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The cortical critical power law balances energy and information
in an optimal fashion
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A recent study has suggested that the stimulus responses of cortical neural populations
follow a critical power law. More precisely, the power spectrum of the covariance
matrix of neural responses follows a power law with an exponent indicating that the
neural manifold lies on the edge of differentiability. This criticality is hypothesized to
balance expressivity and robustness in neural encoding, as population responses on a
nondifferential fractal manifold are thought to be overly sensitive to perturbations.
However, contrary to this hypothesis, we prove that neural coding is far more
robust than previously assumed. We develop a theoretical framework that provides an
analytical expression for the Fisher information of population coding under the small
noise assumption. Our results reveal that, due to its intrinsic high dimensionality,
population coding maintains reliability even on a nondifferentiable fractal manifold,
despite its sensitivity to perturbations. Furthermore, the theory reveals that the trade-
off between energetic cost and information makes the critical power-law coding the
optimal neural encoding of sensory information for a wide range of conditions. In this
derivation, we highlight the essential role of a neural correlation, known as differential
correlation, in power-law population coding. By uncovering the nontrivial nature
of high-dimensional information coding, this work deepens our understanding of
criticality and power laws in both biological and artificial neural computation.

population coding | power law | neural manifolds | Fisher information | computational neuroscience

How the activity of a population of neurons in the brain represents, or encodes, external
signals such as visual images presented to animals has long been a central question in
both neuroscience and machine learning (1–16). While the actual structure of the coding
has been largely unknown, two seemingly contradictory hypotheses have been proposed.
One is the efficient coding hypothesis, which suggests that population coding should be
high-dimensional and sparse to reduce input stimulus correlations, thereby facilitating
easier decoding (1, 2, 4, 16). The other is the low-dimensional subspace hypothesis. This
hypothesis proposes that population activities are confined to low-dimensional subspaces,
or manifolds, to enhance robustness against noise (3, 5, 7, 9, 14, 15).

Recent advancements in recording techniques suggest the possible structure of
population coding in the brain (8). These findings indicate that cortical coding is
situated at a midpoint between two competing hypotheses. Simultaneous recordings
of neurons in the primary visual cortex in vivo demonstrate that the eigenspectrum of
the covariance matrix of neural activity, marginalized over input stimuli, follows a power
law. In particular, the variance of the nth dimension of population activity decreases
as a power of n, approximately in ascending order of its wavenumber or frequency
response to the input (Fig. 1A). The exponent of this power-law decay agrees well with
�c = 1 + 2/D, independent of input statistics, where D represents the input dimension.
For natural images, which have almost infinite dimensions, the power spectrum decays as
1/n. The efficient coding hypothesis predicts a nearly flat power spectrum, while the low-
dimensional subspace hypothesis suggests rapid decay. The observed power-law decay,
therefore, supports the idea that the brain operates at an intermediate point between
these two extremes.

Stringer et al. (8) demonstrated that the exponent �c is a critical value that defines
the border of differentiability for the coding manifold. They mathematically proved
that, in the limit of a large number of neurons, if the map from the input space to
the neural activity space is differentiable, that is, if the neural manifold is differentiable,
then the power spectrum must asymptotically decay faster than the critical exponent �c .
Conversely, if the decay is slower than �c , the map becomes nondifferentiable, resulting
in a fractal-like neural response. In this case, the coding becomes too sensitive to input
perturbations, as even infinitesimally close inputs elicit significantly different neural
activities. It is therefore conjectured that the brain optimizes the sensitivity of its code
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A

