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We present a method to directly detect the axion dark matter using nitrogen vacancy centers in diamonds.
In particular, we use metrology leveraging the nuclear spin of nitrogen to detect axion-nucleus couplings. This
is achieved through protocols designed for dark matter searches, which introduce a novel approach of
quantum sensing techniques based on the nitrogen vacancy center. Although the coupling strength of the
magnetic fields with nuclear spins is three orders of magnitude smaller than that with electron spins for
conventional magnetometry, the axion interaction strength with nuclear spins is the same order of magnitude
as that with electron spins. Furthermore, we can take advantage of the long coherence time by using the
nuclear spins for the axion dark matter detection. Our method has the potential to be sensitive to a broad
frequency range ≲100 Hz corresponding to the axion mass ma ≲ 4 × 10−13 eV. We present the detection
limit of our method for both the axion-neutron and the axion-proton couplings and discuss its significance in
comparison with other proposed ideas. We also show that the sensitivities of the NV center sensor to various
spin species will open up new directions for constructing protocols that can mitigate magnetic noise effects.
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I. INTRODUCTION

The existence of dark matter (DM) is one of the most

important hints of new physics in particle physics. While

the relic abundance of DM in the current Universe is known
through various cosmological and astrophysical observa-
tions, such as the galaxy rotation curve, weak gravitational
lensing, and the cosmic microwave background (see,
e.g., [1–9]), other properties of DM remain unrevealed.
One approach to study these properties is through direct
detection of DM in lab-based experiments. Given the
variety of DM candidates that can explain the relic
abundance, numerous approaches have been taken to
investigate different types of DM interactions with standard
model (SM) particles (see [10–12] for a review).
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Among various DM candidates, the axion stands out as a
promising candidate, motivated by several contexts. The
term “axion” can refer to the quantum chromodynamics
(QCD) axions, such as those proposed in [13–16], which
are introduced to solve the strong CP problem [17–19], or
the axionlike particles, which represent a broader set of
pseudoscalar particles often predicted in low-energy effec-
tive theories emerging from the string theory [20–28].
Generally, the axion interacts with SM gauge bosons and
fermions, each interaction controlled by a model-dependent
coupling constant. Therefore, developing various strategies
to investigate different couplings is essential to discover
axions and differentiate between axion models.
In this paper, we explore the nitrogen-vacancy (NV)

center in diamond, a well-studied multimodal quantum
sensing device, as an apparatus for axion DM searches.
Unlike a previous study [29], where some of the authors
used NV center metrology based on electron spins to detect
DM signals, we utilize the nuclear spin of the 14N atom to
search for signals induced by axion-nucleus couplings.
This approach aims to constrain the axion-neutron coupling
gann and the axion-proton coupling gapp, which are
independent of the constraint on the axion-electron cou-
pling gaee obtained in [29]. Our method can be viewed as
magnetometry based on nuclear spins. Although this
procedure is not well suited for detecting ordinary magnetic
fields due to their weak coupling to nuclear spins, it is
crucial for axion DM searches because gann, gapp, and gaee
are independent parameters.
The rest of the paper is organized as follows. In Sec. II,

we review NV center metrology, starting with an overview
of the NV center system (Sec. II A) and explaining the
protocols used for dc (Sec. II B) and ac (Sec. II C)
magnetometry. Section III reviews axion properties, where
we derive the axion interaction Hamiltonian with elemen-
tary particles (Sec. III A) and the 14N spin (Sec. III B). We
discuss our detection limit estimation in Sec. IVand present
constraints on the axion coupling constants in Sec. V.
Finally, we provide concluding remarks in Sec. VI.

II. NV CENTER METROLOGY

A. NV center in diamonds

The NV center is a complex composed of a substitutional
nitrogen and an adjacent vacancy. Among the various
possible charge states, NV− is often used for quantum
sensing, where two remnant electrons are localized to the
position of the vacancy. These two electrons form the
orbital-singlet, spin-triplet system at the lowest energy
levels. The other possible combinations of angular
momenta, which include the orbital triplet and/or the
spin-singlet states, correspond to excited states. The elec-
tron system is excited to an orbital-triplet state by injecting
532 nm green light, which can relax either directly with
emitting 600–800 nm red light or through spin-singlet

states with emitting infrared light. Since the probability of
direct relaxation depends on whether the initial state of the
two-electron spin S⃗ is jSz ¼ 0i or jSz ¼ �i, we can read
out the spin state information through the fluorescence
measurement. When relaxing through the spin-singlet
states, the electron spin usually ends up in the lowest
energy state jSz ¼ 0i, thus making the whole procedure
work also as laser cooling.
In addition to the electrons at the NV center, the

substitutional nitrogen also possesses a (nuclear) spin
degree of freedom, I⃗. Since ∼99.6% of the nitrogens in
nature are 14N with spin I ¼ 1, we focus on this isotope.
Including the hyperfine interaction between the electron
and nuclear spins, the dynamics of the NV center spin
system is governed by the Hamiltonian

H ¼ Hk þH⊥; ð1Þ

where the first (second) term corresponds to the interactions
parallel to (perpendicular to) the z-axis, which is defined by
the NV axis.1 They are given by [34]

Hk ¼ Δ0Sz2 þQ0Iz2 þ BzðγeSz þ γNIzÞ þ AkSzIz; ð2Þ

H⊥ ¼ γeB⃗⊥ · S⃗⊥ þ γNB⃗⊥ · I⃗⊥ þ A⊥S⃗⊥ · I⃗⊥; ð3Þ

where B⃗ is an external magnetic field, while the subscript ⊥
of a vector denotes components perpendicular to the z-axis.
Δ0 ≃ 2π × 2.87 GHz and Q0 ≃ −2π × 4.95 MHz are the
zero-field splitting of electron spins and the nuclear quadru-
pole interaction parameter, respectively. The gyromagnetic
ratios for electron and nuclear spins are given respectively by
γe ≃ 2π × 28 GHz=T, γN ¼ 2π × 3.08 MHz=T [35]. The
size of the hyperfine interaction is measured as Ak ≃ −2π ×
2.16 MHz and A⊥ ¼ −2π × 2.62 MHz.
The quantum state of electron and nuclear spins

can be manipulated by the Rabi cycle. To see this in more
detail, let us first pick up two of the electron spin states, say
jSz ¼ −; 0i, and two of the nuclear spin states, say
jIz ¼ 0;þi, to constrain ourselves to an effective two-
qubit subsystem spanned by fjSzIzi ¼ j − 0i; j −þi;
j00i; j0þig. For later convenience, we assume the decom-
position B⃗ ¼ B0ẑþ B⃗⊥ cosωt with ẑ the unit vector along
the z-axis. If we treat H⊥, or B⃗⊥ and A⊥, as a perturbation,
four states labeled by jSzIzi are energy eigenstates, whose
energy levels are shown in Fig. 1 with Δ≡ Δ0 − γeB0 and

1According to this definition of the z-axis, four different
configurations of the NV center in the diamond lattice are
effectively distinguished by choosing four different sets of local
coordinates, resulting in different effective magnetic fields. This
affects the resonance frequency of the Rabi cycle we will discuss
below, thus the succeeding spin operation is effective only for a
part of four configurations. However, note that the orientation can
be aligned with a specific fabrication process [30–33].
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Q≡Q0 þ γNB0. The effect of the oscillating transverse
magnetic field is described by the effective Hamiltonian

HeffðtÞ ¼
�
1ffiffiffi
2

p γeðB⃗⊥ · σ⃗eÞ þ
1ffiffiffi
2

p γNðB⃗⊥ · σ⃗nÞ
�
cosωt; ð4Þ

up to constant terms, where σ⃗e and σ⃗n are Pauli matrices σ⃗
acting on the corresponding qubit jei∈ spanfjSz ¼ −; 0ig
and jNi∈ spanfjIz ¼ 0;þig, respectively. In the vector
space with the basis choice of fj − 0i; j −þi; j00i; j0þig,
we obtain the matrix representation

HeffðtÞ ¼
1ffiffiffi
2

p

0
BBB@

0 γNB− γeB− 0

γNBþ 0 0 γeB−

γeBþ 0 0 γNB−

0 γeBþ γNBþ 0

1
CCCA cosωt;

ð5Þ

with B� ≡ Bx � iBy.
It is convenient to work in the interaction picture

with Hk treated as the unperturbed Hamiltonian. The
effective Hamiltonian is then given by H̃effðtÞ≡
eiHktHeffðtÞe−iHkt or

