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A B S T R A C T

Infrastructure systems play a critical role in providing essential products and services for the functioning of 
modern society; however, they are vulnerable to disasters, and their service disruptions can cause severe societal 
impacts. To protect infrastructure from disasters and reduce potential impacts, great achievements have been 
made in modeling interdependent infrastructure systems in past decades. In recent years, scholars have gradually 
shifted their research focus to understanding and modeling societal impacts of disruptions considering the fact 
that infrastructure systems are critical because of their role in societal functioning, especially in situations of 
modern societies. Exploring how infrastructure disruptions impair society has become a key field of study. By 
comprehensively reviewing relevant studies, this paper demonstrated the definition and types of societal impact 
of infrastructure disruptions, and summarized the modeling approaches into four types: extended infrastructure 
modeling approaches, empirical approaches, agent-based approaches, and big data-driven approaches. For each 
approach, this paper organized relevant literature in terms of modeling ideas, advantages, and disadvantages. 
Furthermore, the four approaches were compared according to several criteria, including the input data, 
applicable societal impact types, spatial scales, and application contexts. Finally, this paper illustrated the 
challenges and future research directions in the field.

1. Introduction

Infrastructure refers to assets, networks, and systems in the built 
environment that provide essential services (e.g., energy, water, power, 
transportation, and communication) for social and economic activities 
[1]. The terms “infrastructure systems”, “critical infrastructure”, and 
“lifelines” are often used interchangeably, but there are some distinc-
tions among them. Infrastructure systems “whose reduced performance 
or disruption would have debilitating impacts on the defense and na-
tional security” are regarded as critical infrastructure [2]. Lifeline sys-
tems are those critical infrastructure systems that are characterized by 
spatially extensive network structures [1]. In the field of hazards and 
disasters, the term “infrastructure systems” is most commonly used; 
therefore, this paper uses this term throughout. In addition, given the 
importance of infrastructure to the safety and well-being of modern 
societies, different countries have defined and listed their infrastructure 
systems, while the following systems are commonly included: energy 

(especially electric power), water, wastewater, transportation, and 
telecommunications systems [1].

Infrastructure systems are highly vulnerable to natural disasters, and 
damages to infrastructure facilities could induce a large-scale disruption 
of essential services. According to the World Bank report, natural di-
sasters, such as tropical cyclones (typhoons or hurricanes), earthquakes, 
and floods, are leading causes of infrastructure service disruption, and 
most infrastructure assets over the world are exposed to high-risk areas 
of natural disasters [3]. With the intensification of global climate change 
and the physical deterioration of infrastructure, the threat of extreme 
hazards to infrastructure components or systems tends to be larger in the 
future [4,5]. In addition, infrastructure systems typically comprise 
geographically extensive and interdependent networks, which can 
improve infrastructure operational efficiency in serving large pop-
ulations, but the interdependencies of infrastructure would also increase 
the systemic risk of infrastructure disruptions [2]. Numerous worldwide 
events have shown that the destruction of one infrastructure component 

* Corresponding author at: Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan.
E-mail address: huan.liu.b05@kyoto-u.jp (H. Liu). 

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

https://doi.org/10.1016/j.ress.2025.110879
Received 20 May 2024; Received in revised form 18 December 2024; Accepted 31 January 2025  

https://orcid.org/0000-0003-2226-3699
https://orcid.org/0000-0003-2226-3699
mailto:huan.liu.b05@kyoto-u.jp
www.sciencedirect.com/science/journal/09518320
https://www.elsevier.com/locate/ress
https://doi.org/10.1016/j.ress.2025.110879
https://doi.org/10.1016/j.ress.2025.110879
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2025.110879&domain=pdf


Reliability Engineering and System Safety 257 (2025) 110879

2

or system can produce cascading failures that result in disproportion-
ately large-scale service disruptions across multiple infrastructure sys-
tems [6].

Infrastructure forms the backbone of a functioning society. The 
disruption of infrastructure services not only causes huge economic 
losses, but more importantly, it can cause significant negative societal 
impacts, as exemplified by the disruption of individuals’ daily activities, 
the reduction of societal well-being, the occurrence of social panic (or 
even social instability) [7]. Infrastructure services are essential and 
ingrained in modern life; for instance, residents need potable water for 
drinking, electricity for household appliances, and transportation for 
traveling; therefore, infrastructure disruptions could affect all aspects of 
people’s lives, even threatening their health and survival [8]. With the 
continuous development of cities, a larger population becomes 
increasingly dependent on infrastructure services. Consequently, the 
societal impacts resulting from unexpected disturbances tend to become 
greater [9]. Examples of societal impacts of infrastructure disruptions 
include: 

• Typhoon No. 15 (Faxai) struck the Kanto region of Japan in 
September 2019, leaving around 934,000 and 140,000 households 
without power and potable water, respectively. Full restoration of 
the power and water outage in Chiba Prefecture took about two 
weeks, during which more than 50 % of affected households were 
unable to perform daily living activities such as cooking, communi-
cation, nightlife, bathing, and washing clothes [10].

• Hurricane Maria (Category 4) made landfall in Puerto Rico of 
America in September 2017, severely damaging 80 % of the elec-
trical power system through strong winds and floods, and leaving the 
island in a near-complete blackout. Less than 20 % of the island’s 
electricity was restored after one month, which made all commu-
nities suffer enormously from power and water outages, especially 
for vulnerable groups [11].

• The Great 2008 Chinese Ice Storm occurred in the southern region of 
China, causing widespread power system failure, which triggered the 
disruption of water supply, railway system, medical service system, 
and supply chains, with direct economic losses of up to 156 billion 
yuan. Millions of people suffered from these large-scale disruptions; 
for instance, the disruption of the railway system coincided with the 
peak of the Spring Festival (high travel demand), and about 5. 8 
million people were stranded in railway stations alone, unable to 
return home [9]; the disruption of the supply chains led to the 
shortages of food and escalation of food price in 11 provinces [12].

To reduce the risk of socioeconomic impacts from infrastructure 
disruption, governments in different countries have developed several 
critical infrastructure protection plans, and researchers from various 
disciplines have been involved in studying infrastructure systems. The 
U.S. government issued the National Infrastructure Protection Plan 
(NIPP), which outlines how government and private sectors work 
together to manage risks and achieve infrastructure resilience [13]. 
Similarly, Europe, Australia, Japan, China, and other countries have also 
made efforts to better protect their infrastructure [2,14]. This increased 
attention of governments attracts researchers from various backgrounds 
to study the protection and modeling of infrastructure. In the last 20 
years, lots of innovative and diverse work has been done on vulnera-
bility [15,16], risk [17,18], and resilience [19–21] analyses of infra-
structure systems to better understand and protect them [15,19,20]. In 
addition, the interdependencies between infrastructure systems can lead 
to cascading failure within and between systems, making the infra-
structure a complex system or “system-of-system” [22–25]. Rinaldi et al. 
[26] pioneered in highlighting the trend of increasing infrastructure 
interdependencies and categorized them into physical, cyber, 
geographic, and logical interdependencies. These interdependencies 
pose a challenge for evaluating and modeling vulnerability or resilience 
in infrastructure systems [18]. Accordingly, over the past decades, 

several simulation models or approaches for interdependent infra-
structure systems have been developed and evolved, including empirical 
approaches, agent-based approaches, system dynamics-based ap-
proaches, economic theory-based approaches, network-based ap-
proaches, and others [2,27,28]. In summary, previous academic 
communities put more emphasis on the research of infrastructure sys-
tems themselves and contributed substantially to protecting infrastruc-
ture. Indeed, infrastructure systems are critical because of their role in 
societal functioning, especially in situations where modern societies 
become increasingly dependent on infrastructure systems [7,29]. 
However, precisely how infrastructure service disruptions impair soci-
ety is poorly understood owing to the difficulties in quantitatively 
measuring the societal impact and integrating it with disruptions [8,9,
29].

More recently, the academic community has recognized the impor-
tance of exploring the societal impact of infrastructure disruption and 
begun to devote themselves to this research field. For example, Hasan 
and Foliente [4] reviewed the literature on socioeconomic impact 
assessment methods of infrastructure disruption from the perspective of 
key stakeholders, but they mainly focused on reviewing economic 
impact models, which were divided into Input Output model (IO model) 
and Computable General Equilibrium model (CGE model). Chang [1] 
presented a comprehensive review of the socioeconomic impacts of 
infrastructure disruptions and further clarified the definition, types, 
measurement, and challenges of socioeconomic impacts of disruptions. 
Andresen et al. [30] conducted a literature review on the social impacts 
of power outages in North America, and they emphasized understanding 
how power outages affected society and identifying the most vulnerable 
populations to power disruptions. Those studies provided insightful re-
views on the contents and patterns of societal impacts caused by infra-
structure disruptions; however, they failed to deeply review the 
modeling approaches of societal impact, which can be supported and 
complemented by the very recently cutting-edge literature.

To fill this gap, this paper presents a review of the broad literature 
related to modeling the societal impact of infrastructure disruptions. To 
the best of our knowledge, this is the first review that comprehensively 
explores the societal impact modeling of infrastructure disruption from 
literature published over a long time. The remainder of this paper is 
organized as follows and illustrated in Fig. 1. Section 2 introduces the 
definition, type, and measurement of the societal impacts of infra-
structure, which provide the theoretical foundation for societal impact 
modeling. Section 3 reviews and compares different modeling and 
simulation approaches that are suitable for estimating different types of 
societal impacts. Challenges and research directions are presented and 
discussed in Section 4. Finally, Section 5 provides general conclusions 
and insights from the literature review.

1.1. Literature search and screening criteria

To identify the comprehensive and state-of-the-art literature related 
to the topic, a two-step search method of relevant literature was con-
ducted and the main results retrieved were screened carefully. Proced-
ures to search, screen, and analyze the target literature are described as 
follows.

Firstly, to establish a comprehensive repository of relevant literature, 
this paper conducted the primary search using a two-step search method 
[31]. The date range of the search and selection criteria was from the 
1990s to 2024 to avoid missing important literature related to infra-
structure. The first step was a “Topic” search to the Web of Science 
(WOS) database to identify primary literature. The topic of relevant 
papers should contain at least one of the three keywords: (1) societal 
impact of infrastructure disruption disaster; or (2) community impact of 
infrastructure disruption disaster; or (3) well-being impact of infra-
structure disruption; a total of 352 studies were found in the WOS 
database. Then, to include influential studies that were not included in 
the WOS, the authors conducted a content-based search in Google 
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Scholar using the same criteria and keywords, and reviewed the top 10 
% of studies ranked by relevance for each year, with relevance taking 
into account the annual citations and highly weighting the citations 
[31]; a total of 186 papers were selected, while 96 papers duplicating 
WOS were excluded by digital object identifiers (DOI). In addition, 8 
papers without DOI and 5 non-English papers (3 in Portuguese, 1 in 
Afrikaans, and 1 in Chinese) were removed. With this approach, a total 
of 429 primary papers were identified.

Secondly, the authors screened the primary search results and 
removed irrelevant papers by reviewing the titles and abstracts. Papers 
belonging to the following contents or categories were removed: (1) only 
focuses on infrastructure disruption or infrastructure disruption 
modeling; (2) impacts not related to society, community, or well-being; 
(3) societal impacts not caused by infrastructure disruption; (4) societal 
impact studies unrelated to disaster; (5) non-quantitative modeling. As a 
result, 105 papers were retrieved and used for review. The authors then 
summarized the reviewed studies according to two criteria: (1) mea-
surements of societal impacts; and (2) modeling approaches of societal 
impact.