B

Fig. 1. Power-law responses of cortical neurons and an analytically tractable coding model with the power-law responses. (A) The variance of the nth principal
component, i.e., the square of the eigenspectrum of the covariance matrix, of population activities of cortical neurons in response to input stimuli follows
the power law with �2

n ∝ k−� (upper rows). If the exponent � is smaller than the critical value �c , the neural manifold of the stimulus representation will be
high-dimensional and nondifferentiable (left column). In contrast, the manifold will be low-dimensional and smooth if the value of � is larger than �c (right
column). In this sense, the experimentally observed exponent close to �c is critical (middle column). Panels of the middle row show examples of receptive fields
of neurons (different colors corresponding to different neurons) where the input stimulus � is a one-dimensional periodic signal, and neural responses obey a
power law each. Lower panels depict three-dimensional projections of the neural manifolds, that is, projections of neural responses shown in the middle rows
to randomly chosen three directions when the input � varies from 0 to 2�. (B) Outline of the encoding model with the power-law stimulus responses. Input
stimulus � (furthest to the left) added an intrinsic noise � with strength �1 is given to the population of neurons. Each neuron responds to the input with the
activity following its receptive field whose amplitude obeys the power law fi(� + �), which is further added random noise � of the strength �0 which represents
the randomness of the neural activity. Thus, the population activity is given as a perturbed point on the neural manifold. Finally, the output neuron, or the
estimator (furthest to the right), decodes the population activity to obtain the estimated value �̂ of the input.

to inputs while maintaining smoothness, achieving a balance
between expressiveness and robustness in its code. The similar
critical sensitivity to perturbations also plays an important role
in studies of machine learning (17–24).

It is truly fascinating that the brain’s signal encoding is in a
critical state (25–28). However, quantitative evaluation of the
performance of the power-law coding remains elusive probably

due to the lack of the framework to theoretically describe the
coding performance of the power-law. For example, it remains
unclear how the nondifferentiability of the neural manifold
indeed affects the coding performance, and why the critical state
should be used by the brain as an encoder.

In this study, we address this problem by applying the
framework of statistical parameter estimation to power-law
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coding, with properly accounting for possible noise sources (29–
35). In this framework, optimal neural coding is defined as a code
that allows decoders to estimate the encoded signals with minimal
error. The effectiveness of the stochastic coding is measured by
its Fisher information, as the inverse of the Fisher information
provides the lower bound of the estimation error variance for
unbiased decoders (Cramér–Rao bound) and the asymptotic
variance of the error for maximum likelihood decoders in the
limit of a large number of observations (36).

We will derive analytical expressions for the Fisher information
of the neural power-law coding and prove that: i) the exponent
�c indeed gives the critical point, as Fisher information becomes
discontinuous only at this exponent in the limit of a large number
of neurons. Unexpectedly, however, ii) the Fisher information is
constant rather than decreasing even for the exponent smaller
than the critical value, where the coding manifold is nondiffer-
entiable. Thus, contrary to the previous conjecture, the critical
power law is not always the best coding in the information-
theoretic sense. Why, then, does the brain use the critical
coding? We will show that iii) introducing an energetic cost
ensures the optimality of the critical coding. By computing the
Fisher information, we will also prove a remarkable relationship
between the variance and the susceptibility of neural activity and
highlight the essential role of stimulus correlations, more precisely
differential correlations for the sensory information encoding
(34, 35). To validate the theoretical predictions, we will construct
a maximum likelihood decoder for the power-law coding by
explicitly integrating the conditional probability distribution of
the encoded input signal. This allows us to measure the variance
of its estimation errors and to numerically evaluate the Fisher
information of the power-law coding.

Results

Statistical Estimation with the Power-Law Population Coding.
Following Stringer’s pioneering work (8), let us start from the
simplest case where a population of neurons encodes a one-
dimensional periodic scalar angular variable, �, such as the
orientation of a line segment presented in animal’s visual field.
Therefore, D = 1 (Fig. 1B) here. Generalizations to higher input
dimensions will be given later. This coding can be affected by
two different noise sources; one is the input noise that is put
directly to the input stimulus � and the other is the neural noise
being independently put on each neural activity evoked by the
input stimulus. We model the input noise � and the neural noise
for the ith neuron �i using the independent Gaussian random
variables satisfying that 〈�i〉 = 〈�〉 = 〈��i〉 = 0, 〈�2

