d = 4, which describes not only massive matters but also
massless ones except in special cases, and is called the type
I of the Hawking-Ellis classification [15,16]. In this paper,
we exclusively consider this type of the EMT with the time-
like uμ at an arbitrary spacetime dimension d. In addition to
the EMT, which satisfies ∇μT

μ
ν = 0, there may be l con-

served currents Nμ
i associated with some global symmetries

as ∇μN
μ
i = 0 (i = 1, 2, . . . , l).

2.2 Curves for uμ and a family of hyper-surfaces

We first pick up one (d − 1)-dimensional space-like hyper-
surface Hd−1 on which the EMT is non-zero. Therefore,
uμ(x) �= 0 exists for ∀x ∈ Hd−1. Since the hyper-surface
Hd−1 is (d − 1)-dimensional, an arbitrary point xP in Hd−1

can be parametrized by a new (d−1)-dimensional coordinate
ya (a = 1, 2, . . . , d − 1) such that Hd−1 = {xμ

P (y) | y ∈
Hd−1}, where Hd−1 is a (d − 1)-dimensional subspace of
R
d−1. Note that Hd−1 may be disconnected or non-compact

such that Hd−1 = R
d−1.

We introduce the timelike curve through a point xP (y) ∈
Hd−1 parametrized by τ , which satisfies

dxμ(τ, y)

dτ
= uμ(xμ(τ, y)), xμ(0, y) = xμ

P (y). (2)

This can be integrated as

xμ(τ, y) = xμ
P (y) +

∫ τ

0
dη uμ(x(η, y)) (3)

for both positive and negative values of τ . Hereafter, sim-
plified notations such as uμ(τ, y) := uμ(x(τ, y)) or similar
ones should be understood. In this paper, we assume that
ε(τ, y) at ∀y ∈ Hd−1 never vanishes for τ ∈ R, though it is
very likely due to ∇μT

μ
ν = 0.

We now define a family of space-like (d−1)-dimensional
hyper-surfaces as Hd−1(τ ) := {

xμ(τ, y)|∃τ, ∀y ∈ Hd−1
}
,

andHd−1(0) = Hd−1 by definition. A d-dimensional space-
time region Md associated with non-zero EMT is now given
by a foliation of Hd−1(τ ) in terms of τ .

So far, we do not specify a coordinate system, but it may
be convenient to take a ((d − 1) + 1)-decomposition x̃ A =
(x̃0, x̃a) such that τ = f (x̃0) with f ′(x̃0) > 0, where the
prime denotes the derivative with respect to x̃0 and x̃a = ya

with a = 1, . . . , d − 1 (See Fig. 1.) Then, the metric on Md

Fig. 1 A d-dimensional spacetime region Md (τ1, τ2) and a hyper-
surface Hd−1(τ ) in it. The curves generated by the vector field uμ are
not parallel to its unit normal nμ ∝ −∂μτ in general. The time-like
boundaries ∂sMd are tangent to uμ. For simplicity, we here plot a case
with x̃0 = τ

is given by

g̃ABd x̃
Ad x̃ B = −N 2(dx̃0)2 + hab(dx̃

a + Nadx̃0)

× (dx̃b + Nbdx̃0), (4)

where the induced metric on Hd−1(τ ) is given by hab :=
gμνe

μ
a eν

b with eμ
a := ∂xμ/∂ya , the shift vector by Na :=

hab f ′gμνuμeν
b with hab being the inverse of hab, and the

lapse function by N := √
( f ′)2 + NaNa . In the matrix nota-

tion, we write

g̃AB =
(−N 2 + NaNa, Nb

Na, hab

)
,

g̃ AB = 1

N 2

( −1, Nb

Na, N 2Bab

)
, (5)

where

Bab := gμν ∂ya

∂xμ

∂yb

∂xν
= hab − NaNb

N 2 . (6)

In this case, the future-directed unit normal to the constant x̃0

hyper-surface Hd−1(τ ) is expressed as ñ A = −Nδ0
A while

ũ A := uμ∂ x̃ A/∂xμ = δA0 / f ′ by definition, so that u · n =
−N/ f ′.

