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ABSTRACT Middlebox functions, implemented as software on general-purpose servers via network
function virtualization, require reliable protection mechanisms to ensure service continuity. Assessing the
unavailability of these functions is critical, as failures can lead to significant service disruptions. However,
existing analytical models primarily assume that a function is protected by at most one or two backup
servers, limiting their applicability in scenarios requiring higher resilience. To address this limitation,
this paper proposes an analytical model for evaluating the unavailability of middlebox functions under a
multiple-backup shared protection strategy, where multiple backup servers protect one or more functions.
Our model allows each function to be protected by multiple backup servers, ensuring availability while
ensuring that each backup server can simultaneously recover at most one function. Utilizing a Markov
chain, we analyze state transitions and establish equilibrium-state equations, providing an analytical
foundation for evaluating the performance of the multiple-backup shared protection strategy. Numerical
results demonstrate that this strategy significantly enhances availability, reducing unavailability by up to
72.3% compared to the single-backup shared protection strategy in the scenarios examined. Our study
provides a detailed analysis of backup allocation strategies, focusing on their impact on function availability
and offering more profound insights into their effectiveness through theoretical properties and performance
comparisons with existing strategies. Our evaluation reveals that the multiple-backup shared protection
strategy reduces unavailability by up to 64.8% compared to the single-backup shared protection strategy
in the examined allocation cases.

INDEX TERMS Analytical model, middleboxes, unavailability, shared protection, Markov chain.

I. INTRODUCTION

MIDDLEBOXES provide a range of network functions,
such as firewalls, network address translators, intru-

sion detection systems, and load balancers, which are critical
to the network infrastructure. Traditionally, a middlebox
operates on specialized hardware designed for specific
network functions. By utilizing network function virtual-
ization (NFV) technology [2], middleboxes can operate as
software on general-purpose servers. Hence, a middlebox
function works as a service function instance (SFI) using
NFV technology. Henceforth, a function used in this paper
refers to an SFI. This approach allows for optimized utiliza-
tion of hardware resources within the network. Furthermore,
NFV technology supports the dynamic deployment of

middleboxes, thereby increasing the flexibility of network
management and operations.
Middleboxes can experience failures for various reasons,

including hardware faults, configuration errors, and con-
nectivity issues. When a middlebox becomes unavailable
due to these incidents, it significantly degrades the quality
of network services that rely on it [3]. Consequently, the
absence of network functions constitutes a crucial metric
connected to the overall quality of network services.
One approach to mitigate network function unavailability

is deploying backup servers capable of restoring function-
ality in case of an unrecovered failure. This approach
employs two protection strategies: dedicated protection and
shared protection. The research in [4], [5], [6] addressed
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allocating a dedicated backup server for each network
function. The dedicated protection strategy designates a
distinct backup server for each function, ensuring recovery
if the backup server remains operational. Consequently, the
dedicated protection strategy exhibits a higher probability
of function recovery than the shared protection approach,
thereby preserving the network service quality. However, it is
worth noting that the dedicated protection strategy demands
a substantial amount of computational resources, as the
backup server cannot concurrently recover other functions
while protecting an active one. Conversely, in the shared
protection strategy, each backup server can protect one or
more functions. Still, the guarantee of dedicated protection
for each function by the backup server is limited due to the
finite capacity of the backup server.
Several studies have addressed shared protec-

tion [7], [8], [9]. The work in [7] investigated resource
allocation under shared protection aware of function
survivability. The work analyzed the resource allocation
problems using graph theory and introduced algorithms that
maximize the oriented metrics of function survivability.
Studies [8], [9] investigated the performance of shared
protection, analytically computing exact function unavail-
ability. In particular, concerning shared protection strategies
aimed at minimizing function unavailability, the research
in [8] introduced a model for optimizing the allocation to
minimize the maximum unavailability among middlebox
functions. The work delineated an analytical method for
computing exact function unavailability employing Markov
chain analysis of state transitions. It specifically focused
on scenarios where a single backup server protects each
function. Furthermore, the research in [9] presented an
analytical model in which backup servers are capable of
protecting two functions and can recover one of them. The
work in [10], [11] addressed shared protection in the case
of multiple backup servers and addressed a model aimed at
minimizing the required backup capacity. However, the work
does not provide a model for calculating unavailability. No
work deals with an analytical model to compute function
unavailability where more than two backup servers can
protect a function.
Two key questions arise: 1) How can we calculate the

unavailability of functions when multiple backup servers
participate in shared protection? 2) How much does this
shared protection with multiple backup servers reduce
unavailability compared to the existing one in which one
backup server protects one or more functions? This paper
addresses these questions.
This paper proposes an analytical model to compute

the unavailability of middlebox functions in which one
or more backup servers protect one or more functions
and one backup server can recover at most one func-
tion, which we call a multiple-backup shared protection
strategy. On the other hand, in this paper, the single-
backup shared protection strategy represents the shared

protection in which one backup server protects one or
more functions, and it can recover multiple functions
simultaneously. The proposed model analytically computes
the unavailability of functions by thoroughly examining
state transitions involving both functions and backup servers
for the multiple-backup shared protection. When an active
function experiences a failure, an active and idle backup
server can recover the failed function. During the recovery
process by the backup server, the function remains in a
failed state. Upon completing the function’s repair, it regains
its active status. The model calculates the unavailability of
functions by thoroughly analyzing the state transitions of
a group in the multiple-backup shared protection strategy.
We conduct performance evaluations using the proposed
model. Numerical results show that the multiple-backup
shared protection strategy reduces the unavailability by 7.80–
72.3% compared to the single-backup shared protection
strategy in our examined cases. The single-backup shared
protection strategy was previously examined by one of the
authors of this paper in earlier studies [8], [12], [13]. In
contrast to those works, which concentrated on the single-
backup approach, our research offers a more comprehensive
analysis of backup allocation strategies. Specifically, we
explore their influence on function availability and provide
deeper insights into their effectiveness by deriving theo-
retical properties and comparing performance with existing
methods. Numerical results demonstrate that the multiple-
backup shared protection strategy minimizes unavailability
by a maximum of 64.8% compared to the single-backup
shared protection strategy in our examined allocation
scenarios.
This paper is an expanded edition of [1] with various

additions described as follows. We thoroughly review exist-
ing research on shared protection, middleboxes, and Markov
chains by comparing our work with existing studies. We
provide a thorough explanation of the proposed model,
detailing the states of both functions and servers. We explain
the state transitions by categorizing them into different types,
providing an example of a state-transition diagram to support
the explanation. We compare the unavailability obtained by
the analytical model and simulation. We investigate backup
allocation regarding unavailability, exploring the nature of
backup allocation, where we derive three properties by
providing their proof. We compare the backup-allocation
performances between the multiple-backup and the single-
backup strategies.
The remainder of this paper is structured subsequently.