H̃effðtÞ ¼
1ffiffiffi
2

p

0
BBBBB@

0 γNB−eið−QþAkÞt γeB−eiΔt 0

γNBþe−ið−QþAkÞt 0 0 γeB−eiðΔ−AkÞt

γeBþe−iΔt 0 0 γNB−e−iQt

0 γeBþe−iðΔ−AkÞt γNBþeiQt 0

1
CCCCCA cosωt: ð6Þ

By noting that the fast oscillation terms in the above
expression can be neglected, it becomes clear the oscillat-
ing magnetic field drives transformation between two
energy levels whose energy gap is close to the oscillation
frequency ω. For example, if we start from jψðt ¼ 0Þi ¼
j0þi and choose ω ¼ Δ − Ak, which is typically in the
microwave frequency range, the dynamics of the quantum
state are given by

jψðtÞi ¼ exp

�
iffiffiffi
2

p γeB⃗⊥ · σ⃗t

�� j −þi
j0þi

�
: ð7Þ

Thus, a manipulation of the electron spin state that only
affects states with jIz ¼ þi is possible. Similar dynamics
controlled on jIz ¼ 0i are realized with the choice ω ¼ Δ.
If we choose ω ¼ −Q instead, which is typically in the
radio frequency range, the dynamics are expressed as

jψðtÞi ¼ exp

�
iffiffiffi
2

p γNB⃗⊥ · σ⃗t

�� j00i
j0þi

�
: ð8Þ

Thus, a manipulation of the nuclear spin state that only
affects states with jSz ¼ 0i is possible also. Similar
dynamics controlled on the jSz ¼ −i state are realized
with the choice ω ¼ −Qþ Ak. Note that energy gaps
relevant to the neglected five energy eigenstates composed

of jSz ¼ þi and/or jIz ¼ −i take different values under
nonzero B0, so we can stick to the effective two-qubit
system of the total Hilbert space by simply restricting
ourselves to the four relevant frequencies, i.e. Δ − Ak, Δ,
−Q, and −Qþ Ak.
The dynamics described in Eq. (7) [Eq. (8)] with B⃗⊥ ∝ x̂

and ŷ represent the (controlled-)Rx and Ry gates acting on
the qubit jei (jNi), respectively, with a tunable rotation
angle θ ¼ ffiffiffi

2
p

γeB⊥t (θ ¼ ffiffiffi
2

p
γnB⊥t). As is well known, by

combining Rx and Ry gate operations one can construct an
arbitrary SUð2Þ operation acting on the target qubit. By
also noting that the controlled-Rx gate with θ ¼ π (or
simply πx) works as the CNOT gate up to a global phase
factor, an arbitrary SUð4Þ operation on the two-qubit
system can in principle be implemented [36]. Finally,
projection measurement of the nuclear spin qubit jNi
can be performed by combining the CNOT gate acting on
the electron spin and the preceding fluorescence measure-
ment [37]. Physically, this final CNOT gate operation is done
with a π-pulse with frequency Δ so that the electron spin
state is excited only when the nuclear spin state is j0i. In the
qubit picture, signal strength of the fluorescence measure-
ment is characterized by

F≡ 1

2
hφjσzjφi; ð9Þ

FIG. 1. Energy levels of the two-qubit subsystem, with Δ andQ
described in the text, and Ak the size of the hyperfine splitting.
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where jφi is the qubit state of the electron or nuclear spin
depending on the setup.
Thanks to the available spin state manipulation and

measurement described so far, the NV center works as a
multimodal quantum sensor [34]. Technologies to realize
the high nuclear-spin polarization via CNOT gates, e.g., near
99% was demonstrated for single nuclear spins [38], make
it possible for the nuclear spins to be properly initialized.
Additionally, we can operate with either a single NV center
or an ensemble of NV centers [39,40]. In this paper, we
focus on the latter choice with which a large number of NV
centers, N ≫ 1, helps improve the sensitivity by accumu-
lation of large statistics.

B. Dc magnetometry

Now, we describe the so-called Ramsey sequence [41]
used for dc magnetometry. Throughout this and the
next subsections, we focus on the evolution of a qubit
state jφðtÞi, which can be either the electron or nuclear
spin state. In the matrix representation, we use the basis
fjSzi¼ j−i; j0ig for the electron spin and fjIzi ¼ j0i; jþig
for the nuclear spin.
The Ramsey sequence is sensitive to a dc-like magnetic

field BsðtÞẑ along the z-axis.2 Let H̃intðtÞ be the corre-
sponding interaction Hamiltonian in the interaction picture
defined as

H̃intðtÞ ¼
1

2
γBsðtÞσz; ð10Þ

where γ ¼ γe or γN is the suitable choice of the gyromag-
netic ratio. Starting from the lower level jφð0Þi ¼ ð0; 1Þ⊺,
the qubit state evolution under the Ramsey sequence is
given by3

jφðτÞi ¼ Rπ=2
x exp

�
−i
Z

τ

0

dt H̃intðtÞ
�
Rπ=2
y

�
0

1

�
; ð11Þ

where τ is the time duration of free precession, while Rθ
α

(α ¼ x, y) denotes the corresponding Rα gate operation
represented in matrices as

Rθ
x ¼

�
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

�
; ð12Þ

Rθ
y ¼

�
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

�
: ð13Þ

If the signal magnetic field oscillates slowly as BsðtÞ ¼
B0
s cosðϵtþ ϕÞ, the signal strength of the fluorescence

measurement for the state jφðtÞi is explicitly calculated as

F ≃
γB0

s

2ϵ
½sinðϵτ þ ϕÞ − sinϕ�; ð14Þ

under the assumption of F ≪ 1. It takes a constant value
F → γB0

sτ cosϕ=2 at ϵ → 0, while the cancellation of fast
oscillations leads to an asymptotic behavior F ∝ ϵ−1 when
ϵτ ≳ 1. Thus, this approach is effective for a dc-like signal
with an angular frequency ϵ ≪ 1=τ.
When considering an ordinary magnetic field, electron

spins are more useful than nuclear spins to obtain a sizable
effect within a fixed time duration τ due to the hierarchy
γe ≫ γN . However, this is not the case for the axion dark
matter detection, because, as we will see below, the axion
interaction strength with electron and nuclear spins have
completely different, and model dependent, relationships.
Therefore, it is motivated to explore nuclear-spin-based dc
magnetometry as a complementary probe to the one based
on electron spins [29]. In Fig. 2, we show the protocol for
dc magnetometry using nuclear spins. Both of the qubits
should be initialized to ð0; 1Þ⊺ through laser cooling and an
appropriate operation of the CNOT gates before starting the
protocol, preparing the j00i state. φτ ≃ F is the relative
phase factor generated during the free precession.
We have not taken account of the effects of relaxation in

the above expression. There are two different relaxation
timescales for each spin species, the longitudinal relaxation
time T1 and the transverse relaxation, or dephasing, time
T�
2. T1 characterizes the spin flip associated with the energy

transfer to or from the environment, which takes T1e ∼
6 ms [42,43] and T1N ∼ 4 min [44] for the electron and
nuclear spins, respectively, at room temperature. The
dominant source of the transverse relaxation, on the other
hand, is dephasing of spins due to the inhomogeneous dc
magnetic field caused by, e.g. nuclear spins or lattice
defects. T�

2e ∼ 1 μs [34,45] and T�
2N ∼ 7.25 ms [46]4 are

measured at room temperature. The large hierarchy
T�
2N=T

�
2e ∼ 104 is consistent with the large hierarchy of

FIG. 2. The protocol of dc magnetometry using nuclear spins.

2The magnetic field in the xy-plane can be neglected as long as
its oscillation frequency is far from the energy gap of the qubit
system. See the calculation of the Rabi cycle.

3In this expression and the later discussion, we neglect the time
spent on gate operations for simplicity. It is a reasonable
approximation when the amplitude of the magnetic pulse used
for spin operations is large enough as can be seen from Eq. (8).

4Although the measured value of T�
2N ∼ 7.25 ms is for a single

NV center, we use this value as a reasonable estimate of T�
2N for

an ensemble of NV centers, since for a ∼1 ppm concentration of
NV centers, T1e is still in the order of milliseconds [47].
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interaction strengths γe=γN ∼ 104. It should be noted that
T�
2N is naturally bounded by T1e since random electron spin

flips induce dephasing of nuclear spins through the hyper-
fine interaction. On the other hand, T�

2e does not necessarily
limit T�

2N . For example, the dephasing timescale of the
quantum states ðj0þi þ j00iÞ= ffiffiffi

2
p

would be T�
2N . Our

protocol for nuclear spin dc magnetometry corresponds
to this case.
Taking into account the effects of relaxation, the signal

strength in Eq. (14) is rescaled as F → Fe−τ=T
�
2N .

Accordingly, the optimistic choice of τ to maximize the
sensitivity turns out to be τ ∼ T�

2N=2 [48]. We will use this
choice for later analysis.

C. Ac magnetometry

As we have seen thus far, the Ramsey sequence is not
effective for an ac magnetic field with an angular frequency
ϵ≳ 1=τ. To realize another approach sensitive to such high-
frequency signals, we can make use of the Hahn-echo
sequence [49] or dynamical decoupling sequences [50,51]
in more general context. The time evolution of a qubit state
under the Hahn echo sequence is described by

jφðτÞi ¼ Rπ=2
x exp

�
−i
Z

τ

τ=2
dt H̃intðtÞ

�

× Rπ
y exp

�
−i
Z

τ=2

0

dt H̃intðtÞ
�
Rπ=2
y

�
0

1

�
; ð15Þ

where the only difference from the Ramsey sequence is the
πy operation at the middle of the free precession. This
operation reverses the effect from the signal magnetic field
and achieves constructive interference of the oscillating
signal effect before and after the πy operation when the
angular frequency is ∼2π=τ. The signal strength is explic-
itly calculated as follows:

F ¼ 2γB0
s

ϵ
sin2

ϵτ

4
sin

�
ϵτ

2
þ ϕ

�
; ð16Þ

which is suppressed in both the dc limit ϵ → 0 as S ∝ ϵ
and the high frequency limit ϵτ ≫ 1 as S ∝ ϵ−1. On
the other hand, it peaks at ϵ ¼ 2π=τ with a peak height
jSj ¼ ðγB0

s sinϕÞ=π and a peak width Δϵ ∼ 1=τ. This
calculation indicates a narrow-band sensitivity of the
Hahn echo sequence around ϵ ∼ 2π=τ. Figure 3 shows
the protocol of the Hahn echo sequence applied to the
nuclear spin qubit jNi.
In the Hahn echo sequence, the relevant transverse

relaxation time T2 tends to be longer than T�
2 for the

Ramsey sequence because any dc magnetic noise effect
cancels out due to the πy operation. The dominant con-
tribution to T2 is the decoherence effect caused by dipole-
dipole self-interaction among spins. The observed value of