2. The definition and types of societal impacts of disruptions

2.1. The definition of societal impact

Societal impacts are the consequences of hazard-induced perturba-
tions that can create changes in all sectors of society [32]. In a broad 
sense, individuals, building environments (e.g., buildings, infrastruc-
ture, and facilities of factories), institutes (e.g., medical service, emer-
gency service, and financial service), and interactions among people all 
belong to the sectors of society due to the multidimensionality of society; 
accordingly, their changes caused by disruptive events are societal 
impact. When narrowed down to the field of disaster, the damages (or 
failures) to the built environment are usually regarded as the physical 
impacts, which are further quantified by the monetary losses [33]. To 
separate from the economic impact, the societal (or social) impact 
mainly refers to non-monetary outcomes of disaster on individuals, 

social institutes, social interactions, and public safety [7,33].
The terms ‘societal impact’ and ‘social impact’ are often used syn-

onymously and interchangeably in the literature, though there are 
subtle differences between the two terms. For example, Andresen et al. 
[30] defined the social impacts of power outages as the direct and in-
direct effects on people’s well-being or physical or mental health. Lindell 
and Prater [34] illustrated that social impacts of hazards could include 
psychosocial, sociodemographic, socioeconomic, and sociopolitical im-
pacts. Gardoni and Murphy [35] elaborated that societal impacts should 
broadly include the potential effects of a hazard upon the operation of 
economic, social, political, and ecological systems within communities 
because impacts on those systems directly affect the lives of individuals 
within affected communities; at the same time, they focused on in-
dividuals and defined the societal impact of hazards in terms of the 
impact on selected individual capabilities, the functionings individuals 
are able, still able, or unable to achieve in the aftermath of a hazard. 
Holmberg et al. [32] distinguished these two terms and highlighted that 
societal impact refers more to the impact of perturbations on various 
levels and sectors of society, while social impact often refers to a more 
personal level of effects on individuals directly or indirectly. Given that 
infrastructure disruptions affect not only the individual well-being but 
also various social systems, this paper uses the term “societal impact” 
throughout the paper.

This paper defines the societal impact of infrastructure disruptions as 
the changes in societal functioning, which can be categorized into two 
groups: the social institution impact and the individual functioning 
(well-being) impact. Moreover, this paper focuses on the negative im-
pacts or changes due to infrastructure disruptions because 1) infra-
structure generally plays a positive and critical role in societal 
functioning; 2) most referred literature puts their emphasis on short- 
term or medium-term negative societal impacts.

2.2. The types and measurements of societal impacts

The societal impacts of infrastructure disruptions can be categorized 
into social institution impacts and individual well-being impacts, which 

Fig. 1. The framework of the literature review.
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can be further grouped into objective well-being impact and subjective 
well-being impact according to the way of their measurement. The 
overview of types and influencing pathways of societal impact are pre-
sented in Fig. 2, and detailed descriptions are discussed in the following 
sections.

2.2.1. Social institution impact
Infrastructure disruptions compromise the operations of the very 

institutions that the public values most highly in disaster situations. 
From the perspective of serving community needs, social institutions can 
encompass government, business, healthcare, education, community 
service organizations, religious and cultural organizations, and the 
media [33], as shown in Table 1. These institutions are dependent, to 
varying degrees, on the functioning of infrastructure systems. Corre-
spondingly, the service level of social institutions could be reduced or 
even suspended due to infrastructure disruptions or building damages 
under disaster scenarios. The detailed possible impacts on each institu-
tion have been qualitatively sorted out by Ref. [33]. Some researchers 
take the change of institution functionality due to disruptions as a proxy 
to denote the societal impact, where health, education, government, and 
business services are mostly studied given the essential role they play 
after hazards in most communities [36–39]. It is noteworthy that the 
government provides many laws, regulations, and services to protect life 
and property, preserve peace and well-being, and strengthen group 

norms and economic goals, while in response to a disruptive event, its 
emergency services are always highlighted.

Medical services (hospitals), which could provide treatments for ill 
or injured people, are critical for reducing fatalities and maintaining 
people’s well-being in the aftermath of a disruptive event [33]. Hospitals 
may need to curtail health care service or even shut down under 
disruptive scenarios of electric power, potable water, and communica-
tion; consequently, the patient and injured people may not be treated in 
time, and people’s survival is directly threatened [1]. According to the 
social investigation in Alameda, residents considered major hospitals 
the most important elements in the built environment under earthquake 
scenarios [7]. Yavari et al. [40]and Chang et al. [36] denoted the soci-
etal impact based on the reduction of healthcare functionality in regions 
considering the failures of power systems, water supply systems, 
buildings, and personnel. In detail, healthcare functionality was assessed 
according to four classes: Fully functional, Functional, Affected func-
tionality, and Not functional. Similarly, Jasiūnas et al. [41] linked the 
socio-economic aspects to power system disruption models and utilized 
the medical service losses as one of the dimensions to represent the 
social impact of power system disruptions; at the same time, the number 
of employees in healthcare sectors without power was calculated as a 
proxy of healthcare service impact.

Emergency service is usually organized and conducted by govern-
ments to prevent the escalation of hazards, search/rescue people’s lives, 

Fig. 2. Illustration of types and influencing path of societal impacts of infrastructure disruptions.
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Table 1 
Typical societal impacts of infrastructure disruptions.

Types of 
societal 
impact

Measurement 
dimensions

Indicators and representative papers Influence path Modeling 
approaches

Social 
institution 
impact

Functionality 
changes of medical 
service

• The probability of hospitals in four 
functionality levels [36]

• Quantity and quality medical functionality 
changes over time [37]

• Infrastructure disruption →affect the operation of 
hospitals→ reduce the medical functionality→Infrastructure 
recovers→ the medical functionality increases

Extended 
infrastructure 
modeling 
approaches; 
Agent-based 
approaches

Functionality 
changes of 
emergency service

• Percentage of met demand for public safety 
[39]

• The quantity of emergency water[9]

Infrastructure disruption →reduce the functionality of 
emergency service→ some demands are not met → the 
functionality increases as infrastructure recovers

Extended 
infrastructure 
modeling 
approaches;

Functionality 
changes of 
education service

• Quantity and quality functionality changes 
over time [44]

• The reduced number of student enrollments 
over time [45]

Infrastructure disruption →affect the operation of schools→ 
reduce the functionality of education systems → the 
functionality increases as infrastructure recovers

Extended 
infrastructure 
modeling 
approaches; 
Agent-based 
approaches

Functionality 
changes of business 
service

• Production capacity loss rate over time [48,
49]

• The cease operation day of businesses and 
unemployment rate [38]

Infrastructure disruption →cease the operation or production 
of business→ reduce the functionality of business → affect the 
unemployment rate →the functionality increases as 
infrastructure recovers

Extended 
infrastructure 
modeling 
approaches; 
Agent-based 
approaches

Objective 
well-being

Affected daily 
activities

The number of out-migrated people (dislocated 
permanently) [56]

Infrastructure disruption (electricity, water, school) →affect 
the functionality of houses, workplaces (employees), and 
schools (students) → outmigration of households

Extended 
infrastructure 
modeling 
approaches;

Affected daily 
activities

The number of dislocated people (temporarily) 
[36] 
Population stability [55]

Infrastructure disruption + building damages→house 
unhabitable→dislocation of people

Extended 
infrastructure 
modeling 
approaches;

Affected daily 
activities, 
deprivation cost

Percentage of people achieving certain 
activities [57,58] 
Percentage of people get intolerant [57,58]

Infrastructure disruption → reduce resources and services→ 
disrupt individuals’ daily activities→ become 
intolerant→negative well-being

Extended 
infrastructure 
modeling 
approaches; 
Agent-based 
approaches

Affected daily 
activities

The percentage change of POI visits over time 
(store, education, restaurant, etc.) [59]

Infrastructure disruption + institution damages + household 
losses…→collectively change human mobility 
activities→negative well-being

Big data-driven 
approaches

Welfare economics The expected welfare loss per commuter [61] Road network disruption→increase commute time→welfare 
losses

Extended 
infrastructure 
modeling 
approaches;

Welfare economics Gini coefficients that measure unequal 
distributions of functional loss and recovery 
time [81]

Infrastructure disruption → percent of infrastructure 
disruption in regions → Time required to recover in regions → 
unequal impact

Extended 
infrastructure 
modeling 
approaches;

Maslow’s hierarchy 
of needs

Percentage of people at five need satisfaction 
levels [9]

Infrastructure disruption → reduce resources and services→ 
disrupt individuals’ daily activities→ unsatisfaction of 
essential service needs→ societal impact

Extended 
infrastructure 
modeling 
approaches;

Capability approach Selected 10 capabilities of individuals, e.g., 
Meeting physiological needs, physical safety, 
Mobility, etc., and 16 indicators to represent 
capabilities [68,69]

Infrastructure disruption →reduce resources and services 
→reduce individuals’ functioning (beings or doings) →well- 
being impact

Extended 
infrastructure 
modeling 
approaches;

Capability 
approach, 
Social burden

Social burden metrics (defined as a function of a 
household’s relative need to access specific 
services divided by households’ accessibility to 
those services) [70]

Infrastructure disruption →reduce resources and services 
→take adaptive measures to fulfill needs→ reduce individuals’ 
functioning (beings or doings) →well-being impact

Extended 
infrastructure 
modeling 
approaches;

Subjective 
well-being

Hardship 
experience

Percent of households having hardship 
experience (outage duration is larger than 
tolerance time) [72]

Infrastructure disruption → disruption duration exceeds the 
tolerable time→ hardship experience→ well-being impact

Empirical 
approaches

Negative emotions, 
deprivation cost

Unhappiness level (from 0 to 1) and Willingness 
to pay (WTP, $) [29]

Infrastructure disruption → disruption duration → increase 
unhappiness level and WTP →well-being impact

Empirical 
approaches

Negative emotions, 
hardship experience

Helplessness, anxiousness, depression, hardship 
experience, and so on (measured by a five-point 
Likert-scale from 1 to 5) [75]

Infrastructure disruption→ affect different dimensions of well- 
being

Empirical 
approaches; 
Big data-driven 
approaches

Negative emotions Negative emotion score: anger, fear, surprise, 
sadness, joy, and disgust [80]

Hazard + infrastructure disruption + damages…→ affect 
individuals’ lives directly and indirectly → post their 
comments or feelings on social media →negative well-being 
impact

Big data-driven 
approaches
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provide survival-related humanitarian relief (e.g., food, water, tempo-
rary housing, etc.), and the restoration of social functions [33,42]. 
Emergency services are very dependent on various infrastructure sys-
tems, without which they can be impeded and indirectly cause the losses 
of human life and properties. For example, fire-fighting requires a suf-
ficient volume of water from the water supply system, the emergency 
command and dispatch of resources (goods and crews) rely on the 
communication system, and the delivery of survival-related relief or 
repair workers requires the functioning of transportation systems. Davis 
[43] defined the post-disaster water system service categories, which 
incorporated the potential impact of water disruption on society by fire 
protection. Yang et al. [9] measured the societal impact by considering 
the emergency water supplies in shelters under the disruption of trans-
portation and water supply systems. Loggins et al. [39] emphasized the 
importance of social infrastructure (police, firefighting, emergency, 
commercial services) in maintaining well-being, and utilized the per-
formance level (percentage of met demand) to measure their function-
ality considering the disruption and restoration of civil infrastructure.

Education service is the primary social institution dedicated to the 
transfer of knowledge, skills, and values from one individual or group to 
another [33]. Various national and international organizations recog-
nize the importance of education systems to communities’ stability and 
well-being, while education systems can be closed due to disruptions in 
electricity system (support educational computers, lights, projectors, 
et al.), water system (support the survival and hygiene of students or 
faculties), and transportation system (support traveling to schools) 
under disaster scenario. Hassan and Mahmoud introduced the social 
services stability index to measure the impact of disruptive events on 
community, and focused on healthcare and education as pivotal services 
which is calculated by aggregating the weight and their functionality 
changes over time [37,44]. Aghababaei and Koliou [45] utilized the 
reduced functionality of education systems, specifically, the reduced 
number of student enrollments over time, to represent community 
impact given the disruption of the electric power and water supply 
network subject to tornado hazards.

Businesses (economic institutions) facilitate the allocation of scarce 
resources across society; in mechanism, businesses produce goods and 
services that fulfill the multi-hierarchy needs of people, such as survival 
needs, career achievement needs, and social belonging needs [33]. 
Businesses can be disrupted by hazard events in many ways, and several 
surveys in disaster-affected areas indicated that lifeline service disrup-
tions are major contributors [1,46]. Business interruptions would 
further cause sever socio-economic impacts, such as lost production and 
sales, reduced income, unmet people’s needs, etc. Aghababaei and 
Koliou [38] denoted the community impact of infrastructure disruption 
by functionality changes in the education system, hospital system, and 
businesses. They quantified the business impact by the cease operation 
day of businesses, unemployment rate in regions, and number of absent 
employees. Nozhati et al. [47] considered the effects of disrupted water 
supply systems, power systems, and transportation systems on the 
functionality of commercial facilities (stores or supermarkets) to eval-
uate the food security of society. Kajitani and Tatano [48] and Liu et al. 
[49] used the production capacity loss rate (PCLR) as a measurable in-
dicator to quantify the impact of disasters on businesses, and they built 
the relationship between PCLR and disruptions of lifelines.