Section II outlines the related work in this field. Section III
explains the proposed model, covering shared protection for
functions, unavailability, and state transitions. Section IV
analyzes the model, addressing the count of feasible states,
state transition of a group, and equilibrium-state equations.
Section V shows the numerical results. Section VI investi-
gates backup allocation regarding unavailability. Section VII
wraps up the paper.
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II. RELATED WORK
This section describes related works, grouped into three
areas: shared protection, middleboxes, and Markov Chains.
Similar to our work, the works in [7], [8], [9], [12],

[13], [14], [15], [16], [17], [18], [19], [20] addressed shared
protection. As we mentioned for the work in [7], [8], [9]
in Section I, the distinction between these studies and our
research is that while our work develops an analytical model
for two or more backup servers, these previous studies
handled a model for only one or, in specific configurations,
multiple backup servers. The work in [12], [13] introduced
a model for shared protection with multiple backup servers
and analyzed the model using a Markov chain. While the
work introduced a model for cases with two backup servers
without a constraint on the number of functions that a backup
server can protect, our research presents a model adaptable
to cases with two or more backup servers. The work
in [14] introduced a backup allocation model considering
both virtual and physical machine failures to minimize the
maximum unavailability of functions. The work separates
functional failures between virtual and physical machines. It
employs a single-backup shared protection strategy, which
differs from our work. The work in [15] investigated the
design of a protection strategy aimed at minimizing the
needed backups through resource sharing. The work in [16]
integrated various types of resources necessary for the
backup allocation model in network functions. The work
in [15], [16] are different in that our work addresses the
unavailability of middlebox functions, whereas these works
address the design of protection strategy and backup resource
integration. The work in [17], [18], [19], [20] addressed
the design of the protection strategy of service function
chains. They are different in that our work addresses the
unavailability of middlebox functions. In contrast, they
addressed the design of the protection strategy of service
function chains but did not use Markov chains to analyze
the model.
Our study is related to the development of a framework

for fault-tolerant middleboxes [6], [21], [22]. The work
in [6] considered the importance of middlebox functions
and sought to minimize the worst-weighted unavailability
by assigning backup servers to functions. The work does
not consider the recovery and repair times of middlebox
functions and backup servers in assessing the unavailability.
The work in [21] introduced a system-level framework
that uses the flow-centric structure to improve middlebox
availability with low overhead. In [22], a framework with
rollback recovery for middleboxes was presented, reducing
protection overhead by using ordered logging and parallel
release. These works in [21], [22] are different in that our
work addresses computing the unavailability of middlebox
functions, whereas these works focused on the development
of a framework for middleboxes.
Similar to our study, several studies utilize Markov

chains [23], [24], [25], [26]. The universal generating
function (UGF) method is used to calculate service function

chain (SFC) availability by using a continuous-time Markov
chain [23], [24], [25], where the distribution of computing
resources achieves reliable SFCs without considering shared
protection. In [23], core networks are designed using the
Internet protocol multimedia subsystem to achieve the
required network slice availability through the UGF method.
The work in [24] analyzed multitenant service function
chain availability in NFV environments by introducing a
multidimensional UGF method. The work in [25] intro-
duced a virtual network function (VNF) placement model
to minimize deployment costs while ensuring availability
for service function chains, utilizing the multidimensional
UGF method for computing SFC availability with multiple
VNFs on a server. Our work also employs a continuous-
time Markov chain. Whereas the works in [23], [24], [25]
considered allowing the distribution of computing resources
without adopting shared protection, our work addresses
shared backup protection. The work in [26] introduced
AnalyticalBP, a precise analytical continuous-time Markov
chain model for blocking probabilities in spectrally-spatially
elastic optical networks, addressing the challenge of
crosstalk. Similar to our research, the work uses a Markov
chain model to investigate situations where the next state
depends only on the current one. Different from [18], looking
at blocking probabilities, our study focuses on figuring out
unavailability.

III. PROPOSED ANALYTICAL MODEL
A. SHARED PROTECTION FOR FUNCTION
Let G ⊆ S be a group of servers that serve as backups for the
same functions. We denote the set of functions backed up by
G as LG ⊆ F. Our analysis treats G and LG as a connected
component. Table 1 provides a comprehensive overview of
the frequently utilized notations.
We assume the supply of ample and dependable

networking resources. This research investigates how backup
servers are assigned to different functions, taking into
account the limited computing resources and the varied
processes that may take place at network nodes, functions,
or backup servers, which in turn affect the availability of
functions.
Following the works of [27], [28], [29], we also assume

that the time between the same type of events for each
function or server follows an exponential distribution, which
is a specific case of the Weibull and gamma distributions.
Our analysis utilizes a Markov chain to model these events.
Moreover, the study in [30] presented that an exponential
distribution can effectively represent the time intervals
between failures for most cloud services.
Fig. 1a illustrates an instance of the single-backup shared

protection, which the analytical model presented in [8]
handles. Fig. 1b shows an example of the multiple-backup
shared protection, which the proposed analytical model
handles. In the multiple backup shared protection, backup
servers are designated to protect multiple functions. It is

3870 VOLUME 6, 2025



TABLE 1. List of frequently used notations.

