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Abstract
This paper explores co-design in Japanese education for deploying data-driven educational 
technology and practice. Although there is a growing emphasis on data to inform educa-
tional decision-making and personalize learning experiences, challenges such as data inter-
operability and inconsistency with teaching goals prevent practitioners from participating. 
Co-design, characterized by involving various stakeholders, is instrumental in addressing 
the evolving needs of technology deployment. Japan’s educational context aligns with co-
design implementation, with a learning and evidence analytics infrastructure facilitating 
data collection and analysis. From the Japanese co-design practice of educational tech-
nologies, the paper highlights a 6-phase co-design framework: motivate, pilot, implement, 
refine, evaluate, and maintain. The practices focus on data-driven learning strategies, tech-
nology interventions, and across-context dashboards, covering assorted learning contexts 
in Japan. By advocating for a co-design culture and data-driven approaches to enhance 
education in Japan, we offer insights for education practitioners, policymakers, researchers, 
and industry developers.

Keywords  Co-design · Data-driven support · Technology deployment · Learning analytics 
(LA) · Case study

1  Introduction

Data-driven educational technologies have significantly advanced, leveraging large vol-
umes of learning log data in online and digital learning platforms (Prinsloo & Slade, 
2017). As a typical data-driven service, learning analytics (LA) platforms with intelligent 
recommendation systems, can help educators to understand student progress, identify 
areas for improvement, and tailor instructional approaches accordingly (Klašnja-Milićević 
et  al., 2015). The predominant focus of LA research is to analyze data to gain insights, 
inform decision-making, and personalize learning experiences (Hirsto et  al., 2022), thus 
helping children develop their abilities and thrive in the Society 5.0 era. However, chal-
lenges persist in employing data-driven technologies in actual school settings, including 
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interoperability of data systems, and establishing meaningful workflows aligned with edu-
cational objectives. These gaps hinder the deployment of cutting-edge educational tech-
nologies in real educational environments to address the evolving needs of educational 
practitioners.

Co-design, as a collaborative approach involving multiple stakeholders in the design 
process, is increasingly recognized as a valuable method to engage stakeholders in tech-
nology deployment (Roschelle & Penuel, 2006). In the education area, co-design has been 
applied across various settings, from primary to higher education (Iniesto et  al., 2022; 
Mäkelä et al., 2018). It has been used to develop innovative teaching methods (Wong et al., 
2014), curriculum designs (Lin & Brummelen, 2021), and technology-enhanced learning 
environments (Holstein et  al., 2019). By involving all stakeholders, co-design promotes 
ownership, engagement, and a deeper understanding of the challenges and opportunities 
in educational settings for them. Therefore, in reforming teaching and learning with data-
driven educational technology, co-design can play a vital role in narrowing the gap in tech-
nology deployment.

Inspired by EDUsummIT which encourages the cooperation of practice, policy, and 
research stakeholders, this paper demonstrates the co-design approach for data-driven 
technology and practice in Japanese contexts, through a series of case studies. From the 
co-design practice of educational technologies, the paper highlights a 6-phase co-design 
framework: motivate, pilot, implement, refine, evaluate, and maintain. By showing how 
LA can adapt to the need for educational practices, the framework suggests the potential to 
build trust in data among teachers and students and enact the use of data-informed tools in 
everyday learning (Prinsloo & Slade, 2017).

2 � Deployment of Data‑Driven Educational Technology: International 
Perspective and Japanese Context

2.1 � Worldwide Practice and Gaps in Data‑Driven Infrastructure

Learning analytics (LA) focuses on the measurement, collection, analysis, and reporting 
of information related to learners and their contexts to enhance understanding and improve 
learning outcomes (Lang et  al., 2017). Many countries around the world have state-of-
the-art LA techniques to inform and support decision-making and provide necessary sup-
port to learners (Becerra et al., 2023; Cobos, 2023). For instance, in the US, LA has been 
explored in higher education for purposes of monitoring, prediction, and intervention with 
automated feedback for prevention (Caspari-Sadeghi, 2023). Nonetheless, in some regions, 
such as southern Brazil, the use of LA is still in the preparation phase, where the devel-
opment of infrastructures and teacher training is essential to meet teachers’ expectations 
(Biancato et al., 2023).