2.2.2. Individuals’ well-being impact
Individuals are the basic units that make up society, and the impact 

of infrastructure disruption on society can ultimately be decomposed 
into the impact on individuals. Substantial studies have illustrated that 
many aspects of individuals can be affected by infrastructure disrup-
tions, such as their physical health, mental health, daily activities, 
quality of life, etc., and these impacts can be suitably covered or denoted 
by the well-being impact of individuals [1,30,50].

Well-being is a multi-dimensional concept. Disciplines define well- 
being in a variety of different ways, and one of the most widely cited 

definitions of well-being is as follows: “well-being can be understood as 
how people feel and how they function both on a personal and social 
level and how they evaluate their lives as a whole” [51]. In addition, 
well-being can be grouped into different categories according to the 
emphasis and target of different studies. For example, in terms of the 
domain of well-being, it usually encompasses physical health well-being 
and mental health well-being of individuals or society. From the 
perspective of measuring and analyzing well-being, it can be divided 
into subjective well-being and objective well-being. The former de-
scribes an individual’s perceptions and feelings about different aspects 
of their life and is measured by asking people “how satisfied are you in 
your…” for various aspects of their life through social surveys, such as 
personal health, happiness, life satisfaction, achieving in life, personal 
relationship and so on [52,53]. The latter (objective well-being) is 
concerned with measuring and analyzing the empirically observable 
material conditions affecting the lives of individuals [52,53]. Scholars 
from different disciplines usually propose some quantifiable indicators 
that are explained by theoretical frameworks to characterize people’s 
living conditions, such as the human development index (income level, 
years of education, life expectancy, etc.) and the physical quality of life 
index [54]. The popular theoretical frameworks may include the capa-
bility approach (CA), basic needs theory, primary goods, and so on. 
When focusing on measuring the impact of infrastructure disruptions on 
individuals’ well-being, it can also be grouped into objective and sub-
jective well-being impacts. Considering the influencing mechanism of 
infrastructure disruptions, different scholars have proposed various in-
struments to measure the individuals’ well-being impact, as summarized 
in Fig. 2 and Table 1. 

(1) Objective well-being impact

In the dimension of objective well-being impact, researchers mainly 
from the engineering field proposed several indicators that are closely 
relevant to individuals’ affected daily activities to measure the well- 
being impact. Infrastructure systems function to provide essential re-
sources and services for people to achieve their daily activities, and the 
reduction or disruption of infrastructure services would reduce the 
achievement of people’s activities. Accordingly, scholars focused on the 
changes of daily activities due to disruptions to represent the objective 
well-being impact, such as housing, shopping, working, and others. To 
further quantify the changes of activities, several kinds of indicators 
have been proposed. One is calculating the number or percentage of 
people failing to perform various daily activities due to infrastructure 
disruptions to measure societal impact, including the number of dis-
located people [36,55], out-migrated people [56], people with disrupted 
hygiene activities [57,58], and others. Also, the volume changes of daily 
activities in a region have been proposed to measure the societal impact, 
like the changes in Point of Interest (POI) visits to stores, restaurants, 
schools, and hospitals [59]. Another kind is calculating the cost changes 
of achieving certain activities, especially the increase of travel costs due 
to road damages [60]. Overall, using the changes of daily activities to 
measure the objective well-being impact of infrastructure disruptions 
can be intuitive and easily quantified without complex aggregation or 
other transformations. However, these indicators were usually proposed 
by scholars’ practical experience, lacking underlined theoretical bases 
verifying them. The relationship between affected activities and 
well-being impact is also not clearly clarified.

To justify the proposed indicators of measuring objective well-being 
impact, several theories from social and economic disciplines were 
applied, including the welfare economics, need-based theory, and 
capability approach. Specifically, based on welfare economic, the travel 
cost changes of achieving activities were aggregated into the welfare 
losses to measure the impact of disruptions [61]. In addition, in-
dividuals’ daily activities are driven by their various needs, and affected 
activities can further make individuals’ needs unsatisfied [9]. Based on 
the Maslow’s hierarchy needs theory, unsatisfied needs caused by 
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infrastructure disruptions were typically identified and quantified as 
indicators of societal impact, like the percentage of residents at five need 
satisfaction levels [9] and unmet volume of hierarchy needs [9,62]. 
Compared with the above theories, the capability approach is more 
widely and systematically applied to the field of disaster or infrastruc-
ture disruptions. It not only supports the proposed indicators, but also 
explains the relationship between the fulfillment of daily activities and 
objective well-being impacts.

Capability approach was first introduced by Amartya Sen in the 
development of economics to gauge the well-being or quality of life of 
individuals as a way of determining the overall level of development of 
societies [63,64]. The approach emphasizes that the well-being of in-
dividuals depends on their capabilities to lead a life that they consider 
valuable. To define the capabilities, they first introduced the concepts of 
the functioning of individuals, which refer to doings (or activities) and 
beings (or states) that individuals find valuable to do or achieve. Doings 
may include eating, drinking, going to the hospital, working, and so on., 
and beings may include staying healthy, staying safe, staying happy, and 
so on. Capabilities thus describe the genuine opportunities or freedom 
open to individuals to achieve functioning (activities and states), 
depending on the individuals’ available resources, characteristics, and 
social and environmental conversion factors [65]. The greater the in-
dividual’s capability, meaning that more activities in the collection can 
be achieved, the greater the freedom of choice of life (functionings) 
available to the individual, and further the greater the well-being. 
Murphy and Gardoni [66] first applied the capability approach to the 
field of disasters in 2006 and gauged the societal impact of disruptions in 
terms of changes in individuals’ capabilities. They pointed out that di-
sasters can damage individuals’ living conditions (infrastructure) 
directly or indirectly and reduce essential resources, leading to reduced 
opportunities to achieve functionings, which further reduces people’s 
well-being [67]. Accordingly, scholars identified 10 capabilities of in-
dividuals to measure well-being impact under disruptions, e.g., Meeting 
physiological needs, physical safety, mobility, and others, and proposed 
16 indicators to quantify changes in capabilities [68,69]. Over the last 
decade, capability approach has been systematically developed and 
improved to measure the objective well-being impact of disruptive 
events. For example, combining the CA and costs of activities, scholars 
proposed the metrics of social burden, indicating the difficulties of in-
dividuals in performing functioning activities, to measure the societal 
impact of disruptions [70]. Similarly, Boakye et al. [71] introduced a 
connectivity-based metrics within a CA framework to quantify 
well-being impact of community considering the ability of individuals to 
maintain health, be sheltered, and other functinings under trans-
portation disruptions. Moreover, the disrupted activities or unmet needs 
are not the end of the impact, and they would also increase suffering 
levels or induce intolerant states of individuals, which is related to in-
dividuals’ feelings and developed in subjective well-being impact. 

(2) Subjective well-being impact

In the dimension of subjective well-being impact, researchers mainly 
from social science measured individuals’ negative perceptions and 
feelings about infrastructure disruptions by different theoretical 
frameworks or dimensions, including the hardship experience, depri-
vation cost, and negative emotions. Correspondingly, the quantifiable 
instruments or indicators are proposed and measured using social sur-
veys in specific cases to evaluate the impact [29]. The specifics are as 
follows. 

① Hardship experience

Quantifying the well-being impact of service disruption by the 
hardship experience of households/individuals is intuitive, and two 
measurement methods are currently proposed. First, within the capa-
bility theoretical framework, the tolerance level is introduced to 

measure the hardship experience of households or individuals, and it 
refers to the maximum amount of time that a household or an individual 
can tolerate service disruption in disasters [72]. The hardship experi-
ence is a function of the difference between the duration of infrastruc-
ture disruptions and the household’s tolerance level. The smaller the 
difference, the greater the people’s suffering level; when the duration of 
infrastructure disruption exceeds the tolerance level, people have 
hardship experience, resulting in negative well-being [73,74]. Corre-
spondingly, the percentage of households experiencing hardship was 
proposed to quantify the societal impact [53]. Furthermore, the key to 
this measurement is the introduction and quantification of tolerance 
level, which is mainly obtained by surveying individuals about the 
maximum number of days they can tolerate different infrastructure 
disruptions (power, water, transportation, etc.). This type of measure-
ment improved the application of the capability approach in the field of 
disaster and facilitated understanding of the threshold of individuals’ 
functionings (tolerability threshold) due to disruptions. However, this 
method did not directly measure the hardship of individuals; instead, it 
treated the hardship experience as a Boolean variable, meaning that 
people experienced hardship when the duration of disruption exceeded 
the tolerance level.

Second, dimensionless scales in social science or psychological sci-
ence are adopted to measure individuals’ hardship experience or 
suffering about infrastructure disruption, for example, the 5-point Likert 
scale, 11-point numerical rating scale, and customized rating scales. 
Dargin and Mostafavi [75] utilized the 5-point Likert scale, ranging from 
None at all (= 1) to A great deal (= 5), to measure people’s hardship 
experience of infrastructure disruption. These impacts are derived by 
surveying affected households and asking them: “What was the extent of 
overall hardship experienced due to lifeline outages or interruptions 
posed by disasters”. Besides, Wang et al. [76] introduced a numerical 
rating scale (11 points) from the field of medical science to measure the 
suffering level due to the shortage of food, medicine, and tent during 
disasters. Similarly, they asked individuals through social surveys about 
their level of suffering when faced with different scenarios, where 
0 implies no suffering, and 10 implies extreme suffering. This type of 
measurement is capable of quantifying individuals’ feelings and per-
ceptions directly but in a dimensionless and relative manner. It also did 
not consider the characteristics and dynamics of individuals’ suffering. 

② Deprivation cost

In addition to introducing hardship experience, scholars from the 
field of humanitarian relief also proposed deprivation cost to measure 
individuals’ suffering level due to lack of life-supporting resources, such 
as water, food, medical service, and sanitation supplies, where many of 
these shortages are caused by infrastructure disruptions. Deprivation 
cost is calculated by the economic cost, and it was initially proposed to 
optimize the distribution of relief by minimizing the society’s suffering 
level. Holguín-Veras et al. [77] first proposed the concept of deprivation 
cost and summarized the general characteristics of individuals’ depri-
vation cost function as follows: 

(a) Individuals’ suffering level exhibits monotonically increasing, 
nonlinear, and convex functions as the duration of disruption 
increases, as shown in Fig. 3; these properties reflect the body’s 
natural response to deal with a shortage of life-supporting re-
sources. For instance, at first, most healthy individuals can 
handle short-term resource disruptions; as the body’s reserves of 
resources are used up, people’s suffering level surges rapidly until 
it reaches a maximum value (death).

(b) Individuals’ suffering level has a non-cumulative nature of de-
mand for resources. Considering the physiological characteristics 
of humans, the required amount of resources is not cumulative as 
the duration of the disruption increases. For instance, when an 
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individual has no food for three days, his/her demand for food on 
the 4th day is limited and not the sum of the previous three days.

(c) Hysteretic effects of suffering level may exist after needs are 
satisfied. When an individual suffers a lot from shortages and 
causes irreversible damage (health impairment) to the body, the 
individual’s suffering level cannot return to its initial value after 
his/her needs are satisfied and creates a residual impact. 
Conversely, non-hysteretic effects mean that an individual’s 
suffering and body damage can be recovered to its initial value 
after his/her needs are satisfied.

To derive the deprivation cost function, scholars developed eco-
nomic evaluation methods, such as the contingent valuation, conjoint 
Analysis, and stated Choice method, which assigns monetary values to 
non-tradable goods or services (e.g., suffering level) [78]. Holguín-Veras 
et al. [79] applied the contingent valuation method to evaluate the 
economic costs of individuals’ suffering level under water suspensions. 
Based on a social questionnaire, they investigated people’s Willingness 
To Pay (WTP) to improve the situation or buy substitute resources in 
hypothetical water disruption scenarios. Also, the limit value, at which 
an individual dies after five days of water deprivation, was considered in 
the deprivation cost function. By regression analysis, an exponential 
function was fitted the best for the deprivation cost function. Similarly, 
Stock et al. [29] measured the societal impact by households’ WTP to 
avoid electricity and water disruptions. Although they did not introduce 
the deprivation cost function, they also found the nonlinear relationship 
between outage duration and households’ WTP using survey-based data 
from Los Angeles County, USA. Yang et al. [57] introduced the concept 
and application of deprivation cost function to the field of infrastructure 
for the first time and quantified the societal impact by the percentage of 
populations getting intolerant due to accumulated suffering over time. 
Deprivation cost has advantages in capturing suffering variations of 
individuals with increasing duration of infrastructure disruptions, but its 
application to the field of infrastructure remains in the initial stages, and 
more empirical studies need to be done. 