FIGURE 1. Example of single-backup shared protection and multiple-backup shared
protection.

crucial to note that each backup server can recover only one
function at a time.

B. UNAVAILABILITY

Qf = Tu
f

Ta
f + Tu

f
. (1)

The unavailability of a function f in a group is the same
and denoted as Qf , where Ta

f and Tu
f represent the average

available time of function f and the average unavailable time
of function f , respectively. The unavailability of a function
is a metric that is often used to evaluate the performance
of a protection strategy. In this study, we compute the
unavailability of functions in a group.
In this study, we also investigate minimizing the max-

imum unavailability among functions to obtain the best

allocation of functions and backup servers with the minimum
unavailability among all possible allocations. The maximum
unavailability among functions is denoted as Qmax, and is
expressed by:

Qmax = max
f∈F Qf . (2)

The maximum unavailability among functions is a metric
that is often used to evaluate the performance of a protection
strategy [8], [14].

C. STATE TRANSITION
When an active function fails, it goes to the failed and
waiting state if there is no available backup server or to
the failed and being recovered state if there is at least
one available backup server. Here, waiting means waiting
for a backup server to become available. Once a backup
server becomes available, a random selection is made from
the functions in the failed and waiting state. Then the
available backup server starts a recovery procedure for
the selected function, and the function goes to the failed
and being recovered state. This random approach offers
ease of modeling and streamlines network administration
and operations for service providers. Upon completion
of the recovery procedure, the previously failed function
is successfully recovered on the backup server, becomes
available again, and goes to the failed and recovered state.
If a backup server fails while a failed function is being
recovered or has been recovered on it, the function goes
to the failed and waiting state or to the failed and being
recovered state, which depends on the backup server’s
state. Once the repairing procedure for a failed function is
finished, the function goes to the active state. Throughout
the waiting and recovery state, the function is considered
unavailable. Notably, the time required to switch from a
recovered function on a backup server to an active function
is presumed to take considerably less time than the actual
recovery process. In essence, the unavailable time of a
function comprises two distinct components: the waiting time
and the recovery time.
Fig. 2b shows the state-transition diagram of a server.

When a failed server gets repaired, it goes to the active and
waiting state or to the active and recovering function state,
which depends on the number of functions in the failed and
waiting state. Here, waiting means waiting for a function to
fail. Once a function fails when backup servers are in the
active and waiting state, a random selection is made from the
servers, and the selected server starts recovering the function
and goes to the active and recovering function state. After
the recovery procedure is completed, the previously failed
function is recovered on the backup server and the server
goes to the active and having recovered function state. If
a backup server fails, the backup server goes to the failed
state. Once the repairing procedure for a failed function is
finished, the backup server goes to the active and waiting
state or to the active and recovering function state, which
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FIGURE 2. State-transition diagram of function and server.

depends on the number of functions in the failed and waiting
state.
Table 2 shows the state-transition cases for each function

and server, respectively. A trigger event of a function or a
server is the event that occurs due to a state change by itself,
but not triggered by any other event. A trigger event can
invoke an induced event.
Table 3 shows the states that a group can take by

combining trigger events and induced events in Table 2.
Considering the combination of trigger events and induced
events, there are 13 possible state transitions that a group
can take.

D. PROBLEM DEFINITION FOR BACKUP ALLOCATION
Backup allocation is a critical part that affects the unavail-
ability of functions. The minimum unavailability backup
allocation (MUBA) problem is stated as:
Problem: Given sets of functions and backup servers,

with each function and backup server characterized by their
average failure and repair rate, along with the average
recovery time on a backup server, the objective is to deter-
mine the backup allocation that minimizes the maximum
unavailability of function in the group denoted by Qmax.

To address the MUBA problem, it is crucial to ascertain
the function’s unavailability for a given backup allocation
solution.

IV. ANALYSIS FOR UNAVAILABILITY BASED ON
QUEUEING THEORY
A. NUMBER OF FEASIBLE STATES
A system state of the group containing backup server group
G is expressed by Γ = (m, n, o, p, q), where m, n, o, and p
are the number of functions that are active, waiting, being
recovered, and recovered, respectively, and q is the number
of active backup servers in G. Clearly, the values of m, n,
o, p, and q satisfy m + n + o + p = |LG|, o + p ≤ q, and
q ≤ |G|.
We analyze the number of feasible states. First, we

consider the number of feasible states in the condition of
|LG| ≥ q. In considering the feasible states of Γ , when
o+ p ∈ [0, q− 1], then n = 0 since backup servers can start
recovering at least another failed function. When o+ p = t

TABLE 2. State transition cases of each function or server.

TABLE 3. Situation of state transitions.

and t falls within the interval [0, q − 1], the value of m is
given by m = |LG| − t. In this scenario, there are t + 1
distinct pairs (o, p). As a result, when o+p ∈ [0, q−1], the
number of feasible state is

∑q−1
t=0 (t + 1) = (q+1)q

2 . For the
case where o + p = q, there exist q + 1 and |LG| − q + 1
possible values for o and p, and for m and n, respectively.
Hence, when o + p = q, the number of feasible state is
(q+1)(|LG|−q+1). Therefore, when |LG| ≥ |G|, the number

3872 VOLUME 6, 2025



TABLE 4. Feasible states incoming to and outgoing from state Γ = (m, n, o, p, q).

of feasible states is
∑|G|

q=0(
(q+1)q

2 + (q+ 1)(|LG| − q+ 1)) =
1
6 (|G|+1)(|G|+2)(3(|LG|+1)−|G|) := fnum(G,LG). When
|LG| < |G|, the number of feasible states is

∑|LG|
q=0(

(q+1)q
2 +

(q+ 1)(|LG|− q+ 1)) = 1
6 (|LG|+ 1)(|LG|+ 2)(2|LG|+ 3) =

fnum(LG,LG).
Next, we consider the number of feasible states in the

condition of |LG| < q ≤ |G|. In this condition, n = 0 since
backup servers can start recovering at least another failed
function. Therefore, o+ p = |LG| −m and there are |LG| −
m+ 1 possible values for o and p, and |G| − |LG| for q. As
a result, when |LG| < q ≤ |G|, the number of feasible states
is

∑|LG|
m=0(|LG| − m + 1)(|G| − |LG|) = |LG|2+3|LG|+2

2 (|G| −
|LG|) := gnum(G,LG). Thus, the total number of feasible
states is expressed by:

|U| =
{
fnum(G,LG) (|LG| ≥ |G|)
fnum(LG,LG) + gnum(G,LG) (|LG| < |G|), (3)

where U denotes the set of all feasible states Γ .

