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Electroconvulsive therapy (ECT) is one of the most effective treatments for depression. ECT induces volume changes in the
amygdala, a key center of anxiety. However, the clinical relevance of ECT-induced changes in amygdala volume remains uncertain.
We hypothesized that nuclei-specific amygdala volumes and anxiety symptoms in depression could explain the clinical correlates of
ECT-induced volume changes. To test this hypothesis, we enrolled patients with depression who underwent ECT (N = 20) in this
multicenter observational study and collected MRI data at three time points: before and after treatment and a 6-month follow-up.
Patients who received medication (N = 52), cognitive behavioral therapy (N = 63), or transcranial magnetic stimulation (N = 20),
and healthy participants (N = 147) were included for comparison. Amygdala nuclei were identified using FreeSurfer and clustered
into three subdivisions to enhance reliability and interpretability. Anxiety symptoms were quantified using the anxiety factor scores
derived from the Hamilton Depression Rating Scale. Before treatment, basolateral and basomedial subdivisions of the right
amygdala were smaller than those of healthy controls. The volumes of the amygdala subdivisions increased after ECT and
decreased during the follow-up period, but the volumes at 6-month follow-up were larger than those observed before treatment.
These volume changes were specific to ECT. Long-term volume changes in the right basomedial amygdala correlated with
improvements in anxiety symptoms. Baseline volumes in the right basolateral amygdala correlated with long-term improvements
in anxiety symptoms. These findings demonstrate that clinical correlates of ECT-induced amygdala volume changes are existent,
but in a nucleus and symptom-specific manner.
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INTRODUCTION [9]. Furthermore, it remains unclear which neurobiological
Depression is a neuropsychiatric disorder characterized by changes induced by ECT indicate the therapeutic effects.

persistent feelings of sadness, loss of interest, and other
psychosocial dysfunctions [1]. Its heterogeneous symptom profiles
and variability in individual responses to treatment make
successful treatment procedures difficult, with approximately
one-third of patients resistant to antidepressants [2, 3]. Electro-
convulsive therapy (ECT) is a highly effective treatment for
treatment-resistant depression, with reported remission rates of
60-80% [4, 5]. This remission rate is higher than that of other
depression treatment modalities, such as medication, cognitive
behavioral therapy (CBT), and transcranial magnetic stimulation
(TMS) [2, 6-8]. Despite its outstanding effectiveness, the neural
mechanisms underlying the action of ECT are not fully understood

Identifying the neural substrates associated with the therapeutic
effects of ECT is crucial for understanding depression mechanisms,
and it may be the key to predicting treatment responsiveness.
Consequently, previous studies have explored the neurobiological
correlates of ECT at various levels [10-12].

One established finding from studies on ECT is the extensive
changes in brain volume, especially in limbic structures such as the
hippocampus and amygdala [13-16]. Studies on the hippocampus
suggest that its volume increase is associated with changes in the
markers of neural plasticity and synaptic structures, rather than being
a result of edema or angiogenesis [17-19]. Nevertheless, conflicting
evidence exists regarding the relationship between volume increases
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and therapeutic effects [15, 20-22], and a meta-analysis on the
hippocampus reported no such associations [13]. Similarly, previous
findings on the relationship between volume changes in the
amygdala and clinical outcomes have been inconsistent [23-26],
complicating our understanding of its role in the therapeutic effects
of ECT. Given the crucial role of the amygdala in anxiety, a core
symptom of depression [27-31], investigating the association
between amygdala volume changes and the therapeutic effects of
ECT is crucial for a comprehensive understanding of depression.

The amygdala consists of structurally and functionally hetero-
geneous nuclei [30, 32], which could explain the conflicting
findings regarding its association with therapeutic effects. The
basolateral complex of the amygdala integrates sensory inputs
from the cortical regions and the thalamus, while the central
nucleus of the amygdala relays information to modulate
behavioral, physiological, and affective responses [30, 33]. Thus,
numerous animal studies have focused on the nucleus-specific
characteristics of the amygdala [34-36]. Additionally, several
human studies have compared the volumes of amygdala nuclei
in patients with depression to those in healthy individuals [37-40].
These studies have suggested that therapeutic effects may not be
evident when considering the amygdala as a singular entity but
could be apparent at the nucleus level. Although there are several
longitudinal studies on ECT-induced amygdala volume changes
[23, 25, 41], only one study has examined the clinical associations
of amygdala volume changes at the nucleus level [26], possibly
ignoring nucleus-level heterogeneity.