③ Negative emotions

Negative emotions are other dimensions to measure the subjective 
well-being impact of disruptive events, such as the unhappiness, 
anxiousness, anger, and so on. They are related to individuals’ subjective 
feelings about the disruption; similar to the hardship experience, nega-
tive emotions can be quantified using dimensionless scales. For example, 
5-point Likert scales [77] were applied to measure people’s subjective 
well-being impact of infrastructure disruption considering emotion 
changes, like helplessness, anxiousness, upsetting thoughts, and 
depression. Stock et al. [29] developed two empirical measures of so-
cietal impacts: a WTP to avoid lifeline service interruptions and a 

constructed scale of unhappiness with 5 levels of unhappiness (from Not 
unhappy to Extremely unhappy). They found that unhappiness is better 
able to distinguish the effects of shorter-duration outages than WTP is. 
This type of measurement can quantify individuals’ negative emotions 
directly in a dimensionless and relative manner, and the extent of impact 
is mainly derived from social surveys. In addition, negative emotion 
scores are proposed to measure the subjective emotion well-being 
impact. Zhang et al. [80] estimated the societal impact of infrastruc-
ture disruptions by quantifying negative emotion scores from residents’ 
reaction posts on social media. They focused only on the six basic 
emotions: anger, fear, surprise, sadness, joy, and disgust, and calculated 
the emotion scores using the emotional lexicon.

Overall, the societal impact originates from the reduction of infra-
structure services or resources, which affects the functioning of social 
institutions and individuals (shown in Fig. 2). As for social institutions’ 
functioning, the indicators related to functionality changes of various 
types of social institutions are proposed to measure the societal impact. 
In current literature, the functioning of medical, emergency, education, 
and business services is given more emphasis. As for the individuals’ 
functioning, the reduction of life-supporting resources would interrupt 
or affect the achievement of individuals’ daily activities (functionings), 
which induces negative well-being impacts explained by the capability 
approach. The changes of daily activities due to disruptions are pro-
posed to quantify the objective well-being impact, such as the number or 
percentage of people failing to perform activities, the volume changes of 
activities, the cost changes of achieving activities, the quantifiable in-
dicator changes of capabilities, and others. In addition, individuals’ 
daily activities are driven by their hierarchy needs, and interrupted 
activities will further make their needs unsatisfied. Accordingly, needs- 
related indicators are proposed to measure the objective well-being 
impact. Individuals’ interrupted activities and unmet needs would 
further increase their suffering level, which is related to people’s per-
ceptions or feelings towards infrastructure disruptions. Individuals’ 
subjective well-being impacts are measured mainly from three di-
mensions, e.g., hardship experience, deprivation cost, and negative 
emotions, which support the identification of quantifiable indicators. To 
calculate the indicators used to measure the societal impact, there are 
corresponding suitable modeling approaches, which are presented in 
Table 1 and Section 3.

Furthermore, the time dimension of societal impact is critical. Ac-
cording to the influencing path of societal impact described in repre-
sentative papers (Table 1), some of societal impacts are measured right 
after the hazard, while others are quantified considering the recovery 
process of infrastructure. More scholars pay attention to the immediate 
impact because infrastructure generally reaches the lowest or worst 
performance level right after the hazard, corresponding to the largest 
societal impact. Societal impact typically becomes smaller or gets 
recovered over time as the disrupted infrastructure systems get 

Fig. 3. Schematic of deprivation cost function [77].
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restorations, but it can also become larger when the cumulative effects 
of disruptions on individuals are considered. Indeed, the cumulative 
effects of service disruption on individuals should be considered when 
measuring people’s subjective well-being impact, as the suffering level 
of people can tend to increase non-linearly or exceed the tolerance level 
with the duration of infrastructure disruption increases.

3. The approaches for societal impact evaluation

This section reviews the existing modeling approach for societal 
impact estimation of infrastructure disruptions. They are broadly cate-
gorized into four groups: extended physical infrastructure modeling 
approaches, empirical approaches, agent-based approaches, and big 
data-driven approaches. The inputs, connecting methods, outputs, 
strengths, and weaknesses of each type of approach are summarized in 
Fig. 4, and details are illustrated in the following subsections.

3.1. Extended infrastructure modeling approaches

Extended physical infrastructure modeling approaches estimate the 
societal impacts by integrating the physical failure analysis of infra-
structure systems (engineering dimension) and change analysis of social 
systems (social dimension). In engineering dimension analysis, the 

functionality and interdependency of infrastructure systems are 
modeled in ways that support estimating the societal impact. Given the 
social institutions and individuals are located in different spatial re-
gions, network-based models are usually adopted to calculate the spatial 
distribution of infrastructure service disruption [1,18]. In social 
dimension analysis, the susceptible sectors of society to infrastructure 
disruption are identified and quantified by some indicators. More 
importantly, the relationship between disruptions and selected in-
dicators is established to derive the societal impact. This type of 
approach advances in connecting the failed infrastructure components 
with the societal impacts and enables modeling the cascading failure of 
interdependent infrastructure-social systems. This approach is widely 
used in community resilience or infrastructure resilience assessment that 
includes societal consideration [44,56,69]. Usually, this type of 
approach focuses on estimating social institution impact and in-
dividuals’ objective well-being impact.

3.1.1. Extending method for social institution impact estimation
In aspects of social institution impact, the functionality of social in-

stitutions is generally estimated by modeling the relationship between 
functionality and infrastructure disruption, and their relationship is 
mainly established by empirical data and logical rules [36,41]. For 
example, Chang et al. [36]quantified healthcare facility functionality 

Fig. 4. Overview of four types of societal impact modeling approaches.
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considering lifeline disruptions based on damage data from 
post-earthquake safety inspections of 228 facilities, and the function-
ality class probabilities of healthcare facility would be adjusted up one 
level, if it experienced loss of at least one external lifeline. Liu et al. [46] 
modeled the dependencies of production capacity on lifeline disruptions 
in different business sectors using production functions that were fitted 
using a dataset from a post-disaster business survey for the 2011 Great 
East Japan Earthquake. While in most cases, the damage data are not 
fully recorded or even not available, scholars established different 
logical rules to connect infrastructure disruption to institutions’ func-
tionality. Jasiūnas et al. [41] developed an integrated spatial rule for 
linking disruptions in a power system with critical service (healthcare 
service), which were calculated by accumulating the share of the dis-
rupted power supply through time and space, e.g., the average time that 
the number of people employed in health sectors without power. Log-
gins et al. [39] modeled the interdependencies between civil infra-
structure and social infrastructure (e.g., the police and fire, emergency, 
and commercial service.) based on setting constraints that denote 
different effects of civil infrastructure on demand, supply, or trans-
shipment nodes in social infrastructure. Hassan and Mahmoud [82] 
established the relationship between a hospital’s functionality and the 
disruption of infrastructure using a success tree, where AND/OR gates 
are used to connect the basic events (infrastructure) to top events 
(hospitals) and intermediate events. A similar methodology has also 
been proposed to model the functionality of education systems [44].

In general, this approach extends infrastructure service disruption to 
social institution impact by simplifying the functioning process of social 
institutions using empirical data and logical rules. It is suitable for sce-
nario analyses and answering “what-if” questions by combining physical 
infrastructure models. However, the functioning of social institutions is 
a complex process in which their adaptive behaviors and dynamic in-
teractions with other institutions collectively affect their functionality 
under disruptive events. It is challenging to incorporate these dynamic 
and coupled factors into this approach to estimate social institution 
impacts.

3.1.2. Extending method for individuals’ objective well-being impact 
estimation

In studies related to individuals’ objective well-being impact esti-
mation, two types of methodology are popularly adopted by scholars. 
One method focuses on several indicators related to affected daily ac-
tivities due to infrastructure disruptions, and evaluates them by map-
ping the disruption to the affected populations. The other method 
applies theories/approaches used in social science to evaluate the well- 
being impact of disruptions, where the capability approach is the most 
popular theory, and accordingly, the connection algorithm between 
infrastructure disruptions and well-being impact is developed. 

(1) Extending infrastructure disruption to the affected populations

In Method (1), the number of populations failing to perform daily 
activities or access essential services is usually calculated to indicate the 
objective well-being impact, and logical rules and households/in-
dividuals’ decision-making processes are designed to extend the infra-
structure disruption to societal impact. For example, Nozhati et al. [47] 
measured the well-being impact of disruptions by the number of 
food-secure people, which is estimated by the number of people who can 
access the functioning stores under disruptive events, and food retailer is 
functioning only if its building structure, water, and electricity are 
available. Yang et al. [9] defined the societal impact of water suspension 
as the percentage of the population in each need satisfaction level, 
which depended on the available water quantity in disasters. The 
availability of tap water (water supply system), bottled water (com-
mercial stores), and emergency water (equal distribution rule) are 
modeled and extended into each spatial population grid to determine 
the impact. Masoomi et al. [56] quantified the socioeconomic impact by 

population outmigration, the probability of which depends on state 
changes of households (affected houses, affected students, affected 
employees) due to disruption and recovery of physical networks (i.e., 
electric power network, water network, and buildings). The above 
connecting rules are determined by the way that infrastructure disrup-
tion affects people’s daily lives, and they simplify individuals’ decision 
process (e.g., going to the nearest store, getting the same water quantity 
within a grid, and changing household states by disruptions), which are 
the key to connect disruption with well-being impact and are affected by 
multiple factors.

Individuals’ responses or adaptive decisions under infrastructure 
disruption will determine the availability of life-related services and 
further contribute to the well-being impact. Scholars have proposed a 
logic-tree approach, discrete choice modeling, and optimization 
approach to model individuals’ decisions. Chang et al. [36] modeled the 
social impact of lifeline losses by displaced persons, and it was evaluated 
by a logic tree, which simulated the households’ decision-making pro-
cess considering housing damage, lifeline loss, socio-economic and 
locational factors (car ownership, elderly, ethnicity, tenure, etc.). The 
number of displaced people is a popular indicator of social impact (so-
cial instability) caused by disaster [55,83]. Lin [84] developed a dislo-
cation choice model based on a logistic regression model, which is 
capable of estimating the probability of households choosing dislocation 
considering residential structural damage and multiple socio-economic 
factors. Based on this model and Bayes’ theorem, Beck and Cha [85] 
estimated the dislocation probability and expected dislocation popula-
tion given the power outage probability of each node due to hurricane 
damage. Similarly, Nofal et al. [86] integrated the dislocation model 
with Housing Unit Allocation (HUA) method considering the inaccessi-
bility of transportation and power systems. This model could provide a 
dislocation probability for each housing unit and aggregated dislocated 
population. In addition, Yang et al. [57] measured the societal impact of 
water disruption by the number of people who can perform certain ac-
tivities and the number of people who get intolerant due to disrupted 
activities, which are calculated using an individual’s activity estimation 
model driven by minimizing the suffering of people’s disrupted activ-
ities under limited water.

In general, this method quantifies the well-being impact of infra-
structure disruptions by the number of daily-activity affected people, 
which can be intuitive and without complex transformations. However, 
as discussed in Section 2.2.2, some indicators were usually proposed by 
scholars’ practical experience, lacking underlined theoretical bases for 
verifying them. In addition, logical rules and individual decision-making 
models are developed to directly connect the infrastructure service 
disruption to societal impact; thus, it is suitable to conduct scenario 
analyses and answer “what-if” questions in conjunction with physical 
infrastructure models. It is worth noting that the spatial distributions of 
infrastructure disruption are usually required to derive the affected 
population because, in different spatial disrupted regions, households 
with different socio-economic characteristics may suffer inequitable 
impact. The heterogeneity of populations should be considered, while 
the population characteristics are statistically recorded in a relatively 
large scale, like the level of census or grids. Recently, the HUA method 
has been established to link detailed household characteristics to a 
spatial inventory of residential housing structures, which further nar-
rows down the scale of the evaluation. Correspondingly, to generate the 
refined spatial distribution of disruptions, network-based approaches 
are most popularly utilized in societal impact estimation [1,87]. 

