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A B S T R A C T   

Several cities are exceptionally vulnerable to flood impacts due to increasing urbanization, 
population growth, and climate change. Quantifying flood vulnerability is useful for identifying 
the system’s weakness, monitoring its evolution, and supporting targeted flood risk adaptation 
policies. One of the vital aims of assessing urban flood vulnerability is to create an understandable 
link between flood vulnerability conceptual theories and the daily decision-making process 
through an easily accessible tool. Although several studies have described the development of an 
integrated flood vulnerability index (FVI) combining physical, social, and economic dimensions 
in urban areas, this index has not been assessed in developing countries. Therefore, this study 
focuses on an integrated indicator-based approach to develop an urban FVI based on exposure, 
susceptibility, and resilience to urban flooding at the neighbourhood scale. To evaluate the flood 
vulnerability of the population, we used the Improvement of Vulnerability Assessment in Europe 
(MOVE) framework. Accordingly, the vulnerability indices cover exposure, susceptibility and 
resilience aspects. The index is applied to Alexandria, one of the most important coastal cities of 
Egypt, which is highly vulnerable due to its dense population, low adaptive capacity, flat 
topography, and exposure to various water-related disasters, such as cyclones, storm surges, bank 
erosion, sea-level rise, tidal floods, and frequent urban floods. In this study, we use inductive 
principal component analysis (PCA) to develop a composite indicator for the FVI and to evaluate 
the vulnerability of 101 census administrative units (sheyakhahs) in Alexandria. We apply the 
Kaiser–Meyer–Olkin (KMO) test and Bartlett’s test of sphericity to assess sample adequacy and 
perform data standardization for all indicators. Furthermore, the analytic hierarchy process 
(AHP) is adopted for simplicity and comparison with the PCA results to assess their robustness. 
We clustered 58 and 13 flood vulnerability-related indicators into three major dimensions, i.e., 
physical, social, and economic, through PCA and the AHP, respectively. Official collected data are 
analysed using combined methods using advanced statistical analysis (SPSS) software and a 
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geographic information system (GIS). The findings highlight the variability in flood vulnerability 
across highly urbanized and suburban areas. Based on the PCA, 38 indicators were defined as the 
most comprehensive flood vulnerability assessment (FVA) used in Egyptian cities. Additionally, 
due to reliability of the approach to indicator selection and the weighting process, the chosen 13 
indicators for the AHP analysis yielded similar results. This research provides spatial planners and 
decision-makers with an integrated, comprehensive, and unified urban FVI to assess vulnerability 
and, thus, improve flood resilience in Egypt and countries in similar situations.   

1. Introduction 

Water- and weather-related disasters are expected to affect more cities worldwide with greater strength, frequency and unpre-
dictability due to various drivers (Abdrabo et al., 2022a; Abdrabo et al., 2022b; Osman et al., 2021). Among them are global warming, 
increased runoff flow due to the extension of impervious surfaces in urbanized areas, unplanned growth in urbanization, severe 
changes in land use patterns, human interference, and socioeconomic factors (Saber et al., 2021a). In this context, the importance of 
flood vulnerability assessment has been emphasized by international programmes such as the Sendai Framework for Disaster Risk 
Reduction 2015–2030 (Ouma and Tateishi, 2014; UNISDR, 2015). Due to differences in the views and ideas of scholars, various 
definitions and conceptual frameworks to assess vulnerability have been proposed: individual, economic, ecological, physical, social 
and urban vulnerability (Adger, 2006; Jamshed et al., 2017). Vulnerability has been defined as the propensity of exposed elements, 
such as physical or capital assets and human beings and their livelihoods, to experience harm and suffer damage and loss when 
impacted by single or compound hazard events (Cutter and Finch, 2008). (Wisner et al., 2014) defined vulnerability as the charac-
teristics of a person or group and their situation that influence their capacity to anticipate, cope with, resist and recover from the 
impact of a natural hazard (an extreme natural event or process). The Intergovernmental Panel on Climate Change (IPCC) described 
vulnerability as the degree to which a system is susceptible to and unable to cope with the adverse effects of climate change, including 
climate variability and extremes (Field and Barros, 2014). This definition includes the characteristics and situations of a person or 
group that affect its ability to anticipate, endure, deal with, and recover from the adverse effects of physical events (Cardona et al., 
2012). Though many definitions exist, the concept of vulnerability adopted in this study follows the approach introduced by (Welle 
et al., 2014); they defined vulnerability as the likelihood of injury, loss and disruption of livelihood caused by an extreme event and/or 
by obstacles in recovering from the disturbance that a system can potentially cause. Based on this conceptualization, vulnerability has 
specific spatial, socioeconomic–demographic, cultural and institutional contexts that can be expected under certain conditions of 
exposure, susceptibility and resilience that pose challenges to research on vulnerability to flooding (Kuhlicke et al., 2011). Thus, in the 
current study, these three factors (exposure, susceptibility, and resilience) are considered to assess flood vulnerability; this approach is 
supported by (Birkmann et al., 2013; Hamidi et al., 2020; Jamshed et al., 2020; Jamshed et al., 2019). 

Urban areas generally suffer from comparatively high flood vulnerability due to the high exposure of people and assets (Abdrabo 
et al., 2021; Abdrabo et al., 2020). In this regard, flood vulnerability assessment (FVA) is a vital planning tool that supports planners 
and decision-makers in detecting highly vulnerable areas, determining system weaknesses, observing changes in vulnerability, allo-
cating adaptation and mitigation resources, and justifying policy to the public (Eriksen and Kelly, 2007). However, FVA at the urban 
level has many deficiencies. The most critical deficiency is the lack of understanding of its importance, its mechanism, and its im-
plications for the main task of policymakers and city authorities in flood-prone areas (Abdrabo et al., 2020; Esmaiel et al., 2022; Saber 
et al., 2020; Esmaiel et al., 2022). Consequently, a holistic assessment approach is required to understand the complexity of processes 
generating vulnerability and to achieve sustainable development and urban resilience goals. 