T2e ∼ 100 μs [52] at room temperature shows a two orders
of magnitude enhancement compared with T�

2e ∼ 1 μs.
Conversely, the observed value of T2N ∼ 10 ms at room
temperature is comparable to T�

2N because both of them are
limited by the single parameter T1e. However, both T1

and T2 can be further extended with more sophisticated
setups. One possibility is to consider a cryogenic environ-
ment; for example, T1e ∼ 100 s is reported at ≲50 K [42],
where T2N ∼ 100 s; T�

2N ∼ 1 s seem to be a reasonable
assumption. Another possibility is to perform a dynamic
decoupling (DD) sequence with a large number (Nπ) of πy
pulses during the free precession, which also contributes to
making the coherence time longer. In this case, we obtain
the signal strength as

F ¼ γB0
s

ϵ
sin

ϵτ

2
sin

�
ϵτ

2
þ ϕ

�
tan

ϵτ

2ðNπ þ 1Þ ; ð17Þ

which recovers Eq. (16) for Nπ ¼ 1. Under a DD sequence
with Nπ ≫ 1, one expects not only a longer T2N, but also a
sensitivity peak located at a higher angular frequencyNπ=τ.
Similar to the dc magnetometry case, the relaxation

effect rescales the signal strength Eq. (16) as F → Fe−τ=T2N ,
and the optimal choice of τ turns out to be τ ¼ T2N=2.

III. AXION DARK MATTER

A. Setup

The axion can account for the total relic abundance of DM
through mechanisms such as the misalignment mechanism
[53–55] or production from topological defects (see
Refs. [56–58] for reviews). A wide range of the axion mass
ma could be consistentwith theDM relic abundance, as small
as ma ∼ 10−22 eV, below which the model is inconsistent
with the existence ofDM-dominated dwarf galaxies [59], and
as large as ma ≳Oð1Þ eV, where cosmological and astro-
physical constraints on the axion DM tend to become severe
(see, for example, plots in [60]). The axion is described by a
classical field experiencing coherent oscillation

aðt; x⃗Þ ¼ a0 sinðmatþmav⃗a · x⃗þ ϕÞ; ð18Þ

where v⃗a is the axionvelocity. Considering the energydensity
stored in the coherent oscillation, a relationship ρa ¼
ðmaa0Þ2=2 holds, where ρa ∼ 0.4 GeV=cm3 [61] is the local

FIG. 3. The protocol of ac magnetometry using nuclear spins.
φ1 and φ2 represent the phase factors acquired in the first half
(0 < t < τ=2) and the second half (τ=2 < t < τ) of the free
precession time, respectively.
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energy density of DM. Note that the velocity v⃗a and the
oscillation phase ϕ are constant only within the de Broglie
wavelength ∼ðmavaÞ−1. Thus, v⃗a and ϕ observed at the
laboratory varywith the timescale of τa ∼ ðmav2aÞ−1, which is
called the coherence time. Assuming that the axion DM halo
is virialized, its typical velocity is estimated as va ∼ 10−3,
leading to the order estimate of

τa ∼ 6.6 s

�
10−10 eV

ma

�
: ð19Þ

Due to its pseudoscalar nature, the axion generally
interacts with the SM fermions ψχ of the form

Lint ¼
X
χ

Cχ

2fa
ð∂μaÞψ̄ χγ

μγ5ψχ ; ð20Þ

where fa is the axion decay constant and Cχ are the model-
dependent coefficients. The index χ labels the SM fer-
mions, including electron e, neutron n, and proton p.5 In
the nonrelativistic limit, this interaction term describes the
axion interaction with fermion spins S⃗χ given by

Hint ¼
X
χ

gaχχ
mχ

∇⃗a · S⃗χ ; ð21Þ

where the dimensionless coupling constants gaχχ ≡
Cχmχ=fa are used. It is seen that the axion gradient ∇⃗a
may be regarded as an effective magnetic field, and the
interaction can be rewritten as

Hint ¼
X
χ

γχB⃗χðtÞ · S⃗χ ; ð22Þ

with the gyromagnetic ratio γχ . Substituting Eq. (18) into
the above expression, the fermion-dependent effective
magnetic fields are calculated as

B⃗χðtÞ ≃
gaχχ
mχγχ

ffiffiffiffiffiffiffi
2ρa

p
v⃗a cosðmatþ ϕÞ; ð23Þ

where higher-order terms of va ≪ 1 are neglected. The
amplitude of the effective magnetic field B0

χ is estimated as

B0
χ ∼ 4 aT ×

�
gaχχ
10−10

�
: ð24Þ

Note that, for typical axion models with Ce ∼ Cn ∼ Cp, this
“effective” magnetic field for nucleons B0

n;p is larger by a
factor ∼mn;p=me than that for the electron B0

e. Taking

account of the gyromagnetic ratio for the nucleon/electron,
it results in the same order of the interaction strengths with
the electron and nucleons. This is qualitatively different
from the ordinary magnetic field, which acts on the electron
spin much more strongly than on nucleons due to the
difference of the gyromagnetic ratio. In this sense, the use
of nuclear spins in the NV center can offer complementary
sensitivity in axion DM searches.
For isolated fermion spins, the corresponding B⃗χðtÞ

works just the same as the ordinary magnetic field
aside from that its amplitude and oscillation phase vary
with the timescale of τa. It is the effective magnetic field for
electrons, B⃗eðtÞ, that is sensed by the ordinary NV center
magnetometry as proposed in [29]. On the other hand, if we
use nuclear spins for magnetometry, both B⃗nðtÞ and B⃗pðtÞ
can be relevant as we will see shortly.

B. Axion interaction with the 14N spin

The interaction between the 14N spin and an ordinary
magnetic field is characterized by its gyromagnetic ratio γN .
As a rare stable odd-odd nucleus, γN has contributions from
both the neutron and proton spins and the orbital angular
momentum of the proton. However, γN does not reflect the
axion interaction strength with the 14N spin, which is
determined by the axion interaction with neutron and
proton spins, gann and gapp. To accurately describe the
axion-14N interaction, we need to understand the compo-
sition of the 14N spin I ¼ 1. In this subsection, we discuss
this issue under the assumption that the nuclear shell model
well describes internal structure of the 14N nucleus.

14N has seven neutrons and seven protons. According to
the nuclear shell model, both kinds of nucleons occupy the
orbitals as 1s21=21p

4
3=21p1=2, where both 1s1=2 and 1p3=2

orbitals form closed shells. Thus, the nuclear spin I ¼ 1
comes from the synthesis of the total neutron spin Jn ¼ 1=2
of a neutron in the 1p1=2 orbital and Jp ¼ 1=2 of a proton in
the proton counterpart of the orbital. In the representation
theory of SUð2Þ, this corresponds to the decomposition
1
2
⊗ 1

2
¼ 1 ⊕ 0 with the first term in the right-hand side is

selected, while each spin-1
2
representation on the left-hand

side comes from the decomposition 1
2
⊗ 1 ¼ 3

2
⊕ 1

2
.

Let us explicitly write down the I ¼ 1 states in terms of the
eigenstates of the spin S⃗χ and the orbital angular momentum

L⃗χ of nucleons χ ¼ n, p in the 1p orbitals. Let j↑iχ and j↓iχ
be the spin up and down states, and jmiχ (m ¼ −; 0;þ) be the
eigenstates of Lz

χ for each nucleon f. Corresponding to this
decomposition 1

2
⊗ 1 ¼ 3

2
⊕ 1

2
, the Jχ ¼ 1

2
component (i.e.,

the 1p1=2 orbital for the nucleon χ) is given by

 
juχi
jdχi

!
≡ 1ffiffiffi

3
p
 j↑iχ j0iχ −

ffiffiffi
2

p j↓iχ jþiχffiffiffi
2

p j↑iχ j−iχ − j↓iχ j0iχ

!
: ð25Þ

5In the Kim-Shifman-Vainshtein-Zakharov (KSVZ) axion
model [13,14] we have jCej ≪ 1 while Cp ∼ Cn ∼Oð1Þ. In
the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) axion model
[15,16] or the flavorful axion model [62,63], we have
Ce ∼ Cn ∼ Cp ∼Oð1Þ.
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Using these expressions to evaluate the seconddecomposition
1
2
⊗ 1

2
¼ 1 ⊕ 0, the nuclear spin I ¼ 1 component is

expressed as

ψ⃗⊺
I ≡

0
B@

jupijuni
1ffiffi
2

p ðjupijdni þ jdpijuniÞ
jdpijdni

1
CA: ð26Þ

To go further, we calculate the matrix elements of the
spin operators S⃗χ (χ ¼ n, p) in the 36-dimensional space
corresponding to the all possible choices of Szχ and Lz

χ

(χ ¼ n, p). In particular, since the nuclear spin I ¼ 1 states
correspond to the three dimensional subspace spanned by
three vectors in ψ⃗ I, matrix elements of the spin operators S⃗χ
(χ ¼ n, p) for these basis vectors represent how the axion
interacts with the 14N spin. From a straightforward calcu-
lation, we obtain the following