(2) Integrating infrastructure disruption with capabilities-based 
approach

Many theories or approaches are proposed by social scientists to 
measure the objective well-being of humans, among which the 
capabilities-based approach is widely applied and integrated into the 
field of disaster or infrastructure disruptions. For example, based on 
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welfare economics, Silva-Lopez et al. transferred the commuting travel 
cost changes estimated by a road network model into welfare losses to 
better characterize the disparate well-being impacts of disruptions on 
individual users [61]. Similarly, Dhakal and Zhang introduced Gini co-
efficients to evaluate the unequal impact of infrastructure disruptions on 
different communities given the percentage distribution of infrastruc-
ture functional loss and recovery time [81]. Additionally, Maslow’s hi-
erarchy needs theory was applied to explain the instruments and extend 
infrastructure physical models to affected populations with unmet needs 
or different need satisfaction levels to estimate negative societal impact 
[9]. In contrast, more scholars have contributed to applying the 
capabilities-based approach to evaluate the societal impact of infra-
structure disruptions. The capability approach facilitates answering two 
main questions: the first one is what is the true essence of individuals’ 
objective well-being, including their measurement and relationship with 
daily activities fulfillment (as illustrated in Section 2.2.2); the second 
one is how to quantitatively estimate the well-being impact of in-
dividuals under disturbances.

In the quantitative estimation of the well-being impact of infra-
structure disruptions, scholars proposed a four-step indicator-based 
method founded on the capability approach. In general, the method 
consists of four main steps [68]: 1) Selection of the capabilities of in-
dividuals; this step identifies the specific functionings (e.g., drinking, 
eating, traveling) that are critical and likely affected by infrastructure 
disruptions. 2) Selection of indicators; because capabilities are not 
directly measurable, indicators for given functioning are selected as 
proxies, such as the frequency of drinking water supply problems, fre-
quency of food supply problems, travel time to the nearest store, etc. 3) 
Developing various models to predict indicator values, taking into ac-
count the disruption of infrastructure, characteristics of individuals, 
damages of buildings, and losses of other living conditions. In this step, 
regression models and infrastructure network models are usually con-
structed using available data. 4) Establishing aggregation algorithms for 
indicators’ values to represent the whole well-being impact of in-
dividuals, and evaluating the levels of well-being impact due to 
disruptive events.

Based on the general quantitative estimation method, scholars from 
different backgrounds continue evolving and improving the algorithm of 
each step. Steps 1) and 2) heavily rely on expert experience, literature 
review, or qualitative analysis (examples are shown in Fig. 5), which are 
the main research topics of social scientists [88]. Step 3) is the key to 
connecting the infrastructure disruptions with societal impacts, and 
engineers usually put more emphasis on this part. For example, 
Tabandeh et al. [69] and Wang et al. [88] developed a probabilistic 
prediction model and multinomial logit regression model for indicator 
indices of functioning using social survey data, which takes into account 
main influences factors, such as the status of infrastructure systems, 
personal characteristics, and resources. It is worth noting that the ser-
vice statuses of infrastructure are usually simulated or predicted under 
disaster scenarios through developing physical infrastructure models, e. 

g., network-based models [60,71]. As for the aggregation of indicators in 
step 4), Tabandeh et al. [89] proposed a reliability-based methodology 
that describes personal well-being as a series system consisting of 
different functioning indicators, where a "failure" in any of the func-
tionings (the indicator value of activities is below a certain threshold) 
can lead to a "failure" of the individual well-being system (the individual 
becomes intolerable). To determine the “failure” threshold, Murphy and 
Gardoni [90] defined three states for indicator indices with the same 
labeling as the capability states, i.e., acceptable, tolerable, and intoler-
able, as shown in Fig. 5. When the level of activity achievement (indi-
cator value) exceeds the acceptable threshold, the individual is 
acceptable. A state below the acceptable threshold is tolerable if its 
achievement is temporary and above a minimum tolerability threshold. 
The tolerability threshold is the absolute minimum level of activity 
achievement below which the individual becomes intolerable. Besides 
considering the achievement of functioning, Tabandeh et al. [69] 
incorporated the time dimension in evaluating the indicator indices; for 
example, the tolerable state of the indicator indices would become 
intolerable if the required recovery time to improve to the acceptable 
state exceeds a reference duration.

In summary, Method (2) integrates infrastructure disruption with a 
capabilities-based approach, which is an effective attempt to connect 
engineering dimension analysis of infrastructure with social dimension 
analysis. This method advances in providing theoretical foundations for 
the measurement and estimation of the objective well-being impact of 
infrastructure disruptions, and it helps to clarify the relationship be-
tween the achievement of activities (functionings) and the well-being 
impact of individuals. Nevertheless, in the quantitative estimation 
methodology, the selection of indicators for functionings (Step 2) is 
controversial in terms of whether they are representative or effective. 
More recently, instead of selecting indicators for functionings, Clark 
et al. [70] focused on costs of achieving functionings, which can be 
estimated by physical infrastructure models, and proposed a social 
burden metrics founded on capability approach to estimate the 
well-being impact of disruptions. Similarly, Boakye et al. [71]proposed 
connectivity-based metrics within a CA framework to quantify 
well-being impact, and evaluated the metrics using transportation 
network modeling considering individuals’ maintaining health, being 
sheltered, and other functionings. Additionally, in the evaluation of 
indicator indices (Step 4), the acceptable and tolerable thresholds are 
usually subjectively determined, which could cause a large bias on the 
evaluation results of well-being impact. Regarding this deficiency, 
scholars proposed the concept of tolerable level (time) of households 
quantified by social survey in subjective well-being impact estimation, 
which will be further discussed in Section 3.2.

3.2. Empirical approaches

Empirical approaches quantify the societal impact of infrastructure 
disruptions according to historical disaster data and social surveys of 

Fig. 5. Selection of capabilities/indicators and their evaluation threshold [69].
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individuals affected by actual disasters or surveys with hypothetical 
disaster scenarios. This type of approach can develop an understanding 
of what happened in infrastructure disruptions or what could happen to 
disaggregate units, such as individuals or households, businesses, and 
organizations. Their corresponding impacts are usually related to in-
dividuals’ subjective well-being impact and quantified by specific in-
struments. Inequitable impacts of infrastructure disruption to vulnerable 
populations and spaces are mostly highlighted, and their potential 
influencing factors are identified and understood to promote human- 
centered infrastructure resilience. In addition, based on empirical 
data, several vulnerability models for individuals or households can be 
developed and embedded into infrastructure or agent-based models to 
estimate the societal impact under various infrastructure disruption 
scenarios.

3.2.1. Revealing well-being impact and main influencing factors
To understand what happened to people under infrastructure dis-

ruptions, appropriate instruments should be proposed to quantify the 
well-being impact before surveying individuals or households. As 
mentioned in Session 2, considering the influencing features of infra-
structure service disruption, scholars proposed several instruments from 
three dimensions to measure subjective well-being impact, including 
hardship experience, deprivation cost, and negative emotions. Specif-
ically, the tolerance level or dimensionless scales (5 Likert scales) are 
selected to indicate individuals’ hardship experience, the WTP to deal 
with various disruptions is investigated to indicate people’s deprivation 
cost over time, and dimensionless scales are proposed to indicate in-
dividuals’ negative emotions. These instruments are rated by the tar-
geted individuals or households, which facilitates understanding the 
sufferings or negative emotions of disaggregated respondents. Also, by 
aggregating the rating results of the whole population, the overall or 
average subjective well-being impact of infrastructure disruption can be 
captured [73].

After determining the above instruments to quantify well-being 
impact, their corresponding main influencing factors can be further 
explored by various statistical methods, such as correlation analysis, 
ANOVA analysis, structural equation modeling and regression model. 
For example, Esmalian et al. [72] implemented a Poisson regression 
model to account for the simultaneous effect of multiple factors, and 
they found that households’ need for utility service, preparedness level, 
the existence of substitutes, possession of social capital, past experience, 
risk communication, race and residence type mainly influence the 
tolerance level, and hence the level of hardship experienced in the 
context of the 2017 Hurricane Harvey. With the same dataset, Coleman 
et al. [73] adopted Spearman bivariate correlation analysis to under-
stand the association of sociodemographic characteristics with the 
hardship experienced and tolerance level, and they concluded that 
certain socially vulnerable groups (low income, racial minority, and 
younger residents) reported significant disparity in the hardship expe-
rience. The same results were presented by Dargin and Mostafavi [91], 
and they also found that disruptions in transportation, solid waste, food, 
and water infrastructure services caused more significant disparities of 
negative emotion impact. By applying ANOVA one-way tests and a 
structural equation model, Dargin et al. [75] found that physical attri-
butes of community, preparation behaviors, and the coupled durations 
of infrastructure disruptions were significantly associated with house-
hold hardship experience. Households’ poor preparation is attributed to 
past experiences and social vulnerability, which refers to the households 
with children, racial minority status, low income, and low educational 
attainment. Vulnerable households are prone to underestimate the im-
pacts of a disaster, or have greater barriers to preparing for disasters, 
such as relatively high costs, lower accessibility to stores, lower avail-
ability of store supplies, etc. Stock et al. [29] used survey-based data 
from Los Angeles County and also found the significant role of prepa-
ration and durations of disruptions (power and water supply system) on 
households’ well-being impact. Differently, in Stock’s study, the effects 

of some sociodemographic characteristics were not significant, like 
gender, race, education level, and the household with children, partially 
conflicting with Dargin’s findings. Furthermore, Coleman et al. [92] 
collected survey data from Hurricane Harvey, Hurricane Florence, and 
Hurricane Michael, and they explored the main influencing factors of 
the level of susceptibility for households by Spearman correlation 
analysis, respectively. They highlight that some variations in the influ-
ence of factors were event-specific or service-specific, but without 
doubt, certain influencing characteristics have a universal impact on the 
well-being impact of households, e.g., households with low socioeco-
nomic status.

In general, the current researches establish a fundamental empirical 
basis for understanding the households’/individuals’ susceptibility and 
well-being impact of infrastructure service disruptions by identifying 
measurable instruments and their corresponding influencing factors. 
They facilitate the development of mathematical models based on the 
identified influencing factors to determine societal impact. However, 
empirical studies heavily depend on the questionnaires and the back-
grounds of respondents, and their results are usually region-specific or 
hazard-specific, which could lead to contradictory findings. The current 
consensus that can be reached is the existence of social inequality in the 
well-being impact of infrastructure disruption, and socially vulnerable 
groups are disproportionally affected under the same degree of 
disruptions.

3.2.2. Empirical-based impact evaluation
According to survey data related to individuals’ well-being impact, 

an empirical-based impact evaluation model can be developed to iden-
tify susceptibility for households and to connect infrastructure service 
disruption with societal impact. The tolerance level method has ad-
vantages in modeling people’s susceptibility, because it represents 
households’ capability to withstand disruptions (tolerable days) and can 
be easily transferred to people’s hardship experience (negative well- 
being) by comparing the duration/recovery of the outage. Scholars 
from different countries modeled the tolerance level of infrastructure 
disruptions using empirical survey data. For example, based on empir-
ical survey data collected after Hurricane Harvey, Esmalian et al. [74] 
established a negative binomial regression model to predict the toler-
ance level of households considering household characteristics (e.g., 
sociodemographic, social capital, resources, and previous disaster 
experience). By integrating this model with existing models for power 
outages and service restoration under an agent-based framework, the 
societal impact can be estimated. With the same dataset, Dong et al. [93] 
proposed a Disruption Tolerance Index (DTI) for healthcare service 
disruption using principal component analysis and combined DTI with 
the community’s physical vulnerability to access to healthcare facilities. 
They identified the hotspots and cold spots of the physically/ socially 
vulnerable communities. Based on post-disaster social survey data from 
Hurricane Harvey (2017), Hurricane Florence (2018), and Hurricane 
Michael (2018), analogous to fragility curves for engineered systems, 
Esmalian et al. [94] developed susceptibility curves for disruptions in 
eight infrastructure systems using survival analysis models, and found 
that the proportion of households having hardship experience becomes 
larger as the duration of the disruption increases. In addition to empir-
ical studies in the United States, Petersen et al. [95] conducted a social 
survey in Barreiro, Spain, focusing on the analysis of water disruptions, 
and examined the change pattern of tolerable populations over time 
under different influencing factors. In a Japan case study, Gentaro et al. 
[96] modeled the probability distribution of tolerance levels for 
water-related activities by conducting a social survey in Osaka, Japan, 
and explored the proportion of the population that becomes intolerable 
with increasing disruption duration. They found that tolerance level for 
disrupted cooking and toileting corresponded to the lognormal distri-
bution, while disrupted bathing and laundry followed a Weibull 
distribution.