Developing vulnerability assessment approaches can support stakeholders in reducing human and property losses, while enhancing 
our understanding of flood risk vulnerability. Over the last two decades, various methods for the assessment of flood vulnerability have 
been developed. Some of these methods focus on quantifying the hazard values and their distribution and deriving vulnerability. These 
methods use detailed input data related to the digital elevation model (DEM) and hydrological factors. However, information on 
economic losses and various inaccuracies regarding model validation and calibration are not considered. Other approaches use damage 
curve functions, damage matrices, and an indicator-based approach (Kappes et al., 2012; Papathoma-Köhle et al., 2017; Tarbotton 
et al., 2015; Papathoma-Köhle et al., 2017; Abdrabo et al., 2020; Elboshy et al., 2019; Moreira et al., 2021). Both damage functions and 
matrices assess physical vulnerability, neglecting the socioeconomic vulnerability of the inhabitants (Koks et al., 2015). Most current 
FVA studies are often indicator based and are meant to be precursors for impact analyses of vulnerable regions (Kotzee and Reyers, 
2016). Indices play a vital role in summarizing complex and multidimensional issues to assist decision-makers, facilitate the inter-
pretation of a phenomenon, and increase public interest through an overview of the results. A flood vulnerability index (FVI) is a tool 
for measuring the degree of vulnerability by aggregating several indicators (Moreira et al., 2021). The indicator-based approach is 
suitable for FVA due to its ability to incorporate multiple physical, economic, social, environmental, cultural, and institutional 
characteristics that influence the exposed elements’ susceptibility to hazards (Eriksen et al., 2020). The FVI can be used to commu-
nicate multidisciplinary topics in a relatively straightforward manner due to the large number of components that provide a good 
overview of flood vulnerability on different scales. It also provides the user with a value that can be relatively simply communicated to 
other stakeholders, and therefore, it should raise awareness of vulnerability. 

There are two main methods for indicator selection and weighting: inductive and deductive. The inductive method has been used to 
conduct indicator-based vulnerability assessments (Rana and Routray, 2018; Reckien, 2018) because the deductive method suffers 
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from many limitations, such as the utilization of a limited number of indicators and the dependence on expert (subjective) knowledge 
of related theories, literature, and local context, as in the analytical hierarchy process (AHP) (Yoon, 2012). On the other hand, the 
inductive method uses a broader range of indicators; the set of indicators can be reduced to smaller numbers of variables (components) 
by merging highly correlated indicators into one component. Thus, principal component analysis (PCA) is typically used as a method of 
reduction (Cutter et al., 2003; Reckien, 2018; Yoon, 2012). Although indicators are drawn from the literature, the assessment includes 
all relevant indicators (Yoon, 2012). This approach is suitable for utilizing a rich data source such as the census (Cutter et al., 2003; 
Reckien, 2018). However, the PCA technique can be complex due to the time required for collecting data and the need for technical 
experience with statistical methods. In this study, we focused on AHP and PCA, rather than other index-based vulnerability assessment 
methods, for the following reasons: (1) Their ability to deliver comparable and reliable results has been proven (Kurek et al., 2022); (2) 
They have also been widely used to compare deductive and inductive methods and form the basis for other methods, such as Fuzzy 
AHP (Feng and Wen, 2011). 

These different dimensions have been considered in various attempts to develop an FVI on different scales (local or regional), as 
well as for both qualitative and quantitative data (Fernandez et al., 2016). Researchers such as Balica and others have developed FVIs 
based on social, economic, and physical components using 71 indicators (Balica et al., 2009; Balica and Wright, 2010). However, there 
is redundancy in some of these indicators and some of them do not influence the results. Salazar-Briones et al. attempted to construct 
an integrated FVI for developing countries; however, the physical component depended mainly on the results from hydraulic and 
hydrological modelling rather than the actual characteristics of buildings and infrastructure. Additionally, the selection of indicators 
was subjective. For assessing the urban areas of developing countries, an integrated FVI combining physical, social, and economic 
dimensions with accessible indicators has not been introduced (Salazar-Briones et al., 2020). 

In Egypt, there are several research gaps in FVA: (1) Most previous studies were performed based on minimal indicators, ignoring 
the various dimensions of FVA and considering only the regional scale; (2) FVA in Egypt follows the indicator-based approach guided 
by a subjectively based selection of indicators and weights, and FVA based on PCA has not been conducted in any study, despite the fact 
that almost 58 articles discuss FVA; (3) There is no integrated vulnerability index for use in the urban areas of Egypt (Abdrabo et al., 
2022a, 2022b; Abdrabo et al., 2020). For a comprehensive and integrated FVI, the relevance and importance indicators must be 
analysed in depth to effectively portray the reality of pluvial floods. 

Accordingly, this work focuses on an integrated indicator-based methodology for generating a unified and comprehensive urban 
FVI on the neighbourhood level utilizing all possible indicators that cover social, economic, and physical aspects. Additionally, we 
investigate the performance of the AHP compared to PCA. 

2. A theoretical and conceptual framework for vulnerability 

The following section describes a framework for multidimensional, comprehensive vulnerability assessment as part of risk 
appraisal and risk management in the context of Disaster Risk Management (DRM) and Climate Change Adaptation (CCA). A 
framework is a heuristic tool that may direct systematic evaluations of vulnerability and offer a foundation for comparing indicators 
and criteria produced to analyse important elements and different aspects of vulnerability. There are four main methods for analysing 
vulnerability and risk. The four methods are not conflicting, but rather each approaches risk from a distinct perspective and with 
unique goals in mind, ranging from uncovering global-to-local system links to the hunt for measurable risk metrics. The four ap-
proaches are as follows: (1) political economics; (2) social ecology; (3) vulnerability and catastrophe risk assessment from a holistic 
perspective; and (4) climate change systems science. The political economy approach ties susceptibility to dangerous circumstances 
and discrete risk on a vulnerability continuum that connects local risk to larger national and global developments in the political 
economy of resources and political power. 