To advance the field of LA, the presence of e-learning infrastructure is vital for pro-
viding data-driven support. While the COVID-19 pandemic led to vast educational data 
from various online platforms, existing digital tools and communication applications are 
insufficient to ensure effective education at both institutional and national levels. In the 
EU, the General Data Protection Regulation (GDPR) imposes substantial limitations on 
data utilization, and there remains a need for technology that can balance the utility of 
data with security concerns. In North America, data-sharing initiatives have been initiated 
through the Unizin consortium (https://​unizin.​org/), primarily focused on higher education. 

https://unizin.org/
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In Australia, despite a burgeoning research community (Colvin et al., 2015), the lack of a 
common infrastructure for data sharing hinders progress in this field. These regional vari-
ations underscore the challenges in deploying technologies in schools and emphasize con-
sidering regulatory, sector-specific, and infrastructure factors.

2.2 � Japanese Context: Government Initiatives and Teacher Challenges

Compared to the aforementioned countries, the infrastructure and policy in Japan are more 
supportive, while the low acceptance of busy educational practitioners becomes a key 
obstacle to technology deployment.

In Japan, the Ministry of Education, Culture, Sports, Science and Technology (MEXT) 
spent over 430 billion JPY to introduce the Global and Innovation Gateway for All (GIGA) 
School Program to transform learning enabling one device per student. The COVID-19 
pandemic caused nationwide school closures in Japan but progressed the development of 
the ICT environment. The closure of K-12 schools lasted for about 2 months, and higher 
education institutions remained closed for up to a year. Even after schools reopened, 
classes would temporarily shift online whenever there was a surge in the epidemic. This 
situation increased the ICT literacy of teachers and learners regarding using devices and 
conducting hybrid classes.

To promote the utilization of educational data, the Japanese government is advancing in 
the digitalization of education and establishing a data-driven model to acquire diverse data 
effectively and efficiently. MEXT has also set up an expert conference on educational data 
utilization, focusing on practical issues such as practices, policies, copyrights, and per-
sonal information. In October 2021, The National Institute for Educational Policy Research 
established the "Educational Data Science Center’’ as a hub for analyzing and researching 
Japan’s educational data and sharing results.

Despite the effort to promote ICT in education, school teachers still stick to traditional 
teaching methods and are reluctant to try digital tools. Japanese compulsory education 
teachers face heavy workloads, with concerns about overwork reaching levels where death 
from overwork is a concern. Compared to other countries, the burden of extracurricular 
activities is significant, and adopting ICT adds to the administrative burden on teachers. 
Despite the desire of teachers to increase the time spent interacting with students, the situa-
tion makes it difficult to do so based on enthusiasm alone.

2.3 � Co‑design as a Solution

Co-design offers a promising avenue to bridge the gaps above by engaging stakeholders in 
developing data-driven infrastructures, thereby fostering trustful relationships with data. 
For example, Bowers and Krumm (2021) illustrate how school leaders and researchers col-
laborated to visualize and interpret data from a shared LMS used by students across mul-
tiple schools and grade levels. Through the co-design process, designers can gain a deeper 
understanding of other stakeholders, thus increasing the likelihood of technology accept-
ance and adoption (Hoadley, 2017).

A key challenge of co-design is empowering learners and teachers to actively shape 
educational tools and practices in their learning contexts (Prieto-Alvarez et  al., 2018). 
The global movement aims to involve a wide range of stakeholders throughout various 
co-design phases (Sarmiento et al., 2022), especially non-technical stakeholders (Baumer, 
2017). Regions like Norway have taken proactive steps to address digital competence 
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among students and teachers, ensuring they stay abreast of technological advancements, 
including AI literacy, coding literacy, and advanced information literacy. These movements 
have been showcased in EDUsummIT discussions, where practice, policy, and research 
perspectives are incorporated in the call to action in each TWG.

To achieve successful co-design, it is common to involve educators in generating inno-
vative ideas. Chounta et al. (2022) surveyed teachers, revealing their top concerns in LA 
design to be speed, personalization, and assessment, offering insights into current per-
spectives. Additionally, testing and evaluating LA tools in development can exemplify co-
design practices and inspire further refinements, like the design of LA dashboards (Wise & 
Jung, 2019). There are also instances where non-technical stakeholders actively participate 
throughout the entire design process of complex LA systems (Holstein et al., 2019).

3 � Technical Infrastructure and Theoretical Framework of Current 
Research

In this research context in Japan, the LEAF (Learning and Evidence Analytics Frame-
work) platform facilitates educational technology co-design (Ogata et al., 2022). Co-design 
within LEAF involves systematic stakeholder engagement across six design phases. Stake-
holders in the subsequent cases are mainly from an experimental school with basic infra-
structure like LMSs, WiFi, and one-tablet-per-student setup, representative of Japan’s post-
COVID educational landscape.