In terms of empirical modeling for deprivation cost function, as 
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introduced before, scholars from the field of humanitarian relief adopted 
economic evaluation methods to determine its suitable functional forms, 
such as exponential function, Box-Cox regression model, logistic func-
tion, etc. Holguín-Veras et al. [76] applied the Contingent Valuation 
method to evaluate the economic costs of individuals’ suffering levels 
under water suspensions. They found that an exponential function best 
fitted the deprivation cost function. Macea et al. [77] used discrete 
choice modeling to establish a deprivation cost function for water 
disruption based on a social survey with questions about various hy-
pothetical disruption scenarios. They found that the Box-Cox model 
fitted the function best. Since the above studies did not consider indi-
vidual heterogeneity, Macea et al. [78] incorporate more factors into the 
deprivation cost function based on a discrete choice model, such as in-
dividual attributes, risk perceptions, safety culture, and trust. Given that 
both hardship experience and deprivation cost represent individuals’ 
suffering, Yang et al. [57] integrated the tolerance level into the depri-
vation cost function to derive the suffering level function for disrupted 
activities due to infrastructure disruption. Utilizing the revised suffering 
level function, they proposed an individuals’ decision-making model to 
assess the well-being impact of water infrastructure disruptions. In terms 
of unhappiness modeling, Stock et al. [29] fitted an ordinal logit with 
mixed effects to predict the probability of household at least each un-
happiness level, as a function of infrastructure type, outage duration, 
and household attributes. Dulam and Davidson [97] applied this model 
to the case study of the 1994 Northridge earthquake and estimated the 
spatial distribution of unhappy people.

Overall, the empirical-based impact evaluation approach estimates 
the well-being impact of people using statistical model based on survey 
data. In current studies, the tolerance level is usually modeled and 
compared with the outage duration of infrastructure to further derive 
households’ susceptibility or well-being impact. Meanwhile, empirical 
studies with tolerance level can improve the evaluation threshold of 
functioning in the capabilities-based approach. However, as mentioned 
before, this type of method largely depends on survey data and char-
acteristics of society and hazards, and it can only provide accurate 
estimation for future similar hazards or investigated places within the 
range collected dataset. Empirical studies among different countries and 
hazards need to be strengthened and compared to develop widely 
accepted statistical models. Also, other modeling and simulation ap-
proaches should be incorporated for cross-validation or additional de-
cision support.

3.3. Agent-based approaches

The societal impact of infrastructure disruption is a dynamically 
complex process, and various coupled factors influence the negative 
impact, such as households’ and governments’ protective behaviors, 
social vulnerability attributes, availability of emergency resources, and 
others. To incorporate these influencing factors and simulate the societal 
impact of disruptions, an effective approach is agent-based modeling. It 
is a bottom-up method that simulates the complex system by designing 
multiple individually autonomous agents and setting their decision- 
making and interaction rules. Agent-based modeling for societal 
impact is advanced in 1) considering the heterogeneity of agents (social 
vulnerability attributes) and modeling interactions among agents and 
environments; 2) simulating agents’ nonlinear decision-making behav-
iors (adaptive behaviors); 3) dealing with situations where data collec-
tion and experimentation are difficult; and 4) allowing for rapid 
evaluation of policies/measures and the incorporation of stochastic 
disturbance [98,99]. Based on these strengths, agent-based approaches 
are increasingly used to simulate the impact of disruption on social in-
stitutions and individuals’ well-being with consideration to multi--
agents’ adaptive behaviors.

3.3.1. Agent-based modeling for social institution impact
Agent-based modeling has been highlighted in the field of disaster 

for many years, especially for flood risk management [100,101]. 
Scholars incorporate various individuals’ or emergency agencies’ 
adaptive behaviors into disaster impact models to better estimate the 
disaster risk or impact considering social responses and, more impor-
tantly, to explore the effective measures to reduce the impact or risk of 
disasters. The adaptive behaviors may include but are not limited to: 
individual agent’s evacuation, emergency preparation, social mutual 
help, and buying insurance; decision-maker agent’s reinforcement of 
engineering structures, early warning, emergency responses, and re-
covery strategies [100,102]. Similarly, in the topic of interdependent 
infrastructure modeling, the agent-based approach has also been proven 
to be a powerful tool to account for various types of dependency, 
especially facilitating the modeling of the interdependency of infra-
structure systems and social systems, which are emphasized as the future 
directions by several related review papers [2,4]. After about a decade of 
development, noticeable progress has been made in integrating disrup-
tions of interdependent infrastructure with social systems using 
agent-based frameworks. It is worth noting that, different from the 
extended infrastructure modeling (Section 3.1), the agent-based ap-
proaches put more emphasis on social dimension analysis. Specifically, 
they focus on simulating the detailed functioning process of social in-
stitutions, dynamic behaviors of individuals/households, and their in-
teractions under infrastructure service disruptions.

In terms of agent-based modeling for social institution functionality 
changes due to infrastructure disruptions, the institution is usually 
treated as a separate type of agent, within which the functioning process 
under disruptions is simulated by setting decision and interaction rules. 
The decision rules can be designed by flow charts, discrete event 
simulation, and heuristic algorithms; at the same time, the interaction 
rules with infrastructure and households/individuals are always high-
lighted. For example, Aghababaei and Koliou [45] proposed a compre-
hensive agent-based model for education systems, and the model 
incorporates the behaviors and interactions of multiple agents: schools, 
households, power systems, water systems, and construction companies. 
The decision-making process of school agents is designed by a flow chart 
about whether to distribute students to other operational schools ac-
cording to the damage and recovery of buildings and lifelines under 
hurricanes, which further affect the school status of students of house-
hold agents. Also, households may move to other places for housing after 
damages, reducing student enrollments in the education system, and the 
housing status of household agents is simulated by the Markov chain 
model with consideration to socio-demographic features of households. 
Based on this multi-agent model, Aghababaei and Koliou [38] further 
added business agents and hospital agents, and similarly, they simulated 
the fired-hired process of employees in business agents and patient 
handling process using discrete event simulation in the hospital agent 
considering the disruption and recovery of infrastructure. Correspond-
ingly, the job-hunting and injury treatment decision rule of household 
agents, as well as their interaction with other agents are designed to 
comprehensively estimate the number of affected employees and busi-
nesses. In addition, Hassan and Mahmoud [37] utilized an agent-based 
model to simulate the functional processes within hospitals and 
schools, and designed their decision-making heuristics to maximize 
functionality under various disruption conditions, such as using alter-
native staff, reducing patient treatment time, using hospital backup, and 
facilitating student admission/transfer.

3.3.2. Agent-based modeling for individual well-being impact
In terms of agent-based modeling for individuals’ well-being impact 

of infrastructure disruptions, the simulation scale and emphasis are 
different for estimating objective and subjective well-being impact, 
though the people’s adaptive or response behaviors are all similarly 
incorporated.

Compared to simulating the subjective well-being impact of disrup-
tions, objective well-being impact focused on relatively large-scale 
modeling, e.g., individual’s changes of housing, food, working, and 
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other daily life, without modeling the mechanism of individual’s 
emotion and cognition. For example, Costa et al. [103] focused on the 
housing service of people under disruptive earthquake and designed the 
decision rules for household agents’ temporary displacements and per-
manent relocations using flow chart and heuristic algorithm, respec-
tively. At the same time, the decision algorithms of household agents 
take account of household socioeconomic demographics, social net-
works, and disaster preparedness. Crooks and Wise [104] built a 
spatially agent-based model to simulate people’s survival considering 
the government’s humanitarian assistance under disasters, and they 
designed decision and interaction rules for two types of agents: Food 
distribution center agents and Individual agents. The individual agents’ 
decision rule is driven by their survival needs, in the sense that in-
dividuals seek food in centers to increase their body energy. The travel 
behavior of individuals and their interaction collectively affect the 
performance of transportation. Indeed, agent-based modeling is widely 
used to simulate individuals’ travel activities and their cost changes 
under disruptions of road systems. Several large simulation tools have 
been developed, such as MATSim, ALBATROSS, and TRANSIMS [105]. 
Han et al. [106] applied MATSim to disaster scenarios and evaluated the 
impact of a disrupted road network due to storm surges on the cost 
changes of residents’ travel activities, including working, shopping, 
schooling, leisure, and others.

As for subjective well-being impact estimation using agent-based 
modeling, in addition to individuals’ adaptive behavior, their cogni-
tions or emotions towards infrastructure disruptions are modeled by 
several methods, such as the empirical model, cognitive models, and 
dynamic modeling. Esmalian et al. [102] built a multi-agent model 
incorporating hazard agents, infrastructure agents, and household 
agents to evaluate the impact of power outages on society’s well-being, 
which is based on the hardship experience method. Households’ toler-
ance level and hardship status are simulated by adopting empirical 
statistical models and setting decision processes. With a similar 
multi-agent framework, Yang et al. [58] further improved the decision 
rule of household agents to explore the negative well-being impact of 
disruptions (water, power, and transportation) and effective counter-
measures. They proposed heuristic algorithms to estimate people’s 
achievement of activities and intolerant states (societal impact) with 
limited resources (water and food) by minimizing suffering level, which 
is based on the deprivation cost method. To estimate the available re-
sources, they designed the households’ decision process of conducting 
protective behaviors, such as going to stores and shelters for supplies. 
Silverman et al. [107] explored the population well-being impact of 
different healthcare interventions by building a three-level (individual, 
organization, and society) agent-based model. In the individual agent, a 
cognitive model (called PMFserv), including Motives, States, and Ac-
tions in appraisal loops, is developed to capture the mechanism of in-
dividuals’ well-being impact. Individual agent’s action decision is 
driven by satisfying their current state in a way that is consistent with 
their motives, and the current physiological, mental, and socioeconomic 
states of individuals contribute to the well-being impact. Valinejad et al. 
[108] developed a multi-agent-based stochastic dynamical model to 
estimate the mental and physical well-being impact of power outages 
and built an emotion (fear) dynamic model to explore mental well-being 
changes by considering the variation of risk perception, 
information-seeking behavior, flexibility, cooperation, and experience 
of individuals.

In general, agent-based modeling for societal impact estimation 
provides a powerful framework to incorporate adaptive behaviors and 
interactions of multiple agents under infrastructure disruptions. This 
approach can improve the rationality of societal impact estimation and 
facilitate exploring the mitigation effectiveness of different policies/ 
measures. The key aspect of this approach is designing the decision rule 
for various agents, among which individual or household agents and 
institution agents are the most critical ones. Several methods have been 
integrated to support designing agent’s decision rules, such as flow 

charts, discrete event simulation, empirical models, and heuristic algo-
rithms. It is worth noting that the simulation scale of an individual agent 
can be further narrowed deep into cognition level; in that sense, the 
cognitive model and emotion dynamic model can be utilized to capture 
the mechanism of human subjective well-being impact. Agent-based 
approaches have advantages of incorporating multi- scale and multi- 
agent to simulate social systems. However, due to the flexibility and 
comprehension of the model, this type of method has the following 
shortcomings: 1) it is challenging to calibrate and validate the developed 
agent-based model of social systems because the model usually includes 
many coupled influencing factors, which requires large or multi-source 
data to calibrate variables. The simulation results of social well-being 
impact are not easy to justify, and the measurement of the well-being 
of society is still an undergone question in social science. 2) the simu-
lation results depend on collective decisions and interactions of multiple 
agents, which are usually simplified and assumed using various methods 
without a theoretical foundation. As such, a small inappropriate rule 
could induce different results. Addressing these challenges requires the 
cross-valuation of different data sources and integration with different 
study methods, such as theoretical study, empirical study, and mathe-
matical modeling. This future work will be further discussed in Section 
4.

3.4. Big data-driven approaches

Big data-driven approaches explore and quantify the societal impact 
of infrastructure disruptions using the posts data from social media or 
mobility data from cell phones. The social consequences of disruptive 
events could be influenced by various coupled factors and challenging to 
capture, but with advancements and applications of contemporary in-
formation technologies and networked communication, human’s actual 
activities and behaviors during disaster scenarios can be directly 
recorded, facilitating the analysis of societal impact patterns [109]. 
Specifically, this type of approach is specialized in understanding the 
reality of dynamic human mobility across spatial-temporal scales and 
addressing the diverse needs of people under disruptive events. Inte-
grated with the demographic characteristics of the affected population, 
social inequalities of the disaster impact can also be reflected. Further-
more, utilizing the large volumes of data generated from people, 
quantitative models can be established to sense the changes in human 
mobility (activities) and subjective well-being, and further help 
decision-makers to implement dynamic disaster risk reduction 
decision-making.