For later uses, we introduce a scalar K := gμν∇μuν ,
which can be expressed as

K = ∂μu
μ + uμ�ν

μν = ∂μu
μ + uμ∂μ ln

√−g , (7)

where �ν
μρ := gνλ(∂μgλρ + ∂ρgλν − ∂λgμρ)/2. In the x̃ A

coordinate system with the metric (5), we find ∂Aũ A =
−ũ A∂A ln f ′ = −∂τ ln f ′ and g̃ := det g̃AB = −N 2h with
h := det hab; therefore,

K = ∂τ ln[(N/ f ′)
√
h] = ∂τ ln[(−n · u)

√
h] . (8)
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2.3 Conserved current and charge from the EMT

As mentioned in the introduction, the energy defined from
the EMT is not conserved if the spacetime metric does not
allow for the time-like Killing vector. While one may include
missing contributions from gravitational fields to make the
total energy conserved, it is difficult to do it covariantly [10].
In this section, we instead propose an alternative conserved
charge [12], which can be defined from the (matter) EMT
alone without contribution from gravitational fields.

We first construct a current from the EMT, a vector vμ

and a scalar function ζ as Jμ(x) := Tμ
ν (x)ζ(x)vν(x), which

we require to be covariantly conserved as ∇μ Jμ = 0. This
construction of a conserved current with a scalar function ζ

has been proposed previously in Ref. [12], 1 but a choice of
vμ was not explicitly given in the proposal. In this paper, we
propose vμ = −uμ, the time-like unit eigenvector uμ of the
EMT, which gives Jμ = ε(x)ζ(x)uμ(x), and the proposal
becomes coordinate independent. The use of uμ from the
perfect fluid has been proposed first in Ref. [14]. See also
Ref. [18].

2.3.1 Determination of ζ

The conservation condition applied to Jμ results in

∇μ J
μ = uμ∂μ(ζε) + ζεK = ∂(ζε)

∂τ
+ ζεK = 0, (9)

which can be solved as

ε(τ, y)ζ(τ, y) = ε(0, y)ζ(0, y) exp

[
−

∫ τ

0
dηK (η, y)

]
,

(10)

where ζ(0, y) is an initial value of ζ at τ = 0. Using the
expression of K in Eq. (8) and noticing that (−n · u)

√
h > 0

by definition, we obtain

s(τ, y) : −ζ(τ, y)ε(τ, y) = ζ(0, y)ε(0, y)

√
h(−n · u)(0, y)√
h(−n · u)(τ, y)

,

(11)

which leads to the following expression of the conserved
current,

Jμ(τ, y) = s(τ, y)uμ(τ, y) . (12)

Note that the initial condition s(0, y) := ζ(0, y)ε(0, y) is
controlled by ζ(0, y).

1 In the case of time-dependent but spherically symmetric 4-
dimensional spacetime, the conserved current proposed in Ref. [17]
agrees with Jμ in this construction if the Einstein tensor is replaced by
the EMT through the Einstein equation.

2.3.2 Conserved charge

We take a spacetime region Md(τ1, τ2) as a foliation of
Hd−1(τ ) at τ between τ1 and τ2 (τ1 < τ2): Md(τ1, τ2) :=
{Hd−1(τ ) | τ1 ≤ τ ≤ τ2}. Thus, (d−1)-dimensional bound-
aries ofMd(τ1, τ2) consist of two space-like hyper-surfaces,
Hd−1(τ1) and Hd−1(τ2), plus a time-like one, ∂sMd , whose
normal vector is orthogonal to uμ everywhere on ∂sMd , as
depicted in Fig. 1. If the parameter space Hd−1 is not sim-
ply connected, ∂sMd is not connected, or ∂sMd = ∅ may
happen in some cases.

Integrating ∇μ Jμ = 0 over this region with Gauss’s the-
orem, we obtain

∫
Md (τ1,τ2)

dd x
√−g∇μ Jμ = Q(Hd−1(τ2)) − Q(Hd−1(τ1))

+
∫
∂sMd

d�μ Jμ = 0, (13)

where

Q(Hd−1(τ )) =
∫
Hd−1(τ )

d�μ Jμ, (14)

and d�μ is a (hyper-)surface element on each boundary.
Since d�μ Jμ ∝ d�μuμ = 0 on ∂sMd , the last term in
Eq. (13) vanishes. Therefore Q(τ ) is τ -independent, and we
thus denote Q(Hd−1(τ )) = Q. This charge can be under-
stood as a kind of conserved charge derived from Noether’s
1st theorem [11] in the presence of the local symmetry [13].