3.1 � Overview of LEAF Infrastructure

As illustrated in Fig.  1, LEAF consists of three components: (1) Learning activity sen-
sors and feedback, (2) Learning record store, and (3) Evidence record store. LEAF can be 
connected to any existing learning management system through the learning tools inter-
operability (LTI) protocol. Once the teachers and learners enter the LEAF platform, their 
learning and teaching activities are recorded in various sensor applications such as digital 
book reading system BookRoll (Ogata et al., 2015), self-directed learning support system 
GOAL (Li et  al., 2021), and learning analytics dashboard LogPalette with multiple-pur-
pose applications (Ogata et al., 2022). These records are transferred and stored in the for-
mat of standard xAPI statements, enabling cross-application processing and analysis. They 
are also processed and returned to the learners and teachers through LogPallete for instant 
interventions. Further, they undergo additional processing and extraction to yield higher-
level indicators of learning, referred to as "evidence" (Kuromiya et al., 2020).

3.2 � Co‑design Approach for LEAF

The co-design of LEAF had a systematic approach to bring together the following five dif-
ferent stakeholders in the process:

1.	 Learner–the user of the LEAF system for individual or cooperative learning.
2.	 Practitioners–the teachers at the school or university level who will implement practices 

with LEAF to facilitate learning in their classroom.
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3.	 Policymakers–The members of the school management who draw policies on the utiliza-
tion of technology and interface with the parents of the learners.

4.	 Researchers–the members of an academic research laboratory responsible for concep-
tualizing the technology.

5.	 Developers–the members of the industry who might be developing parts of the product.

The stakeholders contribute across six broad phases:

Phase 1. Motivate and define technology core: In the first phase, the motivation and 
the basic definition of the algorithm or technical approach are conceptualized. This 
motivation can come from teachers or by observation conducted by researchers to 
understand teachers’ and learners’ needs. Approaching data-driven services, we 
start by defining the core technology innovation in the application domain of educa-
tion (Ogata et al., 2022). This phase primarily involves the researcher, teachers, and 
learners.
Phase 2. Pilot: In the pilot phase, researchers implement a prototype technology. Typi-
cally, the pilot is in an educational environment with greater control over the developed 
prototype, such as part of the research lab’s academic activities with the members of the 
control classes in which the researcher was part of the teaching staff. Researchers also 
discuss the workflow and the implementation strategies with the teachers in the school.
Phase 3. Implement: The first stable version of the technology is implemented for use 
in the daily school context. The researchers and the practitioner also work together to 
prepare the onboarding materials for the learners and other practitioners. They conduct 
an early evaluation of and compile the new requirements.
Phase 4. Refine: After the initial implementation and trial, industry partners can update 
the technology based on socio-technical demands in the implementation phase. In this 
phase, further focus is on the technical aspects of scaling up.

Fig. 1   Overview of LEAF infrastructure
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Phase 5. Evaluate: The evaluation phase focuses on the impact on learning. At this 
phase, the researcher and practitioner decide on empirical study plans and collect data 
with designed experiments. This phase requires immense coordination as some studies 
focus on causal inferences with control and experimental group design, which is quite 
challenging to conduct in regular classroom sessions.
Phase 6: Maintain: The maintenance phase integrates the educational technology into 
the practitioner’s workflow. They become competent to utilize the system for daily 
teaching and learning practices. The industry partner at this phase can maintain the 
system for daily teaching–learning context and actively promote and train practition-
ers across multiple institutions. Policymakers must look at aligning the system’s use 
and educational objectives to suggest long-term improvements for practitioners and 
researchers.

4 � Case Studies

To illustrate the practical implementation of the LEAF infrastructure and co-design efforts 
in a Japanese context, this section will provide a collection of case studies. The case studies 
focus on concrete examples of how the co-design was conducted in different learning con-
texts, suggesting the broader potential to employ co-design to promote ICT deployment. 
Table 1 offers a general overview, which spans various co-design phases.