〉 = �2
1 , and

〈�i�j〉 = �2
0�ij, where �1 and �0 are the strengths of the input and

neural noise, respectively. Experimental findings have shown that
the variance of the principal components, i.e., the eigenspectrum
of the covariance matrix of neural activities, decays with the power
law in ascending order of frequency. Based on this observation,
we express the neural activity of the ith neuron (i = 1, . . . , 2N )
as an expansion over the orthonormal Fourier basis of a scalar
periodic function:

ri(�) =
2N∑
j=1

aijfj(� + �) + �i,

where

fj(�) =
{
cn−�/2 cos n� (j = 2n− 1)
cn−�/2 sin n� (j = 2n)

.

Here, A = [aij] is an orthogonal matrix that rotates the axes of
the basis function to the axes of the neuron space, and c is a
scaling factor that determines the magnitude of the activity of
the neurons. However, by using a basis change, we can set A to
be the identity matrix and c = 1 without loss of generality, which
gives the stochastic coding model as,

ri(�) =
{
n−�/2 cos n(� + �) + �i (i = 2n− 1)
n−�/2 sin n(� + �) + �i (i = 2n)

. [1]

Note that the axis change does not affect the strength of the
neural noise since the noise is isotropic in the neural space.

The Fisher information of the stochastic coding is defined
as the variance of the score function, the derivative of the log-
likelihood function with respect to the input �, or equivalently,
the negative mean of the second derivative of the loglikelihood
function (30, 36)

I(�) =

〈(
∂ log p(r; �)

∂�

)2
〉
r

=
〈
−

∂2 log p(r; �)
∂�2

〉
r
. [2]

Here, p(r; �) denotes the probability distribution of the neuronal
activity r = (r1, . . . , r2N )> responding to the input �. A
variable transformation from the Gaussian variables to the neural
activities gives the explicit form of the distribution function as a
convolutional integral of Gaussian functions,

p(r; �) =
1

(2��2
1)

1
2 (2��2

0)N

∫
d� exp

[
−

1
2�2

1
(�− �)2

−
1

2�2
0

N∑
n=1

((
xn − n−�/2 cos n�

)2
+
(
yn − n−�/2 sin n�

)2)], [3]

where we denote r2n−1 = xn and r2n = yn for simplicity (see SI
Appendix, section 1 for details).

Susceptibility–Variance Relationship and the Fisher Informa-
tion of the Power-Law Coding. To derive an analytical expression
for the Fisher information, let us assume that the noise strengths
�0 and�1 are sufficiently small so that the probability distribution
can be approximated by the multivariate Gaussian distribution,

p(r; �) ≈
1√

(2�)2N |Σ|
exp

(
−(r −m)>Σ−1(r −m)

)
, [4]

where m and Σ are the mean and the covariance matrix of the
neural activity r for given �, respectively, and x> denotes the
transpose of x.

Now let us denote the derivative of the mean with respect to
the input � as � = ∂m/∂�, namely, � is the susceptibility of the
mean neural activity to the input signal. Then, we can derive a
remarkable relationship between the covariance matrix Σ and the
susceptibility �:

Σ = �2
0I + �2

1��
>, [5]

where I is the identity matrix (SI Appendix, section 2A for
details). The second term of the covariance matrix is referred to
as differential correlation, which has been extensively studied to
uncover the underlying mechanisms shaping the representation
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Fig. 2. Susceptibility–variance relationship of the neural response. Each
point represents an element of the covariance matrix Σij as a function of
the corresponding element of the outer product of the susceptibility of the
neural response to the input signal (��>)ij . The color of the points indicates
the value of �. As predicted by Eq. 5, the covariance is proportional to the outer
product for off-diagonal elements. They, however, are shifted by �2

0 to the
vertical direction for diagonal elements due to the identity matrix of the first
term of the equation. The thick line is Σij = �2

0 + �2
1(��>)ij , and the dashed

line is Σij = �2
1(��>)ij . We used �1 = 0.01, �0 = 0.01 andN = 100 for the plot.

of information in neural coding (34, 35). To confirm this
identity, we directly measure the covariance matrix and the input
susceptibility for the population activity of neurons given by
Eq. 1 for various realizations of the exponent �, input noise �,
and neuron noise �. Fig. 2 is a scatter plot of elements of the
covariance matrix Σij versus the corresponding outer products
of the susceptibility vectors

(
��>

)
ij. We see that regardless of

the parameter realizations, both diagonal (points along the solid
line) and off-diagonal elements (points along the dashed line)
well agree with the theoretical prediction.