3.4.1. Societal impact sensing by social media
Researchers have recognized the critical role of social media in the 

disaster management field and have made efforts to acquire disaster 
situational awareness information by labeling disaster-related posts, 
geo-mapping the posts, and conducting sentiment analyses. Dis-
tinguishing posts related to disasters from irrelevant posts is the first step 
for retrieving timely situational information from social media data. 
Disaster-related hashtags are commonly used to filter related posts, and 
various labeling taxonomies based on supervised learning are more 
informative and can identify different types of damages (affected in-
dividuals, infrastructure, etc.). By aggregating disaster-related posts 
from the temporal scale or mapping them from the spatial scale, the 
patterns of individuals’ posting activities and their correlations with 
disaster intensities or damages can be captured [110]. It is worth noting 
that spatial mapping requires location information, but only around 1 
%–4 % of social media (e.g., Twitter) data posts are geo-tagged [111]. To 
mitigate this drawback, geoparsing (or geo-tagging) methods are 
developed to predict the locations of social media posts based on the 
content of the posts and the users’ social network information [112]. 
Finally, sentiment analysis focuses on exploring people’s sentiments, 
attitudes, emotions, and opinions about hazard events and facts, which 
are extracted from post contents by different supervised 
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machine-learning approaches, including bag-of-words, part-of-speech 
tagging, n-grams, and keywords representing different sentiments [31]. 
Indeed, sentiment analysis can directly reflect residents’ experiences 
and hardships in facing disruptions and can, therefore, capture the na-
ture and extent of societal impacts [113].

Using sentiment analysis of social media to investigate the in-
dividuals’ subjective well-being impact during disasters has been 
extensively studied over the past few years. However, how to apply this 
technique to assess the disruptions of infrastructure and their impact on 
well-being (experienced hardship) has not yet been realized, which is 
also recognized as one of the important future directions by Zhang et al. 
[31]. One category of sentiment analysis studies is labeling the posts 
with positive, neutral, or negative sentiments [114], while the other 
category refined the negative sentiment into fear, anger, and others 
[115]. These sentiments are usually extracted from posts on social media 
where the languages have been analyzed by Machine Learning (ML) or 
Natural Language Processing (NLP) techniques [116]. For example, Li 
et al. [117] analyzed emotions and psychological states extracted from 
the datasets of Weibo users using Linguistic Inquiry and Word Count 
(LIWC). Valinejad et al. [116] measured community well-being impact 
(social well-being and mental well-being) by the use frequency of 
well-being-related words in tweets during a COVID-19 period using 
machine learning and text-mining tools (LIWC). These studies showed 
how the thoughtful application of simple NLP methods can provide in-
sights into specific mental disorders and health under disasters. In recent 
years, several studies made attempts to apply sentiment analysis of so-
cial media to infrastructure disruption. For example, Roy et al. [118] 
presented a multilabel classification approach to identify the cooccur-
rence of multiple types of infrastructure disruptions considering the 
sentiment toward a disruption—whether a post is reporting an actual 
disruption (negative), or a disruption in general (neutral), or not 
affected by a disruption (positive). Zhang et al. [113] proposed a 
semi-automated social media analytics approach for Social Sensing of 
Disaster Impacts and Societal Considerations (SocialDISC), which 
enabled analysts to quickly capture emotional well-being impact (soci-
etal impact) associated with infrastructure disruptions from residents’ 
reaction posts in social media. They focused only on the six basic emo-
tions: anger, fear, surprise, sadness, joy, and disgust, and quantified the 
emotion score using the emotional lexicon collected and curated by the 
National Research Council of Canada [80].

In general, individuals’ posts about disasters on social media could 
provide valuable and rich information about the descriptions of and 
people’s reactions to disruption events, which could support a timely 
assessment of societal impacts, especially for the subjective well-being 
impact by sentiment analysis. Compared with traditional question-
naire surveys (empirical approach), the social media approach could 
capture and analyze the time-sensitive societal impact information in a 
timely enough manner without conducting time-consuming and money- 
consuming social investigations. Especially, residents’ memory may 
fade after the disruption passes, which limits the effectiveness of post- 
disaster survey, but social media could record the most real-time re-
sponses and reactions of people at the moment of disruptions. While the 
social media approach has lots of strengths, it still faces the following 
challenges: 1) whether social media users are a representative sample of 
the residents to reflect the whole well-being impact of the society is still 
not verified. As we can expect, the young are more active in posting on 
social media than the old. 2) the disparity impacts among different social 
groups are difficult to investigate due to the data privacy issue. How to 
connect the socio-demographic information with the posting users is the 
key challenge. 3) identifying the location of the post is crucial in 
examining the spatial heterogeneity of the impact, while existing geo- 
parsing techniques have limitations in terms of the level of detail and 
level of accuracy for disaster situational information retrieval tasks.

3.4.2. Societal impact estimation by mobility data
Human mobility data generally record temporal and spatial 

information of human activities in a very detailed manner, allowing 
researchers to estimate people’s daily movements and lifestyle patterns, 
especially their changes under disruptive events. Broadly speaking, 
human mobility data not only refer to the call detail records and Global 
Positioning System (GPS) data collected from smartphones, but also 
include other types of location-based data, such as the data from subway 
smart card, credit card transaction data, and others [109]. These data-
sets have been widely applied to solve urban challenges, such as popu-
lation density estimation, dynamic traffic flow prediction, resource 
allocation, and modeling the spread of epidemics [59,119]. The appli-
cations of mobility data to the fields of urban resilience and disaster 
management are relatively limited, and they have received more 
attention in recent years. Several studies have used mobility data to 
analyze people’s activity patterns before and after disasters [119,120]. 
Actually, the mobility of a community is a complex but important var-
iable for well-being [121], which could be holistically captured by the 
fluctuations of mobility data. For example, if households are economi-
cally impacted by disasters, if they cannot access businesses (social in-
stitutions) due to road disruptions, or if institutions are closed due to 
damage, collective effects of these perturbations are reflected in changes 
in human activity patterns. Therefore, mobility data analysis could 
provide an integrative measure for examining the impacts of disruptive 
events.

Utilizing the mobility data, the societal impacts of the disaster are 
usually indicated by individuals’ activity patterns and statistically 
calculated by the change percentage of individuals’ POI visits or Credit 
Card Transactions (CCT) to/in social institutions under disruptive 
events. For example, Podesta et al. [59] used the digital trace data 
related to unique visits to POIs in Houston during 2017 Hurricane 
Harvey to quantify the community impact, which is measured by the 
percentage drop of POI visits (compared to its corresponding baseline 
over past three weeks). The POIs are divided into four groups according 
to their functions supporting people’s activities: POIs essential for 1) 
emergency preparedness, 2) emergency response, 3) lifestyle and 
well-being, and 4) recovery activity. Focused on the same disaster, Hong 
et al. [122] utilized large-scale smartphone geolocation data to quantify 
the community impact by the percentage change of people’s mobility 
activity before and after the disaster as well. In addition to comparing to 
the baseline visits, Yabe et al. [123] analyzed individual visiting activity 
changes by comparing the observed daily visits under disaster (e.g., 
grocery stores, hospitals, hotels, restaurants, and supermarkets.) with 
the predicted daily visits under counterfactual situations (what if the 
disaster did not occur?), which are predicted by Bayesian structural time 
series model. Furthermore, CCT data could be used to quantify the so-
cietal impact of disruptive events. For instance, Yuan et al. [124] 
quantified the community impacts by the maximum drop of CCT fluc-
tuations of each sector (e.g., grocery store, drugstore, healthcare, etc.) in 
2017 Hurricane Harvey, and they examined spatial patterns of disaster 
impacts by Moran I and gaussian regression analysis. Similarly, Dong 
et al. [125] measured the impact of a series of social protests on con-
sumer actions (the number of customers) and personal consumption (the 
median spending) based on the ten million CCT data.

Using mobility data analysis, substantial existing studies have found 
that the societal impact of collective disruptions is not consistent across 
different spatial regions and different socioeconomic groups. These 
unequal impacts across spatial regions are relatively easier to identify 
using spatial statistics methods (e.g., Moran I), because mobility data 
contain sufficient location information. Due to the anonymity of the 
mobility data, it is difficult to connect the socioeconomic characteristics 
of individuals with their digital trace, consequently leading to chal-
lenges in analyzing the disparate impact across various social groups. To 
solve this problem, Hong et al. [122] assigned each ping location from 
an individual device to the corresponding neighborhood grid cell based 
on its location, and each grid contains socio-demographic characteris-
tics. As such, the activity pattern among groups with different socio-
economic status can be separately analyzed. They categorized these 
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grids into 4 neighborhood groups based on disaster response and re-
covery patterns by an agglomerative clustering algorithm. They found 
clear socioeconomic and racial disparities in resilience capacity and 
evacuation patterns. This method aggregates people’s movement into 
one grid, and it cannot capture their detailed activity patterns, such as 
visiting stores, healthcare, shelters, etc. To overcome this weakness, 
using location-based data, Esmalian et al. [126] built a 
population-facility network structure and dynamic clustering tech-
niques to uncover disparate access to grocery stores for socially 
vulnerable populations. They highlighted that disaster disproportion-
ately exacerbated access disruptions to stores for socially vulnerable 
groups in the context of Hurricane Harvey. Overall, most existing studies 
focused on understanding and examining the unequal impact of 
disruptive events using mobility data, while few analytical methods and 
tools are available to guide mitigation measures in achieving equality 
and resilience goals. Fan et al. [127] made attempts to calibrate models 
using 30 million anonymized smartphone-location data to optimize the 
distribution of facilities (stores), which is driven by minimizing the total 
travel distances of the residential populations to facilities and maxi-
mizing the equality of access to facilities.

In general, mobility data like POI visits could provide a holistic view 
of people’s daily activity impact due to disruptive events as it captures 
population impacts, social institution interruptions, and infrastructure 
disruptions together. Compared with social media data, mobility data 
contains sufficient location and movement information of people but 
lacks information related to individuals’ opinions, perceptions, and 
sentiments related to disasters. Thus, Mobility data analysis is suitable to 
measure the performance of social institutions and the objective well- 
being impact of individuals from the perspective of mobility activity, 
and social media data analysis advanced in capturing individuals’ 
emotional well-being impact. In addition, mobility data analyses have 
the following shortcomings: 1) the location-intelligence data may not be 
representative of an affected population; in detail, mobile phone and 
credit card usage are lower in certain populations such as children, the 
elderly, the poor, and women [109]. 2) the baseline of mobility pattern 
is usually assigned by pre-disaster conditions of activities (normalcy), 
and external factors not related to the disaster impact would influence 
baseline mobility patterns, such as major community events or cele-
brations, resulting in increasing the bias of impact estimation. 3) 
Large-scale disasters may interrupt the power supply or destroy mobile 
towers, resulting in a complete loss of functionality of mobile phone 
networks, which may also cause data bias. 4) Existing mobility data 
analyses focus on understanding the unequal impact of disasters by 
statistics and machine learning methods, however, very few mathe-
matical models have been developed to analyze or optimize the miti-
gation measures of unequal impacts.

4. Discussion

Section 3 reviews different approaches on modeling societal impact 
of infrastructure disruptions. This section first compares different ap-
proaches using several criteria, and then summarizes research chal-
lenges and future directions.

4.1. Comparisons of approaches

There exist several comparison criteria in the literature to review 
different modeling approaches. For example, Ouyang [2] compared the 
interdependent modeling approaches by the quantity and accessibility 
of input data, types of interdependencies, computation complexity, 
maturity, and resilience. Given our focus is on modeling the societal 
impact of infrastructure disruption, this paper includes the following 
four criteria to compare and discuss different approaches: 1) Quantity 
and accessibility of input data; 2) Applicable societal impact types; 3) 
Spatial scales of approaches; 4) Application contexts of approaches. 

