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Abstract 

This paper is the survey of [4], which proved the ill-posedness of the two-dimensional 
stationary Navier-Stokes equations in the scaling critical Besov spaces. 

1 Introduction 

We consider the incompressible stationary Navier-Stokes equations on ]Rn with n?: 2: 

-!1U + IP'div(U@ U) = IP'F, div U = 0, (1.1) 

where IP' := I+ v' div(-£1)- 1 = { 6jk + aXjaXk (-£1)- 1 L(;j,k(;n is the Helmholtz projection 
onto the divergence-free vector fields. Here U = U(x) : ]Rn -+ ]Rn represents the unknown 
velocity fields and P = P(x) : ]Rn -+ JR denotes the unknown pressure of the fluid, while 
F = F(x) : ]Rn -+ ]Rn is the external force which is a given function. The equation (1.1) 
possesses the invariant scaling transform; if (F, U) satisfies (1.1), then the scaled functions 

F>,.(x) := >.3 F(>.x), 

also solve (1.1) for all>.> 0. We call that the data space D and the solution space Sare scaling 
critical if 

(1.2) 

. .!!_3 . 11 -1 
for all >. > 0. As the homogeneous Besov spaces D = B;,q (JRn) and S = B;,q (JRn) (1 ~ 
p, q ~ oo) satisfy (1.2) for all dyadic numbers >. > 0, we regard them as the scaling critical 
Besov spaces for ( 1. 1). 

The aim of this paper is to survey of the result in [4] that considers (1.1) with the two­
dimensional case n = 2 and proves that (2.1) is ill-posed in the scaling critical Besov spaces 

• ±--3 • ±--1 
D = B;, 1 (JR2 ) and S = F E B;,1 (JR2 ) with 1 ~ p ~ 2, which is the completely different 
phenomenon for the high dimensional case n?: 3 stated in [8]. 

Before stating the main result of [4] precisely, we shall recall known results related to our 
study. In the higher-dimensional cases ]Rn with n ?: 3, Leray [12], Ladyzhenskaya [11], and 
Fujita [5] proved the existence of solutions to (1.1). For the scaling critical framework, Chen 
[2] proved the well-posedness of (1.1) from F = div F with F E L~(JRn) to U E Ln(JRn). 
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. 11_3 . 11_1 
Kaneko-Kozono-Shimizu [8] proved that (1.1) is well-posed from B/,q (IRn) to Bt,q (IRn) for 
all (p,q) E [1,n) x [1,oo], whereas Tsurumi [14,16] showed the ill-posedness for (p,q) E ({n} x 
(2, oo]) U ((n, oo] x [1, oo]). Li-Yu-Zhu [13] considered the remaining case (p, q) E { n} x [1, 2]. 
For other related results, see Tsurumi [15] for the well-posedness and ill-posedness in the scaling 
critical Besov spaces on the periodic box 'll'n (n )! 3). Yamazaki [18] made use of some symmetric 
structures and constructed small solution. In [18], he considered (2.1) in the whole plane case 
and proved that for given external force F = V_1_G = (8x2 G, -Ox1 G), where G decays like 
IG(x)I ~ c5(1 + lxl)-2 with some O < c5 « 1 and possesses the following symmetric conditions: 

there exists a unique small solution to (1.1) in the £ 2,00 (IR2)-framework with the vorticity 
rot U satisfying the same condition as for G. Guillod-Korobkov-Ren [7] constructed a unique 
solution to (1.1) for compact supported external forces that do not necessarily have any spatial 
symmetric structure. 

Despite of numerous studies on the two-dimensional stationary Navier-Stokes equations, it 
was a long-standing open problem whether the two-dimensional Navier-Stokes equations on the 
whole plane IR2 possesses a unique small solution for a given small external force F in general 
settings without any symmetric condition. In particular, unlike the higher-dimensional cases, 
the well-posedness and ill-posedness of stationary Navier-Stokes equations on the whole plane 
case in the scaling critical framework were completely unsolved. In the paper [4], the author 
solved the aforementioned open problem in the challenging case IR2 and proved the ill-posedness. 
The main result of [4] now reads as follows. 