The above relation also gives the impressive result that the
susceptibility is an eigenvector of the covariance matrix, whose
eigenvalue is given by using the generalized harmonic function
HN (x) =

∑N
n=1 n

−x , which converges to the Riemann zeta
function �(x) =

∑
∞

n=1 n
−x in the limit of large numbers of

neurons N →∞ (SI Appendix, section 2B for details),

Σ� = ��
� = �2

0 + �2
1HN (� − 2)

→ �2
0 + �2

1�(� − 2).

[6]

Putting Eqs. 4 and 5 to Eq. 2 and using Eq. 6, we have the
Fisher information of the power-law coding as

I(�) =
HN (� − 2)

�2
0 + �2

1HN (� − 2)
, [7]

which converges to

I1(�) :=
�(� − 2)

�2
0 + �2

1�(� − 2)
, [8]

in the limit of a large number of neurons.
The generalization to D > 1, where neurons encode a higher-

dimensional input, is almost straightforward (SI Appendix,
section 3 for details). The Fisher information for multivariate
input signal � is defined in matrix form,

Iij(�) =
〈
−

∂2 log p(r;�)
∂�i∂�j

〉
r
.

If the Gaussian noise with strength �i independently affects
the ith input component �i, then, using the same argument as
above, we can show that the Fisher information matrix becomes
diagonal. In the limit of a large number of neurons, the ith
diagonal component, which evaluates the performance of the
power-law coding for the ith input signal �i, converges to:

Iii(�)→ ID(�) :=
�(� − 2/D)

�2
0DV

2/D
D /4 + �2

i �(� − 2/D)
, [9]

where VD = �D/2/Γ(D/2 + 1) is the volume of the unit D-ball.
This reproduces Eq. 8 as a special case. Then, in the limit of a
large input dimension, D→∞, it converges to

I∞(�) =
�(�)

e��2
0/2 + �2

i �(�)
[10]

because Γ (z + 1) ≈
√

2�z(z/e)z for large z.
Fig. 3 shows the derived analytical expression of the Fisher

information Eq. 9 as functions of the power-law exponent �
for various values of the input dimension D. One can see three
significant features from the plots. First, the critical exponent
�c = 1 + 2/D reported in the previous study actually gives the
transition point in the sense that the derivative of the Fisher
information with respect to the exponent � is discontinuous
only at � = �c . Second, for � > �c , each Fisher information
monotonically decreases with increasing �, indicating that when
the slope of the power spectrum of the covariance matrix is steeper
than the critical slope, the coding performance deteriorates as the
slope increases. This is intuitive, as a steeper slope implies that
less neural activity is used in the coding.

However, the third and counterintuitive point is that the Fisher
information is kept constant, and the coding does not degrade its
performance for � < �c , where the slope of the power-law decay
is gentler than the critical slope. In this regime, the map from
the input space to the neural space defined by the coding Eq. 1

Fig. 3. Analytically derived Fisher information ID as a function of the power-
law exponent � for various values of the input dimension D. Vertical dashed
lines indicate the critical values of the exponent �c = 1 + 2/D. For all
D, the information rapidly decreases as � increases for � > �c . However,
counterintuitively, they keep a constant value for � < �c even though the
neural representation is intrinsically nondifferentiable, the neural manifold
is fractal, and thus, the population response is highly sensitive to the
perturbation in the regime. Here, we used �0 = �1 = 0.01.
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is nondifferentiable and fractal, even in the absence of noise.
This result is different from what was previously thought. The
Riemann zeta function �(�− 2/D) in Eq. 9 does indeed diverge
to infinity when � ≤ �c because the zeta function �(x) diverges
to infinity for x ≤ 1. However, this does not imply either the
divergence or vanishing of the Fisher information. Rather, the
information is held constant at 1/�2

1 , regardless of the neural
noise strength �0. Thus, contrary to the previous conjecture, the
coding performance is not directly related to the differentiability
of the map defined by the coding.