As the charge in Eq. (14) is covariantly defined, we can
express it in the x̃ A coordinate using Eq. (12) as

Q =
∫
Hd−1(0)

dd−1y s(0, y)
√
h(−n · u)(0, y), (15)

which is indeed τ -independent, where we use d�μ =
−nμ

√
hdd−1y. One can consider infinitely many conserved

charges depending on values of ζ on a specified “initial”
time-slice. To be explicit, we have taken Hd−1(0) as this ini-
tial slice in Eq. (15). As can be seen from Fig. 1, the charge
Q defined on an arbitrary space-like hypersurface instead of
Hd−1(0) takes the same value, as long as it covers a whole
region.

2.3.3 A choice of an initial condition

We now discuss a choice of s(0, y), an initial condition for
s(τ, y), which is scalar under the coordinate transformation
of y. A simplest choice is s(0, y) = 1, equivalent to ζ(0, y) =
1/ε(0, y), which leads to a current and the corresponding
charge as

Jμ(τ, y) =
√
h(−n · u)(0, y)√
h(−n · u)(τ, y)

uμ(τ, y), (16)

123
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Q =
∫
Hd−1(0)

dd−1y
√
h(−n · u)(0, y). (17)

We call the former the geometric current since it does not
depend on the energy density ε(τ, y). The charge Q in (17)
is invariant under the coordinate transformation of y, thanks
to a presence of

√
h(0, y) in the integrand. As we will show

later, we can construct an effective theory for the perfect fluid
on a curved spacetime, where the entropy current corresponds
to the geometric current Jμ defined above.

Another choice is s(0, y) = ε(0, y) (i.e. ζ(0, y) = 1),
whose corresponding charge becomes

Q′ =
∫
Hd−1(0)

dd−1y ε(0, y)
√
h(−n · u)(0, y). (18)

The conserved charge Q′, however, is physically trivial, since
it is the total static energy (mass) at τ = 0 but may not be
equal to the total static energy at τ �= 0. We, therefore, do
not consider Q′ in this paper.

2.3.4 Geometric expression of conserved currents

As mentioned before, there may also be l conserved currents
Nμ
i in the system (i = 1, 2, . . . , l), which can be written as

Nμ
i = Niu

μ
i , Ni := √−Ni · Ni , uμ

i := Nμ
i

Ni
. (19)

As in the case of uμ, we can introduce a new coordi-
nate (τi , yi ) associated with uμ

i . The covariant conservation
∇μN

μ
i = 0 implies

∂Ni

∂τi
+ Ni Ki = 0, Ki := ∇μu

μ
i , (20)

which is solved as

Ni (τi , yi ) = Ni (0, yi )

√
hi (−ni · ui )(0, yi )√
hi (−ni · ui )(τi , yi ) , (21)

and the corresponding charge,

Q′
i =

∫
Hd−1(τi=0)

dd−1yi Ni (0, yi )
√
hi (−ni · ui )(0, yi ).

(22)

is a conserved (Noether) charge, and thus physically mean-
ingful.

We can also define the geometric current as in Eq. (16),
however, this is redundant as it can be derived as the ordinary
Noether current in this case.

3 Geometric conservation and entropy

In this section, we discuss the physical meaning of the geo-
metric current (16). We show that the conserved current and
the charge become the entropy current and the total entropy,
respectively, in an effective theory of a perfect fluid.

3.1 Geometric conservation

To obtain the geometric conserved current (16), an essential
property of the EMT is to provide a time-like unit vector
field uμ(τ, y) such that ε(τ, y) �= 0 at ∀τ for y ∈ Hd−1 and
ε(τ, y) = 0 at ∀τ for y /∈ Hd−1, while the detailed structure
of the EMT is irrelevant. We here argue that the existence of
such a vector field generally leads to a geometric current and
charge.

Given such a vector field uμ satisfying the above condi-
tion, we have the same type of decomposition as before, and
accordingly, the (d − 1)-tensor Bab introduced in Eq. (6).
Then, we can construct

b :=
√

det Bab = f ′√−g̃
= 1√

h(−n · u)
(23)

and

Jμ(τ, y) = b̃uμ , b̃ := b(τ, y)/b(0, y) , (24)

which is equivalent to the current given in Eq. (16) and the
covariant conservation ∇μ Jμ = 0 holds as before.2

To make it easier to see the conservation, we give an alter-
native expression of Jμ with the Levi–Civita tensor ε with
ε01···d−1 = √−g:

Jμ = − 1

(d − 1)!
1√−g̃

1

b(0, y)
εμα1α2···αd−1 ε̃0a1a2···ad−1

× ∂α1 y
a1∂α2 y

a2 · · · ∂αd−1 y
ad−1 , (25)