4.1 � Data‑Enhanced Active Reading Using Active Reading Dashboard

Active Reading (AR) strategies aim to actively engage learners in the reading process, 
crucial for enhancing reading comprehension in language learning (Pulver, 2020). While 
previous studies used technology like e-books for AR, there’s limited research from an 
LA perspective. To address the gap, an AR dashboard (AR-D) was developed (see Fig. 2), 
focusing on visualizing the reading process and providing feedback. AR-D is designed to 
promote learners’ reflection on their reading process to improve their reading performance 
and motivation by using learning logs visualized on the dashboard. It also scaffolds teach-
ers to prepare for lessons and make decisions about the class and subsequent activities. 
Graph-based algorithms (TopicRank, TextRank, and MultiPartiteRank for the reading 
phase; TF-IDF and LexRank for the summary phase) are used to calculate the similarity 
between documents as a score. During AR activities, lists and text overlays in AR-D can 
be used to confirm answers to the questions about the text content found in the textbook 
or created by teachers, and word clouds can be used to confirm word meanings and key 
concepts.

The developed AR-D prototype was first implemented in a university flipped-online AR 
class by the researcher (Toyokawa et  al., 2021). We confirmed AR-D’s potential to cre-
ate data-driven learning contexts, prompting teachers to plan the next activities and stu-
dents to reflect on their learning, both in and out of class. Next, AR-D was introduced 
into secondary schools and repeatedly updated through learning practices. In an experi-
ment at the high school, we verified the effectiveness of AR in LEAF. We found that in 
addition to acquiring vocabulary and understanding reading content through AR activities, 
using AR-D also enabled students to develop a positive attitude towards learning in the 
target language (Toyokawa et al., 2023). On the other hand, we also received critical com-
ments about the system UI, usability, and accessibility from authentic learners and teachers 
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Taking the comments from users and interviews with a teacher who has used the LEAF 
over the past 2 years, the new AR-D was designed with the integration of a Word Per Min-
ute (WPM) automatic extraction function and a textbook recommendation function based 
on past markers and memos.

AR also finds applications in Special Needs Education (SNE), employed in a public 
elementary school’s resource room to assist students needing extra support (MEXT, 2016). 
The data-enhanced AR implementation revealed issues in the reading process, like lack of 
concentration and adherence to learning functions, not visible in traditional paper-based 
AR. Conducting such experiments requires close collaboration with teachers and obtain-
ing parental approval. In a pilot study examining pen-stroke analysis to detect issues from 
handwritten memos (Toyokawa et al., 2022), teachers discuss with parents before research-
ers and teachers decide, with verification possible only after obtaining their approval. 
Requiring consent from additional stakeholders, such as parents, may hinder desired exper-
iments. Therefore, repeated discussions with resource room teachers were held regarding 
creating and deciding learning materials, activities, schedules, and data sharing, enabling 
visualization of students’ strengths and weaknesses for teacher sharing. With AR-D dash-
boards serving as a conduit for sharing information with parents and school officials, this 
instance exemplifies the expectations for LA, which serves as a bridge to connect stake-
holders in co-design communications.

4.2 � Pen‑Stroke Interactions for Self‑Explanation in Mathematics Classes

Traditionally, exercises in mathematics classes require handwritten answers involving 
detailed working out. It was reported during collaboration with K-12 teachers that there 
is a burden of distributing and collating the results of such exercises and that BookRoll 
could serve to distribute the exercises and collect handwritten answers in the form of pen 
strokes (Yoshitake et al., 2020). Often a teacher will review the exercise answers to find 
good examples to either explain in front of the class or provide as a worked example for 
answering self-explanation. This led to the development through co-design with classroom 

Fig. 2   The interface and key functions of AR-D
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teachers of the pen-stroke and self-explanation modules with LEAF where students can 
play back their answers, and explain their thought processes. Conventionally, Intelligent 
Tutoring Systems (ITS) and Intelligent Computer Assisted Instruction (ICAI) systems 
that diagnose and advise students on how to solve their math problems are often primar-
ily rule-based and are costly to develop as they rely heavily on input from domain experts, 
however, our system is more data-driven in nature, focusing on the answering process 
described through students’ self-explanation. This data-driven approach has the potential 
to improve as data is collected by the system and used to refine real-time feedback, sample 
answer generation, and automated scoring. As shown in Fig. 3, the pen-stroke input inter-
face allows the learner to handwrite directly on the page of the exercise as would normally 
be done when using physical exercise books or working out sheets in the classroom.