Why does the coding not degrade its performance even
in the fractal regime where the code is extremely sensitive
to the perturbation? As shown in the previous work, the
map of the coding is indeed nondifferentiable for � ≤ �c .
However, this nondifferentiability, induced by the decrease of
the power-law slope, is due to the increase of the variance of
the eigenspectrum of the components with larger n, i.e. higher
frequencies. Therefore, importantly, the activities of the lower
frequency components relatively remain intact. Thus, by using a
decoder that appropriately focuses on the directions of the low-
frequency components, one can still decode enough information
even from the fractal neural coding, which means that the neural
activity still contains enough information of the input signals and
its coding performance remains intact.

To confirm these theoretical predictions and validate the above
speculation, we measured the variance of the estimation error
for the input stimulus by directly constructing a maximum
likelihood decoder for power-law codes. We first verified that
the estimated inverse of the error variance agrees well with the
analytical predictions (SI Appendix, section 5 and Figs. S2 and S3
for details). The inverse of the variance monotonically converges
to the predicted Fisher information given by Eq. 8 in the limit
of a large number of neurons.

We then performed the same estimation while limiting the
number of available encoder neurons in the network. Fig. 4 shows
the results. In these experiments, we removed neurons from the
network in either descending or ascending order of their indices,
n. Since neurons with larger indices encode higher frequency
modes of the input, removing neurons in descending order forces
the decoder to focus only on lower frequency modes (the Left
panel of Fig. 4). In this scenario, the Fisher information remains
almost unchanged compared to the case with no limitations until

the final stage, where it suddenly decreases as lower-mode neurons
are removed. Consequently, the estimation error increases rapidly
as lower-mode neurons are removed. In contrast, when we remove
neurons in ascending order of their indices (the Right panel of
Fig. 4), the Fisher information exhibits larger decays that occur
in the earlier stages of removal. These results indicate that the
estimation accuracy is greatly degraded by the removal of neurons
encoding low frequency components.

Energy–Information Tradeoff Optimizes the Cortical Critical
Power Law. A natural question then is why the brain appears
to operate at the critical exponent �c rather than one of
the other smaller values of � that can also achieve the best
coding performance. So far, we have not considered metabolic,
or energetic, costs required for the neural activities (37, 38).
However, in fact, the smaller � implies that the larger amount
of neural activity is evoked to represent the input signals, which
may explain the optimality of the exponent �c for the brain’s
encoding.

To confirm this, we introduce a performance measure of the
signal encoding including an energetic cost of neural activity. The
biologically realistic description of the metabolic cost of neural
activity is beyond the scope of the present work. However, a
natural definition of this will be the sum of the mean square of
the response activities of all neurons over the input stimuli and
the noise. In the present setting, this cost converges to the zeta
function in the limit of a large number of neurons N →∞:

2N∑
i=1

1
2�

∫ 2�

0
〈ri (�)〉2�i ,�d� =

N∑
n=1

n−� → � (�) .

Therefore, the sum of the Fisher information and the energy cost
gives an energy-aware performance measure of the power-law
coding

JD(�) = ID(�)− �(�). [11]

The regularization parameter must satisfy  > 0 because lower
energy consumption is desirable.