2 One can prove the covariant conservation differently: The inverse of
Bab satisfies

Bab∂μy
a∂ν y

b = gμν + uμuν ,

since
(
Bab∂μya∂ν yb

)
gνα∂α yc = BabBbc∂μya = ∂μyc and(

Bab∂μya∂ν yb
)
uν = 0. Therefore,

uα∇αb = 1

2
bBabu

α∇αB
ab = −bgμν(∇μu

α)Bab∂α y
a∂ν y

b

= −bgμν(∇μu
α)hαν = −bK ,

where we have used uα∇α∂μya = uα∇μ∂α ya = −(∇μuα)∂α ya . Since
uμ∇μb(0, y) = 0, we have ∇μ Jμ = (uμ∇μb + b∇μuμ)/b(0, y) = 0.

123
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where ε̃ denotes the Levi–Civita tensor in the x̃ A coordinate.3

Since εμ···αi ···αd−1∇μ∂αi y
ai = 0 and Jμ∂μya = 0, we get

∇μ Jμ = 0.

3.2 The geometric charge for the perfect fluid

We now consider the physical meaning of this geometric
current Jμ in the case of the perfect fluid given by Tμ

ν =
εuμuν + P(uμuν + δ

μ
ν ) with the pressure P , whose conser-

vation leads to ∂τ ε = −(ε + P)K . The (d − 1)-dimensional
“comoving” coordinate y is regarded as the label of fluid
element.

For simplicity, we assume that there exists only one
other conserved current Nμ

1 which is proportional to uμ as
Nμ

1 = N1uμ, where N1 is the corresponding charge den-
sity, though an extension to more than one conserved current
is straightforward as long as all currents are proportional to
uμ. The corresponding conservation equation then becomes
∇μN

μ
1 = ∂τ N1 + N1K = 0.

3.2.1 The conservation of entropy and an effective theory

We define an entropy current as sμ := suμ, where the entropy
density s is supposed to satisfy thermodynamic relations,
given by Tds = dε −μ1dN1 and T s = ε + P −μ1N1 with
T being the temperature and μ1 being the chemical potential
for N1. Then, it is easy to see that the entropy current is
conserved as

∇μs
μ = ∂s

∂τ
+ sK = 1

T

(
∂ε

∂τ
− μ1

∂N1

∂τ
+ sT K

)

= K

T
(−ε − P + μ1N1 + sT ) = 0. (26)

Conservation of entropy in a perfect fluid can also be
understood using the effective theory [19–21]. The entropy
current in the effective theory approach appears to be only
invariant under the (d − 1)-dimensional volume-preserving
diffeomorphism because of the gauge-fixing such that the
comoving coordinate volume of a fluid element coincides
with the amount of entropy carried by that fluid element. In
this subsection, we show that, with a choice of the coordinate
such that

√
h = (−n · u)−1 at τ = 0 leading to b(0, τ ) = 1

and b̃ = b, the geometric current (16),

3 It can be obtained from Jμ = b̃δμ
ν uν with the identity

δμ
ν = − εμρ1···ρd−1ενρ1···ρd−1/(d − 1)!

= − εμρ1···ρd−1∂ρ1 x̃
A1 · · · ∂ρd−1

x̃ Ad−1 ε̃AA1···Ad−1

(d − 1)!
∂ x̃ A

∂xν
,

and the definition ũ A = δA0 .

Jμ(τ, y) = 1√
h(−n · u)(τ, y)

uμ(τ, y)

= b(τ, y) × uμ(τ, y) , (27)

corresponds to the entropy current obtained in the effective
theory. Then, the total entropy is given by the corresponding
charge,

Q =
∫
Hd−1(0)

dd−1y. (28)

We require that the perfect fluid should have the internal
symmetries ya → f a(y) with det(∂ f a/∂yb) = 1 and ψ →
ψ + g(y). Then, these symmetries imply that the effective
action is given by a function of b = √

det Bab and z =
uμ∂μψ at the leading order of the derivative expansion. Using
this symmetry we construct an effective theory for the perfect
fluid on a curved spacetime, whose action is given by

S =
∫

dd x
√−gF(b, z). (29)

The degrees of freedom are (d−1)-scalar fields ya(x), which
describe the comoving coordinates of the fluid element and
phase field ψ(x). As already seen, Jμ = buμ is covariantly
conserved. The field ψ is a phase variable corresponding
to the conserved current Nμ

1 , since the action is invariant
under the constant shift of ψ as ψ → ψ + c. The associated
conserved current is obtained from the action as Nμ

1 (x) =
∂z Fuμ, so that the charge density is expressed as N1 = Fz :=
∂z F .