. ,!_3 
Theorem 1.1 (Ill-posedness of (1.1)). For any 1 ~ p ~ 2, (1.1) is ill-posed from B;,1 (IR2 ) 

. ±--1 
to B;,1 (IR2 ) in the sense that the solution map is discontinuous. More precisely, for any 
1 ~ p ~ 2, there exist a positive constant c50 = c50 (p), a positive integer N 0 = N 0 (p), and a 

. ±--3 
sequence {FN }NEN c B;,1 (IR2 ) satisfying 

. ±--1 
such that if each FN with N )! N 0 generates a solution UN E B;,1 (IR2 ) of (1.1), then it holds 

Remark 1.2. We provide some remarks on Theorem 1.1. 

1. Theorem 1.1 can be compared with the result of Yamazaki [18], where he constructed 
a unique small solution to (1.1) in the scaling critical space £ 2,00 (IR2 ), which is a wider 

. ±--1 
framework than ours, that is B;,1 (IR2 ) Y £ 2,00 (IR2 ) (1 ~ p ~ 2). In [18], it is assumed 
that the small external force has the form F = V_1_G with some function G satisfying the 
symmetric condition (1.3), while our sequence of external forces in Theorem 1.1 is given 
by an anisotropic form as follows: 

for some constants O < c5 « 1, M » 1, and some real valued radial symmetric function 
W E ..9'(IR2) with supp W compact. Therefore, it is revealed that the symmetric condition 
(1.3) is a crucial assumption for the solvability of (1.1). 



70

2. In the higher-dimensional whole space Rn and periodic box 1I'n cases with n ~ 3, it was 
shown in [8, 15] that (1.1) is well-posed in the scaling critical Besov spaces based on LP(Rn) 
for 1 ,;;;; p < n. Tsurumi [17] revealed that similar results hold for the two-dimensional 
stationary Navier-Stokes equations on the periodic box 11'2 . In [17], he showed the well­
posed in the nearly scaling critical Besov spaces based on LP+c:('l1'2) for 1 ,;;;; p < 2 with 
small c > 0. By comparing these results and Theorem 1.1, we see that, unlike the higher­
dimensional cases, the solvability is different in the two-dimensional case when the domain 
is the periodic box 11'2 and the whole plane R2 . This implies that in the two-dimensional 
case, information at the spatial infinity of (1.1) affects the solvability of (1.1), which may 
be attributed to the fact that the fundamental solution of the two-dimensional Stokes 
equations increases logarithmically. 

We elaborate upon the difficulty that we meet when we prove Theorem 1.1. Following 
the standard ill-posedness argument as proposed in [1, 14, 19], we may construct a sequence 

. -"-3 
{ F N} N EN C B/,q (R 2) of the external force satisfying 

lim IIFNII. -"-3 = 0, N---too BP p,q 

lim llu;.Jl 11- _.__ 1 = o, N---too BP p,q 

liminf 11ui) 11- -"-1 > 0, N---too BP p,q 

where u;.Jl and ui) are the first and second iterations, respectively, defined as 

We formally decompose the corresponding solution UN of (1.1) with the external force FN as 

uN = u;.P +uii + wN, 
where the perturbation W N is a solution to 

-~wN +lP'div (u;.Jl @uii + uii @u;.P + uii @uii 

+u;.Jl @ w N + u!;l @ w N + w N @ u;.Jl + w N @ u<; l + w N @ w N) = o. 
(1.4) 

However, in the whole plane case R2 , it seems hard to find a function space X C Y'(R2 ) in 
which the following nonlinear estimate holds: 

(1.5) 

In particular, the author [3] implied that (1.5) fails for all scaling critical Besov spaces X = 
Bt,;\R2 ) (1,;;;; p,q,;;;; oo). Thus, it seems difficult to construct a function WN obeying (1.4) 
and establish its suitable estimate. Consequently it is hard to prove the desired ill-posedness 
by the standard argument. 