Fig. 5 shows the energy-aware performance Eq. 11 as functions
of the exponent � for various values of the input dimension D. In
contrast to Fig. 3, the performances are maximized at the critical

A B

Fig. 4. Estimation error of the maximum likelihood estimator with a limited number of encoder neurons. The vertical axis represents the inverse of the
variance of the estimation error. Using direct numerical integration of the posterior distribution for D = 1, we obtained the variance from 105 realizations of
the numerical estimation for various values of the exponent � (see SI Appendix, section 5 and Figs. S2 and S3 for details). Here, the critical exponent is �c = 3,
and M = 10 is used. (A) The inverse of the variance when only encoder neurons with indices from 1 to N− n1 are used, that is, higher-frequency mode neurons
are removed first. (B) The same as (A), but only encoder neurons with indices from n0 to N are used. That is, lower-frequency mode neurons are removed first.
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Fig. 5. The energy-aware performance measure of the power-law coding JD
as a function of the power-law exponent � for various values of the input
dimension D. Vertical dashed lines indicate the critical values of the exponent
�c = 1+2/D. The Inset represents the magnification of the plot around � = 1.
Due to the energetic cost term, different from Fig. 3, regardless of input
dimension, all the lines take their optimal value exactly where the power-
law exponent is critical � = �c . Please also note that the critical value �c
seems almost the exclusive choice of the exponent for large input dimension
D as indicated by the delta-function-like curve. Here, �i = �0 = 0.01, and
sufficiently small values of  that do not overwhelm the first term of Eq. 11
are used (SI Appendix, section 4 for details).

exponent � = �c , regardless of the input dimension. This result
is natural because the first term of the energy-aware performance
is flat for � < �c as shown in Fig. 3, while the second term of the
energy cost given by the negative zeta function is a monotonically
increasing with �. In other words, while we have used arbitrarily
small values of  for the plot, the result is robust to the actual
choice of values of the regularization coefficient unless it is too
large to overwhelm the first term (see SI Appendix for details).
The same argument also suggests that the energy term does not
need to be the sum of the square of the neural activity to achieve
the same optimality of the critical exponent, as long as the term is
a monotonically increasing function of �. Thus, we can conclude
that, for a broad class of energy terms, the trade-off between Fisher
information and energy consumption explains the optimality of
the critical exponent observed in the brain.

Instead of using the Fisher information, one may employ
mutual information to evaluate the efficiency of neural coding.
The mutual information between the input stimulus and the
activity of encoder neurons is defined by

I (�; r) =
∫

d�
∫

drp(�)p(r|�) log
p(r|�)
p(r)

.

In the limit of a large number of encoding neurons, the mutual
information can be expressed as the sum of the logarithm of the
Fisher information averaged over all stimuli and the entropy of
the stimulus (30):

I (�; r) = −
∫

d�p(�) log p(�)−
∫

d�p(�)
1
2

log
2�e
I (�)

.

However, due to the symmetry of the receptive fields of the
encoder neurons, the Fisher information is independent of the
stimulus �, as shown in Eqs. 7 and 9. Therefore, the mutual
information is a monotonically increasing function of the Fisher
information. Thus, the exponent of the power-law distribution
can similarly characterize the criticality and optimality of the
neural code, irrespective of whether mutual information or Fisher
information is used in the current framework.

Discussion

To quantitatively evaluate the coding performance of the power-
law stimulus representation in cortical neurons, we developed
an analytically tractable model of neural coding. This model
assumes that the spectrum of the covariance matrix follows the
power law observed in the cortex (8). Using the relationship of
differential correlation, which links variance and susceptibility
in neural responses to input stimuli, the theory explicitly
derives the Fisher information for power-law coding. Contrary
to previous conjectures, our results show that neural coding
performance is not degraded, even in nondifferentiable and
fractal neural manifolds, where noise from input signals and
neural activity strongly perturb responses. Moreover, we found
that introducing a minimal metabolic cost makes the critical
power-law response optimal for neural coding. Therefore, the
experimentally observed power-law exponent achieves the best
balance between energetic cost and Fisher information. Thus,
the critical response in the brain not only balances coding
expressivity and robustness but also incorporates the energetic
cost, a key factor in biological computation under real-world
constraints.