3.2.2 The entropy as the geometric conserved charge

We are going to show that Jμ is the entropy current for the
perfect fluid, i.e., b = s. The EMT is evaluated as

Tμν(x) := 2√−g

∂S

∂gμν(x)
= gμνF + 2Fz

b

∂(Jμ∂μψ)

∂gμν

− 2(Fzz − Fbb)
∂b

b∂gμν

, (30)

where we have

∂b

∂gμν

= −b

2
Babg

μαgνζ ∂α y
a∂ζ y

b = −b

2
(gμν + uμuν).

(31)

Since the combination ε̃0a1a2···ad−1/
√−g̃ in Eq. (25) is inde-

pendent of the metric, we have Jμ ∝ 1/
√−g and

∂(Jμ∂μψ)

∂gμν

= −bz

2
gμν. (32)

123
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Thus, the EMT becomes

Tμ
ν = (F − Fbb)δ

μ
ν + (Fzz − Fbb)u

μuν, (33)

which leads to ε = Fzz − F and P = F − Fbb, in
addition to N1 = Fz obtained before. These expressions
give dε = zdN1 − Fbdb, which should be consistent with
dε = μ1dN1 + Tds. Therefore, we find

s = b, T = −Fb, μ1 = z , (34)

which correctly reproduce thermodynamic relation as ε +
P − μ1N1 = −Fbb = T s.

We therefore conclude that the conserved geometric cur-
rent (27), and hence, its covariant form (16) without gauge
fixing is the entropy current as Jμ = b̃uμ = suμ in the
case of the perfect fluid, so that the corresponding geometric
conserved charge is the total entropy. It was argued that the
conserved current can be identified with the entropy current
for the perfect fluid in Ref. [12], whose choice for the vec-
tor happens to become uμ in this case. In Refs. [14,22], the
conserved current from the choice of uμ has been explicitly
constructed for the static and spherically symmetric perfect
fluid and shown to become the entropy current with an appro-
priate choice of the temperature.

Since the entropy is conserved for the perfect fluid, or
more generally, non-dissipative fluid, it is not surprising that
it agrees with the total charge Q in curved spacetime.4 To our
surprise, however, the total charge Q is always conserved
even in cases where entropy conservation is not expected.
Currently, we do not have a good interpretation of Q beyond
perfect (or non-dissipative) fluid, but the formula

Q =
∫
Hd−1

√
h(−n · u)(0, y) dd−1y (35)

suggests that it measures a geometric quantity associated with
the matter flux uμ, which interestingly becomes the total
entropy for non-dissipative fluid.

In the case of general relativity, the EMT generates a
curved spacetime through the Einstein equation. Thus, the
geometric charge Q is the source for gravity, which we may
call the gravitational charge [18,24]. In the case of the non-
dissipative fluid, the entropy is the source of gravity, which
reminds us of a statement that the gravity is an entropic
force [25,26]. More we understand Q, more we know the
nature of both entropy and gravity.

4 In Ref. [23], the entropy in the flat spacetime is regarded as the Noether
charge.

3.2.3 Stefan–Boltzmann law

In this subsection, we derive the Stefan–Boltzman law for
the perfect fluid using our interpretation that s(τ, y) in (12)
is an entropy density. For the case of the expanding Universe,
see Ref. [24].

Assuming an equation of state (EOS) that P(τ, y) =
ω(τ, y)ε(τ, y), together with ∂τ ε = −(ε + P)K from the
conservation of the EMT, we obtain

ε(τ, y) = ε(0, y) exp

[
−

∫ τ

0
dη {1 + ω(η, y)}K (η, y)

]
,

(36)

where K (η, y) is given by Eq. (8).
We now consider the time-independent EOS as ω(τ, y) =

ω(y), which leads to

ε(τ, y) = ε(0, y)

(
g(0, y)

g(τ, y)

)1+ω(y)

, (37)

where we introduce a short-handed notation that g(τ, y) :=√
h(−n·u)(τ, y). The thermodynamic relation in the absence

of the conserved charge such as particle numbers reads

s(τ, y) = ε + P

T
(τ, y) = (1 + ω(y))