Let us mention the idea to overcome the aforementioned difficulties and prove Theorem 
1. 1. Inspired by the general observation that the stationary solutions should be the large time 
behavior of nonstationary solutions, we consider the nonstationary Navier-Stokes equations. 
Then, in contrast to the stationary problem, which possesses difficulties in the singularity of 
(-~)-1 at the origin in the frequency side, we see that, for the nonstationary Navier-Stokes 
equations, the heat kernel { et~ h>o relaxes the singularity on the low-frequency part, and we 
may obtain the nonlinear estimate 

lllat e<t-T)~lP'div(u(T) @v(T))dTllx,;;;; Cllullxllvllx 

- . -"-1+-" 
with X = Y(0, T; B/,q r (R2)) for some p, q, rand all 0 < T,;;;; oo. Motivated by these facts, 
we suppose to contrary that (1.1) is well-posed and consider the nonstationary Navier-Stokes 
equations with the stationary external forces. Then, we may show that a contradiction appears 
from the behavior of the nonstationary solutions in large times. 
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2 N onstationary analysis 

Let us consider the nonstationary incompressible Navier-Stokes equations with the stationary 
external force: 

{
OtU - ~u + lP'div(u 12) u) = lP'F, 

divu=0, 

u(O, x) = 0, 

t > 0,x E lR2 , 

t ~ 0,x E lR2 , 

XE JR2 . 

(2.1) 

Here, u = u( t, x) : (0, oo) x JR2 --+ JR2 denote the unknown nonstationary velocity of the fluid, 
and F = F(x) : JR2 --+ JR2 is the given stationary external force. By the Duhamel principle and 

lat e<t--r)l:>.lP'FdT = (-~)-1 (1- etl:>.) lP'F, 

(2.1) is formally equivalent to 

(2.2) 

where the nonlinear Duhamel term D[·, ·] is defined by 

D[u, v](t) := - lat e<t--r)l:>.lP'div(u(T) 12) v(T))dT. 

We say that u is a mild solution to (2.1) if u satisfies (2.2). 

2.1 Global ill-posedness 

Since the external force in (2.1) does not depends on time, it is excepted that the solution to 
(2.1) does not decay in time. However, it is difficult to close the nonlinear estimates in the 

- -±--1 
scaling critical spaces that include functions non-decaying in time such as L00 (0, oo; Bf:,q (JR2)). 

Thus, it is hard to construct a bounded-in-time global solution to (2.1). In this subsection, 
we justify the above consideration in the sense that for every 1 ~ p ~ 2, the solution map 

I3%,~ 3 (JR2) =::i F H u E C([O, oo ); I3%,~ 1 (JR2)) is discontinuous even if it exists. More precisely we 
• ±._3 

show that there exist two sequences { FN} NEN C B;,1 (JR2 ) of external forces and {TN} NEN C 

(0, oo) of times satisfying 

- . ±--1 
such that (2.1) with the external force FN admits a solution UN E C([0, TN]; B;, 1 (JR2 )) satis-
fying 

In this paper, we call this phenomenon as the global ill-posedness. The aim of this subsection 
is to prove the following theorem. 

Theorem 2.1 ([4, Theorem 3.1]). Let 1 ~ p ~ 2. Then, there exist two positive constants 
61 = 61 (p) and K 1 = K 1 (p) such that for any O < 6 ~ 61 , there exists a sequence { FJ,N} N EN c 

. ±._3 B;, 1 (JR2 ) of external forces such that the following two statements are true: 

(i) For any N E N, it holds 
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{ii) Let TN:= 22N_ Then, for each integer N ~ 3, (2.1) with the external force Fa,N admits 
- . 1-_1 

a mild solution ua,N E C([0, TN]; B;,1 (JR2)) satisfying 

liminfllua,N(TN)II _L, > K62 , N--too B::,, 1 
(2.3) 

Remark 2.2. For the nonstationary Navier-Stokes equations in ]Rn with n ~ 3, it is possible to 
construct a small global-in-time unique solution for small external force that is bounded-in-time 
but does not decay as t -+ oo. We refer to [6, 9] and references therein for the time periodic 
setting. Thus, the assertion of Theorem 2.1 is one of phenomena inherent to two-dimensional 
flows. 