Self-explanation is a process where students reflect on their problem-solving 
approaches, articulate their thoughts, reason, and apply skills (Chi et al., 1989). Advanced 
techniques, including pen stroke input time series analysis, can aid in pinpointing defi-
ciencies in prerequisite knowledge and guide the tailored use of self-explanation (Yoshi-
take et  al., 2020). The self-explanation module in the LEAF supports the reply of pen-
stroke answers that have been recorded in Bookroll, allowing the student to reflect on their 
answer. A combination of the analysis of the pen-stroke information as time series data and 
the self-explanations as a form of annotation to the pen-stroke data allows the system to 
identify the following: the order of self-explanations in relation to the answering process 
by comparing the timestamps of pen strokes being replayed and the self-explanation anno-
tations; pen stroke data also includes information on where students backtracked by erasing 
some of their working out in the answering process, which can be used to identify impasses 
and potential weaknesses. The analysis of self-explanations, considering the required 
knowledge and assessing adherence to appropriate scoring rubrics in the process (Naka-
moto et al., 2024), introduces an additional level of complexity to the system. The devel-
opment of the self-explanations rubrics overview (see Fig. 4), was through the co-design 
process with teachers in the classroom and researchers who were developing the system to 
automatically analyze pen-stroke and self-explanation data to provide real-time feedback to 
students (Nakamoto et al., 2023a). The rubric used in this system was co-created by teach-
ers as domain experts and researchers to reflect the required knowledge and adherence in 
the answering process. This was used to create scoring models based on the rubrics. Some 
issues were identified during the co-design phase, such as the limitation of self-explanation 
samples that could impact the accuracy of the proposed algorithm. A model trained using 

Fig. 3   Early incarnation in the co-design process of the pen-stroke input function and pen-stroke analysis 
self-explanation interface (reproduced from Flanagan et al., 2021b; Yoshitake et al., 2020)
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a limited self-explanation data set collected from learners was designed to alleviate this 
problem by automatically generating sample answers (Nakamoto et al., 2023b).

4.3 � Recommendation for Mathematics Exercises with Explainable AI

The LEAF AI recommendation system overcomes a common limitation in traditional 
learning support systems by providing detailed explanations for recommended exercises 
(Ogata et al., 2024). It utilizes exercise-answering logs and pre-registered metadata related 
to knowledge units within the learning materials, which are labeled through collaboration 
with publishers and teachers. The system continuously improves its recommendations by 
analyzing students’ exercise results and tailoring explanations based on the frequency of 
successive failures in each learning topic. Figure 5 presents the interface of the recommen-
dation system.

Fig. 4   An overview of the pen-stroke and self-explanation analysis process (reproduced from Nakamoto 
et al., 2024)

Fig. 5   The main interface of the recommendation system
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Co-design of the recommendation module involves the motivation and refinement of 
the technical core and interfaces. When we initially introduced the idea of recommend-
ing mathematical materials for solving wheel-spinning (active but unproductive effort) to 
teachers, they expressed skepticism about its effectiveness. Hence we used log data to dem-
onstrate instances of wheel-spinning, clarifying the system’s benefit for stuck students to 
their concerns. Weekly meetings with teachers guide system design, incorporating mani-
fold feedback to enhance the system. Teachers’ feedback on our pilot prototypes, such as 
students seeking clarity on interface numbers, helps to refine the system’s balance between 
detailed explanations and user-friendly clarity.

Close ties and communications with teachers also drive new system functions. As initi-
ated by one authentic teacher in a practical presentation on the implementation of learning 
analytics in the LEAF system, designing a series of quizzes for student assessments is an 
essential task for educators, posing a significant burden on teachers. Previously, teachers 
estimated average scores and answer times for test questions based on their own experi-
ence. With the analysis dashboard tool, even inexperienced teachers can easily do this, 
reducing the time required for question creation (Takami et al., 2022). Therefore, we pro-
posed a method for automatically generating question sets adjusted to the desired time and 
difficulty levels by teachers and students based on BKT parameters and quiz answer history 
database (see Fig.  6). This feature is expected to alleviate the workload associated with 
quiz preparation for educators and can also serve as a practice test for students before the 
actual examination.

Besides the creation phase of co-design, education practitioners also help in imple-
mentation. To promote the system’s use in education, collaborative efforts with teachers 
resulted in the creation of informative posters (as described in Fig.  7). These materials 
actively encouraged junior high schools to adopt the system, emphasizing its benefits for 
students of diverse academic levels and personalities.