ε(τ, y)

T (τ, y)
. (38)

Combining these with s(τ, y) = ζ(τ, y)ε(τ, y) and the rela-
tion (11), we obtain

ε(τ, y) = ε(0, y)

(
T (τ, y)

T (0, y)

)1+1/ω(y)

, (39)

which is the Stefan–Boltzmann law, where

T (0, y) = ε(0, y)(1 + ω(y)). (40)

Indeed ω(y) = 1/(d − 1) = 1/3 at d = 4, it becomes

ε(τ, y) = σ4(y)T
4(τ, y), σ4(y) := ε(0, y)

T 4(0, y)
. (41)

This analysis also shows that ζ is proportional to the
inverse temperature and its initial condition determines the
initial temperature from the energy density ε as

ζ(0, y) = 1

ε(0, y)
= (1 + ω(y))

T (0, y)
, (42)

and the time dependence of the temperature is determined in
such a way that the entropy is conserved as

T (τ, y) = T (0, y)

(
g(0, y)

g(τ, y)

)ω(y)

. (43)

123
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4 Discussion

In this paper, we refine the proposal in Ref. [12], which pro-
vides a new conserved current and charge in curved space-
time, including general relativity. With an appropriate ini-
tial condition of ζ , the conserved current become geomet-
ric as given in Eq. (16), and thus the conserved charge
(17) just counts the total “number” of stream lines uμ, so
that the conservation looks trivial. Indeed, this conserved
charge becomes the number of particles for the system of
massive particles interacting with each other only through
gravity [24]. Surprisingly, however, the geometric conserved
current agrees exactly with the entropy current in the effec-
tive theory of the perfect fluid, so that the total charge is
the total entropy in the system. Once the vector uμ from
the EMT and nμ and h from the metric are given analyt-
ically or numerically, the entropy distribution over space-
time can be easily determined by the simple formula that
s(τ, y) = √

h(−n · u)(0, y)/
√
h(−n · u)(τ, y).

It is important to investigate the physical meaning of the
conserved current (16) and charge (17) in the case of the dis-
sipative fluid, where the entropy is generally not conserved.
The conserved charge may become trivial such as the total
entropy at τ = 0, which however can increase at τ > 0. See
Q′ in (18), the total rest energy at τ = 0, for such an example.
Or the geometric conserved charge for the dissipative fluid
may allow an interesting physical interpretation, which may
lead to a deeper understanding of gravitational interactions.
We leave this interesting question to future studies.

Acknowledgements S.A would like to thank Profs. Matthias Blau, Yu
Nakayama, Masaru Shibata, and Kenta Kiuchi for useful discussions
and comments. This work is supported in part by the Grant-in-Aid of
the Japanese Ministry of Education, Sports, Culture, Sciences and Tech-
nology (MEXT) for Scientific Research (No. JP22H00129). The work
of K.K. is supported by KIAS Individual Grants, Grant No. 090901.

Data Availability Statement This manuscript has no associated data.
[Author’s comment: Data sharing not applicable to this article as no
datasets were generated or analysed during the current study.]

Code Availability Statement This manuscript has no associated
code/software. [Author’s comment: Code/Software sharing not applica-
ble to this article as no code/software was generated or analysed during
the current study.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. A. Einstein, The foundation of the general theory of relativity.
Ann. Phys. 49(7), 769–822 (1916). https://doi.org/10.1002/andp.
19163540702

2. R.L. Arnowitt, S. Deser, C.W. Misner, The dynamics of general
relativity. Gen. Relativ. Gravit. 40, 1997–2027 (2008). https://doi.
org/10.1007/s10714-008-0661-1. arXiv:gr-qc/0405109

3. H. Bondi, M. van der Burg, A. Metzner, Gravitational waves in
general relativity. 7. Waves from axisymmetric isolated systems.
Proc. R. Soc. Lond. A 269, 21–52 (1962). https://doi.org/10.1098/
rspa.1962.0161

4. A. Komar, Asymptotic covariant conservation laws for gravita-
tional radiation. Phys. Rev. 127(4), 1411 (1962). https://doi.org/
10.1103/PhysRev.127.1411

5. J.D. Brown, J.W. York Jr., Quasilocal energy and conserved
charges derived from the gravitational action. Phys. Rev. D 47,
1407–1419 (1993). https://doi.org/10.1103/PhysRevD.47.1407.
arXiv:gr-qc/9209012