We shall sketch the outline of the proof of Theorem 2.1. We first follow the standard ill­
posedness argument used in studies such as [1, 19] and formally decompose the solution ua,N 
as 

where ui~1 and ui~1 denote the first and second iterations, respectively, which are defined by 

and Wa,N is the perturbation solving 

divwa,N = 0, 

wa,N(0,x) = 0. 

. 1__3 
Then, choosing a suitable sequence {Fa,N}NEN C B;,1 (JR2 ), we may see that 

11 
(l) 11 () u _:._, :::;; C--, 
a,N L 00 (O,oo;B::., ) y1JV 

whereas the second iteration satisfies 

IH~1(TN)IIBi-' ~ c62, 
p , l 

(2.4) 

(2.5) 

for sufficiently large N. It is relatively easy to obtain (2.4) and (2.5), while the most difficult 
part of the proof is how to construct and control the perturbation Wa,N. To this end, we 
consider the estimate of wa,N in 

Here, the choice of the auxiliary space LN(0, TN; i3;_;Hlv (JR2)) is the most crucial idea of the 
proof. Indeed, choosing the Lebesgue exponent of the time integral as N, we see that the 
LN (0, TN )-norm of functions are bounded by the L 00 (0, TN )-norm with the constant indepen­
dent of N. More precisely, it holds 

1 

llfllLN(o,rN) ::( T$ llfllL00 (0,TN) = 4llfllL00 (0,TN) 
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for all f E £ 00 (0, TN). On the other hand, choosing the interpolation index as q = 2 in the 
- . ±--1+2 

auxiliary Chemin-Lerner space £N(0, TN; B;,2 N (JR2)), we may use a pair of estimates 

+ Cllull- . L, llvll- . L, , 
L=(o,T;B:,, ) L=(o,T;B:,, ) 

(2.6) 

IID[u,v]II- . L1+fr :::::; Cv'lVllull- . L1+fr llvll- . L1+i 
LN (O,T;B:, 2 ) LN (O,T;B:, 2 ) LN (O,T;B:, 2 ) 

(2.7) 

proved in [4, Lemma 2.5] above. Then, keeping these facts in mind and making use of the 
iterative argument via (2.6) and (2.7), we may obtain the existence of the perturbation Wo,N 

and the estimate 

(2.8) 

for sufficiently small o. Collecting (2.4), (2.5), and (2.8), we obtain the solution Uo,N satisfying 
the desired estimate (2.3). 

2.2 Global solutions around the stationary flow 

In contrast to the previous subsection, if we assume that the stationary problem (1.1) possesses 
a solution U for some external force F and then consider the nonstationary Na vier-Stokes 
equations (2.1) with the same external force Fas for U. Under this assumption, we may prove 
that (2.1) admits a bounded-in-time global solution. 

Theorem 2.3 ([4, Theorem 3.3]). Let 1 :::::; p < 4 and 1 :::::; q < oo. Then, there exist a positive 
constant o2 = o2 (p, q) and an absolute positive constant K 2 such that if a given external force 

• ±--3 · ±--1 
FE B/,q (JR2 ) generates a solution U E B/,q (JR2 ) to (1.1) satisfying 

then (2.1) with the same external force F admits a global mild solution u in the class 

- . ±--1 2 
u E C([O, oo); B/,q (JR )), 

Assuming the existence of the stationary solution, we consider the perturbation v = u - U, 
which should solve 