Previous studies’ conflicting findings on the relationship with
clinical outcomes may also stem from depression’s symptom-level
heterogeneity. Depressive symptoms are typically assessed using
the total score of the Hamilton Depression Rating Scale (HAMD),
Montgomery Asberg Depression Rating Scale (MADRS), or Beck
Depression Inventory (BDI) [42-44]. These rating scales reflect
multiple symptom dimensions such as anhedonia and anxiety,
which may hinder the understanding of treatment effects at the
symptom level [45, 46]. Both human- and non-human studies
have established the involvement of the amygdala in anxiety
[27-31]. Furthermore, in patients with depression, prelimbic
functional connectivity features, particularly involving the amyg-
dala, correlate with anxiety and sleep disturbances. However,
these features do not correlate with anhedonia or psychomotor
retardation [47]. These findings highlight the importance of
further investigation into how changes in amygdala volume
induced by ECT relate to anxiety symptoms and the potential as a
predictive biomarker for anxiety improvements.

Furthermore, comparing ECT with other treatment modalities is
crucial to better understanding the relationship between volume
changes and the therapeutic effects. Various depression treat-
ments may induce common neuroplastic changes such as synapse
formation, increased neurotropic factors, or neurogenesis [48, 49].
In contrast, the therapeutic effects of ECT are more rapid than
those of medications, suggesting that distinct neurobiological
mechanisms underlie each treatment [50]. Given these findings
and the distinctive therapeutic effects of ECT, there is a clear need
for cross-treatment comparisons. Previous studies have indicated
that ECT-induced volume increases are transient and followed by
subsequent decreases [51, 52], highlighting the importance of
examining long-term changes. A previous study compared ECT
with treatment as usual such as medication, structured psy-
chotherapy, and case management, and found that the amygdala
volume increase immediately after the completion of treatment
was specific to ECT [41]. However, findings on long-term volume
changes across various treatment modalities are largely lacking,
limiting our understanding of the long-term neural correlates of
different treatment approaches.

Therefore, this observational study aims to examine short- and
long-term volume changes in the nuclei of the amygdala
following ECT and other treatment modalities. Furthermore, the
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study aims to identify clinical correlates of the ECT-induced
volume changes in the amygdala nuclei by focusing on their
association with anxiety symptoms. To achieve our objectives, we
included patients with depression who received ECT, medication,
CBT, and TMS, as well as healthy participants. MRl images were
acquired at three time points: pre-treatment, post-treatment, and
at the 6-month follow-up. We hypothesized that (1) volume
changes in the amygdala nuclei induced by treatment are specific
to ECT across both short- and long-term durations, (2) a significant
association exists between amygdala volumes and the effective-
ness of treatment, particularly in its nuclei and anxiety symptoms,
and (3) baseline volumes in the amygdala nuclei are predictive of
subsequent improvements in anxiety symptoms.

MATERIALS AND METHODS

Participants and study design

Participants were recruited for the Longitudinal MRI study Identifying the
Neural Substrates of Remission/Recovery in Mood Disorders (L/R Study), a
constituent of the Brain MINDS/Beyond project [53]. The study included
155 patients with depression (aged 20-80 years; 74 men, 81 women) and
147 healthy participants (aged 20-78 years; 59 men, 88 women) sourced
from four sites. The demographic and clinical data of the participants are
presented in Table 1.

All patients were scheduled to receive either antidepressant medication,
ECT, CBT, or TMS as part of their regular treatment based on the discretion
of their attending psychiatrist at the time of recruitment. All patients met
the criteria for major depressive disorder or persistent depressive disorder
according to the DSM-5 [1]. The key exclusion criteria encompassed
substance use or alcohol misuse within the past 2 years, current suicidal
ideation or suicide attempts in the past, current manic episodes or
diagnosis of dementia, unstable medical condition, or other severe
ilinesses.

All patients underwent MRI scanning and clinical assessments three
times: within 2-weeks before (Pre) and after (Post) treatment, and 6
months after treatment (6MA). Healthy participants underwent MRI and
clinical assessments twice at intervals of 6 or 16 weeks. Depressive
symptoms were evaluated at each time point using the Hamilton 17-item
Depression Rating Scale (HAMD-17) [42]. Inclusion in the depression group
required a HAMD-17 score of > 8 at the time of the recruitment. All the
participants provided written informed consent to participate in this study.
An overview of the study timeline is depicted in Fig. 1.