B. SYSTEM STATE TRANSITION FOR Γ

There are 15 state transitions incoming to and outgoing from
state Γ , respectively, according to Table 3. Table 4 describes
the condition and transfer rate for each type of transition.
The outgoing state transitions are named in order from 1 to
14, and the incoming state transitions are named in order
from 1’ to 14’. Each type corresponds to one state incoming
to or outgoing from state Γ .
Types 1 through 8 involve state transitions triggered by

functions, whereas types 9 through 14 involve those triggered
by server state changes. For instance, examples of transition
types 1, 9, and 11 are provided below.

• For type 1, an active function fails and goes to the
failed and waiting state with the transfer rate of mλf.
Since there is at least one active function before the
transition, we have a condition of m ≥ 1. Since this
state transition occurs if there is no backup server that
can start the recovery procedure of the function, we
have a condition of o+ p = q or q = 0.

• For type 9, a backup server that is in the active and
waiting state fails with the transfer rate of (q − (o +
p))λs and goes to the failed state. Note that the number
of backup servers that are in the active and waiting
state before the transition is q − (o + p). Since there
is at least one backup server that is in the active and
waiting state before the transition, we have a condition
of n = 0. Since the total number of functions that are
either recovered or being recovered does not exceed
q after the transition, we have a condition of o +
p ≤ q − 1. Also, since there is at least one active
backup server before the transition, we have a condition
of q ≥ 1.

• For type 11, a backup server that is recovering a function
fails with the transfer rate of oλs, and the function that
is being recovered by the backup server stops being
recovered and goes to the failed and waiting state. Note
that the number of backup servers each of which is
recovering a function before the transition is o. Since
there is at least one function that is being recovered
by a backup server before the transition, we have a
condition of o ≥ 1. Since there is no available backup
server before the transition, o+p = q. Also, since there
is at least one active backup server before the transition,
we have a condition of q ≥ 1.
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The explanations for the system state transition incoming
from state Γ mirror those for the outgoing transitions.
Specifically, types 1 through 14 correspond directly to types
1’ through 14’. For instance, descriptions of transition types
1’, 9’, and 11’ are provided below.

• For type 1’, an active function fails and goes to the failed
and waiting state with the transfer rate of (m + 1)λf.
This state transition occurs if there is no backup server
that can start the recovery procedure of the function.
Since there is at least one waiting function after the
transition, we have a condition of n ≥ 1.

• For type 9’, a backup server that is in the active
and waiting state fails with the transfer rate of
(q+ 1 − (o+ p))λs and goes to the failed state. Note
that the number of backup servers that are in the active
and waiting state before the transition is q+1−(o+p).
Since there is at least one backup server that is in the
active and waiting state before the transition, we have
a condition of n = 0. Also, since the number of active
backup servers, q+ 1 does not exceed |G|, we have a
condition of q ≤ |G| − 1.

• For type 11’, a backup server that is recovering a
function fails with the transfer rate of (o+1)λs, and the
function that is being recovered by the backup server
stops being recovered and goes to the failed and waiting
state. Note that the number of backup servers, each of
which is recovering a function before the transition, is
o+ 1. Since there is at least one waiting function after
the transition, we have a condition of n ≥ 1. Also, since
the number of active backup servers, q + 1 does not
exceed |G|, we have a condition of q ≤ |G| − 1.

C. EXAMPLE OF STATE TRANSITIONS
Fig. 3 depicts an example of a state-transition diagram for a
group consisting of two functions and two backup servers,
i.e., |F| = 2, |S| = 2, and |LG| = 2. Each node in Fig. 3
represents a state of the group, denoted by (m, n, o, p, q).
We obtain the total number of states as |U| = fnum(G,LG) =
1
6 (|G|+1)(|G|+2)(3(|LG|+1)−|G|) = 1

6 (2+1)(2+2)(3(2+
1)− 2) = 14, as described in Section IV-A. A directed edge
in the diagram represents a state transition from one state
to another, implying that such an edge represents a state
transition in the outgoing category. State transitions in the
outgoing category are classified into 14 types, as illustrated
in Table 4. When transitioning from state A to state B, the
transition observed from state A is in the outgoing category,
while the transition observed from B is in the incoming
category.
Each type of state transition is associated with a distinct

edge representation using distinct colors. A blue edge
represents a state transition triggered by function failure. An
orange edge represents a state transition triggered by function
repair. A black edge represents a state transition triggered
by server failure. A green edge represents a state transition
triggered by server repair. A purple edge represents a state
transition triggered by function recovery.

FIGURE 3. Example of state-transition diagram for a group consisting of two
functions and two backup servers, i.e., |F | = 2, |G| = 2, and |LG| = 2. Table IV explains
each state-transition type.

Consider the state (0, 0, 0, 2, 2) placed at the left end of
the diagram in Fig. 3 as an example. This state is outgoing to
the states (1, 0, 0, 1, 2) and (0, 1, 0, 1, 1). These transitions
are in the outgoing category for the state (0, 0, 0, 2, 2),
each corresponding to types 4 and 13, respectively, as shown
in Table 4. Type 4 represents a transition when a recovered
function is repaired; the trigger event is (d), and the induced
event is (F) in Table 3. Type 13 represents a transition when
an active backup server with a recovered function fails; the
trigger event is (G), and the induced event is (h) in Table 3.
The state (0, 0, 0, 2, 2) is incoming from (0, 0, 1, 1,

2). This transition is in the incoming category for the state
(0, 0, 0, 2, 2); it corresponds to type 7’ in Table 4. This
transition is in the outgoing category for the state (0, 0, 1,
1, 2); it corresponds to type 7 in Table 4. Type 7 represents
a transition when a function that is being recovered by a
backup server gets recovered; the trigger event is (i), and
the induced event is (I) in Table 3.