(1) Quantity and accessibility of input data

The quantity of input data for different approaches is categorized 
into three levels: small, medium, and large amount of required input 
data. Also, considering the difficulty of data acquisition, this paper ranks 
the accessibility of input data by three levels: easy, medium, and difficult 
access of required input data. Based on these criteria for the input data, 
this paper compared the four approaches introduced in Section 3, and 
the results are shown in Table 2. Overall, the barriers to implementing 
big data-driven approaches are the most challenging, as the quantity of 
required data is large and difficult to access. In particular, the majority 
of mobility data and social media data are recorded by apps on smart-
phones, which involve millions of users’ location or opinions data across 
time and space. Due to privacy and confidentiality issues, these users’ 
data are usually not allowed to be shared publicly, and they are obtained 
only through research collaboration or high data collection costs. Also, 
scholars need to de-identify the mobility data to conduct such studies. In 
contrast, empirical approaches, which are typically involved with social 
surveys to collect relevant data, have the smallest barrier to conduct. In 
addition, although the quantity of input data in extended physical 
infrastructure modeling approaches is at a medium level, the data for 
some infrastructure are relatively difficult to access. To extend infra-
structure modeling to capture affected populations (societal impact), the 
spatial distributions of infrastructure disruption usually need to be 
modeled using detailed information about components or characteristics 
of infrastructure. Transportation infrastructure data are typically public 
(e.g., OpenStreetMap), but the data for water, power, and communica-
tion systems are typically difficult to obtain due to privacy and national 
security issues in many countries [9,27]. Finally, agent-based ap-
proaches focus on modeling individuals’ behaviors and interactions, 
which usually require large volumes and multiple types of data to cali-
brate parameters and validate models. 

(2) Applicable societal impact types

As introduced in Section 2.2, the societal impact of infrastructure 
disruption can be categorized into three types: social institution impact, 
objective well-being impact, and subjective well-being impact. Accord-
ing to these classifications, this paper compared the applicability of four 
approaches, as shown in Table 2. Agent-based approaches can capture 
all three applicable societal impact types due to the flexibility of this 
approach to model interdependencies of infrastructure and social sys-
tems [2,128]. It is worth noting that when narrowing down the 
modeling scale, agent-based modeling could simulate the cognition 
process of an individual to further estimate the subjective well-being 
impact under disruptions. Big data-driven approaches mainly capture 
individuals’ well-being impact because the data source is directly from 
human activities. Specifically, social media-driven and mobility 
data-driven analysis are used to sense subjective and objective 
well-being impacts, respectively. Additionally, the extended physical 
infrastructure approaches focused on modeling the functionality of so-
cial institutions and affected individuals under disruptions. It is suitable 
for evaluating the social institution impact and individual objective 
well-being impact, but it cannot capture people’s subjective opinions 
about disruptions. This is a contrary situation for empirical approaches 
because they focus on collecting people’s opinions or feelings through 
questionnaires and are mainly used for capturing individuals’ subjective 
well-being impact. 

(3) Spatial scales of approaches

The spatial scales of societal impact modeling of infrastructure dis-
ruptions are mainly classified into three levels: community, city, and 
province. Due to the spatial scale of input data and the requirement of 
fine-grained estimation, most approaches focus on community-level or 
city-level modeling. Specifically, for extended infrastructure modeling 
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approaches, the scale of societal impact modeling depends on the scale 
of infrastructure modeling, which usually focuses on small scales to 
maintain the spatial heterogeneity of disruptions and their unequal 
impacts [9,18]. Empirical approaches usually explore the societal 
impact at community or city levels as well, given the representativeness 
of surveying samples and restrictions of survey cost. Agent-based ap-
proaches simulate the behaviors and interactions of millions of agents, 
and correspondingly, the scale of societal impact modeling is not 
allowed to be too large to avoid computation burden and more un-
certainties. As for the big data-driven approach, the modeling scales for 
mobility data and social media analyses are different. Mobility data 
analyses typically focus on the community/city level, due to the large 
amount of data required and the high cost of data collection and 
computation. On the contrary, social media analyses focus on a rela-
tively large scale because the geo-locations of posts are only recorded at 
the city or province level, and refined geo-parsing techniques are still 
under development [31]. In principle, the modeling scales of the four 
approaches could be extended to the province or national level, but this 
would only be possible in catastrophic disasters, and the cost of data 
collection or computation would be extremely high. 

(4) Application contexts of approaches

By reviewing substantial literature, this paper summarized the main 
application contexts of the four approaches into three groups: under-
standing the impact, scenario analysis, and social sensing. Empirically- 
based approaches and big data-driven approaches are mainly applied 
to understand the societal impact caused by disruptions. In detail, they 
focus on capturing the societal impact pattern by the collected data, such 
as identifying the main influencing factors, finding out the influencing 
pathway, and examining inequality of impact across spatial regions and 
social groups. Also, these two approaches are rarely used for scenario 
analysis independently, and in most situations, they are combined with 
other models to estimate/predict the societal impact of disruptive 
events. Extended infrastructure modeling and agent-based modeling are 
popular in conducting scenario analysis and focus on establishing the 
relationship between disruptions and social systems (institutions and 
individuals). These two approaches can estimate societal impact ac-
cording to the intensity of hazards or extent of infrastructure disruption, 
and examine the effectiveness of different countermeasures, like the 
mitigations, preparations, responses, and recoveries. However, they 
have difficulties in capturing the inequity and disparity of the impact, 
which require fine-grained modeling and incorporating the heteroge-
neity of individuals, and agent-based models have the potential to 
overcome this challenge [58,102]. Finally, benefit from collecting 
real-time data, big data-driven approaches can be utilized to sense the 
societal impact information in a short-time manner after disasters.

4.2. Challenges and future directions

Based on the review and approach comparison in Section 4.1, this 

subsection analyses the challenges and future directions of research in 
modeling societal impacts in disasters, as follows: 

(1) The measurement of societal impact

Scholars from different backgrounds proposed various instruments 
to indicate the societal impact of infrastructure disruptions, like the 
functionality reduction of social institutions, objective well-being 
impact (e.g., the number of individuals without food, water, housing, 
healthcare), subjective well-being impact (e.g., hardship experience, 
deprivation cost, negative emotion). There is a dearth of quantitative 
methods for quantifying the social costs of infrastructure disruptions and 
integrating them into infrastructure resilience assessments [73]. In 
particular, in economic analyses of infrastructure resilience investments, 
the limited consideration and quantification of societal impacts would 
lead to underestimating the benefits of resilience investments and 
infeasibility of resilience investments. Future studies should aim to 
specify empirical and quantitative methods for societal impacts/costs of 
various infrastructure services to complement the existing subjective 
measures.

Also, there is no general theoretical framework to support the soci-
etal impact measurement due to the multi-facet of society and the 
different purposes of studies, especially for the individual’s well-impact 
measurement. So far, the capability approach may be a widely accepted 
theory to support the measurement of societal impact. Based on this 
theory, the hardship experience or suffering level of individuals is 
developed to better understand the negative impact, and this is regarded 
as the future direction of this field. However, the relevant existing 
studies mainly concentrated on the empirical study of the U.S., and 
future work could be extended to conduct more empirical case studies in 
other countries to further improve the theoretical and practical foun-
dations of societal impact measurement. In addition, it is necessary to 
explore the methodology of modeling the mechanism of individuals’ 
negative emotion, suffering level, or well-being impact in future work, e. 
g., individuals’ cognition modeling using agent-based modeling [129], 
dynamics model [108], machine learning method [130], and deep 
learning method [131]. Furthermore, the social institution impacts can 
generally be measured by functionality changes, and existing studies 
have focused on the service level of health, education, emergency, and 
business under infrastructure disruptions. The quantitative measure-
ment and modeling of the impact of other institutions still need to be 
explored in the future, like police, prison, financial, and culture services. 
Overall, the ultimate goal of future work is to construct a universally 
recognized theoretical framework and computational instruments for 
the societal impact of disruptions. 

(2) Model integration and co-simulation

Different approaches have their own weaknesses and strengths, and 
utilizing only one approach usually cannot achieve accurate and entire 
assessments of the societal impact, especially for the application of 

Table 2 
Approach comparison from four criteria.

Quantity of input 
data

Accessibility of input 
data

Applicable societal impact types Spatial scale Application contexts

1. Extended infrastructure modeling 
approaches

Medium Difficult Social institution impact; 
Objective well-being impact

Community; 
City

Scenario analysis

2. Empirical approaches Medium Easy Subjective well-being impact Community; 
City

Understanding the 
impact

3. Agent-based approaches Large Medium Social institution impact; 
Objective well-being impact; Subjective well- 
being impact

Community; 
City

Scenario analysis

4. Big data-driven approaches Large Difficult Objective well-being impact; Subjective well- 
being impact

Community; 
City; 
Province

Understanding the 
impact; 
Social sensing
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scenario analysis. It is necessary to take full advantage of different ap-
proaches and integrate them to improve the estimation of societal 
impact. Empirical approaches advance in identifying the influencing 
factors and pathways of societal impact, which could facilitate building 
the relationship between disruptions and social systems. Extended 
infrastructure modeling is more suitable to derive the spatial distribu-
tion of service disruption from the perspective of individuals’ or in-
stitutions’ impact; thus, it can provide more accurate service disruptions 
for societal impact estimation. Agent-based approaches are very flexible 
and capable of simulating the decision-making processes of multiple 
agents (individuals and institutions) by mathematical equations or rules. 
Thus, the agent-based model is suitable to provide a unified framework 
that integrates all approaches; at the same time, agent-based simulation 
requires a large quantity of data to calibrate some parameters, which can 
be supplemented by other approaches. For example, big data-driven 
approaches collect plenty of real-time data, which can capture the real 
opinion about disruptions from social media, and the collective daily 
activity impact of individuals from smartphones. According to the pur-
pose of the research, different approaches are encouraged to be com-
bined to improve the accuracy of the societal impact estimation, e.g., the 
capabilities-based approach and big data-driven approaches [121]. 

(3) Cross-validation of models

It is crucial to validate the results of approaches before putting them 
into practical applications, while both the measurement and modeling of 
societal impacts are all involved with uncertainties, which increase the 
difficulties in approach validation. Also, attributing to the background 
or data accessibility restriction of scholars, existing studies usually 
validate the result by other literature indirectly or by one data source 
[58]. However, considering the large uncertainties of societal impact 
estimation, it is necessary to conduct a cross-validation process with 
multiple datasets to enhance the developed model. Future work can be 
extended to combine empirical data from social surveys with the 
mobility data from smartphones under the same case study to validate 
the measurement of societal impact. At the same time, these data can be 
applied to cross-validate the results derived from extended infrastruc-
ture modeling and agent-based modeling. 

(4) Decision tools for mitigating inequity and societal impact

Substantial existing studies revealed the inequity in the societal 
impact of infrastructure disruptions and highlighted that socio- 
economic vulnerable groups are disproportionally affected under the 
same extent of disruptions [1,33,92]. Yet there are few analytic ap-
proaches that optimize decision-makers’ measures to reduce or mitigate 
the inequity of the impact. In fact, extended infrastructure approaches 
and agent-based approaches are suitable for conducting scenario ana-
lyses, which mainly examine the effectiveness of various countermea-
sures on mitigating societal impact. However, countermeasures for 
inequity are rarely explored because individuals’ socio-economic sta-
tuses and autonomous decision-making processes are difficult to be 
incorporated into modeling. It is recommended to develop agent-based 
modeling tools to overcome these barriers by population synthetics, 
HUA, and decision rule design. Additionally, multiple data sources 
should be used to calibrate and validate the tools before practically 
applying the tools to estimate or mitigate the inequity of the societal 
impact.

5. Concluding remarks

Infrastructure disruption due to disasters could cause tremendous 
socio-economic impacts. In the past decades, substantial emphases were 
placed on modeling interdependent infrastructure systems to better 
protect them and improve their resilience. As the role of infrastructure 
system in societal functioning has become increasingly critical, in recent 

years, scholars have gradually shifted their focus to studying on un-
derstanding and modeling societal impacts of disruptions, and sub-
stantial progress has been made. To better comprehend the progress in 
current literature, this paper reviewed quantitative studies about defi-
nitions, types, and measurements of societal impacts of infrastructure 
disruptions, as well as their modeling approaches in the literature. The 
societal impact modeling approaches are grouped into four types: 
extended physical infrastructure modeling approaches, empirical ap-
proaches, agent-based approaches, and big data-driven approaches. For 
each type of approach, this paper organizes relevant literature in terms 
of certain principles, such as the modeling idea, advantages, disadvan-
tages, and application contexts.

In Section 4, different approaches are systematically compared and 
discussed according to four criteria: the quantity and accessibility of 
input data, applicable societal impact types, spatial scales, and appli-
cation contexts. These comparisons facilitate scholars in understanding 
the characteristics, pros, and cons of each approach and then selecting 
appropriate approaches for their research. Building upon these, Section 
4.2 outlines the remaining challenges and future directions in societal 
impact estimation, including the measurement of societal impact, model 
integration, cross-validation, and decision-making support tools. By 
improving the understanding of societal impact quantification progress 
in the existing literature, this review could provide an introduction to 
new scholars interested in this field, facilitate the development of these 
modeling approaches in disaster risk reduction, and further promote 
resilient infrastructure and society.
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