Treatment

The attending psychiatrist assigned patients to one of four treatment
groups based on their discretion. The ECT group (N=20; aged 24-80
years; 7 men and 13 women) received ECT sessions twice per week except
for cases of severe physical illnesses (see Supplementary Results). ECT
treatment was performed using a brief pulse square-wave device
(Thymatron System IV; Somatics, LLC, Venice, FL, USA). All patients in the
ECT group met the criteria for ECT according to the American Psychiatric
Association task force guidelines [54]. Specifically, patients must be
classified as treatment-resistant, urgent, or intolerant to pharmacotherapy.
Treatment resistance was defined as the failure of two or more
antidepressants administered at adequate dosages and for sufficient
durations [54]. Treatment sessions were continued if the patient did not
experience symptom relief. Electrode placement was either bitemporal
(N =9), bifrontal (N=9), or right unilateral (N =2). During the treatment
course, two patients switched from bitemporal to bifrontal, and one
patient switched from right unilateral to bifrontal. Anesthesia was induced
using either propofol (1-2 mg/kg body weight, N = 15), thiopental sodium
(2-4 mg/kg body weight, N = 3), ketamine (60 mg, N = 1), or sevoflurane
(7.2-8%, N = 4). Decisions on the ECT treatment regimen were based on
clinical assessments (e.g., responsiveness to previous ECT sessions, severity
of depression). Detailed parameter settings are provided in Supplementary
Methods and Table S1. The medication group (N =52; aged 21-78 years,
31 men and 21 women) included cases involving add-on therapy, switch
medications, and treatment-naive cases. However, the core group
consisted of add-on cases in which a single antidepressant was ineffective.
The duration of treatment for the medication group was either 6 or 16
weeks. The CBT group (N = 63; age range: 20-79 years; 25 men, 38 women)
underwent 16 consecutive 50-min sessions per week (16 weeks in total).
The TMS group (N = 20; age: 20-74 years; 11 men, 9 women) underwent
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Table 1. Demographics and clinical characteristics.

Characteristic Study group

Study group

ECT Other treatment group
Medication CBT T™MS Depression Healthy controls

N 20 52 63 20 155 147
Sex (M/F) 7/13 31/21 25/38 11/9 74/81 59/88
Age, mean (SD), years 55.1 (17.1) 47.2 (15.6) 39.1 (13.1)* 434 (14.9)* 44.5 (15.6) 42.0 (13.1)

Clinical score Clinical score
Pre HAMD-17 25.0 (6.3) 14.7 (5.8)* 14.7 (4.4)* 15.8 (4.9)* 16.1 (6.2) -
Post HAMD-17 7.8 (5.6) 8.3 (6.7) 8.4 (6.0) 10.3 (6.9) 8.6 (6.3) -
Follow HAMD-17 6.7 (7.2) 7.1 (7.5) 7.3 (5.3) 9.5 (6.4) 7.4 (6.5) -
Pre anxiety factor score 6.15 (2.22) 3.79 (1.74)* 3.72 (1.41)* 3.47 (1.79)* 4.03 (1.87) -
Post anxiety factor score 1.72 (1.38) 2.30 (1.99) 2.25 (1.66) 2.09 (1.40) 2.18 (1.71) -
6MA anxiety factor score 1.36 (1.61) 1.94 (2.10) 1.88 (1.57) 2.04 (1.93) 1.85 (1.81) -
Remission at Post (yes/no) 11/9 26/26 31/32 10/10 78/77 -
Remission at 6MA (y/n) 14/6 27/25 31/32 8/12 80/75 -
Response at Post (y/n) 16/4 35/17 36/27 11/9 98/57 -
Relapse at 6MA (y/n) 2/9 1/25 8/23 3/7 14/64 -
Remission: HAMD-17 < 8. Response: 250% HAMD-17 improvement.
HAMD-17 Hamilton 17-item Depression Rating Scale, ECT electroconvulsive therapy.
*P < 0.05 in comparison to the ECT group.

<2w Treatment <2w 6 months

Site
12 3 %

Number of subjects

ECT(N=20) 4 5 11 0

Depression
(N =155)

Medication
(N = 52) 20 16 16 O
CBT(N=63) 21 31 11 0

TMS(N=20) 8 0 6 6

Healthy
controls
(N = 147)

50 54 43 0

Fig. 1

1-2 sessions / w

6or16 w —
50 min. session / w
16 weeks

5 sessions / w

6or16w

Schematic overview of the study design. Data acquisition was conducted across four institutions. All treatment groups underwent

MRI scanning and clinical assessments three times: once each within 2-week periods before and after treatment (Pre and Post), and once in
6 months after treatment (6MA). Patients were assigned into four treatment groups based on the discretion of their attending psychiatrist.
Healthy participants underwent MRI scanning and clinical assessments two times at intervals of 6 or 16 weeks. ECT electroconvulsive therapy,
CBT cognitive behavioral therapy, TMS transcranial magnetic stimulation.