In contrast to political economics, social ecology emphasizes society’s transformational capabilities concerning nature and the 
consequences of environmental changes on social and economic systems. It contends that understanding a system’s exposure and 
susceptibility requires addressing these coupling mechanisms and interactions. Comprehensive viewpoints on vulnerability and ca-
tastrophe risk assessment have attempted to establish an integrated explanation of risk. These methods distinguish between exposure, 
susceptibility, social reaction capacity, and a lack of resilience. Within the framework of Climate Change Adaptation, the fourth school 
of thought formed. However, this does not imply that all DRR and CCA techniques or ideas can be harmonized since they often reflect 
two distinct interpretations of vulnerability and hence are complementary approaches, such as (Field et al., 2012; O’brien et al., 2007). 

According to the vulnerability paradigm proposed by (Turner et al., 2003), individuals, communities, and whole ecosystems may 
all be assessed for their susceptibility to the negative effects of global environmental change. According to the Bogardi, Birkmann, and 
Cardona Framework (BBC), vulnerabilities should be seen as continuous occurrences that may be quantified on ecological, social, and 
economic scales (Birkmann, 2006; Bogardi and Birkmann, 2004). For example, (Schröter et al., 2005) proposed an eight-step method 
for assessing vulnerability. By including several dimensions (physical, social, economic, institutional, and environmental) in the 
vulnerability theory, (Birkmann, 2006) greatly expanded its applicability. The use of a vulnerability scope diagram has also been 
suggested(Polsky et al., 2007). In the context of disaster risk management and climate change adaptation, the IPCC’s Special Report on 
Managing the Risks of Extreme Events and Disasters to Advance Adaptation explains vulnerability as a secondary component of 
disaster risk and its effect on development (Field et al., 2012). MOVE (Methods for the Improvement of Vulnerability Assessment in 
Europe) is a new framework proposed to enhance vulnerability assessment in Europe (Birkmann et al., 2014). All these models have 
shown that vulnerability and its evaluation are multifaceted. All these frameworks demonstrated that vulnerability assessments in the 
context of natural disasters and climate change might be based on some degree of agreement among various techniques. That is, 
vulnerability analysis in both DRM and CCA often takes four crucial elements into account: (a) exposure to a hazard or stressor; (b) 
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Fig. 1. Alexandria city location, its administrative units (sheyakhahs), and the divisions of the district.  
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Fig. 2. Flow diagram of the FVA process using PCA and the AHP.  
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susceptibility (or fragility); (c) societal response capabilities or lack of resilience; and (d) adaptive skills. Some methods, however, 
regard exposure as a component in addition to vulnerability (see Field et al., 2012) or as a mixture of vulnerability and natural hazard 
or physical event. There are important indicators for measuring exposure, susceptibility, and response capabilities in terms of resil-
ience (lack of coping or recovery skills) as well as adaptive processes. All these models have confirmed the multidimensional char-
acteristics of vulnerability and its assessment (Rana and Routray, 2018). Therefore, we adopted the MOVE framework in this study as 
in many other studies, even after the IPCC 2012 (Hamidi et al., 2020; Lianxiao Morimoto, 2019; Matusin et al., 2019; Rainer and Wood, 
2011; Robielos et al., 2020). 

3. Study area 

Over the last 15 years, Egypt’s flood risk has significantly increased due to urbanization, population growth, and economic 
development. In Egypt, floods frequently cause severe financial losses and casualties, accounting for 45%, 45.1%, and 46.5% of the 
frequency, mortality, and contribution to the average annual loss, respectively, of hazards that confront Egypt. It was estimated that 
from 1980 to 2010, approximately 262,864 people in the country were affected by floods, and 1527 people were killed, with a total 
annual loss due to flooding of 1.342 billion USD (CRED EM-DAT: The OFDA/CRED - International Disaster Database, 2015). Egypt is 
exposed mainly to flash and pluvial floods (surface floods occurring in urban areas) (Abdrabo et al., 2022a, 2022b; Abdrabo et al., 
2020; Saber et al., 2021b; Saber et al., 2020). 

Alexandria is the second largest metropolitan city and a major coastal city in Egypt, located on the Mediterranean (GOPP, 2008; 
World Bank, 2011). The city’s area is approximately 2818 km2. In 2017, its population was 5.1 million and was projected to range 
between 6.5 and 6.8 million by 2030 (Central Agency for Public Mobilization and Statistics, 2017; World Bank, 2011). The city is 
highly exposed to storm surges and urban floods due to climate change and its impacts, such as extreme rainfall events, in addition to 
the city’s low elevation and complex topographic features (El-Boshy et al., 2019; World Bank, 2011; Zevenbergen et al., 2017). Floods 
in Alexandria have claimed the lives of 119 people and wounded >26 others since 1991 (El-Boshy et al., 2019; Zevenbergen et al., 
2017). 

Alexandria has exhibited a lack of resilience in facing several events. The city experienced its worst flooding events on 25 October 
and 4 November 2015; nearly 60% of the city was flooded. The flood inundation ranged from 0.5 m to 2.3 m, and lowland areas 
remained affected for 15 days. Alexandria has five districts with a high population density and urban sprawl areas: El-Montazah, the 
Northern District, the Middle District, the Western District, and El-Gomrok (Alexandria Governorate, 2019). This study was conducted 
on a local city scale, covering five districts, including 101 neighbourhoods/sheyakhahs. Fig. 1 shows the city’s location, administrative 
units and districts, and inundated parts due to flood events. 

The physical indicators significantly change based on a study’s scale; this study was carried out on an urban scale, rather than the 
sub-basin level (Abdrabo et al., 2020). For instance, most studies on the regional scale are based on physical indicators that are more 
related to natural land, not the urbanized area (Salazar-Briones et al., 2020). Slope, proximity to streams, land cover and soil type, 
topography, and stream flow are the most common parameters on the regional scale. The local scale requires much more detailed 
information to determine physical vulnerability, such as the urban context, health and emergency services availability, infrastructure 
connectivity, urban density, and the construction, material, structure, and height of buildings (Aroca-Jimenez et al., 2017). 