6. S.W. Hawking, G.T. Horowitz, The gravitational Hamiltonian,
action, entropy and surface terms. Class. Quantum Gravity 13,
1487–1498 (1996). https://doi.org/10.1088/0264-9381/13/6/017.
arXiv:gr-qc/9501014

7. G.T. Horowitz, R.C. Myers, The AdS/CFT correspondence and a
new positive energy conjecture for general relativity. Phys. Rev. D
59, 026005 (1998). https://doi.org/10.1103/PhysRevD.59.026005.
arXiv:hep-th/9808079

8. V. Balasubramanian, P. Kraus, A Stress tensor for anti-de Sitter
gravity. Commun. Math. Phys. 208, 413–428 (1999). https://doi.
org/10.1007/s002200050764. arXiv:hep-th/9902121

9. A. Ashtekar, S. Das, Asymptotically anti-de Sitter space-
times: conserved quantities. Class. Quantum Gravity 17,
L17–L30 (2000). https://doi.org/10.1088/0264-9381/17/2/101.
arXiv:hep-th/9911230

10. S. Aoki, T. Onogi, Conserved non-Noether charge in general rel-
ativity: physical definition versus Noether’s second theorem. Int.
J. Mod. Phys. A 37(22), 2250129 (2022). https://doi.org/10.1142/
S0217751X22501299. arXiv:2201.09557 [hep-th]

11. E. Noether, Invariant variation problems. Gott. Nachr. 1918,
235–257 (1918). https://doi.org/10.1080/00411457108231446.
arXiv:physics/0503066

12. S. Aoki, T. Onogi, S. Yokoyama, Charge conservation, entropy cur-
rent and gravitation. Int. J. Mod. Phys. A 36(29), 2150201 (2021).
https://doi.org/10.1142/S0217751X21502018. arXiv:2010.07660
[gr-qc]

13. S. Aoki, Noether’s 1st theorem with local symmetries. PTEP
2022(12), 123A02 (2022). https://doi.org/10.1093/ptep/ptac160.
arXiv:2206.00283 [hep-th]

14. S. Yokoyama, Local thermodynamics and entropy for relativistic
hydrostatic equilibrium. arXiv:2304.06196 [gr-qc]

15. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-
Time. Cambridge Monographs on Mathematical Physics (Cam-
bridge University Press, Cambridge, 2023), p.2. https://doi.org/10.
1017/9781009253161

16. P. Martin-Moruno, M. Visser, Essential core of the Hawking–Ellis
types. Class. Quantum Gravity 35(12), 125003 (2018). https://doi.
org/10.1088/1361-6382/aac147. arXiv:1802.00865 [gr-qc]

17. H. Kodama, Conserved energy flux for the spherically symmetric
system and the back reaction problem in the black hole evaporation.
Prog. Theor. Phys. 63, 1217 (1980). https://doi.org/10.1143/PTP.
63.1217

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1007/s10714-008-0661-1
https://doi.org/10.1007/s10714-008-0661-1
http://arxiv.org/abs/gr-qc/0405109
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1103/PhysRev.127.1411
https://doi.org/10.1103/PhysRev.127.1411
https://doi.org/10.1103/PhysRevD.47.1407
http://arxiv.org/abs/gr-qc/9209012
https://doi.org/10.1088/0264-9381/13/6/017
http://arxiv.org/abs/gr-qc/9501014
https://doi.org/10.1103/PhysRevD.59.026005
http://arxiv.org/abs/hep-th/9808079
https://doi.org/10.1007/s002200050764
https://doi.org/10.1007/s002200050764
http://arxiv.org/abs/hep-th/9902121
https://doi.org/10.1088/0264-9381/17/2/101
http://arxiv.org/abs/hep-th/9911230
https://doi.org/10.1142/S0217751X22501299
https://doi.org/10.1142/S0217751X22501299
http://arxiv.org/abs/2201.09557
https://doi.org/10.1080/00411457108231446
http://arxiv.org/abs/physics/0503066
https://doi.org/10.1142/S0217751X21502018
http://arxiv.org/abs/2010.07660
https://doi.org/10.1093/ptep/ptac160
http://arxiv.org/abs/2206.00283
http://arxiv.org/abs/2304.06196
https://doi.org/10.1017/9781009253161
https://doi.org/10.1017/9781009253161
https://doi.org/10.1088/1361-6382/aac147
https://doi.org/10.1088/1361-6382/aac147
http://arxiv.org/abs/1802.00865
https://doi.org/10.1143/PTP.63.1217
https://doi.org/10.1143/PTP.63.1217