TMS sessions up to five times per week using a Neurostar TMS Therapy
System (Malvern, PA, USA) with a figure-of-eight stimulation coil. Detailed
parameter settings for TMS are provided in Supplementary Table S2. The
concomitant use of antidepressants, mood stabilizers, antipsychotics, and
anxiolytics was not prohibited in any treatment group.

MRI acquisition
MRI data were acquired using either one of six scanners installed at four
different sites. All the images were acquired at a field strength of 3T. At Site

Molecular Psychiatry (2025) 30:2653 — 2664

1 (Keio University, N =103), 3D T1-weighted brain images were collected
using either a GE Discovery MR750 (GE HealthCare, Illinois, USA) or SIGNA
HDxt (GE Healthcare). At sites 2 (Kyoto University, N=106), 3 (National
Center Hospital, National Center of Neurology and Psychiatry, N = 87), and
4 (The Jikei University, N =6), brain images were obtained using three-
dimensional magnetization-prepared rapid acquisition with a gradient
echo, utilizing a MAGNETOM Verio, MAGNETOM Skyra or MAGNETOM
Skyra fit scanner (all from Siemens Healthineers, Erlangen, Germany).
Detailed scanning parameters and correspondence between the treatment
groups and scanners are provided in Supplementary Table S3.
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Fig. 2 Amygdala subdivisions and their baseline volumes. A A representative image of the amygdala parcellation. (Left) Nine nuclei are
identified from the FreeSurfer output. (Right) Three clustered subdivisions. The basolateral subdivision consists of the lateral, basal,
paralaminar nucleus, and the anterior amygdaloid area. The basomedial subdivision is comprised of the accessory basal nucleus and the
cortico-amygdaloid transition area. The centromedial subdivision consists of the central, cortical, and medial nucleus. B Test-retest reliability of
the clustered subdivisions. The bilateral centromedial subdivisions showed a mean percentage volume error of >5% and were excluded from
further analyses. C Baseline amygdala subdivision volumes of patients with depression and healthy controls. BL Basolateral, BM Basomedial,

CM Centromedial, HC Healthy controls. *: P < 0.05 Bonferroni corrected.

MRI preprocessing

The structural images underwent bias-field correction using Advanced
Normalization Tools ver. 2.4.4. [55] and were processed using the
longitudinal standard pipeline [56] in FreeSurfer ver. 7.3.2. This pipeline
creates an unbiased within-subject template space and image using a
robust, inverse-consistent registration based on outputs from the cross-
sectional pipeline [57]. Subsequently, the preprocessing steps were
initialized with the new template image to enhance reliability and
statistical power. Following preprocessing, the intracranial volumes (ICV)
were extracted from the recon-all pipeline output and used for subsequent
analyses.

Amygdala segmentation

The T1 longitudinal amygdala segmentation module in FreeSurfer ver.
7.3.2. [58, 59] was applied to bias-field-corrected, normalized, and skull-
stripped images generated from the FreeSurfer longitudinal pipeline. This
module employs a probabilistic atlas built using ultra-high-resolution
ex vivo MRI data and image intensity to delineate nine amygdala nuclei
[59]. The longitudinal segmentation module provides a generative model-
based joint segmentation of nuclei across multiple time points to yield
more reliable subregional volumes [58, 59]. The amygdala nuclei were
visually inspected for quality assurance; however, no manual modifications
were made to avoid introducing external bias.

SPRINGER NATURE

Amygdala nuclei clustering

The FreeSurfer segmentation module exhibits high test-retest reliability for most
nuclei. However, some nuclei show relatively low reliability, which is critical for
making longitudinal comparisons [60]. Additionally, these nuclei cannot be
directly compared with the typical partitioning in prior human studies, where the
amygdala was divided into two or three subdivisions [32, 61, 62]. To address
these problems, we clustered the nine amygdala nuclei into three subdivisions
based on their anatomical plausibility and proximity [30, 32, 59, 63] (Fig. 2A). The
first subdivision consists of the lateral nucleus, basal nucleus, paralaminar
nucleus, and anterior amygdala, collectively referred to as the basolateral (BL)
subdivision. The second subdivision comprises the accessory basal nucleus and
cortico-amygdaloid transition area, referred to as the basomedial (BM)
subdivision. The third subdivision consists of the central, medial, and cortical
nucleus, collectively referred to as the centromedial (CM) subdivision.