Types 9 and 12 have different state transitions but have
the same ingress and egress states potentially leading to the
occurrence of a directed multigraph. Consider the transition
from (1, 0, 1, 0, 2) to (1, 0, 1, 0, 1) placed at the center
of the diagram in Fig. 3 as an example. The transition has
two types: types 9 and 12 in Table 4. Type 9 represents a
transition when a backup server that is in the active and
waiting state fails; the trigger event is (B) in Table 3, and no
induced event occurs. Type 12 represents a transition when
an active backup server that is recovering a function fails
and the function that is being recovered by the backup server
restarts being recovered by another available backup server;
the trigger event is (D), and the induced event is (E) in
Table 3. The distinction in the transition types is based on
whether the failing backup server is in the active and waiting
state or is recovering a function.
The usage of the multigraph expression, as shown in the

example of transition types 9 and 12, depends on how we
treat each state transition from the considered state to the
same outgoing state in Table 4. Double edges between the
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two states (1, 0, 1, 0, 2) and (1, 0, 1, 0, 1) in Fig. 3 exist
since we distinguish state transitions 10 and 13 in Table 3
as separate transitions, even though the destinations of these
transitions lead to the same state. State transitions 2 and 5
in Table 3 could be treated as different transition types, but
we treat them as the same transition type 2 in Table 4 since
they have simple conditions; for example, one edge between
the two states (0, 1, 1, 0, 1) and (1, 0, 1, 0, 1) exist in Fig. 3
despite the potential categorization of the state transition as
either 2 or 5 in Table 3. For state transitions 10 and 13 in
Table 3, we treat them as different transition types in Table 4
since they have complex conditions.

D. EQUILIBRIUM STATES
In equilibrium, the total flows into state Γ is equal to the
total flows out of state Γ . The equilibrium equation for Γ

is expressed by:

h1P(m+ 1, n− 1, o, p, q) + h2P(m− 1, n+ 1, o, p, q)

+ h3P(m+ 1, n, o− 1, p, q) + h4P(m− 1, n, o+ 1, p, q)

+ h5P(m− 1, n, o, p+ 1, q)

+ h6P(m− 1, n+ 1, o− 1, p+ 1, q)

+ h7P(m, n, o+ 1, p− 1, q) + h8P(m, n, o, p, q− 1)

+ h9P(m, n, o, p, q+ 1) + h10P(m, n+ 1, o− 1, p, q− 1)

+ h11P(m, n− 1, o+ 1, p, q+ 1)

+ h12P(m, n, o, p, q+ 1)

+ h13P(m, n− 1, o, p+ 1, q+ 1)

+ h14P(m, n, o− 1, p+ 1, q+ 1)

=
14′
∑

k=1′
hkP(m, n, o, p, q),∀Γ ∈ U, (4)

where hk, k ∈ [1, 14] or [1′, 14′], denotes the transfer rate
of type k in Table 4 if the conditions of type k are satisfied
and 0 otherwise.
The total probability of all states equals one, which is

expressed by:
∑

Γ ∈U
P(m, n, o, p, q) = 1. (5)

We determine the probabilities of equilibrium states for
each system state by solving a set of equations in (4) and (5).
The total number of feasible states denoted by |U| can

be obtained analytically, as described in Section IV-A.
The equilibrium probabilities can be computed by using
the Gauss-Seidel method, where the time complexity is
O(|U|2) [31].

E. ESTIMATE UNAVAILABILITY OF FUNCTION
For state Γ , the number of unavailable functions is expressed
by n + o. The average number of unavailable functions is
expressed by

∑
Γ ∈U(n + o)P(m, n, o, p, q). The transition

types that make the function unavailable are 1’, 3’, and

13’. For types 1′ and 3′, the function becomes unavailable
with the rate of mλf. For type 13′, the function becomes
unavailable with the rate of pλs. Hence, per unit time, the
average number of functions that become unavailable is
expressed by

∑
Γ ∈U((mλf+pλs))P(m, n, o, p, q). Therefore,

the average unavailable time of function f in a group is
expressed by:

Tu
f =

∑
Γ ∈U(n+ o)P(m, n, o, p, q)

∑
Γ ∈U

[
(mλf + pλs)

]
P(m, n, o, p, q)

. (6)

Similarly, the average available time of function f in a
group is expressed by:

Ta
f =

∑
Γ ∈U(m+ p)P(m, n, o, p, q)

∑
Γ ∈U[(n+ o)μf + oδ)]P(m, n, o, p, q)

. (7)

Based on (6) and (7), the unavailability of a function f in
a group can be computed by (1).

V. NUMERICAL RESULTS
We investigate how much the multiple-backup shared pro-
tection strategy reduces unavailability compared to the
single-backup shared protection strategy. For simplicity,
we refer to the single-backup shared protection strategy
and the multiple-backup shared protection strategy as the
single-backup strategy and the multiple-backup strategy,
respectively, in this section if no confusion arises. We
employ an analytical model introduced in [8] for the single-
backup strategy and the proposed model for multiple-backup
strategies, respectively. A backup server can recover up
to r functions simultaneously. We call this r as backup
capacity. In each of the single-backup and multiple-backup
strategies, we call the sum of the backup capacity of
each backup server as backup resources We conduct a
comparison by equating the backup resources with different
strategies. We investigate two cases of the single-backup
and multiple-backup strategies, as shown in Fig. 4. Case 1
involves a single server in the single-backup strategy, and
case 2 involves a single backup capacity in the single-
backup strategy. Next, we investigate the time it takes to
calculate unavailability with different numbers of functions
and backup servers.
As per [8], the average time between two middlebox

function failures is 104 seconds. When a function or server
fails, it takes about 103 seconds to repair, and if it is
on a backup server, recovery happens within 30 seconds,
according to studies in [3]. We set λ−1

f , μ−1
f , μ−1

s , δ−1

using these values. In addition, we set λ−1
s to 104 seconds,

which is the average time between two server failures. Our
evaluation uses an Apple M1 3.2 GHz 8-core CPU with 16
GB memory.