ψ⃗†
I S

αψ⃗ I ¼ −
1

6
Iα; ð27Þ

where Iα (α ¼ x, y, z) are the spin-1 representations of the
SUð2Þ generators. This result is consistent with the treat-
ment in [64]. Note that the spin operators also have nonzero
matrix elements outside the three dimensional subspace, a
part of which connects different spin states. These inter-
actions can in principle invoke the transition from the
ground state with I ¼ 1 to, e.g., an excited state with I ¼ 0.
However, since the relevant energy scale of Oð1–10Þ MeV
[65] is far beyond the current setup, we can safely neglect
these terms and focus on the terms in Eq. (27) that preserve
the nuclear spin structure.
Since the right-hand side of Eq. (27) is proportional to

the nuclear spin operators Iα, S⃗χ (χ ¼ n, p) effectively acts
as the I ¼ 1 spin operators with a nontrivial coefficient
−1=6. In Appendix A, we provide proof that the same
interpretation is possible whenever the spin S ¼ 1=2 and a
general orbital angular momentum L ¼ l are considered,
and derive a systematic way to calculate the coefficient. By
substituting Eq. (27) in Eq. (21), we obtain an effective
axion-14N interaction Hamiltonian

Hint ¼ γNB⃗NðtÞ · I⃗; ð28Þ

with the effective magnetic field defined as

B⃗NðtÞ≡ BNv̂a cosðmatþ ϕÞ; ð29Þ

γNBN ≃ −
1

6

�
gapp
mp

þ gann
mn

� ffiffiffiffiffiffiffi
2ρa

p
va; ð30Þ

with v̂a ≡ v⃗a=va. For convenience, we define

f̃a ≡
���� gapp2mp

þ gann
2mn

����−1; ð31Þ

with which BN ∝ f̃−1a . Since we can rewrite it as
f̃a ¼ 2fa=ðCp þ CnÞ, f̃a is of the same order as fa if
coefficients Cp and Cn are of Oð1Þ. A fascinating conse-
quence of the 14N spin as an odd-odd nucleus is that the
axion coupling is proportional to the combination Eq. (31),
and that the coupling strength is sensitive to the relative
sign of gapp and gann.

IV. SENSITIVITY ESTIMATION

When measurements are repeated Nobs times, we obtain
time-sequence data labeled by j ¼ 1;…; Nobs, representing
the measurement starting at time tj. For simplicity, we
assume tj ¼ ðj − 1Þτ with τ ¼ T�

2n=2 (T2n=2) for the dc
(ac) effective magnetometry approach,6 though it is not
necessary for the following discussion that the measure-
ments are repeated with equal time intervals. As a result,
tobs ≡ Nobsτ denotes the total observation time. Let ρj be
the density matrix representing the quantum state of the NV
center ensemble before the jth fluorescence measurement.
Since our observable is defined as an operator

Mz
j ≡ 1

2N

XN
l¼1

σzjl; ð32Þ

where σzjl acts on the qubit state of the nuclear spin in the
lth NV center at the jth measurement, the data obtained at
tj can be calculated as hMz

jiρj ≡ Tr½ρjMz
j�. It should be

noted that hMz
jiρj represents the N-qubit average of the

signal at time tj, which asymptotes to the signal strength F
with an appropriate choice of the phase factor in the limit
of N → ∞.
The expression above is useful for calculating the

ensemble average over distributions of the axion parame-
ters. It should be noted that ρj is equivalent to Eq. (11) and
to Eq. (15) with the replacement ϕ → matj þ ϕ for the
Ramsey and the Hahn echo sequences, respectively.
Therefore, it depends on the axion velocity v⃗a and the
phase factor ϕ through the expression of the effective
magnetic field Eq. (30). If we neglect the Earth’s relative
motion against the Galactic center, ϕ is uniformly distrib-
uted in the range ½0; 2πÞ, while the axion velocity has a
random direction with typically a value of va ∼ 10−3. Using
these distributions, for example, the ensemble average of
the observation result Mj is calculated as

6In this context, we neglect the measurement overhead,
including the state preparation and fluorescence measurement.
This is a reasonable approximation given that τ ∼Oð1Þ ms while
the overhead time is typically of Oð10–100Þ μs [39].
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hMji≡ 1

2π

Z
dϕ

1

4π

Z
dv̂aTr½ρjMz

j�
����
va¼10−3

; ð33Þ

where we do not take into account the distribution of va,
which highly depends on the model of the DM profile in
our galaxy and only results in an Oð1Þ modification. It
should be noted that, here and hereafter, we neglect the
subscript of the ensemble-averaged quantities for notational
simplicity. As anticipated, the randomness of the signal
direction and phase causes cancellation of the averaged
signal, hMji ¼ 0.

To derive meaningful insights from the data, we use two-
point functions of the time-sequence data defined as [66]

Cjj0 ≡
(
Tr½ðρj ⊗ ρj0 ÞðMz

j ⊗ Mz
j0 Þ�; ðj ≠ j0Þ

Tr½ρjMz
jM

z
j�: ðj ¼ j0Þ ð34Þ

Since the coherence of the axion signal is maintained only
for the duration τa, Cjj0 behaves differently for jtj− tj0 j< τa
and jtj − tj0 j > τa. A combined expression can be given as

Cjj0 ¼
1

2π

Z
dϕ

1

4π

Z
dv̂a

1

2π

Z
dϕ0 1

4π

Z
dv̂0aTr½ρjj0Mz

jj0 �
����
va¼10−3

× ½Θðjtj − tj0 j − τaÞ þ 8π2δðϕ − ϕ0Þδðv̂a − v̂0aÞΘðτa − jtj − tj0 jÞ�; ð35Þ

where ρjj0 ≡ ρj ⊗ ρj0 and Mz
jj0 ≡Mz

j ⊗ Mz
j0 for j ≠ j0 and

ρjj ≡ ρj and Mz
jj ≡Mz

jM
z
j. Also, Θ is the Heaviside step

function. The integral variables ðϕ; v̂aÞ and ðϕ0; v̂0aÞ corre-
spond to the axion parameters at time tj and tj0 , respec-
tively, and the delta functions in the second line denote
the coherence of the signal for jtj − tj0 j < τa. In addition,
we introduce the power spectral density (PSD), which
is defined as the ensemble-averaged expectation value
Pk ≡ hOki of the operator

Ok ≡ τ2

tobs

X
j;j0

e2πikðj−j0Þ=NobsMz
jM

z
j0 ; ð36Þ

with k ¼ 0;…; Nobs − 1. Each Pk can be calculated
through the Fourier transformation of the two-point func-
tions as

Pk ¼
τ2

tobs

X
j;j0

e2πikðj−j0Þ=NobsCjj0 : ð37Þ

A detailed calculation of the PSD and the relevant noise
contributions is given in Appendix B. From Eq. (B9), the
signal PSD can be defined as Sk ≡ Pk − τ=ð4NÞ, where the
constant shift ensures that Sk is proportional to the axion-
induced magnetic field BN , and is given by

Sk ≃
2A

tobsΔω2
k

sin2
tobsΔωk

2
; ð38Þ

for tobs < τa, while

Sk ≃
2A

tobsΔω2
k

sin2
τaΔωk

2
þ tobs − τa

tobsΔωk
A sin ½τaΔωk�; ð39Þ

for tobs > τa, where Δωk ≡ ωk −ma with ωk ≡ 2πk=tobs
andA ∝ B2

N is the protocol-dependent coefficient defined in

Eq. (B7). Due to the quantum noise, the measurement result
of the PSD fluctuates even without the axion DM. The
standard deviation of the PSD distribution is calculated as

Bk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hO2

ki − hOki2
q ����

BN¼0

: ð40Þ

As shown in Eq. (B13), we obtain B0 ≃ τ=ð2 ffiffiffi
2

p
NÞ and

Bk≠0 ≃ τ=ð4NÞ for our setup.
Focusing on a single bin k, the signal estimation

uncertainty can be evaluated through the well-known
formula

δB2
N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hO2

ki − hOki2
q �

dhOki
dB2

N

�
−1
����
B2
N¼0

; ð41Þ

which determines the estimation error of B2
N around the

specific choice of B2
N ¼ 0, i.e. the model without the axion

DM.We selectB2
N as a parameter to be estimated since hOki

does not have a linear term in BN as shown in Eq. (B9). By
deforming the above expression with the relationship
δB2

N ¼ 2BNδBN , we can obtain the Xσ-level detection limit
to the axion-inducedmagnetic fieldBN to beXδBN (whereX
depends on the required confidence level). To gather
information from all bins and obtain the best achievable
detection limit with these observables, we follow [66].
Based on the Asimov dataset [67] rather than the
Monte Carlo simulation results, we compute the test statistic

q ¼ 2
XNobs−1

k¼0

��
1 −

Bk

Sk þ Bk

�
− ln

�
1þ Sk

Bk

��
; ð42Þ

with which the 95% exclusion limit, which we adopt as the
definition of the detection limit of our approach, is deter-
mined by the criteria q ¼ −2.71.
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It is beneficial to consider two extreme setups and
evaluate the scaling of the detection limit as a function
of tobs and N. For this purpose, we first observe that the
signal PSD Sk has a resonant structure peaked at Δωk ¼ 0
or ωk ¼ ma. The peak height is evaluated as

Sk ¼
8<
:

A tobs
2
; ðtobs < τaÞ

Aτa
�
1 − τa

2tobs

	
; ðtobs > τaÞ

ð43Þ

where the resonance condition for these setups can be
described as tobsΔωk ≪ 1 and τaΔωk ≪ 1, respectively.
When tobs ≪ τa, the signal peak height grows linearly with
tobs, while only a single bin enjoys resonance since
tobsðωkþ1 − ωkÞ ¼ 2π. Then, we can approximate the test
statistic as

q ≃ 2

�
1 −

Bk0

Sk0 þ Bk0

�
− ln

�
1þ Sk0

Bk0

�
; ð44Þ

with k0 being the label of the resonance bin. Since the
above expression only depends on the ratio Sk0=Bk0 , the
detection limit is solely determined by solving q ¼ −2.71
for this ratio, resulting in Sk0=Bk0 ≃ 8.48. Since Sk0=Bk0 is
proportional to NtobsB2

N , the detection limit to BN grows as

N1=2t1=2obs as expected for a coherently oscillating signal. On
the other hand, when tobs ≫ τa, the peak height is saturated
to ∼Aτa, but the number of bins involved in the peak grows
as tobs=τa. In this limit, our setup can be sensitive to small
signals with Sk ≪ Bk, where we can expand the expression
of the test statistic as

q ≃ −
X
k

S2
k

B2
k

: ð45Þ

Since the number of terms with dominant contributions
grow as tobs and the fraction in the summation is propor-
tional to N2B4

N , we obtain the detection limit scaling

∝ N1=2t1=4obs . Again, this scaling behavior is common for
the signal with randomized direction and phase.
To summarize, the sensitivity to the axion coupling is

roughly estimated from

ffiffiffiffi
A

p
∼

8>><
>>:

σR
�

τ
Ntobs

	
1=2

; ðtobs < τaÞ

σR
�

τ
Nτa

	
1=2
�

τa
tobs

	
1=4

; ðtobs > τaÞ
ð46Þ

where A is defined in Eq. (B7). σR parametrizes the size of
the shot noise as detailed in Appendix B 2; σR ¼ 1
corresponds to the ideal case when the sensitivity is limited
by the projection noise, while σR ≃ 19 has been already
achieved [39], and is expected to reduce further.

The analysis explained so far uses the full dataset with
j ¼ 1;…; Nobs and their Fourier transformation to look for
a signal. However, this should be interpreted as a way to
estimate the best achievable detection limit curves. In
realistic experimental setups, on the other hand, there are
several challenges to performing such an analysis including
memory constraints and limitations on computational
power. Given these constraints and limitations, an alter-
native analysis procedure is the one based on the standard
deviation [68]. We can show that, by setting an appropriate
data collection time duration, the sensitivities of this
procedure to the target frequencies have the same scaling
behavior with tobs and N as shown above.

V. RESULTS

The calculated 95% exclusion limits on f̃a defined in
Eq. (31) from the Ramsey sequence are shown in Fig. 4
with the assumed relaxation time and the free precession
time T�

2N ¼ 7.25 ms, choosing τ ¼ T�
2N=2.

7 Three colored
lines correspond to the most conservative setup with an
already-achieved number of NV centers N ¼ 1012 [39] and
tobs ¼ 1 s (magenta), the same N ¼ 1012 but with tobs ¼
1 yr (green), and a rather optimistic choice of N ¼ 1020

with tobs ¼ 1 yr (cyan). The solid and dash-dotted lines
represent the projection noise-limited sensitivities
(σR ¼ 1), while the dashed lines the shot noise-limited
sensitivities with the choice of σR ¼ 20. When using the
exact sample from the current state of NV sensors [39],
which has approximately 1 mm sides and a 70 μm thick-
ness, about 3 × 108 diamond samples are required to reach
N ¼ 1020 NV centers. This is a rather large number,
however, there are many ways to decrease it. For example,
improving the yield of NV center creation, here 0.68%, to
the current state-of-the-art, which is 25.8% [69], reduces
the required samples to about 8 × 106. Further decrease is
possible by increasing sample thickness, or side dimen-
sions if practically allowed. Improving the sensitivity, for
example by lowering the temperature, using double quan-
tum sequences, or increasing collection efficiency, can push
this number down significantly as well, since the sensitivity
is inversely proportional to the square root of the number of
NV centers and thus samples (so a 10 times better
sensitivity means 100 times less NVs are required).
Hence, such enhancements bring a potential experiment
into palatable proportions of other particle physics experi-
ments. Also shown by the black lines are the combined
constraints on f̃a from the existing experimental results

7Precisely speaking, there are periodicOð1Þ fluctuations of the
sensitivity due to the discrete binning of the frequency with the
bin width 2π=tobs. In Fig. 4, we smooth out these fluctuations to
focus on the larger-scale frequency dependence of the sensitivity.
Furthermore, the small step of the magenta line at ∼1 Hz is due to
the difference between Eqs. (B12) and (B13).
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(dash-dotted) and the prospects (dotted). See [60] for
details.
Since the Ramsey sequence delivers full performance

when the frequency f satisfies f ≲ 1=τ, the choice of
T�
2N ¼ 2τ ¼ 7.25 ms leads to a frequency coverage

ma=2π ≲ 200 Hz (ma ≲ 8 × 10−13 eV), outside of which
the sensitivity is rapidly lost. Another remarkable feature of
our sensitivities is the kinks of the green and cyan lines at
ma ∼ 2 × 10−17 eV with the corresponding axion coher-
ence time τa ∼ 1 yr. Both lines below this point (and also
the magenta line) correspond to tobs < τa, so the axion
signal maintains coherence during the observation. Thus,
the Ramsey sequence has frequency-independent sensitiv-
ities for this mass range. For higher masses, on the other
hand, we need to account for a slower sensitivity improve-
ment ∝ ðτatobsÞ1=4 shown in Eq. (46), so the detection limit
plots have slopes. Finally, compared with solid lines that
show detection limit prospects, the dash-dotted part of the
magenta lines, which corresponds to the mass range
2π=ma ≪ 1 s, needs special care. In this mass range, the
signal strengths for all repeated measurements are

proportional to cosϕ with a randomly chosen phase factor
ϕ; thus, it is always possible that no signal is observed
irrespective of the size of f̃a. The magenta dash-dotted lines
should then be interpreted as a 1σ lower bound on f̃a when
no signal is observed.
Comparison between our results and the existing con-

straints or prospects shows that our approach is promising
for a broad mass range with ma=2π ≲ 200 Hz. It should be
noted, however, that the exclusion limits in Fig. 4 need to
be carefully interpreted since both previous results (black
dashed lines) and other unrealized proposals (black dotted
lines) have a dominant constraint on either jgannj or jgappj,
contrary to our approach where f̃a, a linear combination
shown in Eq. (31), is directly constrained. Due to the
expression Eq. (31), both constraints on jgannj and jgappj in
principle affect the black lines. However, practically, either
the jgannj or jgappj that is less constrained at a chosen ma

FIG. 4. The calculated 95% exclusion limits on f̃a as a function
of ma for T�

2 ¼ 2τ ¼ 7.25 ms. The total detector volumes of
ðN; tobsÞ ¼ ð1012; 1 sÞ (magenta), ð1012; 1 yrÞ (green), and
ð1020; 1 yrÞ (cyan) are assumed. The colored solid (dashed) lines
represent the projection noise-limited (the shot noise-limited)
sensitivities with σR ¼ 1 (σR ¼ 20). The black dash-dotted line
represents the combination of the current best constraints on
jgappj and jgannj, including constraints on jgannj from neutron star
cooling [70], K–3He comagnetometer [71], and ChangE [72] and
ChangE NMR [73] experiments, and a constraint on jgappj from
SN1987A [74]. The black dotted line represents the prospect of
constraints, including constraints on jgannj from future comagne-
tometers [75,76], the electrostatic storage ring [77], the CASPEr-
gradient experiment [78], and the homogeneous precession
domain of the superfluid 3He [79], and constraints on jgappj
from the proton storage ring [80], the CASPEr-gradient experi-
ment [78], and the nuclear magnon in MnCO3 [81]. The limit data
is adopted from [60].

FIG. 5. The top (bottom) panel shows the calculated limits on
jgannj (jgappj) from the Ramsey setup under an artificial
assumption that jgappj ≪ jgannj (jgannj ≪ jgappj). We assume
the dephasing timescale of T�

2 ¼ 7.25 ms. The color conventions
and the meaning of the black lines for the existing constraints and
prospects are the same as in Fig. 4.
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determines how strongly f̃a is constrained at that value of
ma. To disentangle the mixed effect of jgannj and jgappj
constraints, we also demonstrate the possible detection
limits of our setup with T�

2N ¼ 7.25 ms on an individual
jgannj (jgappj) coupling in the top (bottom) panel of Fig. 5
under an artificial assumption that the corresponding
coupling is much larger than the other one. Figure 5 is
useful for comparison; in particular, the optimistic setup
(cyan) shows remarkable sensitivities to jgannj for ma ≲
2 × 10−19 eV comparable to the future comagnetometer
prospect [75] and to jgappj for 10−15 eV≲ma ≲ 10−12 eV
corresponding to a gap between the proton storage ring [80]
and the CASPEr-gradient prospects [78]. However, it
should be remembered that Fig. 4 is a more fundamental
result of our approach obtained without any artificial
assumptions on physics parameters.
In Fig. 6, we show the calculated 95% exclusion limits

from the Hahn-echo sequence at room temperature with
T2N ¼ 10 ms (top) and a cryogenic environment with
T2N ¼ 1 s (bottom). As is clearly shown in the plots, this

approach is a narrow-band search targeted at the frequen-
cies 1=τ ∼ 1–100 Hz depending on the choice. Although
the frequency coverage is limited in this approach, the
sensitivity around the target frequency is much better than
the Ramsey setup under the cryogenic environment when
T2N ≫ T�

2N . Note that these exclusion limits can also be
reinterpreted as limits on jgannj and jgappj under certain
assumptions similar to Fig. 5.
In Fig. 7, we show the calculated 95% exclusion limits

from the DD sequence with T2 ¼ 1 s andNπ ¼ 63. Despite
the improved sensitivity at the peak due to the prolonged
T2, the peak width becomes narrower for a largerNπ, which
makes this sequence generally not suitable for dark matter
searches with unknown signal frequency.