4. Methodology 

This research comprehensively establishes an FVI using PCA and includes most of the social, economic, and physical components 
most likely to be affected by a flood disaster (58 indicators). The proposed FVI methodology begins with assessing the vulnerability 
levels for each factor (exposure, susceptibility, and resilience) on the neighbourhood and district scales. Then, a quantitative evalu-
ation is made by aggregating indicators. The AHP is conducted for simplicity using 13 indicators, and its results are compared with the 
PCA results to assess its performance. 

The developed integrated methodology of the FVI is depicted in Fig. 2, and detailed over-stepwise procedures are explained in the 
following sub-sections. 

4.1. Indicator selection 

Flood vulnerability is a multidimensional issue influenced by the characteristics of a person or group and situations that affect the 
ability to anticipate, endure, deal with, and recover from the adverse effects of physical events. The most challenging task in con-
structing an FVI is the choice of the primary indicators, since the selection depends on the quality of available variables and the 
subjectivity of decisions (Nardo et al., 2005). The indicators utilized in this study are selected based on sub-systems of physical, social 
and demographic, and economic systems (Annex A.1). The chosen indices cover the exposure, sensitivity, and adaptive capacity as-
pects of vulnerability analysis (Wu, 2021) and are highly related to flood issues. For PCA, 58 indicators are calculated at the scale of 
primary administrative units (101 sheyakhahs) and the scale of five districts. The indicators selected in this study can be considered a 
detailed description of different sheyakhahs’ physical (15 indicators), economic (20 indicators), and social (23 indicators) contexts. 
For the AHP, 13 of the 58 indicators are chosen for FVA, including six indicators for the physical dimension, 4 for the social dimension, 
and 3 for the economic dimension (Annex A.2). The selected indicators provide a broad qualification of physical traits and the observed 
socioeconomic situation in Egypt. 
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4.2. Data and materials 

Census data on Alexandria and the physical features of a geodatabase constituted the core of the vulnerability and risk assessments. 
The data required for the vulnerability and risk assessments were obtained by direct contact with the relevant authorities, mainly the 
Central Agency for Public Mobilization and Statistics (CAPMAS) and the General Organization of Physical Planning (GOPP). The 
CAPMAS is the national body that collects, processes, analyses, and disseminates statistical data and conducts the census. Additionally, 
it is responsible for correctly cross-referencing the statistical information of the surveys with the corresponding geographical locations. 
The primary geostatistical data source (census) was used due to the availability of economic and social data and some physical data on 
Egypt. Table 1 summarizes the collected data and their metadata. The census of 2017 was obtained in Excel from the CAPMAS. Since 
the data on the population’s economic conditions are not yet available, a geodatabase for the census of 2006 was used to complete the 
missing information. 

The GOPP provided a detailed geodatabase. It contained the physical features of Alexandria city, including buildings, roads, and 
public infrastructure. Additionally, other data sources were utilized to obtain data with potential usefulness. These data included the 
locations of schools, hospitals, and historical sites. 

4.3. PCA method 

PCA has been utilized as an inductive approach to minimize the number of potential variables associated with vulnerability. PCA 
has a high potential for using rich data sources in conducting vulnerability assessments (Reckien, 2018). Thus, a dataset that includes 
all potential variables (58) was prepared for 101 sheyakhahs (Annex A.2). The variables were constructed based on census data, a 
physical geodatabase, and the previously mentioned data sources. PCA was used to combine partly correlated variables with smaller 
uncorrelated components (Reckien, 2018; Török, 2018). Several software packages can be used to implement PCA. Specifically, SPSS 
was used in this study. This method is based on the work undertaken by Cutter et al. (Cutter et al., 2003) and was followed by many 
other researchers interested in assessing social vulnerability (Frigerio and De Amicis, 2016; Reckien, 2018). The FVA process using 
PCA is described as follows:  

1- Data processing and normalization: A recent study by Reckien (Reckien, 2018) revealed that area-based metrics are preferable to 
percentage-based metrics (Cutter et al., 2003). Accordingly, all potential variables were normalized as an area-based metric for 
normalizing the indicators (number of assets per sq. km). Several normalization methods were discussed by Yoon (Moreira et al., 
2021; Tate, 2012; Yoon, 2012). However, the min-max method yielded results comparable to those of the AHP. This normalization 
method rescales all variables to values between 0 (worst rank) and 1 (best rank) (Eq. 1). Data normalization was performed for all 
indicators, and IBM SPSS Statistics was used to carry out all statistical procedures. 

Min − max =
Xin − min(Xin)

Max(Xin) − min(Xin)
(1)    

2- Vulnerability set construction based on PCA: PCA is a data analysis tool used to reduce the dimensionality (number of variables) in 
the context of many interrelated variables while retaining as much information as possible. In this study, we implemented PCA with 
a data matrix of 58 variables and 101 tracts to summarize the latent factors describing the physical-natural and socioeconomic 
context observed in the five districts. The selected variables were grouped into three sets representing vulnerability dimensions: 
physical, social, and economic vulnerability (Annex A.2). PCA was conducted separately for each dimension’s set of variables to 
detect the vulnerability type to support decision-makers in the mitigation process. Consequently, three different groups of com-
ponents were extracted, one set for each dimension (physical, social, and economic) (Török, 2018). 

Table 1 
Data for the vulnerability assessment.  

Data Information Source Format Scale 

Census 2017 Buildings and units’ physical conditions Central Agency for Public Mobilization and 
Statistics (CAPMAS) 

Excel Sheyakhah 
administrative units Population social conditions 

Census 2006 Population economic conditions Geodatabase 

The city’s physical 
geodatabase 

Building information (use, heights, 
conditions, structure) 

Infrastructure (i.e., roads, public 
networks) 

General Organization of Physical Planning 
(GOPP) Geodatabase 

Building level Schools Location, type, and number of students General Authority for Educational Buildings 
(GAEB) 

Shapefiles Hospitals Location Ministry of Health 

Historical sites Location and area 
Atlas of Antiquities from Ministry of State of 

Antiquities  
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3- Varimax rotation and correlation matrix: Highly correlated indicators were grouped based on the correlation matrix resulting from 
using the varimax rotation tool in SPSS. The exclusion of highly correlated variables (correlation coefficient > 0.80) was inves-
tigated (after retaining the dominant factor) to eliminate data redundancy (Abson et al., 2012; Field, 2013; Török, 2018). In this 
study, the number of significant axes (or dimensions) was chosen by retaining the components with eigenvalues >1 (de Sherbinin 
and Bardy, 2015; Török, 2018; University of South Carolina HaVRI, 2011; Wood et al., 2010).  