Our results, including the derived formula for Fisher infor-
mation, essentially rely on the small-noise assumption for input
perturbations and neural activities. This assumption enabled us to
derive an analytical expression for the Fisher information through
the Gaussian approximation of the response activity of encoding
neurons, Eq. 4. However, this assumption may not be fulfilled
in the real brain. The neural activity is represented by spikes
rather than firing rates, and spike responses can be quite reliable.
Moreover, firing rate distributions are often better characterized
by skewed distributions rather than Gaussian distributions. In the
SI Appendix, we briefly discuss how our analytical predictions
for Fisher information deviate from numerical results as noise
strength increases (SI Appendix, section 5 and Fig. S4). When
the neural noise strength �0 is increased to very large values,
the discrepancy between the predictions and numerical results
gradually becomes more pronounced. In contrast, the difference
remains small when the input noise strength �1 increases. This is
probably because the estimation variance becomes large enough
to obscure the discrepancy. Extending the theory beyond the
small-noise Gaussian approximation to more accurately capture
the noise dependence of power-law coding remains an important
direction for future research.

This study is closely related to the recent work by Bordelon
and Pehlevan (39), which introduced a robust framework for
analyzing the sample efficiency of learning in neural circuits.
Their framework elucidated how the generalization error of linear
readouts from population codes depends on factors such as the
number of samples, the kernel eigenspectra of the code, and
the task (39–41). Notably, they demonstrated that nondiffer-
entiable codes could outperform differentiable ones in terms of
generalization when the task is appropriately aligned with the
population code and the sample size is limited. Furthermore, they
showed that biological codes are metabolically more efficient than
synthetic codes with equivalent structures. Their study employed
a supervised framework with linear decoders to investigate the
effects of sample size and generalization error. In contrast, our
work uses an autoencoding approach to evaluate the intrinsic
performance of the code through Fisher information, focusing
primarily on the large sample size limit while considering the
optimal decoder. Thus, our findings complement their work
by consistently highlighting the potential of nondifferentiable
biological codes from a distinct perspective. Future studies could
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extend our analysis to a supervised framework to uncover deeper
connections to their theoretical results.

Based on the experimental observation of power-law responses
in the visual cortex, this study assumes that the responses of
encoding neurons can be represented by Fourier basis functions.
However, neuronal responses in the brain are not restricted to
Fourier-based receptive fields. For instance, Gabor filter-based
receptive fields, which more accurately capture the properties
of neurons in the visual cortex, could lead to modifications in
the representation of Fisher information. Moreover, stimulus
responses and receptive fields generally depend on sensory
modalities, suggesting that the power-law exponent optimizing
the tradeoff between energy and information may differ across
cortical areas. Supporting this idea, recent experiments have
reported slight variations in observed power-law exponents be-
tween cortical regions and species (28, 42). Therefore, extending
the theory to account for stimulus representations with diverse
receptive fields associated with different sensory modalities is a
critical direction for future research.

Our analysis relies on experimental findings that the eigen
power spectrum of the covariance matrix follows a power law with
an exponent near unity. However, a recent study by Pospisil and
Pillow reanalyzed the data and suggested that the earlier results
may have been biased (43). Their results indicate that the eigen
power spectrum is more accurately described by a broken power
law with two distinct exponents. The first ten eigenvalues follow
a shallow slope (�1 ∼ 0.5), while the remaining eigenvalues
decay more steeply (�2 ∼ 1.2). In such a case, our expression of
the Fisher information is modified by replacing its zeta function
with the sum of two terms representing the two decay modes. We
examined how this modification affects the behavior of the Fisher
information (SI Appendix, section 7 and Fig. S5). The results
showed that while the specific form changes, the qualitative
properties, such as the information increasing with decreasing
the exponents, remain intact.