A. CASE 1: COMPARISON OF UNAVAILABILITY
BETWEEN SINGLE-BACKUP STRATEGY WITH A SINGLE
SERVER AND MULTIPLE-BACKUP STRATEGY
In case 1, we compare the unavailability of a function
between the single-backup strategy with a single server and
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FIGURE 4. Examples of unavailability comparison between single-backup
multiple-backup strategies. The left and right numbers in brackets attached to each
server express the number of functions protected by each backup server and the
backup capacity, respectively.

the multiple-backup strategy. In the single-backup strategy,
each function is protected by a single backup server, and the
backup server has multiple backup capacities. We calculate
the unavailability in the single-backup strategy, based on
the work in [8]. On the other side, in the multiple-backup
strategy, each function is protected by multiple servers, and
each server can recover only one function. Consequently,
the backup capacity is set to one. The functions and servers
together make up one connected component. Since the
multiple-backup strategy can recover a function even if one
backup server fails, we expect the unavailability of a function
in the multiple-backup strategy to be lower than that in the
single-backup strategy.
Fig. 4(a) shows an example of comparison, where symbols

(4, 2) and (4, 1) are attached to one backup server in
the single-backup strategy and each in the multiple-backup
server strategy, respectively. The left and right numbers in
brackets express the number of functions, denoted by f ,
protected by each backup server and the backup capacity,
respectively. In the single-backup strategy, there is only one
backup server, and its capacity is the same as the number of
backup servers in the multiple-backup strategy. Thus, both
are compared under the condition of having equal backup
resources.
Fig. 5 shows the difference in unavailability between

the single-backup and multiple-backup strategies. As the
number of functions increases, the unavailability increases
in both strategies. In the multiple-backup strategy with
three backup servers, unavailability decreases by 6.99% to

FIGURE 5. Comparison of unavailability between single-backup strategy with a
single server and multiple-backup strategy in case 1.

66.7% compared to the single-backup strategy with a backup
capacity of three, across a range of 5 to 30 functions.
In the multiple-backup strategy with four backup servers,
unavailability decreases by 21.6% to 72.3% compared to the
single-backup strategy with a backup capacity of four, across
a range of 5 to 30 functions.
These results mean the following. 1) When there are

many more functions than backup resources, the differ-
ence in unavailability between the two strategies gets
smaller. Thus, the multiple-backup strategy surpasses the
single-backup strategy, except when the number of backup
resources is significantly less than the number of functions.
2) When there are more backup resources, even if the
ratio of backup resources to the number of functions
stays the same, the difference in unavailability between the
two strategies gets larger. For instance, when the backup
resources are three and the number of functions is 15,
the unavailability in the multiple-backup strategy decreases
by 33.4% compared to that of the single-backup strategy.
On the other hand, with four backup resources and 20
functions, the unavailability decreases by 44.4%. Thus, the
superiority of the multiple-backup strategy over the single-
backup strategy increases as the scale of the model becomes
larger.
We conduct event-driven simulations. The assumptions

and parameters that are utilized for the simulation are
the same as those used for the analytical model. Our
simulation provides unavailability with a 95% confi-
dence interval that remains within 5% of each reported
value.
Fig. 6 compares the unavailability obtained by the ana-

lytical model and simulation in case 1. We observe that
the unavailability obtained by the analytical model and
simulation are comparable; the difference between them is,
at most, 3.4%.

B. CASE 2: COMPARISON OF UNAVAILABILITY
BETWEEN SINGLE-BACKUP STRATEGY WITH A SINGLE
BACKUP CAPACITY AND MULTIPLE-BACKUP STRATEGY
In case 2, we compare the unavailability of a function
between the single-backup and multiple-backup strategies;
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FIGURE 6. Unavailability of multiple-backup strategy obtained by analytical model
and simulation in case 1.

FIGURE 7. Comparison of unavailability between single-backup strategy with a
single backup capacity and multiple-backup strategy in case 2.

each backup server in each model has a single backup
capacity. Similar to case 1, we conduct a comparison by
equating the backup resources.
Fig. 4(b) shows an example of comparison in case 2. In the

single-backup strategy, there is only one backup capacity in
each backup server, and the number of backup servers is the
same in both strategies. Thus, both are compared under the
condition of having equal backup resources. For simplicity,
in the single-backup strategy, we ensure that the number of
functions is the same for each component.
Fig. 7 shows the difference in unavailability between the

multiple-backup strategy and the single-backup strategy. We
compare the results of Fig. 5 and Fig. 7; with the current
settings, we observe that a single-backup strategy with
one backup server performs better than a single-backup
strategy with only one backup capacity. We have similar
observations to case 1. These unavailabilities gradually
get closer as the number of functions becomes larger
than the backup capacity. When there are more backup
resources, the difference in unavailability between both
strategies increases, even if the ratio of backup resources
to the number of functions stays the same. Hence, when
we compare both strategies, the multiple-backup strategy
is also considered to be better than the single-backup
strategy.

FIGURE 8. Comparison of number of feasible states dependent on number of
functions for different numbers of backup servers.

FIGURE 9. Comparison of computation time dependent on number of functions for
different numbers of backup servers.