VI. DISCUSSION AND CONCLUSION

We proposed a novel method to use the 14N spin of NV
centers in diamond for axion dark matter searches. Our
nuclear spin magnetometry metrology approach is based on
new types of protocols from Figs. 2 and 3 aimed at dark
matter searches, and provides potential constraints on the
axion-nucleus couplings gann and gapp, which are com-
pletely independent of those on gaee obtained with conven-
tional magnetometry protocols in [29]. This opens up a new
direction for quantum sensing techniques based on NV
centers and motivates further investigation into the proper-
ties of the 14N spin, including the relaxation timescales T�

2N
and T2N , for an ensemble of NV centers under various
conditions.
One of the benefits of our approach compared with other

proposed ideas to constrain gann and gapp is its broad
frequency coverage arising from the wide dynamic range of
NV center magnetometry. We found several frequency
windows in which our approach has a relatively high
potential within the overall target frequency range

FIG. 6. Same as Fig. 4 but with the Hahn-echo sequence. The
decoherence times of T2 ¼ 10 ms (top) and 1 s (bottom) are
assumed.

FIG. 7. Same as Fig. 4 but with the DD sequence. The
decoherence time of T2¼1 s and the number of π-pulses Nπ ¼ 63
are assumed.
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≲100 Hz. Another remarkable feature is the natural sensi-
tivity to a roughly 1∶1 linear combination of two coupling
constants gann and gapp shown in Eq. (31). Accordingly,
our approach is sensitive not only to an individual gann or
gapp coupling under existence of a large hierarchy between
them but also to a relative phase between them when they
have comparable sizes, which enables us to explore the
axion model after its discovery.
Related to the above point, the fact that the NV centers

are sensitive to the axion coupling with electrons gaee as
well as that with nucleons gann and gapp implies a possible
extension of our protocols to mitigate the magnetic noise
effect. Similar to the ideas of comagnetometry [71,82–88]
and its application to the axion DM search [75,76], the
main goal is to cancel the magnetic noise effect while
keeping the axion-induced signal by using the fixed ratio
between interaction strengths of the ordinary magnetic field
to the electron and nuclear spins. An example protocol is
shown in Fig. 8, which is dedicated to canceling the dc-like
magnetic noise effect. The signal obtained by the quantum
circuit in Fig. 8 is determined by the phase difference
φτ þ θτ0 , where φτ (θτ0 ) corresponds to the phase acquired
by the free precession of the nuclear-spin (electron-spin)
state for the time interval τ (τ0), respectively. Since these
phases for a small dc magnetic noise Bnoise are roughly
given by φτ ≃ γ14NBnoiseτ and θτ0 ≃ γeBnoiseτ

0, one can in
principle make the noise contributions cancel with each
other with the choice of τ=τ0 ≃ −γe=γ14N > 0. A detailed
study of the sensitivity of this protocol, including the
frequency profile of the magnetic noise, the effect from the
overhead time, and the effect from the hyperfine interaction
during the free precession, remains as a future project.
When preparing the diamond sample, it is possible to

have the majority of the NV centers contain the nitrogen
isotope 15N by creation via implantation [89] or by doping
during chemical vapor deposition synthesis of diamond. In
this case, we primarily obtain constraints on gapp because
the nuclear spin of 15N is predominantly influenced by
proton contributions. Indeed, the nuclear shell model
indicates that the expression of the axion-induced magnetic
field Eq. (30) is replaced by

γNBN ≃ −
1

3

gapp
mp

ffiffiffiffiffiffiffi
2ρa

p
va; ð47Þ

for 15N. Therefore, NV center metrology based on 15N spins
provides yet another independent piece of information
about axion-nucleon couplings, which could also be helpful
to distinguish the axion-induced signal from the magnetic
noise similar to the idea shown in Fig. 8.
Finally, we briefly discuss the current state of exper-

imental NV center sensors in relation to our proposal. The
nuclear spin is generally not used for magnetic field
sensing, as it is much less sensitive than the electron spin.
Therefore, there is limited knowledge of their properties
today. Since the nuclear spin coherence times are rather
long, readout techniques that require more time become
feasible. For example, single-shot readout has the potential
to reduce the noise in the system close to the spin-
projection noise [37,90], as investigated in this work.
Our work is one step toward a better understanding of
the properties of nuclear spin metrology, which will
provide us with many future opportunities in the fields
of sensing and particle physics.
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APPENDIX A: SPIN SYNTHESIS

In this appendix, we focus on the synthesis of the spin
S ¼ 1=2 and the orbital angular momentum L ¼ l and
derive how spin operators act on the eigenstates of the total
spin J. Let j↑i and j↓i be the spin-up and spin-down states,
respectively, and jmi (m ¼ −l;…;l) be the eigenstates of
the orbital angular momentum with Lz ¼ m. The syn-
thesized states of these two quantum numbers decompose
into two groups with total angular momenta J ¼ l� 1

2
.

By parametrization of these states as jJ;Mi with
M ¼ −J;…; J representing the z-component of the total
angular momentum, the matrix elements of the total spin
operators are characterized by the Clebsch-Gordan coef-
ficients

hJ;M � 1jJ�jJ;Mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ ∓ MÞðJ �M þ 1Þ

p
; ðA1Þ

with J� ≡ Jx � iJy. Using this expression, we can relate
the eigenstates of various spins as follows:

FIG. 8. An example protocol to cancel the magnetic noise
effect.
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����J ¼ lþ 1

2
;M



¼ 1ffiffiffiffiffi

2J
p ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

J þM
p j↑ijM − 1=2i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J −M

p
j↓ijM þ 1=2iÞ; ðA2Þ

����J ¼ l −
1

2
;M



¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J þ 2
p ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J −M þ 1
p j↑ijM − 1=2i − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J þM þ 1
p j↓ijM þ 1=2iÞ; ðA3Þ

or equivalently,

j↑ijmi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lþmþ 1
p ����lþ 1

2
; mþ 1

2



þ

ffiffiffiffiffiffiffiffiffiffiffiffi
l −m

p ����l −
1

2
; mþ 1

2


�
; ðA4Þ

j↓ijmi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l −mþ 1
p ����lþ 1

2
; m −

1

2



−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lþm

p ����l −
1

2
; m −

1

2


�
: ðA5Þ

Using Eqs. (A4) and (A5), we can calculate all the nonzero
matrix elements of the spin operators as follows:

�
J¼lþ1

2
;M�1

����S�
����J;M



¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðJ∓MÞðJ�Mþ1Þp
2J

;

ðA6Þ
�
J ¼ lþ 1

2
;M

����Sz
����J;M



¼ M

2J
; ðA7Þ

�
J¼l−

1

2
;M�1

����S�
����J;M



¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðJ∓MÞðJ�Mþ1Þp
2Jþ2

;

ðA8Þ
�
J ¼ l −

1

2
;M

����Sz
����J;M



¼ −

M
2J þ 2

; ðA9Þ

with S� ≡ Sx � iSy. From the above equations, we see that,
for a fixed value of J, the spin operators effectively act as
SUð2Þ generators in the spin-J representation with a
nontrivial factor,

hJ;M0jS⃗jJ;Mi ¼ � 1

2lþ 1
hJ;M0jJ⃗jJ;Mi; ðA10Þ

for J ¼ l� 1
2
.

Now the calculation so far can be applied to the case of
the 14N spin, which has I ¼ 1 composed of a neutron and a
proton in individual ð1pÞ1=2 orbitals. First, each neutron
and proton resides in the 1p orbital with l ¼ 1, resulting in
the total angular momentum Jχ ¼l−1=2¼1=2 (χ ¼ n, p).
According to Eq. (A10), we obtain the effective relation-
ships among operators

S⃗χ ∼ −
1

3
J⃗χ : ðχ ¼ n; pÞ ðA11Þ

Since either one of the total angular momentum operators,
say J⃗n, has spin Jn ¼ 1=2, we can repeat the same estima-
tion, combining it with J⃗p to obtain I ¼ 1 states. Again
according to Eq. (A10), the angular momentum operators of
nucleons are related to the 14N spin operator I⃗ as

J⃗n ∼ J⃗p ∼
1

2
I⃗: ðA12Þ

Therefore, the coefficient −1=6 in Eq. (27) is successfully
reconstructed.