In this study, we introduced the power-law dependency of
neural activities a priori, assuming that each neuron indepen-
dently responds to its stimulus with a power-law amplitude.
This power law does not emerge as a scale-invariant feature of a
multiscale system but instead reflects the response properties of
individual encoding neurons to their inputs. However, the origin
of this property remains unclear. Correlations in inputs or neural
activities within the network may play a significant role in shaping
it. Indeed, pioneering studies have shown that Fisher information
is generally affected by noise correlations (32, 34, 35), while
their impact tends to be small when these correlations arise from
recurrent neural activities (34). Developing analyses of power-law
coding by integrating theories of neural correlations in recurrent
networks would be an important direction for future research
(44–46). Additionally, the temporal structure of neural responses,
such as transient neural activities, may also play a crucial role in
these cases (47, 48).

Principal component analysis (PCA), which is based on the
covariance matrix of neural activity, is limited to capturing only
the linear structure of the neural manifold. However, neural
manifolds may generally exhibit higher-order structures that
cannot be fully represented by PCA (49). For example, geometric
indices such as the curvature of the neural manifold can play
an important role in determining optimal stimulus encoding.
These geometric features could complement the power-law
exponent of the eigenspectrum of the covariance matrix in
describing the neural manifold. The Fisher information matrix
provides a natural metric for statistical manifolds of probability

distributions. Therefore, it may have the potential to extend
the theory of optimal neural coding by incorporating higher-
order structures. Exploring these aspects would be a meaningful
direction for future research.

Materials and Methods

In this section, we outline the derivation of the Fisher information (Eqs. 7 and
8) for power-law coding. The derivation is based on the small noise assumption,
which allows for a Gaussian approximation of the probability density function of
the activity of encoding neurons. Additional details, including the generalization
to higher input dimensions, are provided in the SI Appendix.

The neural activity is expressed as

r = r(� + �) + �,

where r2n−1(�) = n−�/2 cos n� and r2n(�) = n−�/2 sin n�. Assuming
that the neural noise strength�0 and the input noise strength�1 are sufficiently
small, the activity can be linearly approximated as

r = r(�) +
∂r(�)
∂�

� + �

= m + �� + �.

Here, m represents the mean of the neural activity, and � is the susceptibility
of the neural activity to the input signal. This expression gives the relationship
between the covariance matrix and the susceptibility as

Σ =
〈
(r −m)(r −m)>

〉
�,�

= �2
0 I + �2

1��
>.

Furthermore, this relation leads to the interesting result that the susceptibility
is an eigenvector of the covariance matrix, with its eigenvalue given by the
generalized harmonic function HN(x), which converges to the Riemann zeta
function �(x) as N→∞:

Σ� =
(
�2

0 I + �2
1��
>
)
� =

(
�2

0 + �2
1�
>�
)
� = ��,

where

� := �2
0 + �2

1�
>�

= �2
0 + �2

1HN(� − 2).
[12]

From this relationship, the inverse of the covariance matrix can be explicitly
expressed as

Σ−1 =
1

�2
0

(
I−

�2
1
�
��>

)
.

By substituting the inverse covariance matrix into Eq. 4 and differentiating with
respect to �, we obtain the score function:

∂

∂�
log p(r; �) ≈

1

�2
0

(
(r −m)>�−

�2
1
�

(r −m)>��>�

)

=
1

�2
0

(
1−

�2
1
�
�>�

)
(r −m)>�

=
1
�
(r −m)>�.
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Differentiating the score function again, while using Eq. 12, yields the Fisher
information Eq. 7:

I(�) = −

〈
∂2

∂�2
log p(r; �)

〉
r

= −
1
�

〈
∂

∂�

(
(r −m)>�

)〉
r

=
HN(� − 2)

�2
0 + �2

1HN(� − 2)
.

In the limit of a large number of encoding neurons, this expression
converges to

�(� − 2)

�2
0 + �2

1�(� − 2)
,

which is Eq. 8

Data, Materials, and Software Availability. The code used in this work is
available at GitHub repository (https://github.com/tatsukawa/power-law-fisher-
info) (50). All study data are included in the article and/or SI Appendix.
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