C. NUMBER OF FEASIBLE STATES AND COMPUTATION
TIME WITH DIFFERENT NUMBERS OF FUNCTIONS AND
BACKUP SERVERS
Fig. 8 shows the number of feasible states dependent on the
number of functions with different numbers of servers. The
number of feasible states grows with both the number of
functions and backup servers. For example, when the number
of functions is 64, the number of feasible states ranges from
102 to 105, depending on the number of backup servers.
Fig. 9 presents the computation time to compute the

unavailability of multiple-backup models with different num-
bers of functions and backup servers, respectively. The time
needed to compute the unavailability is at most 1.3 × 103

seconds in our examined cases. It increases as the number of
functions and that of backup servers increases. The required
computation time grows as the problem size increases.
In our examined cases, the proposed analytical model is
applicable for computing unavailability within a practical
time.
As observed in Figs. 8 and 9, as the number of functions

and that of backup servers increase, the number of feasible
states and the computation time in the proposed model also
increase. Consequently, the computation time may become
impractically large. In such cases, an event-driven approach,
such as Monte Carlo simulation, can be a practical alternative
for evaluating unavailability. However, the proposed analyti-
cal model is still useful for validating simulation outcomes in
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moderate-sized problems that it can handle. If the proposed
analytical model is not applied, verifying the correctness of
simulation outcomes would be difficult.

VI. BACKUP ALLOCATION
A. NATURE OF BACKUP ALLOCATION
We investigate the nature of backup allocation regarding
unavailability. Firstly, groups possess the following proper-
ties.
Property 1: When the number of functions in a group is

equal, the larger the number of backup servers is, the lower
the unavailability.
Proof: Consider a group consisting of f functions and s

backup servers.
Case 1: f < s
In this case, this group can recover a maximum of s− k

functions simultaneously, where 0 ≤ k ≤ s − 1, even if
s − f + k backup servers fail. Suppose that we add one
backup server to this group. As a result, this group can
recover a maximum of s−k functions simultaneously even if
s+1− f +k backup servers fail. Therefore, the unavailability
of this group decreases.
Case 2: f ≥ s
In this case, this group can recover a maximum of k

functions simultaneously, where 0 ≤ k ≤ s− 1, even if s− k
backup servers fail. Suppose that we add one backup server
to this group. As a result, this group can recover a maximum
of k+1 functions simultaneously even if s−k backup servers
fail. Therefore, the unavailability of this group decreases.
In either case, the unavailability of this group

decreases.
Property 2: Suppose that two groups exist. The unavail-

ability of a single group combining the two groups formed
by connecting all their servers and functions is lower than
the higher value of the unavailabilities of the two individual
groups.
Proof: Suppose that when two groups are combined, the

unavailability of the combined group does not increase. Let
G1 and G2 represent each group, having s1 and s2 backup
servers, respectively. Here, G1 can recover a maximum of k
functions simultaneously, where 1 ≤ k ≤ s1−1, even if s1−k
backup servers fail. Similarly, G2 can recover a maximum of
l functions simultaneously, where 1 ≤ l ≤ s2−1, even if s2−l
backup servers fail. When these two groups are integrated,
the combined group can recover a maximum of m functions
simultaneously, where 1 ≤ m ≤ s1+s2−1, even if s1+s2−m
backup servers fail. Consequently, the integrated group can
recover more functions with the same number of backup
server failures, which contradicts the assumption. Thus, the
unavailability decreases when two groups are combined.
In light of this, we discuss what kind of allocation has

low unavailability. The backup server can protect c functions
simultaneously. We call this c as service capacity. Firstly,
assume that the service capacity of the backup server is
equal to the number of all functions. In this case, the optimal

FIGURE 10. Graph of unavailability when considering an allocation of two groups.

allocation is the one that connects all functions to each
backup server.
Property 3: When the service capacity is equal to the

number of all functions, the optimal allocation is the one
that connects all functions to each backup server.
Proof: Suppose that any allocation consisting of a single

group is not an optimal allocation; then allocations compris-
ing m (≥ 2) groups become the optimal allocation. Consider
connecting all functions and servers of two groups within this
allocation. In this case, the unavailability after the connection
is always less than or equal to that of the original allocation,
which contradicts the assumption. Therefore, an allocation
of m ≥ 2 groups is not optimal.

Next, consider the case where the service capacity is less
than |F|, which does not satisfy Property 2. In this case, it
is not possible to take an allocation that connects all backup
servers and functions. At this point, the optimal allocation
is classified into two categories.
The first category is to allocate a group with many backup

servers for a relatively small number of functions and allocate
the remaining functions into a group that connects all of
them. We call this allocation an unbalanced allocation. This
allocation often becomes optimal when the service capacity
is close to |F|.
The second category is an allocation that divides groups

as evenly as possible. We call this allocation a balanced
allocation. This allocation often becomes optimal when the
service capacity is small and the creation of multiple groups
is necessary.
We specifically investigate an allocation scenario with six

servers and ten functions under the condition that the service
capacity is nine. Fig. 10 illustrates the graph of unavailability
when considering an allocation of two groups. In Fig. 10,
unavailability (x,y) represents the unavailability of a group
composed of x servers and y functions. Fig. 10 shows only
the vicinity of the minimum unavailability. By examining
Fig. 10, one can determine which allocation minimizes the
group’s unavailability in this scenario, which has six servers
and ten functions.
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FIGURE 11. Comparison of unavailability between multiple-backup and
single-backup strategies for each best allocation when the number of backup servers
is four and the service capacity is f

2 .

Fig. 10 shows that the backup allocation of (the number
of servers, the number of functions) = (2, 1) and (4, 8) and
that of (3, 5) and (3, 5) are candidates for the minimum
unavailability. In this context, the backup allocation of (2,
1) and (4, 9) corresponds to the unbalanced allocation, while
the backup allocation of (3, 5) and (3, 5) corresponds to
the balanced allocation. In the current parameter setting, the
backup allocation of (2, 1) and (4, 9) attains the minimum
unavailability. However, it is worth noting that parameter
configurations exist where the backup allocation of (3, 5) and
(3, 5) achieves the minimum unavailability.