  419 Page 8 of 8 Eur. Phys. J. C           (2025) 85:419 

18. S. Aoki, Colliding gravitational waves and singularities. Int. J.
Mod. Phys. A 38(21), 2350120 (2023). https://doi.org/10.1142/
S0217751X23501208. arXiv:2209.11357 [gr-qc]

19. S. Dubovsky, T. Gregoire, A. Nicolis, R. Rattazzi, Null energy con-
dition and superluminal propagation. JHEP 03, 025 (2006). https://
doi.org/10.1088/1126-6708/2006/03/025. arXiv:hep-th/0512260

20. S. Endlich, A. Nicolis, R. Rattazzi, J. Wang, The quantum mechan-
ics of perfect fluids. JHEP 04, 102 (2011). https://doi.org/10.1007/
JHEP04(2011)102. arXiv:1011.6396 [hep-th]

21. S. Dubovsky, L. Hui, A. Nicolis, D.T. Son, Effective field theory
for hydrodynamics: thermodynamics, and the derivative expan-
sion. Phys. Rev. D 85, 085029 (2012). https://doi.org/10.1103/
PhysRevD.85.085029. arXiv:1107.0731 [hep-th]

22. S. Yokoyama, Relativistic hydrostatic structure equations and ana-
lytic multilayer stellar mode. arXiv:2306.16647 [gr-qc]

23. S.-I. Sasa, Y. Yokokura, Thermodynamic entropy as a Noether
invariant. Phys. Rev. Lett. 116(14), 140601 (2016). https://doi.
org/10.1103/PhysRevLett.116.140601. arXiv:1509.08943 [cond-
mat.stat-mech]

24. S. Aoki, T. Onogi, T. Yamaoka, Energies and a gravitational charge
for massive particles in general relativity. arXiv:2305.09849 [gr-
qc]

25. T. Jacobson, Thermodynamics of space-time: the Einstein equation
of state. Phys. Rev. Lett. 75, 1260–1263 (1995). https://doi.org/10.
1103/PhysRevLett.75.1260. arXiv:gr-qc/9504004

26. E.P. Verlinde, On the origin of gravity and the laws of Newton.
JHEP 04, 029 (2011). https://doi.org/10.1007/JHEP04(2011)029.
arXiv:1001.0785 [hep-th]

123

https://doi.org/10.1142/S0217751X23501208
https://doi.org/10.1142/S0217751X23501208
http://arxiv.org/abs/2209.11357
https://doi.org/10.1088/1126-6708/2006/03/025
https://doi.org/10.1088/1126-6708/2006/03/025
http://arxiv.org/abs/hep-th/0512260
https://doi.org/10.1007/JHEP04(2011)102
https://doi.org/10.1007/JHEP04(2011)102
http://arxiv.org/abs/1011.6396
https://doi.org/10.1103/PhysRevD.85.085029
https://doi.org/10.1103/PhysRevD.85.085029
http://arxiv.org/abs/1107.0731
http://arxiv.org/abs/2306.16647
https://doi.org/10.1103/PhysRevLett.116.140601
https://doi.org/10.1103/PhysRevLett.116.140601
http://arxiv.org/abs/1509.08943
http://arxiv.org/abs/2305.09849
https://doi.org/10.1103/PhysRevLett.75.1260
https://doi.org/10.1103/PhysRevLett.75.1260
http://arxiv.org/abs/gr-qc/9504004
https://doi.org/10.1007/JHEP04(2011)029
http://arxiv.org/abs/1001.0785

	Geometric conservation in curved spacetime and entropy
	Abstract 
	1 Introduction
	2 Conserved current and conserved charge
	2.1 Decomposition of energy–momentum tensor
	2.2 Curves for u mu and a family of hyper-surfaces
	2.3 Conserved current and charge from the EMT
	2.3.1 Determination of zeta
	2.3.2 Conserved charge
	2.3.3 A choice of an initial condition
	2.3.4 Geometric expression of conserved currents


	3 Geometric conservation and entropy
	3.1 Geometric conservation
	3.2 The geometric charge for the perfect fluid
	3.2.1 The conservation of entropy and an effective theory
	3.2.2 The entropy as the geometric conserved charge
	3.2.3 Stefan–Boltzmann law


	4 Discussion
	Acknowledgements
	References