4.4 � Algorithmic Group Formation Using Learning Log Data

Group learning is increasingly adopted, emphasizing social-emotional aspects and inter-
personal skills. In the LEAF group learning module, various learner attributes seam-
lessly integrate to automatically form homogeneous or heterogeneous groups. As shown 
in Fig.  8, this tool empowers educators to choose attributes and group sizes based 
on their needs, utilizing data from LMSs and reading logs from BookRoll. External 

Fig. 6   Test set maker optimizing solving time and BKT parameters value (reproduced from Takami et al., 
2022)
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attributes like test scores and survey responses can be easily uploaded through the dash-
board. These data are aggregated via LEAF LTIs, constructing a vector for each student, 
and students are allocated into groups through iterative processes with a genetic algo-
rithm (Flanagan et al., 2021a).

The initial system version had limited functionality, creating groups based on rank-
able numeric values processed by genetic algorithms and fitness functions. Liang et al. 
(2021) applied this system in a primary school math class for jigsaw activities, which 
required group reconfiguration within a single class session. This insight from the expe-
riences of actual teachers prompted the system developers to understand the unique 
demands of practical contexts, motivating them to enhance the system by enabling 
group reconfiguration within existing groups. Concurrently, teachers identified key var-
iables they desired to incorporate into the group formation process, such as commu-
nication skills and relationships, which guided further refinements of the system. The 
reformed system allowed teachers to efficiently create groups for multi-phase activities, 
leading to increased student engagement and positive affective states. Following these 
implementations, feedback seminars were conducted, where teachers reflected on their 
teaching experiences and shared their thoughts and concerns on system usage. During 
these sessions, representatives from the enterprise that sponsored audio collection and 

Fig. 7   A poster promoting the usage of a recommendation system for students with English translation

Fig. 8   Algorithms and data leveraged in the group formation module of LEAF
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recognition devices visited the study class. These collaborative efforts involving diverse 
stakeholders play a pivotal role in addressing contemporary educational challenges.

The integration of overlapping annotations provides another illustration. In Liang et al. 
(2023), an experienced English teacher, with over a decade of teaching experience, intro-
duced the concept of grouping students based on shared or distinct BookRoll markers. 
This concept also aligns with bibliographic coupling, a concept introduced for detecting 
academic collaboration and suggested by the system developer with an informetrics back-
ground, providing a theoretical foundation for this feature. Further, an empirical study was 
conducted to examine the effect of the marker-based group formation extension in a Japa-
nese middle school, where students collaborated in groups to comprehend and act out an 
English story. During this experiment, the former teacher who initially proposed the idea, 
collaborated with the class organizer to develop quizzes for group formation and evalua-
tion rubrics to appraise group work performance. They also graded the summary writing 
assignment for the story. The results revealed that group members with varying difficulty 
markers contributed to enhanced vocabulary learning, as evidenced by their vocabulary 
quiz scores and summary evaluations. This collaborative preparation allowed the teachers 
to gain a clearer picture of the system’s data pipeline. In this case, the co-design efforts not 
only yielded a valuable system evaluation but also opened a promising avenue for frontline 
teachers to embrace the capabilities of data-driven systems in their classrooms, thereby 
facilitating their future use.

4.5 � Self‑Direction Skill Acquisition with Data from Learning & Physical Activities

Self-direction skill (SDS) is crucial for fostering learners’ independence and organization 
for knowledge acquisition in the twenty-first century. (Hill et al., 2020; Toh & Kirschner, 
2020). By reflecting on what and how they have learned, learners become aware of their 
learning processes and possible alternative strategies. To provide opportunities to start the 
SDS practice for K12 learners, Li et al. (2021) developed the Goal Oriented Active Learner 
(GOAL) system. Co-designing this project holds three aspects: infrastructure building of 
the GOAL system, modeling with data (involving rubric formulation), and activity imple-
mentation (requiring collaboration with teachers).

To build the infrastructure to aggregate multi-source learner data, the motivation 
stemmed from the lack of research supporting SDS skill acquisition tailored to individual 
contexts and data (Toh & Kirschner, 2020). Majumdar et al. (2018) designed the DAPER 
model, a five-phase data-driven approach to SDS execution and acquisition. With the ini-
tial GOAL system, integrating the health and learning data would help test common train-
ing design modules for SDS taking both health and learning as contexts. Then the univer-
sity prototype was created as a mobile app. Then a pilot study was conducted in a graduate 
seminar course, with monthly meetings and participant feedback guiding the development 
and plans.