B. COMPARISON BETWEEN BACKUP ALLOCATION
STRATEGIES
We conduct a comparison between the multiple-backup
strategy and the single-backup strategy; we investigate the
unavailability of the best allocation corresponding to each
strategy. We calculate the unavailability for all feasible
allocations in each strategy and designate the one with the
smallest unavailability as the best allocation. In other words,
we handle the UASBA problem described in Section III-D
for both strategies. In this comparison, for both strategies,
we set the maximum number of backup servers as s, the
number of functions as f , the backup capacity as 1, and the
service capacity as c.

1) CASE 1

We compare the unavailability of the best allocation cor-
responding to each strategy when the number of backup
servers s is four and the service capacity c is f

2 . Fig. 11
compares the unavailability between multiple-backup and
single-backup strategies for each best allocation in case 1.
The multiple-backup strategy reduces the unavailability of
a function by up to 64.8% compared to the single-backup
strategy.

2) CASE 2

We compare the unavailability of the best allocation cor-
responding to each strategy when the number of backup

FIGURE 12. Comparison of unavailability between multiple-backup and
single-backup strategies for each best allocation when the number of backup servers
is four and the service capacity is f − 1.

servers s is four and the service capacity is f − 1, which
is the highest capacity not meeting Property 3. Fig. 12
compares the unavailability between multiple-backup and
single-backup strategies for each best allocation in case 2.
The multiple-backup strategy reduces the unavailability of
a function by up to 64.8% compared to the single-backup
strategy.
When we compare Fig. 12 in case 2 with Fig. 11 in case 1,

the results only differ when the number of functions, f , is
18. We can explain this as follows. The optimal backup
allocation in case 2 for (the number of servers, the number
of functions) = (4, 18) is (1, 1) and (3, 17), where the higher
unavailability of the two groups is 0.01094. Meanwhile,
the unavailability for groups (1, 1), (3, 17), and (2, 9) is
0.01090, 0.009268, and 0.01221, respectively. Consequently,
the backup allocation of (1, 1) and (3, 17) exhibits lower
unavailability than the backup allocation of (2, 9) and (2, 9),
whose unavailability is 0.01221. This is the case when an
unbalanced allocation is better than a balanced allocation,
as we discussed in the last paragraph of Section VI-A.
For other numbers of functions, i.e., f 	= 18, the backup

allocation and unavailability in both Fig. 11 and 12 are the
same, whereas the service capacity is different. Thus, the
multiple-backup strategy still works well even if the service
capacity is not so large.

3) CASE 3

We compare the unavailability of the best allocation cor-
responding to each strategy when the number of backup
servers s is three and the service capacity is f − 1. Fig. 13
compares the unavailability between multiple-backup and
single-backup strategies for each best allocation in case 3.
The multiple-backup strategy reduces the unavailability of
a function by up to 42.3% compared to the single-backup
strategy.
Fig. 13 does not show much improvement in multiple-

backup allocation compared to Fig. 12 since splitting the
backup servers evenly and balancing the backup allocation is
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FIGURE 13. Comparison of unavailability between multiple-backup and
single-backup strategies for each best allocation when the number of backup servers
is three and the service capacity is f − 1.

impossible. In addition, when we have fewer backup servers,
unbalanced allocation does not work well enough. This is
because all backup allocations end up with one and two
backup servers respectively, creating such backup allocation
that mixes these two allocation patterns.
In Fig. 13, when the number of functions ranges from

four to eight, the unavailability is consistently 0.01090. This
is because the best allocation includes the group of (1,1),
whose unavailability is 0.01090, which is higher than any
other group. In a situation where balanced allocation is not
feasible, there exists a potential for performance degradation,
especially when the number of functions is relatively small,
which corresponds to the region of f ∈ [2, 6] in fig10.
Hence, the multiple-backup strategy works better when

we can evenly split the servers or when there are enough
backup servers. In this case, unbalanced backup allocation
can be effective.

VII. CONCLUSION
A. SUMMARY
This paper proposed an analytical model that assesses the
unavailability of middlebox functions for multiple-backup
shared protection. We analyzed the state transitions to
make equilibrium-state equations. We solve the equilibrium-
state equations by applying a Markov chain to obtain an
unavailability of function. Using the proposed analytical
model, we compared the unavailability of a function between
the multiple-backup and single-backup shared protection.
The numerical results showed that the multiple-backup
shared protection strategy reduces the unavailability of a
function by up to 72.3% compared to the single-backup
shared protection strategy in our examined cases. We also
investigated the nature of backup allocation and compared
the unavailability of the best allocation corresponding to
each strategy. The best multiple-backup allocation reduces
the unavailability of a function by up to 64.8% com-
pared to the best single-backup allocation in our examined
cases.

B. FUTURE WORK
The proposed analytical model adopted basic assumptions.
This modeling simplifies the backup capacity by assuming
that a backup server handles at most one function. The
model does not consider situations where a backup server can
recover multiple functions simultaneously, where the backup
capacity depends on factors other than just the number of
functions, or when parameters such as a failure rate vary
depending on different backup servers or functions.
Our model is in its early stages, but it has the potential

to be extended to accommodate these scenarios. Addressing
these issues requires increasing the number of feasible states
and state transitions, making the model more complex.
Studies [26], [32], [33] presented analytical models to esti-
mate the blocking probability of lightpath requests in elastic
optical networks [34], [35]. Their algorithms effectively
generate feasible states for spectrum allocation in an optical
link. Inspired by these approaches, we can adopt similar
techniques to efficiently manage feasible states and state
transitions in our extended model, which will accommodate
more complex scenarios. These challenges are left as subjects
for future research.
In this paper, we assume that function failures occur

independently. Specifically, different functions are allocated
to different physical machines, and each function failure
is independent of others. However, in reality, multiple
functions may be deployed on the same physical machine,
and a failure of that machine would lead to correlated
failures of all functions hosted on it. Study [14] analyzed
function unavailability considering physical machine failures
under a single-backup shared protection strategy. However,
no studies have analyzed function unavailability under a
multiple-backup shared protection strategy when functions
are colocated on a physical machine that can fail. Extending
our analytical model to incorporate correlated failures in a
multiple-backup shared protection scenario remains a crucial
direction for future research.
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