Test-retest reliability of amygdala subdivision volumes

To assess whether the test-retest reliability of the clustered amygdala
subdivisions is adequate for longitudinal comparison, we quantified the test-
retest reliability as the percentage volume error (€) between Pre and Post volume
measurements of healthy controls [64] using the following formula:

‘ VPre - VPosr ‘

e=100x —————
(VPre + VPasr)/z

m
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We established that a percentage volume error of less than 5% was
sufficient for the longitudinal comparison [60]. Therefore, subdivisions with
errors greater than 5% were excluded from further analysis.

Demographics and clinical data

The mean and standard deviation for continuous variables, as well as the
number and ratio of categorical variables were calculated using Python 3.8.
t-tests and chi-squared tests were used to compare the differences
between the ECT group and other treatment groups, and between the
depression group and the healthy control group. Statistical significance
was set to P<0.05.

Harmonizing scanner differences

Cross-sectional and longitudinal ComBat harmonization [65-67] were used
to adjust volumes for cross-scanner differences. ComBat is a batch-effect
correction tool designed to remove inter-scanner technical variability while
maintaining inter-scanner biological variability [67]. Age, sex, ICV, and the
clinical outcomes of interest were integrated into the batch-effect
estimation to retain the effects of these variables. ComBat was performed
separately using R 4.3.1 for each statistical analysis, and the same
covariates were used for each analysis.

Comparison of pre-treatment volume between patients with
depression and healthy controls

The baseline volumes of amygdala subdivisions in patients with depression
were compared with those of healthy controls. To elucidate group
differences, an analysis of covariance (ANCOVA) incorporating age, sex,
and ICV as covariates was performed using R version 4.3.1. Statistical
significance was set at P < 0.05, with the Bonferroni correction adjusting for
side (left, right) and subdivision (BL and BM).

Longitudinal volume change

First, repeated measures ANCOVA, with ICV as a covariate, was performed
separately within each treatment group to examine whether there was a
significant volume change between any of the time points. For significant results,
post-hoc tests were performed using linear mixed-effects models with time and
ICV as fixed effects and individuals as random intercepts to identify the
significant changes between specific timepoint pairs (Pre and Post, Post and
6MA, and Pre and 6MA). The mean percentage of the volume change between
each time point was calculated to illustrate the effect size. Spearman’s rank
correlation analysis was performed to examine the relationship between volume
changes in the amygdala subdivisions and the number of ECT sessions. Statistical
significance was set at P < 0.05 with the Bonferroni correction adjusting for side
(left, right) and subdivision (BL and BM). All statistical analyses were performed
using R version 4.3.1.

Association with anxiety factor score
Factor loadings of the anxiety component in the HAMD-17, derived from a
large-scale meta-analysis of more than 2600 patients [45], were used to
investigate the association between amygdala volume and anxiety
symptoms in the ECT group. These loadings reflect the degree to which
items co-occurred under the same factor in previous studies and are
provided in the Supplementary Methods. Confirmatory factor analysis of
these factors showed a moderate-to-good fit, indicating their replicability
[68]. Partial correlations between baseline volume and anxiety factor
scores, with age, sex, and ICV considered as covariates, were calculated.
Changes in volume and anxiety factor scores were defined as the
difference between two timepoints:

AVolumeyp_ip2 = Volumeyp; — Volumeyy, (2)

AAnxiety factor scorey, iy = Anxiety factor score, 3)

— Anxiety factor scorey,

Partial correlation between Avolume and Aanxiety factor score with age,
sex, and ICV as covariates was calculated for each timepoint. Additionally,
partial correlation analysis between the baseline volume and Aanxiety
factor score was performed to examine whether baseline volumes
correlated with improvements in anxiety symptoms.

Correlation analyses were also performed for the overall HAMD-17
scores to determine whether the anxiety component exhibited a greater
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correlation compared to the total HAMD-17 score. Statistical significance
was set at P <0.05 with the Bonferroni correction adjusting for side (left,
right) and subdivision (BL and BM). All statistical analyses in this section
were performed using R version 4.3.1.

RESULTS

Clinical characteristics and treatment outcomes

The overall post-treatment remission rate was 50.3% and did not
differ across the treatment modalities (Table 1). At the 6MA, the
ECT group had the highest remission rate of 70%; however, this
difference was not statistically significant compared with that of
any other treatment group. The ECT group and each non-ECT
treatment group did not differ in sex ratio, but they significantly
differed in age, except for the medication group. The baseline
HAMD-17 and anxiety factor scores were significantly different
between the ECT and non-ECT treatment groups.