Subsequently, Li et al. (2020) transitioned from the native app to a web-based system. 
Learning data from the BookRoll reading activity enabled students to plan, monitor, and 
reflect on their reading activities. Simultaneously, they secured grants to provide students 
with smartwatches, developing a service API to collect Garmin activity data. With user 
workflows and data pipelines for the services, an experimental campaign of physical activi-
ties with school teachers and 119 seventh-graders was launched. The students tracked their 
sleep and engaged in data collection and analysis tasks through the GOAL system. Figure 9 
depicts the learning tasks that engage the students to develop their analysis skills with data 
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from self-directed activities. First, they analyze self-status using the visualization tool dis-
playing their own steps data and average/maximum/minimum data from their peers. They 
can also check the criteria relating to the activity. Second, they report their activity trends 
of the most recent days and predict their activity status for the next day. Finally, they check 
the feedback given by the system to promote analysis skills.

The system is currently in continuous use in the school context for extensive reading, 
weekly tests, and vacation campaigns (Majumdar et al., 2023). With over 1300 users’ data, 
there lies a potential for extracting learning habits and creating a dashboard for supporting 
their development. For instance, from longitudinal study data across 3  years, Hsu et  al. 
(2023) identified the regular patterns of the learners, such as learning in the morning to 
prepare for the weekly math quizzes. On the other hand, they also detected the phases of 
behavior change where the learners stayed to provide adaptive feedback and support them 
to build reading habits via the learning dashboard.

4.6 � Evidence Portal for Sharing Practices

The definition of evidence varies depending on the subject matter of interest (Davies, 
1999). In data-driven education, evidence refers to the authentic indicators of intervention 
practice, compared to subjective opinions from teachers (Majumdar et al., 2019). To extract 
evidence from log data, teachers must divide classes into intervention and control groups 
for comparison. This task demands skills, knowledge, and experience in selecting appropri-
ate groups. Conventionally, evidence extraction often relies on statistical experts, and it can 
impose time and cost burdens for teachers. The LEAF system enables evidence extraction 

Fig. 9   Learner workflow of analysis tasks with data from self-directed activities
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via an evidence portal shown in Fig.  10 (Kuromiya et  al., 2020). Herein, the effective-
ness of intervention classes can be measured without support from experts, underpinned 
by metrics from BookRoll reading logs and LogPalette operation logs. The results obtained 
can assist teachers in refining their lesson design to better align with students’ needs.

The development of the evidence portal began with prototypes designed to incorporate 
insights from various researchers (Ogata et al., 2018). These prototypes underwent refine-
ment based on feedback from high school and university educators to support evidence-
based education from both theoretical and practical angles. By incorporating real-world 
data from teaching practices in authentic classroom settings, the evidence portal’s develop-
ment is rooted in practical application, enabling it to mirror real-world dynamics.

To introduce the evidence portal into the classroom, Nakanishi et al. (2021) proposed 
and implemented a workflow (see Fig. 11) in a first-year high school mathematics class, 
where the data reported was collected from 40 students in one month. The authors evalu-
ated this workflow through a teacher survey, where teachers answered that it deepened their 

Fig. 10   The interface of the evidence portal that supports evidence-based practice

Fig. 11   Workflow in evidence-based practice (reproduced from Nakanishi et al., 2021)
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understanding of their skills. They were also concerned about students’ correct answer 
rates when providing instruction. The classroom implementation suggests the potential 
of the evidence portal to support teachers’ reflection and encourage class improvement by 
embedding evidence-based education into practice. This case paves a promising avenue for 
continually developing applications and supporting teachers to implement evidence-based 
education.

Incorporating systems to support evidence-based educational practices necessitates an 
awareness of the inherent limitations of the gathered evidence. These limitations stem from 
the reliance on classroom practices provided by teachers themselves, introducing subjec-
tivity that can affect the integrity and reliability of the evidence. While such systems can 
enhance educational practices through evidence-based approaches, they inherently possess 
a lower level of reliability compared to randomized controlled trials, which remain the gold 
standard for empirical evidence. This highlights the need for future exploration of alterna-
tive methods to ensure evidence reliability, independent of sole reliance on instructional 
practice data.

5 � Outputs and Insights of Co‑design Practice in Japan

This section explores the typical practices within six co-design phases as demonstrated in 
the aforementioned cases. We also delve into broader concerns about data-driven deliv-
ery, including its implications for learners and ethical considerations. Drawing from our 
practical experiences, we conclude by presenting implications and expectations for each 
stakeholder, ultimately aiming to achieve successful co-design for educational technology 
and practice.