APPENDIX B: CALCULATION OF THE POWER
SPECTRAL DENSITY AND THE QUANTUM

NOISE

In this appendix, we provide a detailed calculation
of the PSD defined in Eq. (37) starting from Eq. (35).
First, the density matrix of the nuclear spin state in an
ensemble of N NV centers before the jth measurement, ρj,
is expressed as

ρj ≃ ⊗
N

l¼1
ρjl; ðB1Þ

ρjl ≡ 1

2

n
ð1 − 2FjÞjþihþj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4F2

j

q
jþih0j

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4F2

j

q
j0ihþj þ ð1þ 2FjÞj0ih0j

o
; ðB2Þ

for fixed values of ϕ and v⃗a, where Fj is given by Eqs. (14),
(16), and (17) for the Ramsey, the Hahn echo, and the
dynamic decoupling sequences, respectively, with the
replacement ϕ → matj þ ϕ. For notational simplicity, we
omit the indices j and l for each bra and ket, but they are
assumed implicitly. Thus, ρj is a 2N-dimensional density
matrix.
Our next task is to evaluate the trace factor Tr½ρjj0Mz

jj0 �
for various choices of j and j0, where ρjj0 ≡ ρj ⊗ ρj0
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and Mz
jj0 ≡Mz

j ⊗ Mz
j0 for j ≠ j0 and ρjj ≡ ρj and

Mz
jj ≡Mz

jM
z
j. First, when j ¼ j0, we obtain

Tr½ρjMz
jM

z
j� ¼

1

4N2

X
l

1þ 1

4N2

X
l≠l0

Tr½ρjl ⊗ ρjl0σ
z
jlσ

z
jl0 �

¼ 1

4N
þ NðN − 1Þ

N2
F2
j : ðB3Þ

For a different time two-point function with j ≠ j0, we can
instead decompose the trace in two parts for the time tj and
tj0 and obtain

Tr½ðρj ⊗ ρj0 ÞðMz
j ⊗ Mz

j0 Þ� ¼ Tr½ρjMz
j�Tr½ρj0Mz

j0 �
¼ FjFj0 : ðB4Þ

We can combine these expressions in a compact form

Tr½ρjj0Mz
jM

z
j0 � ≃

1

4N
δjj0 þ FjFj0 ; ðB5Þ

where subleading terms of N ≫ 1 are neglected. Recalling
that the ensemble average of a single data is zero,
hMji ¼ 0, the two-point function defined in the main text,

Cjj0 ¼
1

2π

Z
dϕ

1

4π

Z
dv̂a

1

2π

Z
dϕ0 1

4π

Z
dv̂0aTr½ρjj0Mz

jj0 �
����
va¼10−3

× ½Θðjtj − tj0 j − τaÞ þ 8π2δðϕ − ϕ0Þδðv̂a − v̂0aÞΘðτa − jtj − tj0 jÞ�; ð35Þ
is thus calculated as

Cjj0 ≃
1

4N
δjj0 þ

1

2π

Z
dϕ

1

4π

Z
dv̂aFjFj0 jϕ0¼ϕ;v̂0a¼v̂a;va¼10−3Θðτa − jtj − tj0 jÞ

¼ 1

4N
δjj0 þA cos ½maðtj − tj0 Þ�Θðτa − jtj − tj0 jÞ; ðB6Þ

with the protocol-dependent coefficient A defined as

A≡

8>>>>><
>>>>>:

ρav20
27f̃2am2

a
sin2 maτ

2
; ðRamseyÞ

4ρav20
27f̃2am2

a
sin4 maτ

4
; ðHahn echoÞ

ρav20
27f̃2am2

a
sin2 maτ

2
tan2 maτ

2ðNπþ1Þ ; ðDDÞ

ðB7Þ

where v0 ¼ 10−3 denotes the typical axion velocity.
Next, we calculate the PSD Pk ≡ hOki using the

operator Ok defined as follows:

Ok ≡ τ2

tobs

X
j;j0

e2πikðj−j0Þ=NobsMz
jM

z
j0 : ð36Þ

Using a modified expression

Pk ¼
τ2

tobs

X
j;j0

e2πikðj−j0Þ=NobsCjj0 ; ð37Þ

an easy way to accomplish this task is to consider the
continuum limit as follows:

Pk ≃
1

tobs

Z
tobs

0

dt
Z

tobs

0

dt0 eiωkðt−t0ÞCðt; t0Þ; ðB8Þ

where ωk ≡ 2πk=tobs and the function Cðt; t0Þ is defined as
a natural extension of Cjj0 to the continuous choice of time.
By substituting Eq. (B6) into the above expression, we
obtain

Pk ≃
τ

4N
þ
8<
:

2A
tobsΔω2

k
sin2 tobsΔωk

2
; ðtobs < τaÞ

2A
tobsΔω2

k
sin2 τaΔωk

2
þ tobs−τa

tobsΔωk
A sin ½τaΔωk�; ðtobs > τaÞ

ðB9Þ

with Δωk ≡ ωk −ma, where we have neglected the fast oscillation terms.

1. Quantum noise on the PSD

We can evaluate the quantum noise on the PSD without the axion effect as

Bk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hO2

ki − hOki2
q ����

BN¼0

: ð40Þ
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The first term in the square root can be deformed as

hO2
ki ¼

��
τ2

tobs

X
j;j0

e2πikðj−j0Þ=NobsMz
jM

z
j0

�
2



¼
��

τ2

tobs

X
j;j0

e2πikðj−j0Þ=Nobs
1

4N2

X
l;l0

σzjlσ
z
j0l0

�
2



¼ τ4

16t2obsN
4

��X
j;l

1þ
X

ðj;lÞ≠ðj0;l0Þ
e2πikðj−j0Þ=Nobsσzjlσ

z
j0l0

�
2


; ðB10Þ

where 1 is the identity operator. To go further, we note that the odd number of Pauli matrices for a certain combination of
ðj;lÞ leads to the vanishing contribution Tr½ρjlσzjl�jva¼0 ¼ 0. Thus, the only remaining contribution comes from the terms
proportional to the identity matrix. In the parenthesis of the third line of the previous equation, the first term trivially leads to
such a contribution with size N2

obsN
2, while the second term also contributes as� X

ðj;lÞ≠ðj0;l0Þ
e2πikðj−j0Þ=Nobsσzjlσ

z
j0l0

�
2

¼
X

ðj1;l1Þ≠ðj2;l2Þ

X
ðj3;l3Þ≠ðj4;l4Þ

e2πikðj1−j2þj3−j4Þ=Nobsσzj1l1σ
z
j2l2

σzj3l3σ
z
j4l4

¼
X

ðj1;l1Þ≠ðj2;l2Þ
ð1þ e4πikðj1−j2Þ=NobsÞ þ � � �

¼ NobsNðNobsN − 1Þ þ
X
j1;j2

X
l1;l2

e4πikðj1−j2Þ=Nobs −
X
j;l

1þ � � �

¼ NobsNðNobsN − 2Þ þ N2
obsN

2δk;0 þ � � � ; ðB11Þ

where the identity operator 1 is implicit, while dots
represent terms with remnant Pauli matrices. Substituting
this result in the original definition, we obtain

B0 ≃
τ

2
ffiffiffi
2

p
N
; ðB12Þ

Bk≠0 ≃
τ

4N
; ðB13Þ

where we neglect the subleading terms of Nobs and N.

2. Shot noise on the PSD

The quantum state of the NV center is read out by the
fluorescence measurement. The fluctuation of the number
of photons detected during the measurement, i.e., the shot
noise, affects the PSD, which can be evaluated following
the discussion in [91,92].
Let α0 and α− be the average number of detected photons

from the jSz ¼ 0i and jSz ¼ −i states, respectively, which
are combinations of the emission probability and the
collection efficiency of photons. Both α0 and α− are
increasing functions of the irradiated laser power, which
is considered to be fixed in this section. Then, for an
electron density matrix of a single NV center, ρ̃jl, the

density matrix of the outgoing photon ρphjl can be written as

ρphjl ¼ h0jρ̃jlj0iðð1 − α0Þj0iphjlh0j þ α0j1iphjlh1jÞ
þ h−jρ̃jlj−iðð1 − α−Þj0iphjlh0j þ α−j1iphjlh1jÞ; ðB14Þ

where j0iphjl and j1iphjl respectively correspond to the final
state without and with photon capture. By remembering
that the final CNOT gates in Figs. 2 and 3 maps the nuclear
spin state onto the electron spin state, the same quantity can
be equivalently expressed in terms of the density matrix ρjl
of the nuclear spin as

ρphjl ¼ hþjρjljþiðð1 − α0Þj0iphjlh0j þ α0j1iphjlh1jÞ
þ h0jρjlj0iðð1 − α−Þj0iphjlh0j þ α−j1iphjlh1jÞ: ðB15Þ

When an ensemble of the NV centers is considered, the
expectation number of detected photons is calculated as
hIjiph ¼ Tr½ρphj Ij�, where ρphj ≡ ⊗l ρphjl and

Ij ¼
X
l

j1iphjlh1j: ðB16Þ

Throughout this appendix, for calculational simplicity, we
assume that theNVcenters in the diamond are prepared to be
aligned along one of the four directions of the carbonic
covalent bonds using the techniques introduced in [30–33].8
Neglecting any kind of the inhomogeneity that causes

8Without the alignment of the NV centers, only a quarter of the
NV centers is sensitive to the magnetic field, while the other three
quarters of them induces a large amount of baseline fluorescence,
resulting in a larger shot noise. Overall, it gives rise to the Oð1Þ
reduction of sensitivity compared with the setup with aligned NV
centers.
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dephasing,we obtain hIjiph ¼ Nnjwith a single expectation
number of photons nj defined as

nj ≡ hþjρjljþiα0 þ h0jρjlj0iα−; ðB17Þ

with an arbitrary choice of l. Similarly, the fluctuation of the
number of photons δIj, i.e. the shot noise, can be evaluated as

hδIjδIjiph ¼ hI2jiph − ðhIjiphÞ2 ðB18Þ

¼ N2njð1 − njÞ; ðB19Þ

which is the expected result for the binomial distribution.