4- The Kaiser–Meyer–Olkin (KMO) test and Bartlett’s test: The KMO test and Bartlett’s test of sphericity for sampling adequacy were 
implemented to check model robustness. The KMO index varies from 0 to 1, and to perform the factor or component analysis, 
categories can be defined based on the following thresholds: 0.90 (marvellous), 0.80 (meritorious), 0.70 (middling), 0.60 
(mediocre), 0.50 (miserable), and below 0.50 (unacceptable). Bartlett’s test of sphericity checks if redundancy exists in variables 
and if the utilized variables are suitable for PCA when p < 0.01 (Field, 2013; Török, 2018; Wood et al., 2010; Wu, 2021). 

In this study, datasets with a KMO index greater than or equal to 0.70 and a p-value for Bartlett’s test of sphericity <0.01 were 
considered suitable for PCA.  

5- Weighting components (variance explained/cumulative variance): Eleven principal components that explained 71.3% of the total 
variance were retained. To better understand these components, rotated factor loadings of the indicators were analysed, and the 
significant values are highlighted in Annex A.2 (Field, 2013; Török, 2018; Wood et al., 2010). Components with absolute loading 
values below 0.4 were excluded. Following the factor rotation stage, a directional adjustment process was applied to the entire 
factor to ensure that the individual component variables act in the same direction, increasing or decreasing vulnerability. Thus, 
components enhancing vulnerability were considered positive, while those that reduced vulnerability were deemed negative. 
Consequently, we assigned a positive score when the resulting factor increased the total vulnerability and a negative score when it 
decreased total vulnerability. We applied PCA separately to the physical, social, and economic dimensions to obtain a more 
comprehensive picture.  

6- For FVI calculation of each administrative unit, the resulting factor scores for each component were weighted by the ratio of the 
component’s variance explained to the cumulative variance explained by the dimension’s components. The components were 
mapped separately using the resulting weighted factor scores. The summation of the weighted components resulted in a cumulative 
vulnerability score for each dimension. Additionally, the cumulative vulnerability score was used to map its spatial distribution, as 
shown in (Eq. (2) (Abdrabo et al., 2020; Abson et al., 2012; Reckien, 2018; Tate, 2012). 

Vulnerability =
∑n

f=1
wf *sf (2)  

where f is the vulnerability indicator, n is the total number of indicators, wf is the relative weight assigned to the indicators, and sf 
represents the indicator score. The weights wf are obtained from the factor loadings matrix mentioned above based on (Eq. 3: 

wfj =

(
factor − loadingfj

)2

eigenvaluej
(3)  

where factor loading kj is the value of the factor loading of indicator f in principal component j and eigenvalue j is the eigenvalue of the 
jth principal component. Finally, the FVI can be calculated as a weighted aggregation of the intermediate sustainability indicators, as 
shown in (Eq. 4: 

FVIi =
∑j=11

j=1
αjIVIji (4)  

where FVIi is the value of the composite indicator for tract i and αj is the weight applied to intermediate vulnerability indicator j. These 
weights are calculated as shown in (Eq. 5: 

αj =
eigenvaluej

∑j=11

j=1
eigenvaluej

(5) 

The cumulative vulnerability scores for the three dimensions were summed to calculate the overall vulnerability and map it. This 
aggregation method is commonly implemented in vulnerability assessment studies (Frigerio and De Amicis, 2016; Tate, 2012). The 
map was classified using normalization classes to represent the score variations (Török, 2018; Wood et al., 2010). 

4.4. AHP method 

The AHP was developed by Saaty (Saaty, 1988) as an essential tool for decision-makers or groups of decision-makers, enabling their 
preferences to be analysed and discussed (Saaty, 2000). The AHP constructs a pairwise comparison matrix (PCM) to compare the 
criteria. The AHP is used to estimate the weighting of each criterion, which describes its importance. Saaty suggested a scale of 1 to 9 
for PCM elements, where 1 indicates that the criteria are equally important. A value of 9 indicates that the criterion under consid-
eration is essential in relation to the other criterion with which the comparison is made. The relative weights of the indicators are 
computed using the AHP. The AHP is implemented using six steps, as discussed and depicted below. 
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1. The relative importance of each parameter pair is determined based on the pairwise comparison importance scale; this step is called 
prioritization (Table 2)  

2. Pairwise comparison for a matrix of 13 × 13 cells is created for the 13 vulnerability indicators (Table 4). The elements in row i and 
column j of the matrix are labelled I and J. The matrix has the property of reciprocity (aij = 1/aij) and is shown (Table A.2) in the 
Appendices  

3. The matrix is standardized using the mathematical expression aij/
∑

i, j=1
n aij.  

4. The normalized value for each parameter from pairwise comparisons is used with the weighted values in the last column of the 
standardized matrix to obtain the eigenvector, representing the consistency index (CI) matrix.  

5. The CI is applied to check the pairwise comparison matrix using (Eq. 6: 

CI =
(λ max − n)

n − 1
(6) 

CI is the consistency index, n is the number of vulnerability indicators being compared, and λ max is the most significant value of 
the eigenvector matrix.  

6. The consistency ratio (C.R.) is the ratio of the CI and the random index (R.I.) shown in Table 3 and is expressed mathematically 
using (Eq. 7 

CR =
CI
RI

(7) 

Saaty developed the C.R. to check the consistency of the pairwise comparisons (Samela et al., 2016). The C.R. was calculated, and 
the value was 0.057, which is <10% (0.1), indicating that the pairwise matrix is consistent. The final vulnerability map was obtained 
using equal dimension weighing, and it was ranked into four low- to very high-vulnerability classes. 