{
8tv - ~v + lP'div(U @v + v@ U + v @v) = 0, 

divv = 0, 

v(0,x) = -U(x), 

t > 0,x E 1R2 , 

t),: 0,x E 1R2 , 

X E JR2 , 

(2.9) 

then (2.9) possesses no external force that does not decay as t -+ oo, which implies that the 
solution v of (2.9) is expected to decay as t-+ oo and belong to some time integrable function 
spaces. Since the nonlinear estimate is closed in 

(2.10) 

for some 2 < r < oo (see [4, Lemma 2.4]), we may establish the global solution v to (2.9) in the 
class (2.10). We then obtain the desired solution by u := v + U. 
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3 Proof of Theorem 1.1 

Now, we are in a position to present the proof of our main result. 

Proof of Theorem 1.1. Let 61 and 62 be the positive constants appearing in Theorems 2.1 and 
2.3, respectively. Let Ko be the positive constant satisfying 

sup IIV[u,v](t)II. L1 ~ Kollull- . L1 sup llv(t)II. L1 (3.1) 
O,;;;t,;;;T B/,oo L00 (0,T;B:,l ) O,;;;t,;;;T B/,oo 

- -~-1 -~-1 
for all T > 0, u E C([O, T]; B;,1 (JR.2)), and v E C([O, T]; BJ,00 (JR.2)). See [4, Lemma 2.4] for 
the proof of (3.1). Let K 1 and K 2 be the positive constants appearing in Theorem 2.1 and 
Theorem 2.3, respectively. We define 

50 := min { 52, 63, 2::K2}; 63 := min { 61, 2Ko(K~ + K 2)} · 

We consider the sequence FN := Fiia,N, which is defined in Theorem 2.1 with 6 replaced by 53. 
Note that Theorem 2.1 yields 

K163 
IIFNII L3 ~ /7\T ➔ 0 

B:,1 V N 
as N ➔ oo. 

Let us consider the nonstationary Navier-Stokes equations 

{
8tu - flu+ lP'div(u@ u) = lP'FN, 

divu=O, 

u(0,x) = 0, 

t > 0,x E JR.2, 
t ~ 0,x E lR.2 , 

X E JR.2 . 

(3.2) 

By Theorem 2.1, there exists a No= No(P) EN such that for each NE N with N ~ No, (3.2) 
- . ~-1 

possesses a solution UN= Uii3 ,N E C([O, TN]; B;,1 (JR.2)) satisfying 

52 
lluN(TN)II. L1 ~ J, 

B:,l l 

Here, we have set TN := 22N. 

(3.3) 

. ~-1 
Assume to contrary that there exist an integer N' ~ N 0 and a solution UN' E B;,1 (JR.2) of 

(1.1) with the external force FN, satisfying 

IIUN,11 L1<60. (3.4) 
B:,1 

- . ~-1 
Then, by (3.4) and Theorem 2.3, FN, generates a global-in-time solution UN' E C([O, oo ); B;,1 (JR.2)) 

to the nonstationary Navier-Stokes equations (3.2) satisfying 

(3.5) 

Next, we show that these two solutions UN' and UN' coincides on [O,TN,]- Since UN' - UN' 
enjoys UN' - UN'= V [uN1,UN1 - UN,]+ V [uN, - UN1,UN1] we see by (3.1) that 

sup lluN, (t) - UN' (t) II . L1 
O,;;;t,;;;TN, Bl, 00 

~ Koll(uN,, UN' )11- . L1 sup lluN,(t) - UN1 (t)II. L1 
L 00 (0,TN1;B:,l ) O,;;;t,;;;TN, B$,oo 

~ Ko (K1 + K2) 63 sup lluN, (t) - UN' (t) II . L1 
O,;;;t,;;;TN, B/,oo 

~ ~ sup lluN,(t) - UN1 (t)II L1, 
o,;;;t,;;;TN, Bl,oo 
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which implies UN' (t) = UN' (t) for all O ~ t ~TN'· Hence, it follows from (3.3) and (3.5) that 

which contradicts (3.4). Thus, we complete the proof. □ 
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