5.1 � Implementing Co‑design for Data‑Driven Service in Education

As demonstrated in the case studies, two landscapes for initiating the co-design of tech-
nologies emerge: the define-refine-maintain and pilot-refine-implement workflows. These 
frameworks embody two ways of conducting research (Ogata et al., 2022). The former is 
practice-driven, initiating design based on teacher input (e.g., from a pen stroke to identify 
sticking points in mathematics problem-solving, as seen in the self-explanation study). On 
the other hand, the latter is theory-driven, where research applications motivate design. 
It starts with researchers, followed by confirmation, explanation, and implementation 
with educational practitioners, involving trials of the basic functions in the initial proto-
types (e.g., the goal system originated from the SDS theory with a pilot study involving 
teachers).

It’s noteworthy that co-design with practitioners doesn’t always start from scratch. Ideas 
from practitioners can also influence the delivery of interventions in the refining and main-
tenance phases. Additionally, not necessarily for the entire tool, teacher-driven design can 
focus on sub-functions within existing infrastructures. This recognizes the challenge of 
expecting non-technical teachers to conceive entirely new tools beyond existing structures. 
Nevertheless, through co-design practices with teachers, especially pilot demonstrations 
and guidance, teachers can get used to the concepts in the educational technologies, and in 
turn get willing to employ the tools in their class, thus narrowing the gaps for non-technical 
stakeholders and forming a virtuous cycle. Figure 12 highlights the overall phases and the 
involvement of the stakeholders in the LEAF co-design phases.
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5.2 � Implications and Expectations for Stakeholders

Our case studies indicate that teachers directly communicate with researchers and contrib-
ute practical ideas and demands, such as creating test sets and enabling re-grouping for jig-
saw activities. Besides, in-time feedback from teachers is essential for refining the technical 
core. Periodical meetings have proven to be necessary, and in achieving this connection, 
the feature of enabling experimental schools in the Japanese educational context serves as a 
playground for pilot studies in the co-design process. This instance holds relevance from a 
policymaker’s perspective.

For researchers and system developers, co-design is not confined to communication 
with teachers, as discussed in the aforementioned section. Collaboration among different 
research teams can facilitate studies both theoretically and practically, exemplified in the 
co-design marker-based group formation extension. Such practice broadens the horizons of 
research with related theories from different areas.

Last but not least, beyond educational practitioners and researchers developing data-
driven tools, industrial enterprises, and textbook publishers can also play a role in the co-
design process, especially in implementation. They can provide technical infrastructure, 
such as laptops for the GIGA school program in Japan, metadata for e-textbooks, and other 
data-collection services. Their involvement extends to introducing innovations to more 
learning scenarios, thereby promoting research outcomes to more schools.

5.3 � Reflections on Co‑design Projects in Japan

As emphasized by Wise et al. (2021), pedagogical needs play a vital role alongside data 
in guiding LA research. The emphasized cases underscore the imperative of bridging the 
gap between "real-world education" and researchers’ perspectives. To tackle this challenge, 

Fig. 12   LEAF co-design phases and involvement of stakeholders
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we’re conducting pilot demonstrations and experiments in several schools across Japan. 
These schools serve as initial testing grounds before broader public implementation. Dis-
cussions with teachers from these schools revealed the importance of considering ’real’ stu-
dents and designing systems that benefit them. Therefore, beyond technical breakthroughs, 
it’s crucial to devise user-friendly systems that promote participation, facilitate data accu-
mulation, and foster a symbiotic relationship between research and practical application.

Moreover, ethical considerations are inherent in educational data-driven designs (Ueda 
et  al., 2021). Implementing recommendation systems faced constraints due to research 
agreements, limiting interventions for students, and complicating comparisons across 
multiple groups. These concerns are amplified when dealing with special-needs learners 
(Toyokawa et al., 2022), necessitating close communication with stakeholders and metic-
ulous agreement processes involving parents. Co-design practices aid in clarifying data 
ownership and privacy concerns by enhancing understanding of educational interventions 
and data utilization, as illustrated in the group formation case, ensuring user comfort with 
data used for future research endeavors.

In summary, consistent with trends proposed by Masiello et  al. (2024), our Japanese 
experience shows that co-design practices facilitate better integration between data science 
and learning sciences, allowing the value of data-driven technology to flourish in authentic 
educational contexts.
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