The vulnerability mapping method combines multiple physical, economic, and social indicators (Table 4). The six physical 
vulnerability indicators are the ratio of the green space area, the number of low-rise buildings (two floors or less per sq. km), the 
number of low-quality buildings per sq. km, the number of buildings not connected to sanitation per sq. km, the number of makeshift 
buildings per sq. km and the average distance to the nearest hospital in km. The economic vulnerability has three indicators: the 
dependency ratio, the industrial and commercial land use ratio, and the ratio of the service land use area. Social vulnerability’s four 
indicators are population density per sq. km, the elderly population above 65 years old, the population of children below five years of 
age, and the disabled population per sq. km. 

All 13 selected indicators were normalized (Eq. 1). The AHP approach was used to determine the relative weights of each 
vulnerability indicator (Table 4) following the steps above. The flood vulnerability maps were calculated (Eq. 2). The final values of 
each dimension were multiplied by 0.33 to maintain equal weighting of each vulnerability dimension. Based on the literature, the 
resulting vulnerability maps were categorized based on their min-max value into five categories distributed equally from 0 to 1: very 
low (0–0.201), low (0.0202–0.401), moderate (0.402–0.600), high (0.601–0.800), and very high (0.801–1.0) (Abdrabo et al., 2020). 
The vulnerability maps were calculated based on (Aroca-Jimenez et al., 2017; Frazier et al., 2014). 

5. Results 

5.1. PCA flood vulnerability maps 

The PCA flood vulnerability maps were divided into the main dimensions of vulnerability (physical, social, and economic), as 
shown in Fig. 3. Eleven principal components (3 physical, 4 social, and 4 economic) that explained 71.3% of the total variance were 
retained. All pairwise correlation coefficients among the 58 indicators were calculated in SPSS Statistics 26. Accordingly, 20 indicators 
were excluded due to their high correlation, and 38 were used for FVA with PCA (9 physical, 13 social, and 16 economic), as shown in 
Annex A.3. 

5.1.1. PCA physical vulnerability 
A set of three components was used to calculate physical vulnerability: (1) a building’s connectivity to infrastructure, (2) a 

building’s structure, and (3) residential built-up area density. The most effective indicator in each of the previously mentioned 
components was the number of buildings not connected to sanitation, bearing walls, and residential buildings. The cumulative 
variance explained by the components was nearly 62%, with a middling value (approximately 0.7) in the KMO test and Bartlett’s test of 
sphericity was significant with p < 0.001. Annex A.2 summarizes the physical vulnerability results, including the variance explained by 
the physical components and the loading scores of their contributing variables (9 variables). The cumulative physical vulnerability was 

Table 3 
RI based on the order of the pairwise matrix.  

No. of indicators 1 2 3 4 5 6 7 8 9 10 11 12 13 
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56  

K.I. Abdrabo et al.                                                                                                                                                                                                     



Urban Climate 48 (2023) 101426

10

estimated by summing these three components’ weighted factor scores and is illustrated in Annex. A.2. The units with high to very high 
physical vulnerability accounted for 17 out of 101 administrative units with 2.54% of the total population and 1.43% of the total area, 
concentrated in El-Gomrok and the Western District. Several administrative units had medium to high vulnerability categories in El- 
Montazah, the Northern District, and the Middle District. However, in terms of area, El-Gomrok and the Western District were rela-
tively small compared with El-Montazah and the Northern District (Fig. 3.a). 

5.1.2. PCA social vulnerability 
A set of four components identified social vulnerability: (1) the population structure, (2) the population social status, (3) the 

population with poor mobility, and (4) overcrowding. The most effective indicator in each of the previously mentioned components 
was the number of children under five years, the widowed population, the number of students in primary schools, and the over-
crowding rate. The cumulative variance explained by the component was nearly 77.5%, with a value of 0.75 in the KMO test and p <
0.001 in Bartlett’s test. Annex A.3 summarizes the social vulnerability results, including the variance explained by the social com-
ponents and the loading scores of their contributing variables (13 variables). The cumulative social vulnerability was estimated by 
summing the weighted factor scores of these four components and is illustrated in Annex A.3. The units with high to very high social 
vulnerability accounted for 10 out of 101 administrative units with 5.41% of the total population and 0.86% of the total area, 
concentrated in El-Gomrok, the Northern District and El-Montazah. Several administrative units had medium to high vulnerability 
categories in the Middle and Western Districts (Fig. 3.b). 

5.1.3. PCA economic vulnerability 
A set of four components identified economic vulnerability: (1) population work activities, (2) service activities, (3) poverty, and 

(4) dependency. The most effective indicator in each of the previously mentioned components was the number of people working in 
transportation and communication activities, the ratio of services, the extreme poverty ratio, and the dependency ratio. The cumu-
lative variance explained by the component was nearly 74.3%, with an excellent value (approximately 0.81) from the KMO test and p 
< 0.001 in Bartlett’s test. Annex A.3 summarizes the social vulnerability results, including the variance explained by the social 
components and the loading scores of their contributing variables (16 variables). The cumulative physical vulnerability was estimated 
by summing the weighted factor scores of these three components; it is illustrated in Annex. A.3. The units with high to very high 
physical vulnerability accounted for 18 out of 101 administrative units with 20.32% of the total population and 4.45% of the total area, 
concentrated in El-Gomrok, the Northern District, and the Middle District. Several administrative units had medium to high vulner-
ability categories in El-Montazah and the Western District (Fig. 3.c). 

5.1.4. PCA overall vulnerability 
The very high and high scoring units were distributed across the study area. El-Gomrok had the highest vulnerability values, 

followed in order by the Middle District, the Western District, the Northern District, and El-Montazah (Fig. 4). 

Table 2 
Pairwise comparison importance scale (Saaty, 1988).  