In our analysis, we use the set of observables fIjgj to
define the PSD, instead of using it directly to extract the
magnetic signal. The corresponding definition of the PSD
is given by Pph

k ≡ hOph
k i where

Oph
k ≡ τ2

tobs

X
j;j0

e2πikðj−j0Þ=NobsIjIj0 ; ðB20Þ

and the bracket h� � �i denotes the ensemble average with the
set of density matrices fρphj g

j
and the integrals over the

axion parameters taking into account the coherence time as
in Eq. (35). Using this notation, we define the variables
analogous to Cjj0 in Eq. (35) as

Cph
jj0 ≡ hIjIj0 i

¼ 1

2π

Z
dϕ

1

4π

Z
dv̂a

1

2π

Z
dϕ0 1

4π

Z
dv̂0aTr½ρphjj0IjIj0 �

����
va¼10−3

× ½Θðjtj − tj0 j − τaÞ þ 8π2δðϕ − ϕ0Þδðv̂a − v̂0aÞΘðτa − jtj − tj0 jÞ�; ð35Þ

with ρphjj0 ≡ ρphj ⊗ ρphj0 for j ≠ j0 and ρphjj ≡ ρphj . They are straightforwardly evaluated as

Cph
jj0 ¼ N2

�
α0 þ α−

2

�
2

þ
8<
:N

�
α0þα−

2

	
− N

�
α0þα−

2

	
2 þ NðN − 1Þðα0 − α−Þ2A; ðj ¼ j0Þ

N2ðα0 − α−Þ2A cos ½maðtj − tj0 Þ�Θðτa − jtj − tj0 jÞ: ðj ≠ j0Þ
ðB21Þ

Using them, the PSD is expressed, in the continuum limit, as

Pph
k ≃

1

tobs

Z
tobs

0

dt
Z

tobs

0

dt0eiωkðt−t0ÞCphðt; t0Þ: ðB22Þ

Note that, compared with the projection noise-limited PSD
Pk, P

ph
k has an extra factor in front of the axion effect

provided by

dPph
k =dB2

N

dPk=dB2
N

¼ dPph
k =dA

dPk=dA
≃ N2ðα0 − α−Þ2; ðB23Þ

where the final equation is a good approximation when
N ≫ 1. This observation is important to compare the
sensitivity between the cases limited by the projection
and shot noises.
For evaluation of the shot noise, it is sufficient to

consider the ensemble average without the axion effect,
which we denote as h� � �i0. With this convention, some of
the important quantities are easily calculated as follows:

hIji0 ¼ Nnavg; ðB24Þ

hI2ji0 ¼ NðN − 1Þn2avg þ Nnavg; ðB25Þ

hI3ji0 ¼ NðN − 1ÞðN − 2Þn3avg þ 3NðN − 1Þn2avg þ Nnavg;

ðB26Þ

hI4ji0 ¼ NðN − 1ÞðN − 2ÞðN − 3Þn4avg
þ 6NðN − 1ÞðN − 2Þn3avg
þ 7NðN − 1Þn2avg þ Nnavg; ðB27Þ

where navg ≡ ðα0 þ α−Þ=2 is the average number of
detected photons without the axion effect. Note also that
the correlation functions of the different-time operators can
be decomposed as, e.g., hI2j Ij0 i0 ¼ hI2ji0hIj0 i0, since the
shot noises at different times are not correlated with each
other. Although the full expressions are listed, only the
highest order terms of N are needed to evaluate the leading
contribution to the shot noise. Using the above expressions,
the ensemble average of our observable is evaluated as

hOph
k i0 ¼

τ2

tobs

�X
j

fNðN − 1Þn2avg þ Nnavgg

þ
X
j≠j0

e2πikðj−j0Þ=NobsðNnavgÞ2
�

ðB28Þ
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¼ τðNobsN2n2avgδk;0 þ Nnavgð1 − navgÞÞ; ðB29Þ

where we used tobs ¼ Nobsτ. For the evaluation of the second term, the following identity is used, i.e.,X
j≠j0

e2πikðj−j0Þ=Nobs ¼ NobsðNobsδk;0 − 1Þ: ðB30Þ

Similarly, the ensemble average of the squared observable is evaluated according to the expansion as

hðOph
k Þ2i0 ¼

��
τ2

tobs

X
j;j0

e2πikðj−j0Þ=NobsIjIj0
�

2



0

ðB31Þ

¼ τ4

t2obs

�X
j

hI4ji0 þ
X
j≠j0

2ðe2πikðj−j0Þ=Nobs þ e2πikðj0−jÞ=NobsÞhI3j Ij0 i0

þ
X
j>j0

ð4þ e4πikðj−j0Þ=Nobs þ e4πikðj0−jÞ=NobsÞhI2j I2j0 i0

þ
X
j

X
j0>j00

j≠j0 ;j≠j00

ð4e2πikðj0−j00Þ=Nobs þ 4e2πikðj00−j0Þ=Nobs

þ 2e2πikð2j−j0−j00Þ=Nobs þ 2e−2πikð2j−j0−j00Þ=NobsÞhI2j Ij0Ij00 i0
þ

X
j>j0>j00>j000

ðe2πikðj−j0þj00−j000Þ=Nobs þ permsÞhIjIj0Ij00Ij000 i0
�
; ðB32Þ

where the last line contains all the possible permutations of the indices ðj; j0; j00; j000Þ in the argument of the exponential. The
summation over indices in each line is evaluated according to the repeated use of the identities analogous to Eq. (B30),
which results in9 X

j>j0
ðe4πikðj−j0Þ=Nobs þ e4πikðj0−jÞ=NobsÞ ≃ NobsðNobsδk;0 − 1Þ; ðB33Þ

X
j

X
j0>j00

j≠j0 ;j≠j00

ðe2πikðj0−j00Þ=Nobs þ e2πikðj00−j0Þ=NobsÞ ¼ NobsðNobs − 2ÞðNobsδk;0 − 1Þ; ðB34Þ

X
j

X
j0>j00

j≠j0 ;j≠j00

ðe2πikð2j−j0−j00Þ=Nobs þ e−2πikð2j−j0−j00Þ=NobsÞ ≃ NobsfNobsðNobs − 3Þδk;0 þ 2g; ðB35Þ

X
j>j0>j00>j000

ðe2πikðj−j0þj00−j000Þ=Nobs þ permsÞ ≃ N2
obsðNobs − 3Þ2δk;0 þ 2NobsðNobs − 3Þ: ðB36Þ

By combining all the terms, we obtain the final expression

hðOph
k Þ2i0 ¼ τ2ðN2

obsN
4n4avg þ 6NobsN3n3avgð1 − navgÞ þ � � �Þδk;0 þ τ2ð2N2n2avgð1 − navgÞ2 þ � � �Þ; ðB37Þ

where the dots represent terms with lower order of N and/or Nobs. Thus, the fluctuation of the observable is evaluated as

Bph
k ≡ ½hðOph

k Þ2i0 − hOph
k i20�1=2 ðB38Þ

9Precisely speaking, all the following identities except for the second one contains additional terms proportional to δk;Nobs=2 whenNobs
is even. Neglecting these terms is justified if we assume that Nobs is odd, or simply that Nobs ≫ 1 and the probability at which the bin
k ¼ Nobs=2 is relevant is negligible.
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≃ τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4NobsN3n3avgð1 − navgÞδk;0 þ N2n2avgð1 − navgÞ2

q
: ðB39Þ

Finally, the sensitivities of our approach can be compared between the cases limited by the projection and shot noises. In
terms of the single-bin sensitivity in Eq. (41), the ratio of the sensitivities is calculated as

Bph
k

dPph
k =dB2

N

�
Bk

dPk=dB2
N

�
−1

¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NobsNnavgð1−navgÞ

p
C2navg

; ðk ¼ 0Þ
ð1−navgÞ
C2navg

; ðk ≠ 0Þ
ðB40Þ

where we used Eq. (B23) and the measurement contrast C
defined as [91]

C≡ α0 − α−
α0 þ α−

: ðB41Þ

For k ≠ 0 modes, the overall sensitivity is then expressed

by the parameter σR ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=ðC2navgÞ

q
when navg ≪ 1,

or equivalently by the readout fidelity F ≡ 1=σR. This
results in the sensitivity worse than the projection noise-
limited one by a factor of σR, which can be as small as
σR ≃ 19 [39]. On the other hand, the shot noise for the
k ¼ 0 mode is further enhanced by a large factor offfiffiffiffiffiffiffiffiffiffiffiffiffi
NobsN

p
, which arises from the fact that the observable

Oph
k contains terms linearly affected by the nuclear spin. As

a result, the k ¼ 0 mode is basically useless in our
approach. This unconventional scaling, which persists even
in the limit of the perfect measurement α0 ¼ 1 and α− ¼ 0,
is a result of the intrinsic constant shift in the definition of

the operators Ij, resulting in the finite expectation value
hIji0 ¼ Nnavg. In principle, this issue can be addressed by
shifting Ij → Ij − Nnavg in the definition of the PSD,
Eq. (B20), with which both the ratios shown in Eq. (B40)
become independent on Nobs and N. In reality, this
prescription is highly demanding since calibration of
Nnavg, which is an unknown value a priori, at precision
of 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NobsN

p
is required. However, since the frequency

range where this mode has a dominant contribution to the
sensitivity is given by f < t−1obs, the signal is more efficiently
explored by the conventional statistical analysis of the same
Ramsey sequence dataset, whose sensitivity is again ex-
pressed using σR.
Overall, we conclude that the single parameter σR deter-

mines the shot noise-limited sensitivity irrespective of the
signal frequency. We use these observations to plot the shot
noise-limited sensitivity in Sec. V. Note that σR could be
further reduced, e.g., by working with higher laser power
since both α0 and α1 are increasing functions of the
laser power.
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