Amygdala nuclei clustering

The test-retest reliability of volumetrics increased after clustering
the nine nuclei from the FreeSurfer output into three subdivisions
(Fig. 2A, B, Supplementary Fig. S1). However, the bilateral CM
subdivisions showed >5% volume error and were excluded from
further analyses (Fig. 2B).

Baseline amygdala subdivision volumes

Baseline amygdala volumes in patients with depression were
significantly lower in the right BL subdivision (F[1, 297] = 6.99,
P =0.009, d=0.27) and the right BM subdivision (F[1, 2971 =8.12,
P=10.005, d=0.29) compared with those of healthy controls
(Fig. 2C, Supplementary Table S4). None of the amygdala
subdivisions exhibited significant partial correlations with the
total HAMD-17 or anxiety factor scores after adjusting for age, sex,
and ICV.

Longitudinal volume changes in amygdala subdivisions

The ECT group demonstrated significant Pre-to-Post volume
increases in both the BL (Left: f=0.49, SE=0.08, P<0.001,
p=5.9%; Right: 3 =0.48, SE=0.08, P<0.001, p=6.2%) and BM
(Left: B=0.40, SE=0.05 P<0.001, p=6.7%; Right: B =035,
SE=0.07, P<0.001, p = 5.8%) subdivisions, followed by significant
Post-to-6MA volume decreases in both the BL (Left: f = —0.25,
SE=.07, P=0.003, p=-3.0%; Right: B=-0.26, SE=0.07,
P=0.001, p=-34%) and BM (Leftt p=-0.23, SE=0.04,
P<0.001, p=-3.6%; Right: f=-0.20, SE=0.05, P=0.001,
M= —3.4%) subdivisions (Fig. 3, Supplementary Figs. S2, 3,
Table S6).

The left BL, BM, and right BL subdivisions showed significantly
larger volumes at 6MA than those at pre-treatment (Left BL: 3 =0.12,
SE=0.04, P=0.003, u = 2.6%; Left BM: 3 = 0.08, SE = 0.02, P = 0.002,
p = 2.8%; Right BL: $ =0.09, SE=0.02, P=0.001, p=24%) (Fig. 3,
Supplementary Figs. S2, 3, Table S6). None of the other treatment
groups exhibited significant volume changes between any of
the timepoints (Fig. 3, Supplementary Figs. S2, 3, Table S6).
Additionally, ECT-specific volume changes persisted even after
adjusting for age and baseline anxiety factor scores (Supplementary
Figs. S4, 5 and Tables S7, 8). There was no association between the
number of ECT sessions and volume changes (Supplementary
Tables S1 and S9). There were no significant differences in volume
changes between remitters and non-remitters at Post (Supplemen-
tary Fig. S6).

Association between volume changes in the amygdala
subdivisions and anxiety severity

The Pre-to-6MA volume change in the right BM subdivision
exhibited a significant partial correlation with changes in the
anxiety factor score (p=-0.587, 95% Cl=[-0.817, —0.195],
P =10.010) (Fig. 4). None of the volume changes showed significant
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partial correlations with changes in the total HAMD-17 score
(Supplementary Fig. S7).

Association between baseline amygdala volumes and changes
in anxiety severity

Baseline right BL subdivision volumes exhibited a significant
partial correlation with Pre-to-6MA changes in the anxiety factor
score (p=—0.603, 95% Cl=[-0.825, —0.219], P=0.010) (Fig. 5).
None of the baseline volumes showed significant partial correla-
tions with changes in the total HAMD-17 score (Supplementary
Fig. S7).

DISCUSSION

This study investigated short- and long-term volume changes in
the amygdala subdivisions following ECT and other treatment
modalities. Prior to treatment, both the BL and BM subdivisions of
the right amygdala were smaller than those in the healthy control
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group. A post-treatment volume increase was observed only in
the ECT group, followed by a subsequent decrease. At the
6-month follow-up, the amygdala subdivision volumes in the ECT
group were significantly larger than those at the pre-treatment.
Long-term volume changes in the right BM subdivision signifi-
cantly correlated with improvements in anxiety symptomes. Finally,
the baseline right BL subdivision volume indicated a long-term
improvement in anxiety symptoms. These findings established a
connection between the nuclei of the amygdala, ECT, and the
manifestation of anxiety symptoms in depression, advancing our
understanding of the therapeutic effects of ECT and the role of the
amygdala in depression.