Scale Description Reciprocals* 

1 Elements i and j have equal importance 1 
3 Element i is slightly more important than element j 1/3 
5 Element i is more important than element j 1/5 
7 Element i is strongly more important than element j 1/7 
9 Element i is very strongly more important than element j 1/9  

* Reciprocals are used if element i has a lower value than j. 

Table 4 
Scoring criteria for the vulnerability indicators.  

No. Category Indicators Relation Score/wt% 

1 Physical The ratio of the green space area − 8.7 
2 The number of low-rise buildings (two floors and less per sq. km) + 12.3 
3 The number of low-quality buildings per sq. km + 16.1 
4 The number of buildings not connected to sanitation per sq. km + 4.4 
5 The number of makeshift buildings per sq. km + 9.3 
6 The average distance to the nearest hospital in km + 7.3 
7 Social Population density per sq. km + 11 
8 The number of elderly people above 65 years old per sq. km + 5.5 
9 The number of children below five years old per sq. km + 3.8 
10 The number of disabled people per sq. km + 6.4 
11 Economic Dependency ratio + 5.2 
12 The ratio of industrial and commercial land uses + 3.8 
13 The ratio of the service area + 4  
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Fig. 3. a. Physical, b. social, and c. economic flood vulnerability results using PCA.  
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Fig. 4. Overall flood vulnerability using PCA.  
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Fig. 5. a. Physical, b. social, and c. economic flood vulnerability results using the AHP.  
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Fig. 6. Overall flood vulnerability using the AHP.  
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5.2. AHP flood vulnerability maps 

The AHP flood vulnerability maps were divided into the main dimensions of vulnerability: physical, social, and economic. Thirteen 
indicators were chosen, categorized, and weighted by experts (Table 4). All 13 selected indicators were normalized (Eq. 1), and the 
physical, economic, social (Fig. 5), and overall vulnerability (Fig. 6) maps were calculated (Eq. 2). 

5.2.1. AHP physical vulnerability 
Table 4 summarizes the physical vulnerability indicators and weighting. The units with high to very high physical vulnerability 

accounted for 10 out of 101 administrative units with 1% of the total population and 0.52% of the whole area. Similar to the results of 
physical vulnerability using PCA, the administrative units with high and very high vulnerability were concentrated in El-Gomrok and 
the Western District, and several administrative units had medium to high vulnerability categories in El-Montazah, the Middle District, 
and the Northern District (Fig. 5.a). 

5.2.2. AHP social vulnerability 
Table 4 summarizes the social vulnerability indicators and weighting. The units with high to very high social vulnerability 

accounted for 6 out of 101 administrative units, with 15.11% of the total population and 2.74% of the entire area. In agreement with 
the results of social vulnerability using PCA, the administrative units with high and very high vulnerability were concentrated in El- 
Gomrok, the Northern District and El-Montazah. Several administrative units had medium to high vulnerability categories in the 
Middle and Western Districts (Fig. 5.b). 

5.2.3. AHP economic vulnerability 
Table 4 summarizes the economic vulnerability indicators and weighting. The units with high to very high economic vulnerability 

accounted for 47 out of 101 administrative units, with 25.35% of the total population and 21.89% of the entire area. In contrast to the 
results of economic vulnerability using PCA, all five districts showed high vulnerability, especially El-Gomrok, the Northern District, 
and the Western District with several administrative units, and there were medium to high vulnerability categories in El-Montazah and 
the Middle District (Fig. 5.c). 

5.2.4. AHP overall vulnerability 
The units with very high and high scores were distributed across the study area. Similar to the results obtained from the PCA, El- 

Gomrok had the highest vulnerability values, followed in order by the Middle District, the Western District, the Northern District, and 
El-Montazah (Fig. 6). 

6. Discussion 

Addressing flood vulnerability for risk reduction purposes requires understanding that the most effective vulnerability dimensions 
(physical, social, and economic) must be covered (Mavhura et al., 2017). An integrated approach and unified FVI for urban areas in 
developing countries is necessary as a tool to enable urban planners and stakeholders to transition from a disciplinary approach to a 
holistic approach that integrally solves urban planning processes and reduces the risk of floods. Stakeholders and experts usually prefer 
the deductive approach due to its simplicity when the drivers of vulnerability are clear. In this case, an assessment can be implemented 
based on a small number of indicators, incorporating the relative importance of each indicator by using weights as in the AHP 
(Arabameri et al., 2020). This approach is useful in practice because of its results can be clearly communicated to stakeholders 
(Reckien, 2018; Yoon, 2012). However, scholars often avoid using weights because there is a lack of appropriate determination. 

The influence of individual indicators is not specified since the final vulnerability index is a sum; this can be overcome by mapping 
individual indicators (Reckien, 2018; Török, 2018). The inductive approach is described as a complex practice, challenging to 
communicate to stakeholders; nevertheless, it is the most commonly used approach owing to its relative simple approach to consid-
ering all possible indicators (Reckien, 2018; Yoon, 2012). Abson et al. (Abson et al., 2012) argued that PCA has the advantage of 
information richness that makes it possible to understand the multi-variance drivers of vulnerability provided by mapping each 
component individually (Reckien, 2018; Yoon, 2012). 

Accordingly, modelling a unified FVI based on the objective tool PCA is vital for urban development and flood risk management. In 
this study, like a few articles that introduced an FVI, the economic, physical, and social dimensions were given the same weight to 
bridge the different approaches and make it easier for stakeholders and the community to make accurate decisions (Balica and Wright, 
2010; Salazar-Briones et al., 2020; Wu, 2021). In contrast to other methods, the level of analysis was on an urban scale and not at the 
sub-basin level. Additionally, unlike in other studies, we utilized a physical vulnerability index that combines the intrinsic vulnera-
bility of buildings and flash flood intensity to evaluate the propensity to suffer damage resulting from indicators related to building 
properties. The physical indicators related to flow parameters were neglected to avoid redundancy since they will be used in hy-
drological models to obtain hazard maps as a part of the flood risk assessment process. The most common indicators among the 
previous articles and this research in the social dimension were population density, education level, gender, and the underage and 
elderly population (Cutter et al., 2003; El-Boshy et al., 2019; Rufat et al., 2015). At the same time, this study considered other in-
dicators, such as the illiteracy rate, household connectivity to infrastructure, disabilities, and the tenure type (owned, rented, etc.). For 
the economic dimension, the most common indicators were employment status, occupation, and the poverty ratio (Müller et al., 2011). 
Indicators related to the land-use type, land, or property value were also considered in this study. 
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The comparison of the AHP and the PCA techniques demonstrated good agreement between both sets of results in both the physical 
and social vulnerability maps. However, there was a noticeable difference in economic vulnerability. To explain these results, we must 
mention that they mainly depend on indicator selection, weighting, and aggregations. Notably, 10 out of 13 indicators used in the AHP 
were already included in the PCA indicator set. Four out of 6 indicators were used in the AHP physical indicators (makeshift buildings, 
low-quality buildings, the number of buildings not connected to sanitation, and the average distance to the nearest hospital). The other 
2 (low-rise buildings (2 floors and less) and the ratio of the green space area) were replaced by similar indicators in PCA (bearing wall 
buildings and built-up area density). Accordingly, the results for physical vulnerability matched between PCA and the AHP in terms of 
both their values and spatial distribution (Figs. 3.a and 5.a). 

Similar results for social vulnerability were obtained by AHP and PCA. Three of four AHP social indicators were included in the PCA 
indicator set (children below five years old, population density, and the number of disabled people) (Figs. 3.b and 5.b). All the eco-
nomic indicators in the AHP were represented in the PCA indicator sets. However, there were 16 indicators for economic vulnerability 
in PCA and 3 in the AHP. All three indicators were found to have a negative impact on economic vulnerability and to have high values, 
which led to the differences mentioned above (Figs. 3.c and 5.c). 

Both the AHP and PCA in the overall vulnerability maps agreed that El-Gomrok had the highest vulnerability values, followed in 
order by the Middle District, the Western District, the Northern District, and El-Montazah. The high vulnerability values in El-Gomrok 
were explained by the fact that it is the oldest part of the city (Abdel-Salam, 1995) (Figs. 4 and 6). 

The AHP tended to have higher values than PCA, but the minor differences showed a similar trend (Fig. 7). The AHP tended to have 
higher values than the PCA values regarding the total area and population under higher flood vulnerability categories, except for the 
high and very high classes (Fig. 8). However, it exhibited the same trend. The average overall flood vulnerability value using the AHP 
was 0.398; using PCA, the value was 0.34. 

7. Conclusion 

This study was conducted to fill global and local gaps in FVA. This study is one of a few studies to introduce an integrated FVI for 
urban areas in developing countries. It is also one of four studies to compare both deductive and inductive methods for indicator-based 
approaches regarding their implementation requirements and options regarding indicator selection, metrics, transformation, and 
weighting, as well as the difference in their results. Additionally, this study is the first attempt to use PCA in FVA in Egypt to provide 
spatial planners and stakeholders with a unified FVI that utilizes an objective approach for selecting and weighting the indicators 
(Reckien, 2018; Yoon, 2012). In this study, the total number of indicators was reduced from the 58 indicators to 38 indicators. A 
further reduction in the number of indicators will be considered in future work to simplify the decision-making process and the effort 
involved in data collection. Appropriate mathematical methods (a derivative and correlation) were applied to identify the essential 
critical indicators for a simpler, easier, and low-cost application. Highly correlated variables (correlation coefficient > 0.80) were 
excluded to eliminate data redundancy (Abson et al., 2012; Field, 2013; Török, 2018). The utilized approach can be used to construct 
an FVI locally, nationally, and internationally. The proposed FVI overcomes the drawbacks of obtaining flood vulnerability data by 
utilizing all the available local indicators, resulting in a quality index used as a planning tool in urban areas with similar characteristics. 
In this study, we also constructed a unified FVI for flood projects in the Egyptian context, avoiding the variability in results due to 
dependence on expert opinions. In this study, an integrated FVI for urban flooding was developed using local indicators to generate a 
localized flood vulnerability for more realistic results of vulnerability and resilience indices. The resulting FVI, including the most 
effective indicators without redundancy, can be easily used as an educational tool to improve flood risk reduction decision-making. 

Based on a comparison of the results of the PCA and AHP methods, we found that the AHP tended to yield higher values than PCA, 
but the differences were minor and exhibited a similar trend. Accordingly, for the FVI in arid urban areas (especially Egypt), the results 
indicated that the 38 indicators obtained from PCA are the best to use in Egyptian city FVA (if available); otherwise, using the 13 
indicators resulting from the AHP analysis can lead to similar results. 

We recommend retaining both the physical and social vulnerability indicators for the AHP since they were very closely matched 
with the PCA results. Regarding the economic vulnerability indicators for the AHP, we recommend using more indicators to reduce the 
differences between its results and those obtained from PCA. Additionally, a validation process for the FVA results should be carried 

Fig. 7. Overall flood vulnerability using the AHP.  
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out with real-world, observed impacts accompanied by statistical or expert-based analysis, highlighting the factors most relevant to 
vulnerability (Reckien, 2018; Yoon, 2012). Moreover, other cities should be investigated using the same indicators and methods to 
generalize the results of the study. Additionally, when implementing the methods used in this study on different scales, attention 
should be paid to the scale’s effect on data collection and subsequent analysis (Tate, 2012; Yoon, 2012). 

This study faced several challenges, and the most crucial challenge was obtaining the data from different agencies, as mentioned in 
Section 3.2, which took more than six months. 

Decision-makers should be provided with vulnerability assessments using different approaches to decide based on their preferences 
(Yoon, 2012); in this study methods that utilize both subjective and objective approaches for selecting and weighting vulnerability 
indicators were presented (Reckien, 2018; Yoon, 2012). The results of this study can be used as a reference to guide and assist planners 
and officials in FRA and mitigation measures. The provided FVI can be used as a tool for decision-making to direct investments in the 
appropriate sectors and to help develop flood defence, policies, measures, and activities. 
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