The current study included four different treatment modalities
for depression and collected MRI and clinical data at three
timepoints. Unlike previous studies, all treatment groups showed
similar remission rates post-treatment [4]. This may be because
the inclusion criteria for the ECT group necessitates treatment-
resistant cases, resulting in a significantly more severe population
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compared to other treatment groups. Except for the medication
group, age was also significantly different between ECT and non-
ECT groups. Given these inter-group differences, the following
discussion interprets the findings while considering these demo-
graphic and clinical variations.

In this study, we initially segmented amygdala nuclei using the
FreeSurfer module [59]. Although this module offers highly reliable

Molecular Psychiatry (2025) 30:2653 — 2664

estimates for most nuclei, some exhibit relatively low reliability [60].
Furthermore, direct comparisons with prior partitioning methods [32,
61, 62] are not feasible, which poses an interpretability issue. To
address this problem, we clustered the nine nuclei from the
FreeSurfer output into three subdivisions based on their anatomical
plausibility and proximity [30, 32, 59, 63]. We quantified the test-retest
reliability using two-time-point data from a healthy control group,
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confirming enhanced reliability through clustering. This methodol-
ogy, facilitated by collecting multi-time-point data from the healthy
control group, significantly enhanced the reproducibility of the study.
Additionally, the clustered subdivisions matched well with the
cytoarchitectonically defined atlas and typical partitioning methods
commonly used in animal research [30, 63], thereby improving the
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interpretability of the results. Notably, this clustering approach
permits comparisons across different time points and individuals
while accounting for individual variations in subregional positions.
This study, which included 155 patients with depression, is one
of the most extensive investigations comparing amygdala
volumes in depression. Pre-treatment right amygdala subdivision
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volumes in patients with depression were smaller than those in
healthy controls, which is consistent with the results of a meta-
analysis [69] and a previous study with a similar sample size [40].
For older cohorts aged 60 and above, there were no significant
differences in baseline volume (Supplementary Table S5) while the
effect sizes were larger than those reported in a previous meta-
analysis (d=0.208) [69]. There was no significant correlation
between the pre-treatment volume and baseline HAMD-17, and
anxiety factor scores. Previous research has suggested that sex
differences in amygdala functionality may exist; therefore, the
absence of clinical correlates may be attributed to demographic
heterogeneity in patients, such as sex [70, 71]. Thus, future studies
should consider an analytical design that can handle demographic
heterogeneity, such as stratifying patients by sex, to reflect
individual differences more accurately.

We observed unique treatment-induced volume changes in the
amygdala subdivisions specifically associated with ECT, both in the
short- and long-term. The transient increase in volume induced by
ECT was followed by a decrease during the follow-up period,
which is consistent with previous studies [51, 52]. Additionally, the
effect sizes of the Pre-to-Post volume increases were comparable
to those reported in a previous study [72]. The TMS group did not
show significant volume changes in this study, although a
previous study reported a significant increase in amygdala volume
after 6 weeks of TMS sessions [73]. Therefore, further validation
using a larger sample size is warranted. The medication group in
this study did not show significant volume changes, whereas
antidepressants were found to increase the amygdala volume
[69, 74]. The medication group in this study primarily consisted of
add-on cases, necessitating caution in interpreting the results due
to the potential impact of past antidepressant use on baseline
volume. Future studies focusing on treatment-naive subjects may
offer a more precise assessment of the influence of antidepres-
sants on amygdala volume.

In this study, Pre-to-6MA volume increases in the right BM
subdivision were significantly correlated with improvements in
anxiety symptoms. The basomedial amygdala may play a distinct
role in anxiety, as an animal study reported that the basomedial
amygdala, but not the basolateral amygdala mediates the top-
down control of anxiety [75]. Considering that activation of the
basomedial amygdala ameliorates high-anxiety states as indicated
in the previous study, an ECT-induced volume increase in
basomedial amygdala may facilitate enhanced activation, leading
to an improvement in anxiety states. Additionally, human studies
have shown that the basolateral and basomedial amygdalae have
different connectivity profiles [61, 76]. These findings underscore
the importance of analyzing the amygdala at the nucleus level.

Furthermore, baseline volume of the right BL subdivision was
identified as a potential biomarker for predicting improvements in
anxiety symptoms. This finding is consistent with a previous study
demonstrating that a larger amygdala volume predicted a greater
improvement in overall depressive symptoms [25]. When all
treatment groups were included, the baseline right BL subdivision
volume was not predictive of anxiety improvement (Supplemen-
tary Fig. S9). Together with the results of the cross-sectional
analysis in this study, this indicates that, while the right amygdala
subdivisions are significantly smaller in patients with depression
compared to healthy controls, a relatively larger volume in the
right basolateral amygdala is associated with greater improve-
ments in anxiety following ECT.

There is ongoing debate as to whether ECT-specific volume
changes are merely by-products of seizure induction or if they
contribute to treatment outcomes [77, 78]. One study suggested
that ECT-induced volume increases were associated with regional
electric field changes but not with antidepressant response,
implying that these volume changes might not directly influence
clinical outcomes [78]. Meanwhile, an animal study demonstrated
electroconvulsive seizure-induced glial cell proliferation in the
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amygdala [79], suggesting that neuroplastic changes may
contribute to the therapeutic effects of ECT. Although research
on the amygdala is limited, studies focusing on the hippocampus
have reported a broader range of neuroplastic changes, such as
increased neuroplasticity markers and enhanced excitatory
synaptic density [18, 19]. Furthermore, a previous study reported
that the increase in hippocampal volume following ECT was not
due to edema or angiogenesis [17], suggesting that distinct
neuroplastic effects of ECT may result in volume increases.

Regarding the association between ECT-specific volume
increases and treatment effects, previous research has reported
conflicting findings [23-25]. Our findings add to this discourse by
demonstrating that ECT-induced amygdala volume changes were
not correlated with overall depressive symptoms (Supplementary
Fig. S7). However, based on the hypothesis that clinical correlates
of volume changes are specific to subregions and symptoms, we
demonstrated significant associations between amygdala subdivi-
sion volumes and improvements in anxiety. These findings
emphasize the importance of examining treatment effects at the
subregion and symptom levels. A study focusing on healthy
participants found that functional connectivity of the amygdala
nuclei could predict subclinical mental health dimensions [80].
This finding highlights the importance of exploring the functional
connectivity of amygdala subdivisions and their relationship with
multiple symptom dimensions in patients with depression,
thereby advancing our understanding of the underlying mechan-
isms of depression.

Interestingly, the TMS group showed significant associations
between long-term changes in the left amygdala subdivisions and
anxiety improvements, albeit showing insignificant volume
changes (Supplementary Fig. S8). Furthermore, smaller baseline
left BL volumes significantly correlated with long-term anxiety
symptom improvements (Supplementary Fig. S8). Despite the
inconsistent laterality, both the ECT and TMS groups exhibited
that larger changes in amygdala subdivision volumes are
associated with greater improvements in anxiety. In contrast,
when examining the association between baseline amygdala
volume and anxiety improvement, these groups showed opposite
correlation coefficients; larger baseline right BL volumes correlated
with greater anxiety improvement in the ECT group, while smaller
baseline left BL volumes correlated with greater anxiety improve-
ment in the TMS group. While the correlation directions differ
between treatment modalities, these findings are consistent with
previous studies. Doesschate et al. [25] reported larger baseline
amygdala volumes as predictive of greater improvement in
depressive symptoms following ECT, and Furtado et al. [81]
reported smaller baseline right amygdala volume as predictive of
greater improvement in depressive symptoms following TMS. The
inconsistency in correlation directions between ECT and TMS may
reflect their distinct mechanisms of action and warrants further
investigation.

This study has some limitations, including its observational
design, which resulted in differences in severity and demographic
characteristics between the treatment groups, as well as variations
in the ECT treatment protocols. Since the ECT group consisted of
treatment-resistant cases, which differed from the populations in
the other treatment groups, caution is advised when interpreting
the specificity of the volume changes associated with ECT. In
addition, the test-retest reliability of the CM subdivision remained
low even after clustering. Given that the centromedial amygdala is
considered a key region in affective and behavioral processes
[30, 35], future research should focus on identifying the
centromedial amygdala using ultra-high-resolution MRI images
or deep learning-based automated segmentation [53, 82]. Finally,
it is desirable for future studies to validate the current findings
using a larger sample size of the ECT group.

In summary, this study discovered ECT-specific amygdala
volume changes at the subdivision level over both short- and
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long-term periods. Additionally, this study identified correlations
between right basomedial amygdala volumes and improvements

in

anxiety symptoms. Furthermore, baseline volumes in the

basolateral amygdala significantly correlated with improvements
in anxiety. These findings provide insight into the amygdala as a
potential biomarker for depression treatment and highlight the
importance of examining treatment outcomes at fine-grained
levels, considering localized brain regions and specific symptom
dimensions.
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